JP2006016672A - Discharge surface treatment method and die subjected to surface treatment - Google Patents

Discharge surface treatment method and die subjected to surface treatment Download PDF

Info

Publication number
JP2006016672A
JP2006016672A JP2004196887A JP2004196887A JP2006016672A JP 2006016672 A JP2006016672 A JP 2006016672A JP 2004196887 A JP2004196887 A JP 2004196887A JP 2004196887 A JP2004196887 A JP 2004196887A JP 2006016672 A JP2006016672 A JP 2006016672A
Authority
JP
Japan
Prior art keywords
powder
discharge
film
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004196887A
Other languages
Japanese (ja)
Other versions
JP4534633B2 (en
Inventor
Masao Akiyoshi
雅夫 秋吉
Akihiro Goto
昭弘 後藤
Kazuji Nakamura
和司 中村
Masahiro Okane
正裕 岡根
Hiroyuki Teramoto
浩行 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004196887A priority Critical patent/JP4534633B2/en
Publication of JP2006016672A publication Critical patent/JP2006016672A/en
Application granted granted Critical
Publication of JP4534633B2 publication Critical patent/JP4534633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a discharge surface treatment technique to a component and a die having high thermal conductivity of Cu, Cu alloys or the like, and to improve their durability. <P>SOLUTION: Pulselike discharge is generated between an electrode of a powder compact obtained by compacting metal powder, or the powder of a metallic compound, or the powder of ceramics, or a powder compact obtained by subjecting the above powder compact to heating treatment, and a metal having a thermal conductivity of ≥120 W/mK, and, by energy owing to the discharge, a film composed of the electrode material or a reacted substance from the electrode material by the discharge energy is formed on the surface of the metal having a thermal conductivity of ≥120 W/mK. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属粉末または金属の化合物の粉末、或いはセラミックスの粉末を成形した粉末成形体、もしくは、該粉末成形体を加熱処理した粉末成形体を電極として加工液中或いは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギーにより、ワーク表面に電極材料或いは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理に関するものである。   The present invention relates to a powder molded body obtained by molding a metal powder, a metal compound powder, or a ceramic powder, or a powder molded body obtained by heat-treating the powder molded body as an electrode in a working fluid or in the air. The discharge surface treatment relates to a discharge surface treatment in which a pulsed discharge is generated between the electrodes and an energy is generated to form a film made of an electrode material or a material obtained by reacting the electrode material with the discharge energy.

鋳造金型材料として従来から鉄鋼が使用されてきているが、従来の硬質の鉄鋼を金型として使用すると、該金型の熱伝導率は40W/mK程度と低いため、鋳物の冷却性能に劣り生産性が低いという問題があった。
また、小さい熱伝導率のため、金型の予熱に長時間を要するや金型内の温度勾配が大きく、金型表面で引っ張り圧縮応力が繰り返されることで塑性歪みが蓄積され、金型に早期にクラックが発生するなどの問題を生じさせていた。
Conventionally, steel has been used as a casting mold material. However, when conventional hard steel is used as a mold, the thermal conductivity of the mold is as low as about 40 W / mK, so the cooling performance of the casting is inferior. There was a problem of low productivity.
In addition, due to the low thermal conductivity, if the mold requires a long time for preheating, the temperature gradient inside the mold is large, and the plastic strain accumulates due to repeated tensile and compressive stress on the mold surface. This causes problems such as cracks.

この問題を解決するため、金型に熱伝導率の高い銅合金を適用する方法が検討されたが、Cu合金は鉄鋼に比べ強度が劣るため、上記熱疲労によるクラックの発生を抑制できなかった。   In order to solve this problem, a method of applying a copper alloy having high thermal conductivity to the mold has been studied. However, since the Cu alloy is inferior in strength to steel, the generation of cracks due to the thermal fatigue could not be suppressed. .

そこで、金型の耐久性を向上させるため、損傷が生じやすい部分に、セラミックスと金属の複合材であるサーメットの被膜を施す方法が検討され、特許3150291号公報に開示されている。
しかしながら、特許3150291号公報に開示された方法では、被膜と金型の密着性が悪いため、被膜が剥離し、損傷を抑制するには不十分であった。
Therefore, in order to improve the durability of the mold, a method of applying a cermet film, which is a composite of ceramics and metal, to a portion where damage is likely to occur has been studied and disclosed in Japanese Patent No. 3150291.
However, in the method disclosed in Japanese Patent No. 3150291, the adhesion between the coating film and the mold is poor, so that the coating film peels off and is insufficient to suppress damage.

一方、剥離を抑制するため、CuやCu合金表面にサーメット被膜を形成させる従来の表面処理方法が、特開2002−361394号公報に開示されている。
それによると、120W/mK以上の熱伝導率と180HV以上の硬さを併せ持つ銅合金に、放電被覆により被成したNi基合金を中間層として、その上に放電被覆により被成したCo、Cu、Cr及びNiのうちから選んだ少なくとも一種を含むサーメット層を形成させる技術が開示されている。
この技術を銅合金からなる金型の内面、および、表面酸化膜を除去するために設けられた射出口よりも口径がわずかに小さい開口部を有するスカルプゲートの表面及び射出口の内面それぞれ一部または全面に適用すると、金型の耐久性を向上できる。
On the other hand, in order to suppress peeling, a conventional surface treatment method for forming a cermet film on the surface of Cu or Cu alloy is disclosed in JP-A-2002-361394.
According to this, a copper alloy having a thermal conductivity of 120 W / mK or more and a hardness of 180 HV or more, a Ni-based alloy formed by discharge coating as an intermediate layer, and Co, Cu formed by discharge coating thereon. , A technique for forming a cermet layer containing at least one selected from Cr and Ni is disclosed.
A part of the inner surface of a mold made of copper alloy, and the surface of a scalp gate having an opening slightly smaller than the injection port provided to remove the surface oxide film and the inner surface of the injection port. Alternatively, when applied to the entire surface, the durability of the mold can be improved.

