JPH05148615A - Treatment for surface of metallic material - Google Patents
Treatment for surface of metallic materialInfo
- Publication number
- JPH05148615A JPH05148615A JP32949991A JP32949991A JPH05148615A JP H05148615 A JPH05148615 A JP H05148615A JP 32949991 A JP32949991 A JP 32949991A JP 32949991 A JP32949991 A JP 32949991A JP H05148615 A JPH05148615 A JP H05148615A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- electric discharge
- electrode
- discharge machining
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Electroplating Methods And Accessories (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】本発明は金属材料の表面処理技術に係り、
より詳しくは、母材の寸法変化や熱履歴の問題がなく、
表面に耐熱性、耐食性、耐摩耗性、硬度など所望の特性
を有する緻密な層を形成する表面処理方法に関する。The present invention relates to a surface treatment technology for metallic materials,
More specifically, there is no problem of dimensional change or heat history of the base material,
The present invention relates to a surface treatment method for forming a dense layer having desired properties such as heat resistance, corrosion resistance, wear resistance and hardness on the surface.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来よ
り、金属表面に耐摩耗性、耐食性などを与えるための手
段として、CVD(化学蒸着)、PVD(真空蒸着)、電
着、窒化、電気化学的めっき、無電解めっき等が知られ
ている。2. Description of the Related Art Conventionally, CVD (chemical vapor deposition), PVD (vacuum vapor deposition), electrodeposition, nitriding, and electroplating have been used as means for imparting wear resistance and corrosion resistance to metal surfaces. Chemical plating, electroless plating, etc. are known.
【0003】しかし、CVD、PVDはいずれも、母材
の温度を360℃以上、1100℃程度まで上昇してコ
ーティングするため、母材が寸法変化又は硬度低下を生
じるという欠点があることは、広く知られている。硬化
層も数μmと薄い。また、窒化も、鋼材を500℃程度
にまで加熱して処理するという難点がある。However, in both CVD and PVD, the temperature of the base material is raised to 360 ° C. or more and up to about 1100 ° C. for coating, so that the base material has a drawback that dimensional change or hardness decrease occurs widely. Are known. The hardened layer is as thin as a few μm. Further, nitriding also has a problem that the steel material is heated to about 500 ° C. to be treated.
【0004】電着による表面は、母材に析出金属が単に
堆積若しくは析出するだけであり、拡散していないた
め、剥離し易いことは良く知られており、また水素脆性
を生ずるなどの欠点がある。電気化学的めっき、無電解
めっきの場合も同様である。It is well known that the surface formed by electrodeposition is easily deposited or deposited on the base material and is not diffused. Therefore, it is well known that the surface is easily peeled off, and there are drawbacks such as hydrogen embrittlement. is there. The same applies to electrochemical plating and electroless plating.
【0005】溶射により母材表面に堆積させたものは、
多孔質で且つ剥離し易いことは既に知られている。ま
た、これをレーザー光で再溶融させようとしても、入熱
がスポットの位置により不均一となり、またビーム進行
の境界に条痕を発生するため、美麗な表面を得ることが
できない。また、レーザー光等では、図1に示すような
三次元の加工形状には、構造上、適用困難である。What is deposited on the surface of the base material by thermal spraying is
It is already known that it is porous and easily peeled off. Further, even if it is attempted to be re-melted by laser light, the heat input becomes non-uniform depending on the position of the spot, and streaks are generated at the boundary of the beam progress, so that a beautiful surface cannot be obtained. Further, it is structurally difficult to apply a laser beam or the like to the three-dimensional processed shape as shown in FIG.
【0006】また、従来の表面処理法では、拡散が殆ど
生じないので、ファインセラミックスなどの拡散しにく
い材料を充分な厚さ(例、数10μm〜100μm)でコー
ティングすることは困難である。In addition, since diffusion hardly occurs in the conventional surface treatment method, it is difficult to coat a material such as fine ceramics, which is difficult to diffuse, with a sufficient thickness (eg, several tens of μm to 100 μm).
【0007】本発明は、上記従来技術の問題点を解決
し、母材の金属材料全体を高温に保つことにより生ずる
寸法変化、母材の硬度(強度)の低下、皮膜剥離等の欠点
がなく、しかも充分な厚みで耐食性、耐熱性等々の所望
の表面特性を有する強固な被覆層を形成し得る表面処理
方法を提供することを目的とするものである。The present invention solves the above-mentioned problems of the prior art and eliminates the drawbacks such as dimensional change, lowering of hardness (strength) of the base material, and peeling of the film, which are caused by keeping the entire metal material of the base material at a high temperature. Moreover, it is an object of the present invention to provide a surface treatment method capable of forming a strong coating layer having desired surface characteristics such as corrosion resistance and heat resistance with a sufficient thickness.
【0008】[0008]
【課題を解決するための手段】前記課題を解決するた
め、本発明者らは、まず、金属材料全体を高温に曝す必
要のない表面処理方法について鋭意研究を重ねた。その
結果、金属材料の表面に母材の温度を高温に加熱しない
方法で被覆材料を堆積しておき、その堆積物を微視的
に、すなわち、微小領域にて再溶融して母材に拡散、混
合させることができるならば、母材の変形も硬度低下も
発生せず、しかも、強固な被覆層が形成できるとの知見
を得た。In order to solve the above problems, the inventors of the present invention firstly conducted extensive research into a surface treatment method which does not require exposing the entire metal material to high temperatures. As a result, the coating material is deposited on the surface of the metal material by a method that does not heat the base material to a high temperature, and the deposit is microscopically remelted in a minute area and diffused into the base material. It has been found that if they can be mixed, the base material is not deformed and the hardness is not lowered, and a strong coating layer can be formed.
【0009】そこで、そのような微視的に堆積物を再溶
融し得る方策について更に研究を重ねたところ、パルス
放電加工を適用することにより可能であることを見い出
した。放電加工は、放電現象を利用して形状を除去加工
する加工法として一般に良く知られている加工法である
が、本発明者らは、放電のエネルギーによって堆積物を
微視的に再溶融するという全く新規な利用法を開発した
のである。Then, further research was conducted on such a microscopically remelting method for deposits, and it was found that it is possible by applying pulse electric discharge machining. Electric discharge machining is a machining method that is generally well known as a machining method for removing a shape by utilizing an electric discharge phenomenon, but the present inventors microscopically remelt a deposit by the energy of electric discharge. We have developed a completely new usage.
【0010】すなわち、本発明は、金属材料からなる母
材表面に金属又は非金属材料を被覆した後、液中、気体
中又は真空中でパルス放電加工によって該堆積物を微小
領域ごとに再溶融させることにより、母材と該被覆材料
を拡散、混合し、母材表面に緻密な被覆層を形成するこ
とを特徴とする金属材料の表面処理方法を要旨とするも
のである。That is, according to the present invention, after the surface of a base material made of a metal material is coated with a metal or a non-metal material, the deposit is remelted for each minute region by pulse electric discharge machining in a liquid, a gas or a vacuum. By doing so, the base material and the coating material are diffused and mixed, and a dense coating layer is formed on the surface of the base material.
【0011】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.
【0012】[0012]
【0013】前述のように、金属材料の表面に溶射、電
着、蒸着、放電析出により被覆材料を付着、析出し、堆
積させることは知られている。なお、放電析出法とは、
本発明者らが先に提案した表面処理法であり(「199
1年度精密工学会春季大会学術講演会講演論文集」(1
991年3月26日)p.463)、析出すべき導電性材
料を圧粉体として成形し、放電加工の電極として用いて
加工することにより、相手側金属に圧粉体材料を析出さ
せる方法である。しかし、これらの堆積物は、母材中に
拡散しないため、付着強度が弱い。As mentioned above, it is known to deposit, deposit and deposit the coating material on the surface of the metal material by thermal spraying, electrodeposition, vapor deposition or discharge deposition. The discharge deposition method is
This is a surface treatment method previously proposed by the present inventors (“199
Proceedings of the 1st Spring Meeting of the Precision Engineering Society of Japan "(1
(March 26, 991) p.463), a method of precipitating a green compact material on a counterpart metal by molding a conductive material to be deposited as a green compact and using it as an electrode for electric discharge machining. Is. However, since these deposits do not diffuse into the base material, the adhesion strength is weak.
【0014】本発明は、このような堆積物に対し、パル
ス放電を放電加工の手法により液中、気体中又は真空中
で加えることによつて、母材の平均温度を殆ど上昇させ
ることなく、部分的(放電点)に高温度の発生により、再
溶融し、母材に拡散させるものである。According to the present invention, pulse discharge is applied to such a deposit by a method of electric discharge machining in a liquid, in a gas or in a vacuum, so that the average temperature of the base material is hardly increased. When a high temperature is generated locally (at the discharge point), it is remelted and diffused into the base material.
【0015】本発明において、金属材料の表面に被覆材
料を被覆する手段としては、特に制限はないが、母材を
高温度に曝さない方法が推奨される。例えば、前述の溶
射法、電着法、低温蒸着法、消耗し易い電極を用いた放
電析出法などが挙げられるが、これらに制限されないこ
とは云うまでもない。後工程として行うパルス放電加工
との関係からすれば、放電析出法が好ましい。In the present invention, the means for coating the surface of the metal material with the coating material is not particularly limited, but a method in which the base material is not exposed to high temperature is recommended. For example, the above-mentioned thermal spraying method, electrodeposition method, low-temperature vapor deposition method, discharge deposition method using an electrode that easily wears, and the like can be cited, but it goes without saying that they are not limited to these. In view of the relationship with pulse electric discharge machining performed as a post process, the electric discharge deposition method is preferable.
【0016】被覆材料としては、様々な金属材料又は非
金属材料が可能であり、例えば、金属又は合金、非金属
元素、セラミックス、炭化物、窒化物、硼化物などであ
る。具体的には、硬質材料として、WC、TiC、Ta
C、ZrC、SiCなどの炭化物、TiB2、ZrB2などの
硼化物、TiN、ZrNなどの窒化物など(ファインセラ
ミックス)を単体で若しくは焼結助剤を加えた状態で被
覆できる。また、W、Moなどの金属材料やAl、Ti、
Ni、Cr、Coなどの耐食性材料も利用できる。更に、
ダイヤモンド、Al2O3、Si3N4の如く、導電性はなく
とも、鉄粉、コバルト粉、ニツケル粉、クロム粉、銅粉
などの導電性材料と混合して被覆しても良い。要する
に、付与させる表面特性の関係で材料を選択すれば良
い。As the coating material, various metal materials or non-metal materials can be used, and examples thereof include metals or alloys, non-metal elements, ceramics, carbides, nitrides and borides. Specifically, as hard materials, WC, TiC, Ta
It can be coated with a carbide such as C, ZrC, or SiC, a boride such as TiB 2 , ZrB 2 , or a nitride such as TiN or ZrN (fine ceramics) alone or in the state where a sintering aid is added. In addition, metal materials such as W and Mo, Al, Ti,
Corrosion resistant materials such as Ni, Cr and Co can also be used. Furthermore,
Even if it is not conductive like diamond, Al 2 O 3 and Si 3 N 4 , it may be coated by mixing with a conductive material such as iron powder, cobalt powder, nickel powder, chrome powder or copper powder. In short, the material may be selected according to the surface characteristics to be imparted.
【0017】金属材料の表面に被覆材料を被覆した後、
パルス放電加工を微視的に又は微小領域ごとに適用し
て、堆積物を再溶融し、母材に拡散、混合させる。この
パルス放電加工は、液中、気体中、真空中のいずれでも
実施でき、堆積物を一方の電極とし、他方の電極との間
で放電を発生させる。After coating the surface of the metal material with the coating material,
Pulsed electrical discharge machining is applied microscopically or in small areas to remelt the deposits and diffuse and mix them into the matrix. This pulse electric discharge machining can be performed in any of liquid, gas, and vacuum, and the discharge is generated between one electrode of the deposit and the other electrode.
【0018】パルス放電加工に際しては、消耗しにくい
電極を使用し、また堆積物に近い組成の電極を使用する
のが望ましい。例えば、金属材料表面にWCを主体とし
て堆積させた場合、WC−Coを焼結した材料(例、バイ
トのチップ材料)を電極に用いる。In the pulse electric discharge machining, it is desirable to use an electrode that is less likely to be consumed and that has a composition similar to that of the deposit. For example, when WC is mainly deposited on the surface of a metal material, a material obtained by sintering WC-Co (for example, a chip material of a bite) is used as an electrode.
【0019】放電は、1秒間に数百回から数万回程度で
発生させる。加工面は小さい微視的な放電痕の累積した
表面である。放電痕電流密度は、微小な面積であるが、
数万A/cm2と高く、高温高圧を数10μs〜1000μ
s程度の短時間で生ずる。放電点の表面温度は、その材
料の沸点程度となり、その点の圧力は数1000kgf/c
m2となり、溶解した一部分は飛散するものもあるが、残
った部分は再溶融し、母材に拡散する。放電時間が短時
間のため、放電点が直ちに冷却され、母材の平均温度は
上昇することがない。The discharge is generated several hundreds to tens of thousands times per second. The processed surface is a surface on which small microscopic discharge marks are accumulated. The discharge trace current density is a very small area,
As high as tens of thousands of A / cm 2 , high temperature and high pressure is in the range of 10s to 1000μ
It occurs in a short time of about s. The surface temperature at the discharge point is about the boiling point of the material, and the pressure at that point is several thousand kgf / c.
It becomes m 2 , and some of the melted part is scattered, but the remaining part is remelted and diffused into the base material. Since the discharge time is short, the discharge point is immediately cooled, and the average temperature of the base material does not rise.
【0020】パルス放電加工の好ましい条件は、電源電
圧:60〜100V、パルス放電電流値(Ip):1〜1
00A、パルス幅(τp):5〜2000μs、休止時間
(τr):5〜2000μsである。一般的に、パルス放電
電流値Ipが小さい時、例えば、Ip=3Aなどではτp
=16μs、Ipが大きい時、Ip=50Aなどではτp=
2000τsのように、Ipの小さい時はτpも短かく、
Ipの大きい時はτpを長くとる。Preferable conditions for pulse electric discharge machining are power supply voltage: 60 to 100 V, pulse discharge current value (Ip): 1 to 1
00A, pulse width (τp): 5 to 2000 μs, rest time
(τr): 5 to 2000 μs. Generally, when the pulse discharge current value Ip is small, for example, Ip = 3A, τp
= 16μs, when Ip is large, τp =
When Ip is small like 2000τs, τp is short,
When Ip is large, τp is long.
【0021】本発明の表面処理方法によれば、低廉な炭
素鋼などの鉄鋼材料等の金属材料の表面に、耐熱性、耐
食性、耐摩耗性、硬度など所望の特性を有する緻密な層
を形成することができる。ファインセラミックスのよう
に鋼材の中に拡散しにくい材料であっても、再溶融によ
って母材に対する拡散と密着性を強固にすることができ
る。また、Al、Ti、Ni、Cr、Coのように鉄鋼材料
に固溶し易い材料でも、パルス放電処理すれば、なお一
層強固な表面処理が可能となる。すなわち、放電析出の
速度を速くするために大電流を用いて高速放電析出を行
う場合、Al、Ti、Ni、Cr、Coのように鉄鋼材料に
固溶し易い材料であっても、母材への拡散が不十分であ
り、また析出状態も凹凸が激しくなるが、パルス放電処
理によれば再溶融による拡散が促進される。また、電着
や電気めっき法により大電流密度でめっき速度を上げる
と、荒く密着力の小さいめっき層しか得られないが、パ
ルス放電加工を行うと、密着力の大きい表面層を形成す
ることができる。ダイヤモンド、Al2O3、Si3N4など
の非導電性の硬質材料に鉄粉、コバルト粉、ニツケル
粉、クロム粉、銅粉等の導電性金属を混入してコーティ
ングしたものに、パルス放電処理を行うと、導電性金属
が再溶融して非導電性硬質材料が強固に母材表面に固着
される。According to the surface treatment method of the present invention, a dense layer having desired properties such as heat resistance, corrosion resistance, wear resistance and hardness is formed on the surface of a metal material such as an inexpensive steel material such as carbon steel. can do. Even if a material such as fine ceramics is difficult to diffuse into the steel material, it is possible to strengthen the diffusion and adhesion to the base material by remelting. Further, even with a material such as Al, Ti, Ni, Cr, and Co that is likely to form a solid solution with a steel material, the pulse discharge treatment enables even stronger surface treatment. That is, when high-speed discharge deposition is performed using a large current in order to increase the rate of discharge deposition, even if a material such as Al, Ti, Ni, Cr, and Co that is likely to form a solid solution with a steel material, Diffusion is insufficient, and the precipitation state becomes more uneven, but the pulse discharge treatment promotes diffusion due to remelting. Further, if the plating rate is increased at a high current density by electrodeposition or electroplating, only a rough and low-adhesion plating layer can be obtained.However, pulse electric discharge machining can form a surface layer with high adhesion. it can. Pulse discharge on non-conductive hard material such as diamond, Al 2 O 3 and Si 3 N 4 coated with conductive metal such as iron powder, cobalt powder, nickel powder, chrome powder and copper powder. When the treatment is performed, the conductive metal is remelted and the non-conductive hard material is firmly fixed to the surface of the base material.