特許3150291号公報Japanese Patent No. 3150291 特開2002−361394号公報JP 2002-361394 A

特開2002−361394号公報に開示されている放電被覆法(エレクトロ・スパーク・デポジション)は、金属またはサーメットの棒を電極として用い、被加工物との間に発生させた放電のエネルギーで電極を溶融させ、被加工物に堆積させる加工法である。
一回の放電で直径0.1mm〜数mmの金属棒の一部を溶融させるため、被加工物に移行される溶滴も直径で0.1mm〜数mmとなり、その溶滴体積が多いため、溶滴の積み重ねで形成される被膜が厚くなってしまう。
CuやCu合金を被加工物(部品や金型)に用いるのは、高い熱伝導率を必要とする場合が多く、別の金属やサーメットの被膜が厚くなってしまうと、熱伝導率が低下し、熱疲労に対する強度も低下し、所望の性能を損なう可能性があった。
また、放電により形成された被膜を、金型として精度を出すため、研磨等の後処理で被膜を薄くする必要であり、金型製作の作業効率が悪かった。
The discharge coating method (electro-spark deposition) disclosed in Japanese Patent Application Laid-Open No. 2002-361394 uses a metal or cermet rod as an electrode, and the electrode uses the energy of discharge generated between the workpiece and the electrode. Is a processing method of melting and depositing on a workpiece.
Because a part of a metal rod having a diameter of 0.1 mm to several mm is melted by a single discharge, the droplet transferred to the workpiece is also 0.1 mm to several mm in diameter, and the droplet volume is large. The film formed by the accumulation of droplets becomes thick.
The use of Cu or Cu alloys for workpieces (parts and molds) often requires high thermal conductivity, and the thermal conductivity decreases when another metal or cermet coating becomes thick. In addition, the strength against thermal fatigue is also reduced, which may impair the desired performance.
In addition, in order to increase the accuracy of the coating formed by electric discharge as a mold, it is necessary to make the coating thin by post-processing such as polishing, and the work efficiency of mold manufacturing is poor.

さらに、被加工物表面に形成された溶融域の上に、Co、Cu、Cr等を含むサーメット層を堆積させると、被膜自体は拡散接合となる。
この拡散接合における被膜と被加工物の密着強度は、メッキや溶射と比べれば高くなる。しかしながら、熱伝導率が高いCuやCu合金にサーメットの被膜を形成する場合には、被加工物の熱拡散かつサーメットとCuのなじみ性の関係上、被加工物表面に直接サーメット層を形成できず、中間層として熱伝導率がCuに比べ1/3程度のNiやCoなどの金属層が必要であった。
そのため、中間層形成のための処理工程が別途必要であり、被膜形成を容易に行うことができなかった。
Furthermore, when a cermet layer containing Co, Cu, Cr or the like is deposited on the melted region formed on the surface of the workpiece, the coating itself becomes diffusion bonding.
The adhesion strength between the coating and the workpiece in this diffusion bonding is higher than that of plating or thermal spraying. However, when a cermet film is formed on Cu or Cu alloy having high thermal conductivity, a cermet layer can be formed directly on the surface of the workpiece due to the thermal diffusion of the workpiece and the compatibility of the cermet and Cu. However, a metal layer such as Ni or Co having a thermal conductivity of about 1/3 of that of Cu is required as an intermediate layer.
Therefore, a separate process step for forming the intermediate layer is required, and the film formation cannot be easily performed.

本発明は、上述の課題を解決するためになされたものであり、CuやCu合金等の熱伝導率の高い部品や金型への放電表面処理技術を確立し、それらの耐久性を向上させることを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and establishes a discharge surface treatment technique for parts and molds having high thermal conductivity such as Cu and Cu alloy, and improves their durability. For the purpose.

本発明に係る放電表面処理方法は、金属粉末または金属の化合物の粉末、あるいはセラミックスの粉末を成形した粉末成形体、もしくは、該粉末成形体を加熱処理した粉末成形体の電極と、熱伝導率120W/mK以上の金属との間にパルス状の放電を発生させ、放電によるエネルギーにより、上記熱伝導率120W/mK以上の金属表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成させるものである。   The discharge surface treatment method according to the present invention includes a metal powder, a metal compound powder, a powder molded body obtained by molding a ceramic powder, or an electrode of a powder molded body obtained by heat-treating the powder molded body, and a thermal conductivity. A film formed of a material in which a pulsed discharge is generated between a metal of 120 W / mK or more and the electrode material or the electrode material reacts with the discharge energy on the metal surface having a thermal conductivity of 120 W / mK or more by energy generated by the discharge. Is formed.

電極から微粉末を供給し、数μsの間に数十Aの電流値を流して被膜を形成する放電表面処理では、被加工物表面に溶融域を形成できるため、熱伝導率が120W/mK以上の材料の表面に、被膜と十分に密着した厚さ数μm〜数十μmの被膜を形成でき、被加工物の高熱伝導という性質を維持しつつ表面硬度を向上できる。
また、放電表面処理により充填口内面に被膜を形成させると、膜厚が非常に薄いため、金型の持つ120W/mKの熱伝導率をほとんど低下させず、鋳造の生産性を落とすことなく、金型の寿命を拡大することができる。
なお、金型製造に関しても、放電表面処理後に研磨等の後処理が不要になる。
In the discharge surface treatment in which a fine powder is supplied from an electrode and a film is formed by flowing a current value of several tens of A in a few μs, a molten region can be formed on the surface of the workpiece, so that the thermal conductivity is 120 W / mK. A coating film having a thickness of several μm to several tens of μm sufficiently adhered to the coating film can be formed on the surface of the above material, and the surface hardness can be improved while maintaining the property of high thermal conductivity of the workpiece.
In addition, when the coating is formed on the inner surface of the filling port by the discharge surface treatment, the film thickness is very thin, so that the thermal conductivity of 120 W / mK of the mold is hardly reduced, and the productivity of casting is not reduced. The life of the mold can be extended.
It should be noted that post-treatment such as polishing after the discharge surface treatment is not necessary for mold manufacture.