【0022】また、傾斜性を持つ材料を製作することも
できる。傾斜性材料とは、例えば、母材を金属材料と
し、母材側から次第にファインセラミックスの含有割合
が多くなり、材料表面をファインセラミックスの含有割
合を著しく高めたような材料である。このような傾斜性
材料は、単に金属材料とファインセラミックスとを接合
若しくはコーティングした材料に比べ、温度上昇があっ
ても膨張係数の著しい差異による接合面の剪断応力の発
生や曲げ応力の発生が少ないため、高温度で使用中の破
断等が生じにくい。これは、温度上昇による熱膨張が発
生しても、応力としては緩和されるためである。It is also possible to manufacture a material having an inclination. The gradient material is, for example, a material in which the base material is a metal material, and the content ratio of fine ceramics gradually increases from the base material side, and the content ratio of fine ceramics is remarkably increased on the surface of the material. Such a graded material causes less shear stress and bending stress on the joint surface due to a significant difference in expansion coefficient even if the temperature rises, as compared with a material obtained by simply joining or coating a metal material and fine ceramics. Therefore, breakage and the like during use at high temperatures are less likely to occur. This is because even if thermal expansion occurs due to temperature rise, the stress is relieved.
【0023】次に本発明の実施例を示す。Next, examples of the present invention will be described.
【0024】[0024]
【実施例1】Alの粉末を圧縮して一方の電極として、
図1に示す要領で、放電析出により母材(S50C、調
質材)の表面にFe−Al合金層を得た。Al圧粉体を使用
したのは、Alを粉体にして用いると、見掛けの熱伝導
率が1/2〜1/3に下がり、また電極材料の強度も弱
くなるため、放電によって母材金属に堆積し易いからで
ある。放電加工条件をExample 1 Al powder was compressed to form one electrode,
As shown in FIG. 1, a Fe—Al alloy layer was obtained on the surface of the base material (S50C, tempered material) by discharge precipitation. The Al powder compact is used because the apparent thermal conductivity is reduced to 1/2 to 1/3 and the strength of the electrode material is weakened when Al is used as the powder. This is because it is easy to deposit on. EDM conditions
【表1】 に示す。[Table 1] Shown in.
【0025】得られた合金層のEPMAによる分析結果
を図2に、X線回折による分析結果を図3に示す。図2
より、電極材料のAlが傾斜性を持ちながら(表面に多く
内部に少ない)、厚さ30μmで加工面に存在している。
また、図3より、極めて強いAlFe3C0.5のピークが見
られる。この化合物は耐酸化性に優れた金属間化合物と
して知られている。このように、Alの場合は放電析出
により充分な表面処理が可能である場合がある。FIG. 2 shows the results of EPMA analysis of the obtained alloy layer, and FIG. 3 shows the results of X-ray diffraction analysis. Figure 2
As a result, Al of the electrode material has an inclination (a large amount on the surface and a small amount inside), and is present on the processed surface with a thickness of 30 μm.
Further, from FIG. 3, a very strong AlFe 3 C 0. 5 peaks are observed. This compound is known as an intermetallic compound having excellent oxidation resistance. Thus, in the case of Al, sufficient surface treatment may be possible by discharge deposition.
【0026】しかし、ファインセラミックス(WC、Ti
C、TaC、ZrC、SiC、TiB2、ZrB2、TiN、Z
rNなど)や、W、Moなどのように高融点の材料は、放
電析出だけでは母材の内部まで充分に拡散させることが
困難である場合が多い。そこで、本例では、そのうちの
WCを放電析出させ、これにパルス放電加工処理を適用
した場合について示す。However, fine ceramics (WC, Ti
C, TaC, ZrC, SiC, TiB 2 , ZrB 2 , TiN, Z
In many cases, it is difficult for a high melting point material such as rN), W, Mo, etc. to sufficiently diffuse into the base material only by discharge deposition. Therefore, in this example, a case where WC among them is deposited by electric discharge and pulse electric discharge machining is applied to this is shown.
【0027】まず、WC粉(平均粒径3μm)をFe粉末
(平均粒径9.8μm)と1:1の割合で混合し、圧縮成形
(圧縮圧力4t/cm2)を施して圧粉体とした。これを銅
の丸棒に導電性接着剤にて接着し電極とした。次いで、
炭素鋼(S55C生材)を母材とし、加工条件(Ip、τ
p、τr)を変化させて、図1に示す要領にて放電加工実
験を行った。First, WC powder (average particle size 3 μm) is converted to Fe powder.
(Average particle size 9.8 μm) Mix with 1: 1 ratio and compression molding
(Compression pressure 4 t / cm 2 ) was applied to obtain a green compact. This was bonded to a copper round bar with a conductive adhesive to form an electrode. Then
Using carbon steel (S55C raw material) as a base material, processing conditions (Ip, τ
By changing p, τr), an electric discharge machining experiment was performed as shown in FIG.
【0028】その結果、D.F(デューティーファクタ
ー)が比較的大きい加工条件では、放電によるアークが
集中し電極が破壊されたが、D.Fが1.5%以下の条件
でWC電極は崩れることなく安定して消耗し母材表面に
付着した。そのときの加工条件は、Ip=20A、τp=
16μs、τr=1024μsである。As a result, under machining conditions where the DF (duty factor) was relatively large, arcs due to discharge were concentrated and the electrodes were destroyed, but the WC electrodes collapsed when the DF was 1.5% or less. It was consumed stably and adhered to the surface of the base metal. The processing conditions at that time are: Ip = 20A, τp =
16 μs and τr = 1024 μs.
【0029】加工後の試料表面にX線回折を行った結
果、図4に示すように、WCのピークが現われた。加工
時間によるWCの付着量(母材表面からの高さ)を焦点深
度法により測定した結果、As a result of X-ray diffraction on the sample surface after processing, a WC peak appeared as shown in FIG. As a result of measuring the adhesion amount of WC (height from the base material surface) by the depth of focus method depending on the processing time,
【表2】 に示すように、加工時間を長くすることにより、母材表
面のWCの付着量が増加する。母材表面に付着したWC
は、付着力が弱く、ドライバー等でこすると剥離してく
る程度のものであった。[Table 2] As shown in (1), by increasing the processing time, the amount of WC adhering to the surface of the base material increases. WC attached to the surface of the base material
Had a weak adhesive force and peeled off when rubbed with a driver or the like.
【0030】次に、前記の放電加工により得られた材料
に、以下の要領でパルス放電加工を実施した。Next, pulse electric discharge machining was performed on the material obtained by the electric discharge machining in the following manner.
【0031】まず、WC−Co焼結体を導電性接着剤に
て銅丸棒に接着し電極(仕上げ電極)とした。次いで、こ
の仕上げ電極を用いて、母材表面に付着したWC、Fe
堆積層の上からパルス放電加工を行った。加工条件は、
母材を加工しすぎないように、電極極性をマイナスと
し、Ip、τp、τrを変化させ、図5に示す回路構成で
加工した。パルス波形(矩形波)を図6に示す。加工後、
表面をX線回折した結果を図7に示し、その解析結果をFirst, the WC-Co sintered body was bonded to a copper round bar with a conductive adhesive to form an electrode (finishing electrode). Then, using this finishing electrode, WC and Fe attached to the surface of the base material
Pulse electric discharge machining was performed on the deposited layer. The processing conditions are
In order to prevent the base material from being over-processed, the electrode polarity was made negative, and Ip, τp, and τr were changed, and processing was performed with the circuit configuration shown in FIG. The pulse waveform (rectangular wave) is shown in FIG. After processing,
The result of X-ray diffraction of the surface is shown in Fig. 7, and the analysis result is
【表3】 に示す。同表に示すように、パルス幅(τp)が短く、電
流値(Ip)が高く、加工時間が長いと、堆積物が消出す
るが、τpがやや長く、電流値(Ip)がやや低い条件で
は、WC−Feの堆積物の飛散を少なくすることがで
き、WCが検出された。[Table 3] Shown in. As shown in the table, when the pulse width (τp) is short, the current value (Ip) is high, and the processing time is long, the deposit disappears, but τp is a little long and the current value (Ip) is a little low. Under the conditions, the scattering of WC-Fe deposits could be reduced, and WC was detected.
【0032】放電析出では、図8(断面顕微鏡写真)に示
すようにWC−Feの付着力は弱いが、これにパルス放
電加工を行うと、図9(断面顕微鏡写真)及び図10(断
面SEM写真)に示すようにWCが母材に拡散している
ことが確認された。In the electric discharge deposition, the adhesion of WC-Fe is weak as shown in FIG. 8 (cross-sectional micrograph), but when pulse electric discharge machining is applied to this, FIG. 9 (cross-sectional micrograph) and FIG. 10 (cross-sectional SEM). As shown in the photograph, it was confirmed that WC was diffused in the base material.
【0033】また、断面で表面からの距離とビッカース
硬さ(Hc)の関係を図11に示す。通常のWC−Co合金
の硬度はHv800〜1400程度であり、本実験では
それと同程度の表面処理層の硬度(Hv1000〜140
0)(S55Cの焼入硬度はHv800強である)が認めら
れた。また、本実験においてHv1000以上を得られ
る厚みは60μm程度で、厚みが大きい。FIG. 11 shows the relationship between the distance from the surface and the Vickers hardness (Hc) in the cross section. The hardness of a normal WC-Co alloy is about Hv 800 to 1400, and in this experiment, the hardness of the surface treatment layer (Hv 1000 to 140) which is about the same as that.
0) (the quenching hardness of S55C is more than Hv 800). Further, in this experiment, the thickness at which Hv of 1000 or more is obtained is about 60 μm, which is large.
【0034】[0034]
【実施例2】母材を鋼材(特殊工具鋼)とし、ファインセ
ラミックスとしてTiB2、助剤としてFe粉を混合した
粉体電極を使用した。まず、図12の如く、粉体電極に
よる放電析出によって積層した。積層後、パルス電加工
を行った。その際、積層とパルス放電加工を1層毎に行
う場合と、積層を全部終了した後にパルス電加工を行う
場合の2通りで行った。Example 2 A powder electrode was used in which the base material was steel (special tool steel), TiB 2 was used as fine ceramics, and Fe powder was used as an auxiliary agent. First, as shown in FIG. 12, they were laminated by discharge deposition using a powder electrode. After stacking, pulse electric processing was performed. At that time, the stacking and the pulse electric discharge machining were performed for each layer, and the pulse electric machining was performed after all the stacking was completed.
【0035】その結果、表面から徐々にTiB2の含有量
が減少する被覆層を持った傾斜性材料が得られた。ま
た、前者の方が手間がかかるが、付着力等は強靱であっ
た。なお、表面部のビッカース硬さはHv=2000〜
2500、母材に近い個所のビッカース硬さはHv=5
50〜600であった。As a result, a graded material having a coating layer in which the TiB 2 content gradually decreased from the surface was obtained. Further, the former was more laborious, but the adhesive force was stronger. The Vickers hardness of the surface is Hv = 2000-
2500, Vickers hardness near the base metal is Hv = 5
It was 50-600.
【0036】[0036]
【実施例3】母材を鋼材(特殊工具鋼)とし、硬質材料と
してダイヤモンド粉末及びコバルト粉末を混合した粉体
電極を使用した。まず、図13の如く、粉体電極による
放電析出によって積層した。積層後、パルス放電加工を
行った。その際、積層とパルス放電加工を1層毎に行う
場合と、積層を全部終了した後にパルス電加工を行う場
合の2通りで行った。Example 3 A powdery electrode was used in which a base material was steel (special tool steel) and a diamond powder and a cobalt powder were mixed as a hard material. First, as shown in FIG. 13, they were laminated by discharge deposition using a powder electrode. After stacking, pulse electric discharge machining was performed. At that time, the stacking and the pulse electric discharge machining were performed for each layer, and the pulse electric machining was performed after all the stacking was completed.
【0037】その結果、表面から徐々にダイヤモンドの
含有量が減少する被覆層を持った傾斜性材料が得られ
た。なお、表面部(ダイヤモンドの多い個所)のビッカー
ス硬さはHv=3500〜4000、母材に近い個所の
ビッカース硬さはHv=550〜600であった。As a result, a graded material having a coating layer in which the diamond content gradually decreased from the surface was obtained. The Vickers hardness of the surface portion (where many diamonds are) was Hv = 3500-4000, and the Vickers hardness of the portion near the base material was Hv = 550-600.
【0038】[0038]
【実施例4】図1に示すような加工を行って、型の内面
にファインセラミックス若しくはWC−Coなどで緻密
な被覆層を形成した。まず、図1に示すように電極に銅
又はグラファイトなどの通常低消耗放電加工に用いられ
る材料を利用して、三次元形状加工を行った。その後、
加工物の内面に、TiB2粉末にコバルト粉を20%程度
混合した溶射を行った。その厚みは100μm程度であ
る。溶射膜は図14に示すようにやや不規則に堆積して
いる。Example 4 By performing the processing shown in FIG. 1, a fine coating layer was formed on the inner surface of the mold with fine ceramics or WC-Co. First, as shown in FIG. 1, the electrode was subjected to three-dimensional shape processing by using a material such as copper or graphite which is usually used for low consumption electric discharge machining. afterwards,
The inner surface of the workpiece was sprayed by mixing TiB 2 powder with about 20% cobalt powder. Its thickness is about 100 μm. The sprayed film is slightly irregularly deposited as shown in FIG.
【0039】そして、再び、図1に示した電極(先に使
用したものでも、形状寸法を修正したもの、或いは多少
小さ目の電極でもよい)で、放電加工機を使用してパル
ス放電加工処理を行った。この加工条件は、Ip=3
A、τp=64μs、τr=256μs、放電電圧=100
V前後である。加工物表面は図15に示すように高い形
状精度で被覆されたキャビティが得られた。この加工に
よると、高温注湯を行うダイカスト金型を作ることがで
きる。Then, again, using the electrode shown in FIG. 1 (the one used previously, the one having the modified shape size, or the one having a slightly smaller size), the electric discharge machine is used to perform the pulse electric discharge machining process. went. This processing condition is Ip = 3
A, τp = 64 μs, τr = 256 μs, discharge voltage = 100
It is around V. As shown in FIG. 15, the cavity on which the surface of the workpiece was covered with high shape accuracy was obtained. According to this processing, a die casting mold for high temperature pouring can be manufactured.
【0040】ここで、多少小さ目の電極を使用してパル
ス放電仕上げを行う場合は、放電加工でよく知られてい
いる揺動加工(電極を水平方向に偏心運動をさせ、電極
寸法よりも偏心寸法だけ大きく加工する方法で、これに
より側面及び底面の仕上げ面粗さが工場する)と同様に
して行う。Here, in the case of performing pulse electric discharge finishing using a slightly smaller electrode, oscillating machining which is well known in electrical discharge machining (the electrode is eccentrically moved in the horizontal direction and the eccentric dimension is larger than the electrode dimension). However, the finished surface roughness of the side surface and the bottom surface is factory-set).