実施の形態1.
本実施の形態におけるCu−Cr−Zr合金上へのWCとCoからなるサーメット被膜を、放電表面処理を用いて形成する原理について図1を用いて説明する。
ここで、母材となるCu−Cr−Zr合金は、Cr:0.2重量%、Zr:0.1重量%、Zn:0.2重量%、残りCuからなる熱伝導率が311W/mKの合金であり、主に金型やプリント基板の材料として使用されている。
また、WCとCoからなるサーメット被膜を形成するための表面処理用電極は、平均粒径0.75μm程度のWC粉末と平均粒径1.4μm程度のCo粉末をWC:75重量%、Co:25重量%の重量比で混合し、70MPa程度のプレス圧力により圧縮成形し、その後、740℃の真空炉で約2時間程度保持することにより製造した導電性を有する圧粉体電極である。
なお、電極の成形としては、圧縮成形のほかに、泥漿、MIM(Metal Injection Molding)、溶射、ナノ粉末をジェット気流に同伴させ成形させる方法などがある。
Embodiment 1 FIG.
The principle of forming a cermet film made of WC and Co on the Cu—Cr—Zr alloy in this embodiment by using discharge surface treatment will be described with reference to FIG.
Here, the Cu—Cr—Zr alloy as a base material has a thermal conductivity of 311 W / mK consisting of Cr: 0.2 wt%, Zr: 0.1 wt%, Zn: 0.2 wt%, and the remaining Cu. This alloy is mainly used as a material for molds and printed circuit boards.
The surface treatment electrode for forming a cermet film composed of WC and Co is composed of WC powder having an average particle diameter of about 0.75 μm and Co powder having an average particle diameter of about 1.4 μm, WC: 75 wt%, Co: It is a green compact electrode having conductivity produced by mixing at a weight ratio of 25% by weight, compression molding with a press pressure of about 70 MPa, and then holding it in a vacuum furnace at 740 ° C. for about 2 hours.
In addition to compression molding, the electrode may be molded by slurry, MIM (Metal Injection Molding), thermal spraying, or a method in which nanopowder is entrained in a jet stream.

図1に示されるように、被加工物であるCu−Cr−Zr合金を陽極とし、加工液(油)中でWCとCoからなる圧粉体電極(陰極)が接触しないよう主軸でサーボをとった状態で設置し、両者に所定の電圧を印加することにより放電を発生させる。
電圧印可後、放電が発生すると、放電の熱により電極の一部は溶融・気化され、放電による爆風や静電気力によって電極の粉末が離脱し、ワーク上に溶融・堆積する。
As shown in FIG. 1, a Cu—Cr—Zr alloy, which is a workpiece, is used as an anode, and a servo is performed on a main shaft so that a green compact electrode (cathode) made of WC and Co does not contact in a machining fluid (oil). It installs in the taken state, and discharge is generated by applying a predetermined voltage to both.
When a discharge occurs after the voltage is applied, a part of the electrode is melted and vaporized by the heat of the discharge, and the powder of the electrode is released by the blast and electrostatic force generated by the discharge, and melted and deposited on the workpiece.

具体的な加工条件としては、60×16×5(mm)の直方体形状に形成された上記電極を用い、処理面を16×5、電流値を11A、放電パルス時間を8μsの加工条件で、熱伝導率が120W/mK以上のCu−Cr−Zr合金上に5分間処理した。
処理後の様子(被膜表面)を図2に示す。
被加工物表面の上部がWCとCoからなるサーメット被膜である。
また、被膜断面写真を図3に示す。
上述の加工条件で形成される被膜の厚さは15μm程度であり、被加工物であるCu−Cr−Zr合金の高い熱伝導率を損なうものではない。
なお、本実施の形態で示す放電表面処理による被膜厚さは、加工時間を変更することにより制御することが可能である。
また、被膜のビッカース硬度を測定すると1500HV程度を示した。
母材であるCu−Cr−Zr合金のビッカース硬度は300HV程度であったため、WCとCoからなるサーメット被膜が表面に形成されていることがわかる。
また、被膜表面を1000番のペーパーで研磨し、その表面硬度を測定すると、1450HV程度で被膜硬度はほとんど低下しかなった。
これは、被膜の密着強度が大きいため、ペーパーでも被膜を剥離できなかったことを示している。
As specific processing conditions, the above-mentioned electrode formed in a rectangular parallelepiped shape of 60 × 16 × 5 (mm) is used, the processing surface is 16 × 5, the current value is 11 A, and the discharge pulse time is 8 μs. It processed for 5 minutes on the Cu-Cr-Zr alloy whose heat conductivity is 120 W / mK or more.
A state after treatment (film surface) is shown in FIG.
The upper part of the workpiece surface is a cermet film made of WC and Co.
Moreover, a film cross-sectional photograph is shown in FIG.
The thickness of the film formed under the above processing conditions is about 15 μm, and does not impair the high thermal conductivity of the Cu—Cr—Zr alloy that is the workpiece.
Note that the film thickness by the discharge surface treatment described in this embodiment can be controlled by changing the processing time.
Moreover, when the Vickers hardness of the film was measured, it was about 1500 HV.
Since the Vickers hardness of the base material Cu—Cr—Zr alloy was about 300 HV, it can be seen that a cermet film made of WC and Co was formed on the surface.
Further, when the surface of the coating was polished with No. 1000 paper and the surface hardness was measured, the coating hardness was almost reduced at about 1450 HV.
This indicates that the film could not be peeled even with paper because of the high adhesion strength of the film.

上記の被膜の表面粗さを測定すると、算術平均粗さRa=4.49、最大高さRy=28.5、十点平均粗さRzDIN=25.12であった。
本実施の形態における加工条件は、上述の電流値11A、放電時間8μs、加工時間5分として説明したが、電流値を11A以上にしても、被膜を形成することができる。
しかしながら、その場合は、表面粗さが大きくなるため、金型等の表面精度を必要とする場合は、なるべく電流値を小さくしたほうがよい。
When the surface roughness of the coating film was measured, the arithmetic average roughness Ra = 4.49, the maximum height Ry = 28.5, and the ten-point average roughness RzDIN = 25.12.
Although the processing conditions in the present embodiment have been described with the above-described current value 11A, discharge time 8 μs, and processing time 5 minutes, a film can be formed even if the current value is 11 A or more.
However, in that case, since the surface roughness becomes large, it is better to make the current value as small as possible when the surface accuracy of a mold or the like is required.