【0041】本実施例のこの方法は、通常の加工法では
加工困難なキャビティの形状を放電加工しておき、その
内面にファインセラミックス等の材料を溶射等により堆
積させ、その上をパルス放電加工によって再溶融させる
ものである。他のレーザーや高周波加熱等によって溶融
させることは不可能若しくは困難であり、本発明の極め
て大きな利点である。In this method of this embodiment, the shape of the cavity, which is difficult to process by a normal processing method, is subjected to electric discharge machining, a material such as fine ceramics is deposited on the inner surface by thermal spraying, and pulse electric discharge machining is performed thereon. It is re-melted by. It is impossible or difficult to melt by other laser or high frequency heating, which is an extremely great advantage of the present invention.
【0042】なお、上記実施例では、被覆材料の被覆手
段として放電析出や溶射法を利用したが、電着法、低温
蒸着法などの他の手段も利用でき、また各種被覆手段を
組み合わせて利用できることは云うまでもない。In the above embodiment, the discharge deposition or the thermal spraying method was used as the coating means for the coating material, but other means such as the electrodeposition method and the low temperature vapor deposition method can also be used, and various coating means can be used in combination. It goes without saying that you can do it.
【0043】[0043]
【発明の効果】以上詳述したように、本発明によれば、
母材の寸法変化、硬度(強度)低下、皮膜剥離等の欠点が
なく、しかも充分な厚みで耐食性、耐熱性等々の所望の
表面特性を有する緻密で強固な被覆層を容易に形成する
ことができる。例えば、高温用タービンブレードの高温
ガス又は蒸気射突部や、高温溶融金属湯を鋳込むダイキ
ャビティー部分、溶湯鍛造金型のショットブラストノズ
ル部分やその他の部分(例えば射出成形機管部分など)、
また鋼製金型の切刃部分のみにファインセラミックスを
コーティングする等に利用できる。As described in detail above, according to the present invention,
It is possible to easily form a dense and strong coating layer that does not have defects such as dimensional change of the base material, decrease in hardness (strength), peeling of the film, etc., and has desired surface characteristics such as corrosion resistance and heat resistance with a sufficient thickness. it can. For example, high temperature gas or steam projection of high temperature turbine blades, die cavity part for casting high temperature molten metal, shot blast nozzle part of molten metal forging die and other parts (for example injection molding machine pipe part) ,
It can also be used for coating fine ceramics only on the cutting edge of a steel mold.
【0044】また、母材上に表面まで組成が徐々に変化
するいわゆる傾斜機能膜を持った傾斜機能材料も安価に
製造できる。Further, a functionally graded material having a so-called functionally graded film whose composition gradually changes up to the surface of the base material can be manufactured at low cost.
【図1】圧粉体電極による放電析出の要領を説明する図
である。FIG. 1 is a diagram illustrating a procedure of discharge deposition by a powder compact electrode.
【図2】実施例1において放電析出により得られたAl
被覆層のEPMAによる分析結果を示す図である。FIG. 2 Al obtained by discharge deposition in Example 1
It is a figure which shows the analysis result by EPMA of a coating layer.
【図3】実施例1において放電析出により得られたAl
被覆層のX線回折による分析結果を示す図である。FIG. 3 Al obtained by discharge deposition in Example 1
It is a figure which shows the analysis result by the X-ray diffraction of a coating layer.
【図4】実施例1において放電析出により得られたWC
−Fe被覆層のX線回折結果を示す図である。FIG. 4 WC obtained by discharge deposition in Example 1.
It is a figure which shows the X-ray-diffraction result of a -Fe coating layer.
【図5】パルス放電加工の回路構成を説明する図であ
る。FIG. 5 is a diagram illustrating a circuit configuration of pulse electric discharge machining.
【図6】パルス放電加工のバルス波形を示す図である。FIG. 6 is a diagram showing a pulse waveform of pulse electric discharge machining.
【図7】実施例1においてWC−Fe被覆層にパルス放
電加工(仕上げ加工)を行って得られたWC−Fe被覆層
のX線回折結果を示す図である。FIG. 7 is a diagram showing an X-ray diffraction result of a WC-Fe coating layer obtained by performing pulse electric discharge machining (finishing) on the WC-Fe coating layer in Example 1.
【図8】実施例1において放電析出により得られた試料
(金属組織)の断面顕微鏡写真である。8 is a sample obtained by discharge deposition in Example 1. FIG.
It is a cross-sectional micrograph of (metal structure).
【図9】実施例1において放電析出により得られたWC
−Fe被覆層にパルス放電加工(仕上げ加工)を行って得
られた試料の断面(金属組織)の顕微鏡写真である。FIG. 9: WC obtained by discharge deposition in Example 1
4 is a micrograph of a cross section (metal structure) of a sample obtained by performing pulse electric discharge machining (finishing) on the Fe coating layer.
【図10】実施例1において放電析出により得られたW
C−Fe被覆層にパルス放電加工(仕上げ加工)を行って
得られた試料の断面(金属組織)のSEM写真である。FIG. 10: W obtained by discharge deposition in Example 1
It is an SEM photograph of the cross section (metal structure) of the sample obtained by performing pulse electric discharge machining (finishing) on the C-Fe coating layer.
【図11】実施例1において放電析出により得られたW
C−Fe被覆層にパルス放電加工(仕上げ加工)を行って
得られた試料断面の表面からのビッカース硬さ(Hv)の
分布を示す図である。FIG. 11: W obtained by discharge deposition in Example 1
It is a figure which shows the distribution of the Vickers hardness (Hv) from the surface of the sample cross section obtained by performing pulse electric discharge machining (finishing) on the C-Fe coating layer.
【図12】実施例2における被覆材料の積層要領を説明
する図である。FIG. 12 is a diagram illustrating a procedure for laminating a coating material in Example 2.
【図13】実施例3における被覆材料の積層要領を説明
する図である。FIG. 13 is a diagram illustrating a stacking procedure of coating materials in Example 3.
【図14】実施例4において放電加工及び溶射により得
られるキャビティ形状を示す図である。FIG. 14 is a diagram showing a cavity shape obtained by electrical discharge machining and thermal spraying in Example 4.
【図15】実施例4においてパルス放電加工後のキャビ
ティ形状を示す図である。FIG. 15 is a diagram showing a cavity shape after pulse electric discharge machining in Example 4.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年2月15日[Submission date] February 15, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0042[Correction target item name] 0042
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0042】 なお、上記実施例では、被覆材料の被覆
手段として放電析出や溶射法を利用したが、電着法、低
温蒸着法などの他の手段も利用でき、また各種被覆手段
を組み合わせて利用できることは云うまでもない。ま
た、放電析出加工(1次加工)と放電再溶融加工(2次加
工)を同一条件で或いは異なる条件で複数回繰り返すこ
とができることも云うまでもなく、以下にその実施例を
示す。 In the above-mentioned embodiment, the discharge deposition or the thermal spraying method was used as the covering means for the covering material, but other means such as an electrodeposition method, a low temperature vapor deposition method, etc. can also be used, and various covering means can be used in combination. It goes without saying that you can do it. Well
In addition, electrical discharge precipitation machining (primary machining) and electrical discharge remelting machining (secondary machining)
Process) under the same or different conditions multiple times.
Needless to say, it is possible to
Show.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0043[Correction target item name] 0043
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0043】 [0043]
【実施例5】 本例は放電析出加工(1次加工)と放電再[Embodiment 5] In this embodiment, electrical discharge precipitation machining (primary machining) and electrical discharge re-machining are performed.
溶融加工(2次加工)をそれぞれ1回ずつ行うことを1回Once to perform each melt processing (secondary processing) once
の工程と数え、これを複数回繰り返した一例である。放It is an example of repeating the above process a plurality of times. Release
電析出加工(1次加工)による母材被覆後にパルス放電再After the base material coating by electrodeposition processing (primary processing), pulse discharge
溶融加工(2次加工)を1回行っただけでは、部分的に表Only once melt processing (secondary processing) is performed
面層が吹き飛ばされて母材表面が露出する部分が生じたThe surface layer was blown away and the base metal surface was exposed.
り、或いは厚い表面処理層を形成することができない場Or when a thick surface treatment layer cannot be formed.
合に適用すると効果的である。It is effective when applied in combination.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0044[Correction target item name] 0044
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0044】 まず、1回目のパルス放電析出加工(1
次加工)の加工条件は、電極材料:粉体電極(実施例1に
用いたWC−Fe電極と同じ)、電極極性:マイナス、I
p:25A、τp:8μsec、τr:512μsec、加工時
間:5分の条件とし、2回目のパルス放電再溶融加工
(2次加工)の加工条件は、電極材料:銅電板、電極極
性:マイナス、Ip:15A、τp:1024μs、τr:
1024μs、加工時間:7分の条件とした。他の条件
は実施例1と同様である。そして、実施例1と同様の要
領で放電析出により母材表面にWC−Feの堆積合金層
を形成した後、2次加工を行うという工程を5回繰り返
した。図16に光学顕微鏡による試料の断面写真を、図
17にX線回折による分析結果を示す。図16より厚さ
約50μmの一様な広がりの堆積層が確認された。また
図17よりWCの存在が確認された。試料の断面の硬さ
を測定したところ、平均で約Hv1650であり、非常
に硬度の高いことが確認された。なお、図18は、母材
被覆と、前記2次加工条件によるパルス放電再溶融加工
をそれぞれ1回ずつ行った場合の試料の光学顕微鏡によ
る断面写真であり、表面処理層が途切れて一様でない状
態を示している。図19は1次加工後のX線回折による
分析結果である。 First, the first pulse discharge deposition machining (1
The processing conditions for the following processing are: electrode material: powder electrode (in Example 1
The same as the used WC-Fe electrode), electrode polarity: minus, I
p: 25 A, τp: 8 μsec, τr: 512 μsec, during processing
Time: 5 minutes condition, second pulse discharge remelting processing
The processing conditions for (secondary processing) are: electrode material: copper plate, electrode electrode
Gender: Minus, Ip: 15A, τp: 1024μs, τr:
The conditions were 1024 μs and processing time: 7 minutes. Other conditions
Is the same as in the first embodiment. Then, the same requirements as in the first embodiment
Deposited layer of WC-Fe on the surface of the base material by discharge precipitation
After forming the, repeat the process of performing secondary processing 5 times
did. Figure 16 shows a cross-sectional photograph of the sample taken with an optical microscope.
17 shows the analysis result by X-ray diffraction. Thickness from Figure 16
A uniformly spread deposition layer of about 50 μm was confirmed. Also
From FIG. 17, the existence of WC was confirmed. Hardness of sample cross section
It was about Hv1650 on average,
It was confirmed that the hardness was high. Note that FIG. 18 shows the base metal
Coating and pulse melting remelting processing under the secondary processing conditions
Of the sample when performing each step once
It is a cross-sectional photograph showing the surface treatment layer is discontinuous and uneven.
The state is shown. FIG. 19 shows X-ray diffraction after primary processing
It is an analysis result.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0045[Name of item to be corrected] 0045
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【0045】[0045]
【発明の効果】 以上詳述したように、本発明によれ
ば、母材の寸法変化、硬度(強度)低下、皮膜剥離等の欠
点がなく、しかも充分な厚みで耐食性、耐熱性等々の所
望の表面特性を有する緻密で強硬な被覆層を容易に形成
することができる。例えば、高温用タービンブレードの
高温ガス又は蒸気射突部や、高温溶融金属湯を鋳込むダ
イキャビティ部分、溶湯鍛造金型のショットブラストノ
ズル部分やその他の部分(例えば射出成形機管部分な
ど)、また鋼製金型の切刃部分のみにファインセラミッ
クスをコーティングする等に利用できる。As described in detail above, according to the present invention, there is no defect such as dimensional change of the base material, decrease in hardness (strength), film peeling, etc., and it is desired to have corrosion resistance, heat resistance, etc. with sufficient thickness. It is possible to easily form a dense and hard coating layer having the above surface characteristics. For example, high temperature gas or steam projection of high temperature turbine blades, die cavity part for casting high temperature molten metal, shot blast nozzle part of molten metal forging die and other parts (such as injection molding machine pipe part), It can also be used for coating fine ceramics only on the cutting edge of a steel mold.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0046[Correction target item name] 0046
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【0046】 また、母材上に表面まで組成が徐々に変
化するいわゆる傾斜機能膜を持った傾斜機能材料も安価
に製造できる。Further, a functionally gradient material having a so-called functionally gradient film whose composition gradually changes up to the surface on the base material can be manufactured at low cost.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図16[Correction target item name] Fig. 16
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図16】 実施例5において放電析出(1次加工)とパ
ルス放電再溶融加工(2次加工)を5回繰り返して得られ
た試料(金属組織)の断面の顕微鏡写真(×160)であ
る。FIG. 16 is a micrograph (× 160) of a cross section of a sample (metal structure) obtained by repeating discharge deposition (primary processing) and pulse discharge remelting processing (secondary processing) five times in Example 5. ..
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図17[Name of item to be corrected] Fig. 17
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図17】 実施例5において1次加工と2次加工の工
程を繰り返して得られた試料のWC−Fe被覆層のX線
回折結果を示す図である。FIG. 17 is a diagram showing an X-ray diffraction result of a WC-Fe coating layer of a sample obtained by repeating the steps of primary processing and secondary processing in Example 5.
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図18[Name of item to be corrected] Fig. 18
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図18】 実施例5において1次加工と2次加工の工
程をそれぞれ1回として得られた試料(金属組織)の断面
の顕微鏡写真(×160)である。FIG. 18 is a micrograph (× 160) of a cross section of a sample (metal structure) obtained by performing each of the steps of primary processing and secondary processing once in Example 5.
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図19[Name of item to be corrected] Fig. 19
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図19】 実施例5において1次加工後の試料のX線
回折結果を示す出である。FIG. 19 is a diagram showing the X-ray diffraction result of the sample after the primary processing in Example 5.
【手続補正10】[Procedure Amendment 10]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図16[Correction target item name] Fig. 16
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図16】 FIG. 16
【手続補正11】[Procedure Amendment 11]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図17[Name of item to be corrected] Fig. 17
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図17】 FIG. 17
【手続補正12】[Procedure Amendment 12]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図18[Name of item to be corrected] Fig. 18
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図18】 FIG. 18
【手続補正13】[Procedure Amendment 13]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図19[Name of item to be corrected] Fig. 19
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【図19】 FIG. 19
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C25D 5/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C25D 5/50
Claims (5)
金属材料を被覆した後、液中、気体中又は真空中でパル
ス放電加工によって該堆積物を微小領域ごとに再溶融さ
せることにより、母材と該被覆材料を拡散、混合し、母
材表面に緻密な被覆層を形成することを特徴とする金属
材料の表面処理方法。1. A surface of a base material made of a metal material is coated with a metal or a non-metal material, and then the deposit is remelted in every minute region by pulse electric discharge machining in a liquid, a gas or a vacuum, A surface treatment method for a metal material, which comprises diffusing and mixing a base material and the coating material to form a dense coating layer on the surface of the base material.
素、セラミックス、炭化物、窒化物、硼化物の1種又は
2種以上からなる請求項1に記載の方法。2. The method according to claim 1, wherein the coating material comprises one kind or two or more kinds of metal or alloy, non-metal element, ceramics, carbide, nitride and boride.
法、低温蒸着法、消耗し易い電極を用いた放電析出法の
いずれかである請求項1に記載の方法。3. The method according to claim 1, wherein the coating means for coating the coating material is any one of a thermal spraying method, an electrodeposition method, a low temperature vapor deposition method, and a discharge deposition method using an electrode that easily wears.
マイナス極として行う請求項1に記載の方法。4. The method according to claim 1, wherein the pulsed electric discharge machining is performed by using an electrode that is hard to wear as a negative electrode.