また放電時間は8μs以下にしなければならない。
放電時間を変化させたときの被膜の状態を図4に示す。
なお、放電時間を4μsとしたときの被膜を(a)とし、16μsとしたときの被膜を(b)としている。また、それぞれ右側をペーパーで研磨している。
図に示されるとおり、放電時間4μsでの被膜(a)はペーパーで擦ってもほとんど剥離せず母材がほとんど見えないが、放電16μsの被膜(b)は母材が現れている。
これは冷却過程においてCu合金の凝固の前に、融点の高いWCのみが先に析出してしまい、CuとWCのなじみが悪いためにCuとWCが結合できないために起こると考えられる。
つまり、放電時間が短いと急加熱急冷となり、CuとWCをほぼ同時に凝固させられるため、密着強度の高い被膜を形成できる。
The discharge time must be 8 μs or less.
The state of the film when the discharge time is changed is shown in FIG.
The coating when the discharge time is 4 μs is (a), and the coating when the discharge time is 16 μs is (b). Each right side is polished with paper.
As shown in the figure, the coating (a) with a discharge time of 4 μs hardly peeled off even when rubbed with paper, and the base material is hardly visible, but the coating (b) with a discharge of 16 μs shows a base material.
It is considered that this occurs because only WC having a high melting point is first precipitated before solidification of the Cu alloy in the cooling process, and Cu and WC cannot be combined because Cu and WC are not well-matched.
That is, when the discharge time is short, rapid heating and rapid cooling occur, and Cu and WC can be solidified almost simultaneously, so that a coating with high adhesion strength can be formed.

また、WC粉末はセラミックスであるため、溶融するのに大きなエネルギーを要することから、筆者らの研究の結果、放電電流の電流値8A以下、放電時間2μs以下の条件では、平均粒径0.75μm以上のWC粉末を溶融させられないことがわかった。
ただし、平均粒径0.4μm以下のWC粉末を用いた場合は、電流値8A以下、放電時間2μsでも被膜を形成できる。
つまり、平均粒径0.75μm程度のWC粉末が混入された圧粉体電極を用いる場合、電流値11A、パルス時間8μs程度で加工すると緻密で高硬度の被膜を形成でき、WC粉末の平均粒径が0.4μm以下といった微小になる場合は、電流値8A以下、放電時間2μs以下でも被膜を形成することができる。
Since WC powder is a ceramic and requires a large amount of energy to melt, as a result of research by the authors, an average particle size of 0.75 μm is obtained under the conditions of a discharge current value of 8 A or less and a discharge time of 2 μs or less. It was found that the above WC powder could not be melted.
However, when a WC powder having an average particle size of 0.4 μm or less is used, a film can be formed even with a current value of 8 A or less and a discharge time of 2 μs.
That is, when using a green compact electrode mixed with WC powder having an average particle size of about 0.75 μm, a dense and high-hardness film can be formed by processing at a current value of 11 A and a pulse time of about 8 μs. When the diameter is as small as 0.4 μm or less, a film can be formed even with a current value of 8 A or less and a discharge time of 2 μs or less.

つぎに、Fe合金軸製造用金型の分割面の模式図を図5に示す。
ここで、金型材質は、Cu−Cr−Zr合金であり、上記電極を用いて、電流値11A、パルス時間8μsの加工条件で金型キャビティーの充填口内面(斜線部)にWCとCoからなるサーメット被膜を形成させた。
斜線部の形状は、幅は30mm、R15の半円筒面であり、まず60×30×5電極を製造し、その電極を用い、斜線部と電極30×5の面で対向させ、電流値2A、放電時間2μsの条件で加工することにより、斜線部の加工及び斜線部への被膜形成することなく電極を斜線部にならった形状に崩す。
次に電極を10mm/min程度の速度で処理部と平行に移動させ、電流値11A、パルス時間8μsの加工条件で斜線部全面にWCとCoからなるサーメット被膜を形成させる。
このようにCu−Cr−Zr合金に対しWCとCoからなるサーメット被膜をつけて製造された金型と、従来のCu−Cr−Zr合金のみの金型とを比較した場合、被膜が無い場合には、数十ショットから100ショットで金型の充填口から延びた流路(斜線部)に大きなクラックがいくつも入ってしまい、金型としての機能が失われたが、被膜を形成させた金型では、700ショットでもクラックが入らなかった。
また、特に大きなクラックが入っていた充填口内面(斜線部)の末端面a部にのみ被膜を形成させても、約300ショット使用することができた。
つまり、Cu合金製金型に放電表面処理によりWC−Coの被膜を形成させると、金型の寿命を5〜7倍に拡大でき、金型製造に要するコスト削減に寄与し、製造コストを低減できる。
Next, FIG. 5 shows a schematic diagram of the dividing surface of the mold for producing an Fe alloy shaft.
Here, the mold material is a Cu—Cr—Zr alloy, and WC and Co are formed on the inner surface (shaded portion) of the mold cavity under the processing conditions of a current value of 11 A and a pulse time of 8 μs using the above electrodes. A cermet film consisting of was formed.
The shape of the hatched portion is a semi-cylindrical surface of 30 mm in width and R15. First, a 60 × 30 × 5 electrode is manufactured, and the electrode is used to face the hatched portion and the surface of the electrode 30 × 5. By processing under the condition of a discharge time of 2 μs, the electrode is broken into a shape following the shaded portion without processing the shaded portion and forming a film on the shaded portion.
Next, the electrode is moved in parallel with the processing portion at a speed of about 10 mm / min, and a cermet film made of WC and Co is formed on the entire shaded portion under the processing conditions of a current value of 11 A and a pulse time of 8 μs.
When a mold manufactured by attaching a cermet film made of WC and Co to a Cu-Cr-Zr alloy in this way is compared with a conventional mold made only of a Cu-Cr-Zr alloy, there is no film. In several tens to 100 shots, a large number of large cracks entered the flow path (shaded area) extending from the mold filling port, and the function as a mold was lost, but a film was formed. The mold did not crack even after 700 shots.
Further, even when a film was formed only on the end surface a of the inner surface (shaded portion) of the filling port that had a particularly large crack, about 300 shots could be used.
In other words, when a WC-Co coating is formed on a Cu alloy mold by discharge surface treatment, the life of the mold can be extended five to seven times, contributing to the cost reduction required for mold manufacture and reducing the manufacturing cost. it can.