層毎に行い、被覆層に傾斜性を持たせる請求項1に記載
の方法。5. Coating of coating material and pulse electric discharge machining
The method according to claim 1, wherein the method is performed layer by layer so that the coating layer has a gradient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03329499A JP3093846B2 (en) | 1991-11-18 | 1991-11-18 | Surface treatment method for metal materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03329499A JP3093846B2 (en) | 1991-11-18 | 1991-11-18 | Surface treatment method for metal materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05148615A true JPH05148615A (en) | 1993-06-15 |
JP3093846B2 JP3093846B2 (en) | 2000-10-03 |
Family
ID=18222057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03329499A Expired - Fee Related JP3093846B2 (en) | 1991-11-18 | 1991-11-18 | Surface treatment method for metal materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3093846B2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5804789A (en) * | 1996-06-12 | 1998-09-08 | Japan Science And Technology Corporation | Surface treating method and apparatus by electric discharge machining |
WO2000006331A1 (en) * | 1998-07-31 | 2000-02-10 | Mitsubishi Denki Kabushiki Kaisha | Press die and method for treating surface of press die |
WO2000006332A1 (en) * | 1998-07-31 | 2000-02-10 | Mitsubishi Denki Kabushiki Kaisha | Die and surface treating method for die |
WO2000006330A1 (en) * | 1998-07-31 | 2000-02-10 | Mitsubishi Denki Kabushiki Kaisha | Die for drawing/extruding and method for treating surface of die for drawing/extruding |
US6376793B1 (en) | 2000-03-08 | 2002-04-23 | Mitsubishi Denki Kabushiki Kaisha | Method and device for electric discharge surface treatment using a wire electrode |
US6501232B1 (en) | 2000-01-11 | 2002-12-31 | Mitsubishi Denki Kabushiki Kaisha | Electric power unit for electric discharge surface treatment and method of electric discharge surface treatment |
US6617544B1 (en) | 2000-05-19 | 2003-09-09 | Mitsubishi Denki Kabushiki Kaisha | Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine |
US6808604B1 (en) | 1999-09-30 | 2004-10-26 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment electrode, manufacturing method thereof and discharge surface treating method |
US6821579B2 (en) | 1998-11-13 | 2004-11-23 | Mitsubishi Denki Kabushiki Kaisha | Surface treatment method using electric discharge, and an electrode for the surface treatment method |
WO2004108990A1 (en) | 2003-06-05 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method |
WO2004108989A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment, and method for manufacturing and storing the same |
WO2004111304A1 (en) * | 2003-06-11 | 2004-12-23 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component |
WO2004111394A1 (en) * | 2003-06-10 | 2004-12-23 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Turbine component, gas turbine engine, method for manufacturing turbine component, surface processing method, vane component, metal component, and steam turbine engine |
WO2004113587A1 (en) * | 2003-06-10 | 2004-12-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Metal component, turbine component, gas turbine engine, surface processing method, and steam turbine engine |
WO2005068845A1 (en) * | 2004-01-14 | 2005-07-28 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method |
JP2005201079A (en) * | 2004-01-13 | 2005-07-28 | Ishikawajima Harima Heavy Ind Co Ltd | Turbine blade and its manufacturing method |
JP2005214054A (en) * | 2004-01-29 | 2005-08-11 | Mitsubishi Electric Corp | Turbine part and gas turbine |
US6929829B2 (en) | 1998-11-13 | 2005-08-16 | Mitsubishi Denki Kabushiki Kaisha | Method and device discharging surface treatment |
JP2005220824A (en) * | 2004-02-05 | 2005-08-18 | Ishikawajima Harima Heavy Ind Co Ltd | Fluid jet structure, cooling air jet structure, fluid jet structure manufacturing method, cooling air jet structure manufacturing method, and turbine blade |
WO2006095799A1 (en) * | 2005-03-09 | 2006-09-14 | Ihi Corporation | Surface treatment method and repair method |
WO2006123607A1 (en) * | 2005-05-16 | 2006-11-23 | Ltt Bio-Pharma Co, Ltd. | Tablet making mortar or pestle |
WO2008117802A1 (en) | 2007-03-26 | 2008-10-02 | Ihi Corporation | Heat resistant component |
US7537808B2 (en) | 2002-07-30 | 2009-05-26 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
US7537809B2 (en) | 2002-10-09 | 2009-05-26 | Ihi Corporation | Rotating member and method for coating the same |
DE19983550B4 (en) * | 1999-07-16 | 2009-07-09 | Mitsubishi Denki K.K. | Electrode for a spark discharge coating and manufacturing method therefor |
US7641945B2 (en) | 2003-06-11 | 2010-01-05 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method |
US7776409B2 (en) | 2003-06-10 | 2010-08-17 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method |
US7834291B2 (en) | 2003-05-29 | 2010-11-16 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment |
US7892410B2 (en) | 2003-06-04 | 2011-02-22 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment method and discharge surface treatment apparatus |
CN102528182A (en) * | 2012-03-13 | 2012-07-04 | 哈尔滨工业大学 | Self-induced electric discharge machining method of metal-ceramic functionally graded material |
US8460603B2 (en) | 2008-05-20 | 2013-06-11 | Mitsubishi Electric Corporation | Method of manufacturing electrical discharge surface treatment-purpose electrode and electrical discharge surface treatment-purpose electrode |
RU2493290C2 (en) * | 2011-12-02 | 2013-09-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Method of making contacts of vacuum arc-quenching chambers |
US9157136B2 (en) | 2012-12-05 | 2015-10-13 | Industrial Technology Research Institute | Multi-element alloy material and method of manufacturing the same |
US9187831B2 (en) | 2002-09-24 | 2015-11-17 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US9234284B2 (en) | 2008-08-06 | 2016-01-12 | Mitsubishi Electric Corporation | Electrical discharge surface treatment method |
US9284647B2 (en) | 2002-09-24 | 2016-03-15 | Mitsubishi Denki Kabushiki Kaisha | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
CN111590076A (en) * | 2020-06-01 | 2020-08-28 | 吉林大学 | Electric pulse post-processing method and device for improving performance of metal component |
CN115231953A (en) * | 2022-07-22 | 2022-10-25 | 燕山大学 | Hard alloy matrix ceramic composite material and preparation method thereof |
-
1991
- 1991-11-18 JP JP03329499A patent/JP3093846B2/en not_active Expired - Fee Related
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5804789A (en) * | 1996-06-12 | 1998-09-08 | Japan Science And Technology Corporation | Surface treating method and apparatus by electric discharge machining |
WO2000006331A1 (en) * | 1998-07-31 | 2000-02-10 | Mitsubishi Denki Kabushiki Kaisha | Press die and method for treating surface of press die |
WO2000006332A1 (en) * | 1998-07-31 | 2000-02-10 | Mitsubishi Denki Kabushiki Kaisha | Die and surface treating method for die |
WO2000006330A1 (en) * | 1998-07-31 | 2000-02-10 | Mitsubishi Denki Kabushiki Kaisha | Die for drawing/extruding and method for treating surface of die for drawing/extruding |
US6929829B2 (en) | 1998-11-13 | 2005-08-16 | Mitsubishi Denki Kabushiki Kaisha | Method and device discharging surface treatment |
US6821579B2 (en) | 1998-11-13 | 2004-11-23 | Mitsubishi Denki Kabushiki Kaisha | Surface treatment method using electric discharge, and an electrode for the surface treatment method |
DE19983550B4 (en) * | 1999-07-16 | 2009-07-09 | Mitsubishi Denki K.K. | Electrode for a spark discharge coating and manufacturing method therefor |
US6808604B1 (en) | 1999-09-30 | 2004-10-26 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment electrode, manufacturing method thereof and discharge surface treating method |
CN1322165C (en) * | 1999-09-30 | 2007-06-20 | 三菱电机株式会社 | Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method |
DE19983980B3 (en) * | 1999-09-30 | 2013-09-05 | Mitsubishi Denki K.K. | A method for producing a discharge surface treatment electrode, hereinafter obtained discharge surface treatment electrode and use thereof |
US6501232B1 (en) | 2000-01-11 | 2002-12-31 | Mitsubishi Denki Kabushiki Kaisha | Electric power unit for electric discharge surface treatment and method of electric discharge surface treatment |
US6376793B1 (en) | 2000-03-08 | 2002-04-23 | Mitsubishi Denki Kabushiki Kaisha | Method and device for electric discharge surface treatment using a wire electrode |
US6617544B1 (en) | 2000-05-19 | 2003-09-09 | Mitsubishi Denki Kabushiki Kaisha | Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine |
US8377339B2 (en) | 2002-07-30 | 2013-02-19 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment |
US7537808B2 (en) | 2002-07-30 | 2009-05-26 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