本実施の形態では、被加工物をCu−Cr−Zr合金とした場合について説明したが、従来の方法でサーメット被膜を形成し難かった熱伝導率が120W/mK以上の被加工物には、本実施の形態によりその他のサーメット被膜を形成できる。
熱伝導率が120W/mK以上の材料を被加工物とした場合、従来の方法では、溶融域が十分に形成できないため、高い密着強度を持ったサーメット被膜を形成できず、また、被膜を形成できてもその厚みが厚くなり、本来の被加工物が持つ高熱伝導率という性質を失わせていたが、電極から微粉末を供給し、数μsの間に数十Aの電流値を流して被膜を形成する放電表面処理では、急加熱急冷却であることから被加工物表面にWCとCuの混合した溶融域を形成できるため、被膜と十分に密着した厚さ数μm〜数十μmの被膜を形成でき、被加工物の高熱伝導という性質を維持しつつ表面硬度を向上できる。
また、120W/mK以上の材料を金型の材料として用い、上記放電表面処理により充填口内面(斜線部)に被膜を形成させた場合、膜厚が非常に薄いため、金型の持つ120W/mKの熱伝導率をほとんど低下させず、鋳造の生産性を落とすことなく、金型の寿命を拡大することができる。
また、本実施の形態では、WC−Coの被膜を形成させたが、WC−Ni、TiC−Ni、MoB−Ni、Cr−Ni、TiC−Co等のサーメットも同様にCuまたはCu合金上に被膜を形成できる。Niとセラミックスの混合被膜の場合、母材のCu合金とNiのなじみがいいため、被膜と母材の密着力がより高くなる。
In the present embodiment, the case where the workpiece is a Cu-Cr-Zr alloy has been described. However, the workpiece having a thermal conductivity of 120 W / mK or more, in which it was difficult to form a cermet film by a conventional method, Other cermet films can be formed according to this embodiment.
When a material having a thermal conductivity of 120 W / mK or more is used as a work piece, the conventional method cannot form a melting region sufficiently, so a cermet film with high adhesion strength cannot be formed, and a film is formed. Even if it was possible, the thickness was increased, and the property of high thermal conductivity inherent to the workpiece was lost. However, a fine powder was supplied from the electrode, and a current value of several tens A was applied for several μs. In the discharge surface treatment for forming a coating, since it is rapid heating and rapid cooling, a molten region in which WC and Cu are mixed can be formed on the surface of the workpiece, so that the thickness is several μm to several tens of μm sufficiently adhered to the coating. A film can be formed, and surface hardness can be improved while maintaining the property of high thermal conductivity of the workpiece.
In addition, when a film of 120 W / mK or more is used as a mold material and a coating is formed on the inner surface (shaded portion) of the filling port by the above discharge surface treatment, the film thickness is very thin. The lifetime of the mold can be extended without substantially reducing the thermal conductivity of mK and without reducing the productivity of casting.
In this embodiment, a WC-Co film is formed, but cermets such as WC-Ni, TiC-Ni, MoB 2 -Ni, Cr 3 C 2 -Ni, TiC-Co are also Cu or A film can be formed on the Cu alloy. In the case of a mixed film of Ni and ceramics, since the familiarity of the Cu alloy of the base material and Ni is good, the adhesion between the film and the base material becomes higher.

実施の形態2.
上述した実施の形態はWC及びCo粉末の圧粉体電極を用いて、WCとCoからなるサーメット被膜を形成した場合について説明したが、本実施の形態では、Coを含まないWC粉末圧粉体電極による被膜形成について説明する。
本実施の形態における圧粉体電極は、平均粒径1μm程度のWCの粉末を70MPa程度のプレス圧力で圧縮成形し、その後1100℃の真空炉で約2時間程度保持することにより製造した導電性を有する圧粉体電極である。
なお、電極の形状は、50×11×5(mm)の直方体である。
電極の成形方法としては、実施の形態1での説明と同様に圧縮成形のほかに、泥漿、MIM、溶射、ナノ粉末をジェット気流に同伴させ成形する方法などがある。
Embodiment 2. FIG.
In the above-described embodiment, the case where the cermet film made of WC and Co is formed using the powder electrode of WC and Co powder has been described. In this embodiment, the WC powder powder compact not containing Co is used. The film formation by the electrode will be described.
The green compact electrode in this embodiment is manufactured by compressing and molding a WC powder having an average particle size of about 1 μm with a press pressure of about 70 MPa and then holding it in a vacuum furnace at 1100 ° C. for about 2 hours. It is a green compact electrode which has.
The shape of the electrode is a rectangular parallelepiped of 50 × 11 × 5 (mm).
As a method for forming the electrode, there is a method in which slurry, MIM, thermal spraying, nanopowder is entrained in a jet stream, and the like in addition to compression molding as described in the first embodiment.

上記電極を用い、処理面を16×5、電流値15A、放電パルス時間を8μsとし、Cu−Cr−Zr合金上に5分間処理し、被膜を形成させた。
処理後の被膜のビッカース硬度を測定すると2200HV程度を示し、WCの被膜が形成されていることがわかる。
これは、母材であるCu−Cr−Zr合金のビッカース硬度が300HV程度であるため、ビッカース硬度の高いWCの被膜が表面に形成されていることを裏付けるものである。
なお、実施の形態1のWCとCoからなるサーメット被膜は、1500HV程度の硬度を得ていた。
本実施の形態では、被膜にCoを含まないため、実施の形態1による被膜と比較し、硬度をより高くすることができる。
Using the above electrode, the treated surface was 16 × 5, the current value was 15 A, the discharge pulse time was 8 μs, and the Cu—Cr—Zr alloy was treated for 5 minutes to form a coating.
When the Vickers hardness of the film after the treatment is measured, it shows about 2200 HV, which indicates that a WC film is formed.
This confirms that a WC film having a high Vickers hardness is formed on the surface because the Vickers hardness of the Cu—Cr—Zr alloy as the base material is about 300 HV.
The cermet film made of WC and Co in the first embodiment had a hardness of about 1500 HV.
In the present embodiment, since the coating does not contain Co, the hardness can be further increased as compared with the coating according to the first embodiment.

次に、実施の形態1と同様に、Cu−Cr−Zr合金からなるFe合金軸製造用金型の金型キャビティーの充填口内面(斜線部)にWCの被膜を形成させた。
ここでの加工条件は、上述の如く、上記電極を用いて、電流値11A、放電時間8μsの加工条件で被膜を形成させた。
被膜の有無に基づく金型の比較を行った場合、被膜が無いものでは数十ショットから100ショットで金型の充填口から延びた流路(斜線部)に大きなクラックが入ってしまい、金型としての機能が失われたが、被膜を形成させた金型では、700ショットでもクラックが入らなかった。
また、特に大きなクラックが入っていた充填口内面(斜線部)の末端面a部にのみ被膜を形成させても、約500ショット使用することができた。
つまり、Cu合金製金型に放電表面処理によりWCの被膜を形成させると、金型表面の硬度をより大きくすることができ、金型の寿命を5〜7倍に拡大でき、金型製造に要するコスト削減に寄与し、製造コストを低減できる。
Next, as in the first embodiment, a WC film was formed on the inner surface (shaded portion) of the filling cavity of the mold cavity of the mold for producing an Fe alloy shaft made of a Cu—Cr—Zr alloy.
As described above, as described above, a film was formed using the above electrodes under the processing conditions of a current value of 11 A and a discharge time of 8 μs.
When comparing molds based on the presence or absence of a coating, if there is no coating, a large crack will enter the flow path (shaded area) extending from the filling port of the mold in several tens to 100 shots. However, the mold with the coating film formed no crack even after 700 shots.
Further, even when a film was formed only on the end surface a of the inner surface (shaded portion) of the filling port where particularly large cracks were present, about 500 shots could be used.
In other words, when a WC coating is formed on a Cu alloy mold by discharge surface treatment, the hardness of the mold surface can be increased, the life of the mold can be extended by 5 to 7 times, and the mold can be manufactured. This contributes to cost reduction and manufacturing costs can be reduced.

本実施の形態では、被膜の材料としてWCについて説明したが、TiC、Cr等のセラミックス、またはビッカース硬度が1000HV以上のWやMoであれば、同様に硬質の被膜を形成でき、金型の寿命の延長できる。 In the present embodiment, WC has been described as the material of the coating. However, if a ceramic such as TiC or Cr 3 C 2 or W or Mo having a Vickers hardness of 1000 HV or more can be formed, a hard coating can be formed similarly. Can extend the life of the mold.

実施の形態3.
本実施の形態では、母材として熱伝導率が127W/mKで120W/mK以上のAl合金(Al5154)を選択し、上述した実施の形態1で製造した電極を用いて、その表面にWC−Coのサーメット被膜を形成させたものである。
なお、加工条件として、処理面を16×5、電流値を11A、放電パルス時間を8μs、加工時間を5分間とした。
本実施の形態の加工により、Al合金表面に形成された被膜のビッカース硬度を測定すると1500HV程度を示した。
母材であるAl合金のビッカース硬度は80HV程度であったため、WC−Coの被膜が表面に形成されていることがわかる。
また、被膜表面を1000番のペーパーで研磨し、その表面硬度を測定すると、1450HV程度で被膜硬度はほとんど低下しかなった。
被膜の密着強度が大きいため、ペーパーでも被膜を剥離できなかったことがわかる。
つまり、実施の形態で示したCu−Cr−Zr合金のみならず、Al合金にも本実施の形態に係る放電表面処理により、高硬度かつ緻密なWCとCoからなるサーメット被膜を形成することができる。
Embodiment 3 FIG.
In the present embodiment, an Al alloy (Al5154) having a thermal conductivity of 127 W / mK and 120 W / mK or more is selected as a base material, and the electrode manufactured in the first embodiment described above is used, and WC- A cermet coating of Co is formed.
As processing conditions, the processing surface was 16 × 5, the current value was 11 A, the discharge pulse time was 8 μs, and the processing time was 5 minutes.
When the Vickers hardness of the film formed on the surface of the Al alloy by the processing of the present embodiment was measured, it was about 1500 HV.
Since the Vickers hardness of the Al alloy as the base material was about 80 HV, it can be seen that a WC-Co film was formed on the surface.
Further, when the surface of the coating was polished with No. 1000 paper and the surface hardness was measured, the coating hardness was almost reduced at about 1450 HV.
Since the adhesion strength of the film is large, it can be seen that the film could not be peeled even with paper.
That is, not only the Cu—Cr—Zr alloy shown in the embodiment but also an Al alloy can be formed with a high-hardness and dense cermet film made of WC and Co by the discharge surface treatment according to this embodiment. it can.

本実施の形態では、被膜の材料としてWCとCoからなるサーメットについて説明したが、WC、TiC、Cr等のセラミックス、MoB−Ni、Cr−Ni、TiC−Co等のサーメットであれば、同様に硬質の被膜を形成できる。 In this embodiment, the cermet made of WC and Co is described as the material of the coating, but ceramics such as WC, TiC, and Cr 3 C 2 , MoB 2 —Ni, Cr 3 C 2 —Ni, TiC—Co, etc. If it is a cermet, a hard film can be formed similarly.

熱伝導率が120W/mK以下の材料について、上述の加工条件で処理すると、熱伝導率が小さいために放電の熱によりヒートスポットが形成され、電極からの供給量よりも被加工物の除去量が多くなり、結果として被加工物が除去されることがある。
また、被膜が形成されても表面粗さがRa=5以上となり、後処理等が必要となる。
つまり、熱伝導率が120W/mK以上のAl合金やCu合金やAg合金で、上記条件で緻密で高硬度な被膜を形成できる。
When a material having a thermal conductivity of 120 W / mK or less is processed under the above-described processing conditions, a heat spot is formed by the heat of discharge because the thermal conductivity is small, and the removal amount of the workpiece is larger than the supply amount from the electrode. And the workpiece may be removed as a result.
Further, even if a film is formed, the surface roughness becomes Ra = 5 or more, and post-treatment or the like is required.
That is, a dense and high-hardness film can be formed under the above conditions with an Al alloy, Cu alloy, or Ag alloy having a thermal conductivity of 120 W / mK or more.

本実施の形態によれば、放電表面処理によりAl合金の表面に数μm〜数十μm程度の厚さのサーメット被膜またはセラミックス被膜を形成でき、部品の重量をほとんど変化させることなく、または熱伝導率を低下させることなく、表面を高硬度化できる。
その被膜により、Al合金部品の叩き摩耗を抑制でき、部品の耐久性を向上できる。
According to this embodiment, a cermet film or a ceramic film having a thickness of several μm to several tens of μm can be formed on the surface of the Al alloy by the discharge surface treatment, and the heat conduction is hardly changed. The surface can be increased in hardness without reducing the rate.
The coating can suppress the hitting wear of the Al alloy component and improve the durability of the component.

本発明に係る放電表面処理の原理を示す図である。It is a figure which shows the principle of the discharge surface treatment which concerns on this invention. 熱伝導率が120W/mK以上のCu−Cr−Zr合金に、WC−Co被膜を形成した表面図である。It is the surface figure which formed the WC-Co film in the Cu-Cr-Zr alloy whose thermal conductivity is 120 W / mK or more. Cu−Cr−Zr合金に、WC−Co被膜を形成した被膜断面図である。It is a film sectional view in which a WC-Co film is formed on a Cu-Cr-Zr alloy. 放電時間を変化させた際に形成される被膜の状態を示す図である。It is a figure which shows the state of the film formed when changing discharge time. Fe合金軸製造用金型の分割面の模式図である。It is a schematic diagram of the division surface of the metal mold | die for Fe alloy shaft manufacture.

Claims (12)

金属粉末または金属の化合物の粉末、あるいはセラミックスの粉末を成形した粉末成形体、もしくは、該粉末成形体を加熱処理した粉末成形体の電極と、熱伝導率120W/mK以上の金属との間にパルス状の放電を発生させ、放電によるエネルギーにより、上記熱伝導率120W/mK以上の金属表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成させることを特徴とする放電表面処理方法。 Between a metal powder or a powder of a metal compound, or a powder molded body obtained by molding a ceramic powder, or an electrode of a powder molded body obtained by heat-treating the powder molded body, and a metal having a thermal conductivity of 120 W / mK or more A discharge surface characterized by generating a pulsed discharge and forming an electrode material or a film made of a material obtained by reacting the electrode material with discharge energy on a metal surface having a thermal conductivity of 120 W / mK or more by energy generated by the discharge. Processing method. 熱伝導率120W/mKの金属として、Cu、Cu合金、Al、Al合金、Ag、Ag合金であることを特徴とする請求項1記載の放電表面処理方法。 The discharge surface treatment method according to claim 1, wherein the metal having a thermal conductivity of 120 W / mK is Cu, Cu alloy, Al, Al alloy, Ag, or Ag alloy. WCとCoとの粉末混合物、WCとNiの粉末混合物、TiCとNiの粉末混合物、MoBとNiの粉末混合物、CrとNiの粉末混合物、TiCとCoの粉末混合物、を電極材料とし、WC−Co、MoB−Ni、Cr−Ni、TiC−Co等のサーメット被膜を形成することを特徴とする請求項1または2に記載の放電表面処理方法。 WC and Co powder mixture, WC and Ni powder mixture, TiC and Ni powder mixture, MoB 2 and Ni powder mixture, Cr 3 C 2 and Ni powder mixture, TiC and Co powder mixture, electrode material 3. The discharge surface treatment method according to claim 1, wherein a cermet film such as WC—Co, MoB 2 —Ni, Cr 3 C 2 —Ni, or TiC—Co is formed. WC粉末、Cr粉末、TiC粉末を電極材料とし、WC、Cr、TiC等のセラミックス被膜を形成することを特徴とする請求項1または2に記載の放電表面処理方法。 3. The discharge surface treatment method according to claim 1, wherein a ceramic film such as WC, Cr 3 C 2 , or TiC is formed using WC powder, Cr 3 C 2 powder, or TiC powder as an electrode material. 4. W粉末、Mo粉末を電極材料とし、W、Mo等のビッカース硬度1000HV以上の高硬度金属被膜を形成することを特徴とする請求項1または2に記載の放電表面処理方法。 3. The discharge surface treatment method according to claim 1, wherein a high-hardness metal film having a Vickers hardness of 1000 HV or more, such as W or Mo, is formed using W powder or Mo powder as an electrode material. 放電パルスの条件として、電流値が10A以上、放電時間が8μs以下とすることを特徴とする請求項1に記載の放電表面処理方法。 The discharge surface treatment method according to claim 1, wherein a current value is 10 A or more and a discharge time is 8 μs or less as conditions for the discharge pulse. 金属粉末または金属の化合物の粉末、あるいはセラミックスの粉末を成形した粉末成形体、もしくは、該粉末成形体を加熱処理した粉末成形体の電極と、熱伝導率120W/mK以上の金属との間にパルス状の放電を発生させ、放電によるエネルギーにより、上記熱伝導率120W/mK以上の金属表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成させたことを特徴とする金型。 Between a metal powder or a powder of a metal compound, or a powder molded body obtained by molding a ceramic powder, or an electrode of a powder molded body obtained by heat-treating the powder molded body, and a metal having a thermal conductivity of 120 W / mK or more A gold characterized in that a pulsed discharge is generated, and an electrode material or a film made of a material obtained by reacting the electrode material with the discharge energy is formed on the metal surface having the thermal conductivity of 120 W / mK or more by the energy of the discharge. Type. 熱伝導率120W/mKの金属として、Cu、Cu合金、Al、Al合金、Ag、Ag合金であることを特徴とする請求項7に記載の金型。 The metal mold according to claim 7, wherein the metal having a thermal conductivity of 120 W / mK is Cu, Cu alloy, Al, Al alloy, Ag, or Ag alloy. WCとCoとの混合物、MoBとNiの混合物、CrとNiの混合物、TiCとCoの混合物、を電極材料とし、WC−Co、WC−Ni、TiC−Ni、MoB−Ni、Cr−Ni、TiCと−Co等のサーメット被膜を形成することを特徴とする請求項7または8に記載の金型。 A mixture of WC and Co, a mixture of MoB 2 and Ni, a mixture of Cr 3 C 2 and Ni, and a mixture of TiC and Co are used as electrode materials, and WC-Co, WC-Ni, TiC-Ni, MoB 2 -Ni , Cr 3 C 2 -Ni, die according to claim 7 or 8, characterized in that to form the cermet coating, such as TiC and -Co. WC粉末、Cr粉末、TiC粉末を電極材料とし、WC、Cr、TiC等のセラミックス被膜を形成することを特徴とする請求項7または8に記載の金型。 9. The mold according to claim 7, wherein a ceramic film such as WC, Cr 3 C 2 , or TiC is formed using WC powder, Cr 3 C 2 powder, or TiC powder as an electrode material. W粉末、Mo粉末を電極材料とし、W、Mo等のビッカース硬度1000HV以上の高硬度金属被膜を形成することを特徴とする請求項7または8に記載の金型。 The metal mold according to claim 7 or 8, wherein W powder or Mo powder is used as an electrode material to form a high-hardness metal film having a Vickers hardness of 1000 HV or more, such as W or Mo. Fe合金軸製造用金型における充填口から延びた流路に被膜を形成したことを特徴とする請求項7乃至11何れかに記載の金型。 The mold according to any one of claims 7 to 11, wherein a coating film is formed in a flow path extending from a filling port in a mold for producing an Fe alloy shaft.
JP2004196887A 2004-07-02 2004-07-02 Discharge surface treatment method and surface-treated mold Expired - Fee Related JP4534633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196887A JP4534633B2 (en) 2004-07-02 2004-07-02 Discharge surface treatment method and surface-treated mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196887A JP4534633B2 (en) 2004-07-02 2004-07-02 Discharge surface treatment method and surface-treated mold

Publications (2)

Publication Number Publication Date
JP2006016672A true JP2006016672A (en) 2006-01-19
JP4534633B2 JP4534633B2 (en) 2010-09-01

Family

ID=35791210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196887A Expired - Fee Related JP4534633B2 (en) 2004-07-02 2004-07-02 Discharge surface treatment method and surface-treated mold

Country Status (1)

Country Link
JP (1) JP4534633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408349B2 (en) * 2010-05-26 2014-02-05 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770761A (en) * 1993-08-31 1995-03-14 Res Dev Corp Of Japan Surface treating method of aluminum and alloy thereof by discharge in liquid
JPH07197275A (en) * 1993-12-31 1995-08-01 Res Dev Corp Of Japan Surface treating method of metallic material by submerged discharge
WO2000029158A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method and electrode for discharge surface treatment
JP2002361394A (en) * 2001-06-01 2002-12-17 Honda Motor Co Ltd Mold for molding semisolidified iron-based alloy
JP2004107799A (en) * 2004-01-08 2004-04-08 Mitsubishi Electric Corp Electrical discharge surface treatment equipment, and electrical discharge surface treatment method using the same
WO2004033755A1 (en) * 2002-10-09 2004-04-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Rotor and coating method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770761A (en) * 1993-08-31 1995-03-14 Res Dev Corp Of Japan Surface treating method of aluminum and alloy thereof by discharge in liquid
JPH07197275A (en) * 1993-12-31 1995-08-01 Res Dev Corp Of Japan Surface treating method of metallic material by submerged discharge
WO2000029158A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method and electrode for discharge surface treatment
JP2002361394A (en) * 2001-06-01 2002-12-17 Honda Motor Co Ltd Mold for molding semisolidified iron-based alloy
WO2004033755A1 (en) * 2002-10-09 2004-04-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Rotor and coating method therefor
JP2004107799A (en) * 2004-01-08 2004-04-08 Mitsubishi Electric Corp Electrical discharge surface treatment equipment, and electrical discharge surface treatment method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408349B2 (en) * 2010-05-26 2014-02-05 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment film

Also Published As

Publication number Publication date
JP4534633B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
JP3537939B2 (en) Surface treatment by submerged discharge
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
JPH05148615A (en) Treatment for surface of metallic material
JP2014513207A5 (en)
CN101269562A (en) Fe-Al intermetallic compound/AL2O3ceramic composite coating and method of producing the same
JPH07197275A (en) Surface treating method of metallic material by submerged discharge
WO2010016121A1 (en) Electric discharge surface treatment method
CN111188016A (en) High-performance CrAlSiX alloy target and preparation method thereof
KR20070010024A (en) Metal material for foundry machine part, member for contact with molten aluminum, and process for producing the same
CN107974682B (en) Method for surface strengthening, repairing and remanufacturing of die-casting die
JP2010150610A (en) Cylindrical sputtering target
TWI270427B (en) Metal component, turbine component, gas turbine engine, surface processing method, and steam turbine engine
JP4534633B2 (en) Discharge surface treatment method and surface-treated mold
CN113210611A (en) Copper-diamond composite material with metal layer coated on surface and preparation method and application thereof
CN209759606U (en) Additive manufacturing structure applied to continuous casting crystallizer and additive manufacturing device
JP6242616B2 (en) Resistance welding electrode
JP2006131429A (en) Low-adhesion material and resin mold
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
JP2008111163A (en) Sintering holder for rare-earth magnet, method for manufacturing sintering holder for rare-earth magnet, and method for producing rare-earth magnet
JP3260210B2 (en) Die casting injection sleeve and method of casting aluminum or aluminum alloy member
CN109943871B (en) Surface coating of die casting die and preparation method thereof
JPS61266189A (en) Ceramic contact tip for arc welding and its production
CN108909060A (en) A kind of laminar composite preparation method
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130625

LAPS Cancellation because of no payment of annual fees