US9187831B2 (en) | 2002-09-24 | 2015-11-17 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US9284647B2 (en) | 2002-09-24 | 2016-03-15 | Mitsubishi Denki Kabushiki Kaisha | Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment |
US7918460B2 (en) | 2002-10-09 | 2011-04-05 | Ihi Corporation | Rotating member and method for coating the same |
US7537809B2 (en) | 2002-10-09 | 2009-05-26 | Ihi Corporation | Rotating member and method for coating the same |
US7834291B2 (en) | 2003-05-29 | 2010-11-16 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment |
JP4641260B2 (en) * | 2003-06-04 | 2011-03-02 | 三菱電機株式会社 | Discharge surface treatment electrode and method for producing the same |
JPWO2004108989A1 (en) * | 2003-06-04 | 2006-07-20 | 三菱電機株式会社 | ELECTRODE FOR DISCHARGE SURFACE TREATMENT, PROCESS FOR PRODUCING THE SAME |
WO2004108989A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment, and method for manufacturing and storing the same |
US7915559B2 (en) | 2003-06-04 | 2011-03-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, method for manufacturing electrode, and method for storing electrode |
US7892410B2 (en) | 2003-06-04 | 2011-02-22 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment method and discharge surface treatment apparatus |
WO2004108990A1 (en) | 2003-06-05 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method |
US7910176B2 (en) | 2003-06-05 | 2011-03-22 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method |
WO2004111394A1 (en) * | 2003-06-10 | 2004-12-23 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Turbine component, gas turbine engine, method for manufacturing turbine component, surface processing method, vane component, metal component, and steam turbine engine |
JP4505415B2 (en) * | 2003-06-10 | 2010-07-21 | 株式会社Ihi | Metal part, turbine part, gas turbine engine, surface treatment method, and steam turbine engine |
JPWO2004113587A1 (en) * | 2003-06-10 | 2006-08-03 | 石川島播磨重工業株式会社 | Metal part, turbine part, gas turbine engine, surface treatment method, and steam turbine engine |
SG155060A1 (en) * | 2003-06-10 | 2009-09-30 | Ishikawajima Harima Heavy Ind | Turbine component, gas turbine engine, production method of turbine component, surface treatment method thereof, blade component, metal component and steam turbine engine |
JPWO2004111394A1 (en) * | 2003-06-10 | 2006-07-27 | 石川島播磨重工業株式会社 | Turbine component, gas turbine engine, turbine component manufacturing method, surface treatment method, blade component, metal component, and steam turbine engine |
WO2004113587A1 (en) * | 2003-06-10 | 2004-12-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Metal component, turbine component, gas turbine engine, surface processing method, and steam turbine engine |
JP4553843B2 (en) * | 2003-06-10 | 2010-09-29 | 株式会社Ihi | Surface treatment method, turbine rotor blade, gas turbine engine, turbine component, and steam turbine engine |
JP2010151148A (en) * | 2003-06-10 | 2010-07-08 | Ihi Corp | Surface treatment method, turbine moving blade, gas turbine engine, and steam turbine engine |
US7776409B2 (en) | 2003-06-10 | 2010-08-17 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method |
US7691454B2 (en) | 2003-06-11 | 2010-04-06 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method using a metallic powder or metallic powder compound in combination with other elements as electrode |
US8658005B2 (en) | 2003-06-11 | 2014-02-25 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method |
US7723636B2 (en) | 2003-06-11 | 2010-05-25 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component |
WO2004111304A1 (en) * | 2003-06-11 | 2004-12-23 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component |
US7641945B2 (en) | 2003-06-11 | 2010-01-05 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method |
JP2005201079A (en) * | 2004-01-13 | 2005-07-28 | Ishikawajima Harima Heavy Ind Co Ltd | Turbine blade and its manufacturing method |
US7824159B2 (en) | 2004-01-14 | 2010-11-02 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method |
WO2005068845A1 (en) * | 2004-01-14 | 2005-07-28 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method |
JP2005214054A (en) * | 2004-01-29 | 2005-08-11 | Mitsubishi Electric Corp | Turbine part and gas turbine |
JP4505235B2 (en) * | 2004-02-05 | 2010-07-21 | 株式会社Ihi | Method for producing fluid ejection structure and method for producing cooling air ejection structure |
JP2005220824A (en) * | 2004-02-05 | 2005-08-18 | Ishikawajima Harima Heavy Ind Co Ltd | Fluid jet structure, cooling air jet structure, fluid jet structure manufacturing method, cooling air jet structure manufacturing method, and turbine blade |
WO2006095799A1 (en) * | 2005-03-09 | 2006-09-14 | Ihi Corporation | Surface treatment method and repair method |
US8162601B2 (en) | 2005-03-09 | 2012-04-24 | Ihi Corporation | Surface treatment method and repair method |
JP2006315076A (en) * | 2005-05-16 | 2006-11-24 | Fuyo Kogyo Kk | Tabletting punch or die for tablet |
WO2006123607A1 (en) * | 2005-05-16 | 2006-11-23 | Ltt Bio-Pharma Co, Ltd. | Tablet making mortar or pestle |
WO2008117802A1 (en) | 2007-03-26 | 2008-10-02 | Ihi Corporation | Heat resistant component |
US8460603B2 (en) | 2008-05-20 | 2013-06-11 | Mitsubishi Electric Corporation | Method of manufacturing electrical discharge surface treatment-purpose electrode and electrical discharge surface treatment-purpose electrode |
US9234284B2 (en) | 2008-08-06 | 2016-01-12 | Mitsubishi Electric Corporation | Electrical discharge surface treatment method |
RU2493290C2 (en) * | 2011-12-02 | 2013-09-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Method of making contacts of vacuum arc-quenching chambers |
CN102528182A (en) * | 2012-03-13 | 2012-07-04 | 哈尔滨工业大学 | Self-induced electric discharge machining method of metal-ceramic functionally graded material |
US9157136B2 (en) | 2012-12-05 | 2015-10-13 | Industrial Technology Research Institute | Multi-element alloy material and method of manufacturing the same |
CN111590076A (en) * | 2020-06-01 | 2020-08-28 | 吉林大学 | Electric pulse post-processing method and device for improving performance of metal component |
CN115231953A (en) * | 2022-07-22 | 2022-10-25 | 燕山大学 | Hard alloy matrix ceramic composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3093846B2 (en) | 2000-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05148615A (en) | Treatment for surface of metallic material | |
Sharma et al. | Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application | |
Tsai et al. | EDM performance of Cr/Cu-based composite electrodes | |
US6602561B1 (en) | Electrode for discharge surface treatment and manufacturing method therefor and discharge surface treatment method and device | |
US8377339B2 (en) | Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment | |
JP3271844B2 (en) | Surface treatment method for metallic materials by submerged discharge | |
US20090274923A1 (en) | Tools Having Compacted Powder Metal Work Surfaces, And Method | |
Tijo et al. | Hard and wear resistance TiC-composite coating on AISI 1020 steel using powder metallurgy tool by electro-discharge coating process | |
Demirbilek et al. | Investigation of the efficiency for ESD coating with stainless steel on die surfaces | |
JP2011225960A (en) | Method for strengthening surface layer of light metal or alloy thereof | |
NL9101971A (en) | METAL PLATE FOR THE MANUFACTURE OF A DEEP PRESSURE SLEEVE AND METHOD OF MANUFACTURING THAT. | |
JP3627088B2 (en) | Discharge surface treatment method and object to be processed formed by the method | |
Das et al. | Surface alloying of titanium di-boride (TiB2) and silicon carbide (SiC) on aluminium al 5052 using electric discharge processing | |
Kumari | Study of TiC coating on different type steel by electro discharge coating | |
JP3098654B2 (en) | Surface treatment method and apparatus by electric discharge machining | |
JPH0160541B2 (en) | ||
JPH11209863A (en) | Production of wear resistant parts | |
JP3096407B2 (en) | Manufacturing method of mold for continuous casting | |
Wulf et al. | Electrochemical techniques as innovative tools for fabricating divertor and blanket components in fusion technology | |
JP4504691B2 (en) | Turbine parts and gas turbines | |
JP2011225959A (en) | Method for strengthening surface layer of light metal or alloy thereof | |
JP2769337B2 (en) | Manufacturing method of aluminum alloy material with excellent wear resistance | |
JP4123529B2 (en) | Ultrafine particle dispersion film | |
JP3857625B2 (en) | Discharge surface treatment electrode and discharge surface treatment method | |
JP2769338B2 (en) | Manufacturing method of aluminum alloy material with excellent wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20070728 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080728 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |