WO2000006331A1 - Press die and method for treating surface of press die - Google Patents

Press die and method for treating surface of press die Download PDF

Info

Publication number
WO2000006331A1
WO2000006331A1 PCT/JP1999/001700 JP9901700W WO0006331A1 WO 2000006331 A1 WO2000006331 A1 WO 2000006331A1 JP 9901700 W JP9901700 W JP 9901700W WO 0006331 A1 WO0006331 A1 WO 0006331A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
electrode
cutting edge
press
surface treatment
Prior art date
Application number
PCT/JP1999/001700
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Satou
Akihiro Goto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2000006331A1 publication Critical patent/WO2000006331A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the present invention relates to a stamping die and a surface treatment method of the stamping die, and particularly to a stamping die used for shearing such as punching and punching, and a surface treatment method of such a stamping die. It is about. Background art
  • Pressing dies used for shearing such as drilling and punching require high wear resistance, especially at the cutting edge, in order to obtain the required durability (die life).
  • press working dies are generally made of high-hardness metal materials such as carbon tool steel and alloy tool steel, and their heat resistance has been improved by heat treatment.
  • the surface layer on the upper surface of the material of the punch press die such as a die is melted by high energy such as a laser, and the hardened material having good wear resistance such as metal carbide
  • the surface-treated string portion impregnated with the hard component by adding the components is formed into a ring shape, and then a die hole is formed along the surface-treated string portion by wire electric discharge machining. No. 84 discloses this.
  • stamping dies considering the life of the mold and the quality of the stamped product, not only the cutting edge but also the cutting edge (cutting edge) The peripheral surface) is also required to have excellent wear resistance.
  • the present invention has been made in order to solve the above-mentioned problems, and has a good abrasion resistance on a cutting edge side surface constituted by an inner peripheral surface of a die hole and the like, and has an excellent die life.
  • the object of the present invention is to provide a press-working die and a surface treatment method of a press-working die which do not cause an increase in the droop amount of a press-processed product due to wear of the cutting edge side even when used for a long time. I have. Disclosure of the invention
  • the molten material or the reactant thereof is used to greatly improve the life of the die. To improve.
  • the wear resistance of the cutting edge side surface is improved because the cutting edge side surface is covered with the hard coating generated by the discharge surface treatment by the gap discharge in liquid.
  • the mold life is greatly improved.
  • the modified layer is formed on the inner surface of the die hole that is continuous with the cutting edge formed by the opening edge of the die hole of the die, the die life of the die is reduced. Is greatly improved.
  • the electrode depleted molten material is formed on the side surface of the cutting edge of the press working die by the discharge surface treatment by the gap discharge in the liquid.
  • the reformed layer is formed in a planar shape by the reaction product thereof, the life of the stamping die can be greatly improved.
  • the reaction between the electrode material and the HC of the electric discharge machining oil causes the cutting edge side surface to be hardened such as TiC, ZrC, VC, TaC or the like. Since it is coated with a porous coating, the abrasion resistance of the cutting edge side is improved, and the life of the mold can be greatly improved.
  • a simple shape electrode is used, the gap between the cutting edge side surface and the simple shape electrode is kept at a predetermined value, and the simple shape electrode and the processing target are pressed. Since the reforming layer is formed on the side of the cutting edge by displacing the cutting die relative to the side of the cutting edge determined by the press processing shape, there is no need to prepare an electrode for each pressing die shape.
  • the use of shaped electrodes makes it possible to significantly improve the service life of micro-shaped press dies typified by IC lead frames.
  • the machining used in the wire electric discharge machining for forming the die while maintaining the gap between the side surface of the cutting edge of the die die and the simple shape electrode at a predetermined value Using a program to relatively displace the simple shape electrode and the die to be processed and forming a modified layer on the side surface of the cutting edge, the press can be performed without the need for a special processing program for surface treatment.
  • the surface treatment of the cutting blade side surface of the mold can be performed.
  • a simple shape electrode is used, and the gap between the cutting edge and the simple shape electrode is controlled by a gap.
  • the gap between the shape electrode and the shape electrode is maintained at a predetermined value, and the simple shape electrode and the pressing die to be processed are displaced relative to each other according to the shape of the cutting edge side surface determined by the pressed shape, and the modified layer is formed on the side surface of the cutting edge.
  • Forming a hard coating on the side surface of the cutting edge makes it possible to significantly improve the life of the press die and significantly reduce the time required for surface treatment.
  • the wire electrode is used and the gap between the cutting edge side surface and the wire electrode is maintained at a predetermined value, and the wire electrode and the target to be pressed are processed. Relative to the mold according to the cutting edge side shape determined by the pressed shape Because it displaces and forms a modified layer on the side surface of the cutting edge, there is no need to prepare an electrode for each press die shape, greatly improving the die life of a fine-shaped press die represented by an IC lead frame. It becomes possible.
  • surface treatment can be performed without being conscious of electrode wear, and a modified layer can be formed on the side surface of the cutting blade with high precision.
  • the machining program used in the wire electric discharge machining of the die while maintaining the gap between the cutting edge side surface of the die die and the wire electrode at a predetermined value is provided.
  • the simple shape electrode and the die to be processed are relatively displaced to form a modified layer on the side surface of the cutting edge, so a special processing program for surface treatment is not required.
  • Surface treatment of the cutting edge side surface can be performed.
  • the same wire discharging machine is used to perform mold processing using the wire electrode for wire electric discharge machining, and thereafter, the wire for surface treatment is used.
  • the modified layer is formed on the side surface of the cutting edge using electrodes, it is possible to form a hard film on the side surface of the cutting edge by setting the same processing for the shape processing and surface treatment of the cutting edge. In addition to greatly improving the life of the surface, the time required for surface treatment can be significantly reduced.
  • a modified layer is formed on the upper surface of a die material by a discharge surface treatment before the die hole is formed, and after the die hole is formed, Since the modified layer is formed on the side surface of the cutting edge, the life of the die can be further improved.
  • FIG. 1 is a configuration diagram showing Embodiment 1 of a surface treatment apparatus used for carrying out a surface treatment method for a press working die according to the present invention
  • FIG. 2 is a press working die according to the present invention
  • FIG. 3 is a perspective view showing a state in which a modified layer is formed on a cutting blade side surface of a die using a simple shape electrode in the surface treatment method of FIG. 3
  • FIG. 4 is an explanatory view showing the correction procedure of the movement path of the simple shape electrode in the processing method
  • FIG. 4 is a graph showing the correction value characteristics of the movement path of the simple shape electrode.
  • FIG. 5 is a cross-sectional view showing a punch die having a modified layer formed on a side surface of a cutting edge by the surface treatment method for a press die according to the present invention
  • FIG. 6 is a press die according to the present invention.
  • FIG. 7 is a configuration diagram illustrating a second embodiment of a surface treatment apparatus used for performing a surface treatment method of a mold.
  • FIG. 7 is an explanatory diagram illustrating a moving path of a simple shape electrode by inter-pole servo.
  • FIG. 8 is a configuration diagram showing Embodiment 3 of a surface treatment apparatus used for performing the surface treatment method for a press working die according to the present invention
  • FIG. 9 is a press working metal according to the present invention.
  • FIG. 10 is a perspective view showing a state in which a modified layer is formed on a side surface of a cutting edge of a die using a wire electrode in the surface treatment method of the die.
  • FIG. Embodiment of the surface treatment device used for performing the mold surface treatment method FIG. 11 is an explanatory view showing a surface treatment method and a mold processing procedure of a stamping die according to the present invention, and FIG. (A) to (c) are explanatory views showing a surface treatment method for a press-working die and a procedure of the die working according to the present invention.
  • FIG. 1 shows a first embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a press die according to the present invention.
  • This surface treatment device is a kind of electric discharge machine, and has a superposed structure of an X-axis table 1 movable in the horizontal X-axis direction and a Y-axis table 3 movable in the horizontal Y-axis direction.
  • a work table 5 is provided, and a processing tank 7 is fixed on the work table 5.
  • a processing material mounting table 9 is provided in the processing tank 7, and a pressing die as a processing material, in the illustrated example, a die mold 100 is mounted and fixed on the processing material mounting table 9. You.
  • a processing liquid is supplied into the processing tank 7 from a processing liquid supply device (not shown), and a die 100 on the workpiece mounting table 9 is immersed in the processing liquid.
  • An electrode support bed 11 movable in the vertical Z-axis direction is provided above the processing tank 7, and a rotary electrode support device 13 is provided below the electrode support bed 11. It has been.
  • the electrode support device 13 exchangeably supports the simple shape electrode 15 by a rod and can rotate the simple shape electrode 15 around the electrode axis.
  • the simple shape electrode 15 is in the shape of a round bar, and its outer diameter is selected according to the size of the material to be processed.
  • the size may be set so that the simple shape electrode 15 is included in the die hole 102.
  • the X-axis table 1, Y-axis table 3, and electrode support bed 11 are positioned and driven by X-axis servo motor 17, Y-axis servo motor 19, and Z-axis servo motor 21, respectively.
  • the X-axis servo motor 17, Y-axis servo motor 19, and Z-axis servo motor 21 are position-controlled by the axis commands output by the locus movement controller 25 of the numerical controller 23. You.
  • the trajectory movement control unit 25 of the numerical controller 23 receives the trajectory movement data (electrode path information) from the electrode movement trajectory generation CAM device 27, and based on the trajectory movement data, the X-axis, Y-axis, and Z-axis. Generate a position index for each axis.
  • the die mosquito L 102 is processed by grinding or wire electric discharge machining.
  • the die 100 already formed is set on the work table 9 and the processing liquid is stored in the processing tank 7 to process the work table.
  • the die 100 on 9 is immersed in the working fluid.
  • the cutting edge side surface 104 provided by the inner peripheral surface of the die hole 100 of the die 100 and the simple shape electrode 15 are fixed to a predetermined discharge gap g ( (See Fig. 3).
  • a pulse voltage is applied between the cutting edge side surface 104 and the simple-shaped electrode 15 with the pulsed discharge generated.
  • the electrode-consumed molten material generated by the discharge energy or a reaction product of the electrode-consumed molten material and the machining fluid component adheres and deposits on the cutting edge side surface 104 connected to the cutting edge 106 formed by the opening edge of the die hole 102.
  • the modified layer 108 (see Fig. 2) made of electrode-consumed molten material or its reactant is compared to the cutting edge side surface 104. It is formed in a wide area.
  • the modified layer 108 is a hard coating having excellent wear resistance.
  • the material of the modified layer 108 is a carbide such as WC, TiC :, ZrC, VC, TaC, etc. , T i B 2, Z r B boride such as 2, T i N, single nitrides such as T r N, or also be mentioned that by a combination thereof.
  • a powder of a hard metal such as Ti, Zr, V, Ta, or a green compact electrode obtained by compression-molding a powder of a hydride thereof, or a metal of these metals
  • metal carbides such as TiC, ZrC, VC, and TaC are formed by the reaction between the electrode material and HC in the EDM oil.
  • the hard coating can be efficiently and satisfactorily formed on the cutting edge side surface 104.
  • the method for forming the modified layer 108 by pulse discharge as described above conforms to a method called a discharge surface treatment method using gap discharge in liquid.
  • This discharge surface treatment method is disclosed in It is shown in Japanese Patent Application Laid-Open No. 826266, Japanese Patent Application Laid-Open No. H8-2587841, Japanese Patent Application Laid-Open No. 9-198028, and Japanese Patent Application Laid-Open No. 9-1929337. .
  • the formation of the reformed layer 108 is performed uniformly over the entire circumference of the cutting edge side surface 104.
  • the gap g between the cutting edge side surface 104 and the simple shape electrode 15 is maintained at a predetermined value, and the fine simple shape electrode 15 and the die mold 100 which is a pressing die to be processed. It is necessary to make a relative displacement according to the cutting edge side shape determined by the press working shape (die hole plane shape), and this relative displacement causes the modified layer 108 to cover the entire periphery of the cutting edge side 104. Can be formed.
  • the relative displacement between the simple shape electrode 15 and the mold 100 following the cutting edge side shape can be performed by moving the X-axis table 1 in the X-axis direction and the Y-axis table 3 in the Y-axis direction. .
  • the trajectory movement control unit 25 provided inside the numerical controller 23 is a simple shape electrode 15 for surface treatment based on the electrode movement path information created by the electrode trajectory generation CAM 27 in advance. Relative movement control of the X axis table 1 and Y axis table The drive control of the bull 3 is performed so that the locus movement of the simple shape electrode 15 traces the cutting edge side surface 104.
  • the simple shape electrode 15 is controlled in the Z-axis direction (depth direction) to have a constant height in accordance with the position of the cutting blade 106 in the Z-axis direction.
  • the electrode moving program of the electric discharge surface treatment processing is such that the die hole 100 of the force die 100 created by using the dedicated CAM is formed by wire electric discharge.
  • the simple shape electrode 15 and the die 100 are relatively displaced using the machining program used in wire electric discharge machining of the die hole, and the cutting edge side surface 102 is modified.
  • Layer 108 can also be formed.
  • FIG. 2 shows a state in which a discharge surface treatment is performed on a side surface of a cutting edge of a die 100 as a material to be processed.
  • the formation of the modified layer 108 on the cutting edge side surface 104 of the die 100 is performed by using the side surface of the simple shape electrode 15 as shown in FIG.
  • the electrode material is consumed with the progress of the discharge surface treatment, so that the side surface of the simple shaped electrode 15 is worn and thinned, and the discharge state is not stable. Therefore, in order to stabilize the discharge state, the simple electrode 15 is rotated around the electrode axis by using the rotary electrode support device 13.
  • the simple shape electrode 15 When the discharge surface treatment is performed by tracing the cutting edge shape using the side surface of the simple shape electrode 15, the simple shape electrode 15 is consumed as the discharge surface treatment progresses, and the electrode diameter gradually increases. Therefore, as shown in FIG. 3, it is necessary to correct the electrode moving path P in a direction in which the electrode moving path P approaches the material to be processed, according to the moving amount (machining distance) of the simple shape electrode 15.
  • the simple shape electrode 15 is moved so as to trace the side surface of the cutting edge,
  • the surface of the die 100 is subjected to a discharge surface treatment while maintaining a proper gap (discharge gap) g while giving a correction value cg for the electrode consumption in the normal direction of the cutting edge shape.
  • the modified layer 108 made of a hard coating can be formed in a plane over the entire region of No. 4.
  • a hard coating was formed on the side of the cutting edge of the punching die by electric discharge surface treatment, and a press punching test was performed.
  • the drooping amount of the pressed product at the time of 100,000 shots was 1 Z 2 or less, and the longevity of the die was realized.
  • electrodes with a fine shape of about 0.1 mm 15 are used as electrodes for discharge surface treatment, hard coating can be applied to the side of the cutting edge of a micro-shaped press die such as an IC lead frame. The mold life can be greatly improved.
  • the above description describes a method of forming a hard coating on the cutting edge side surface of the die by electric discharge surface treatment.
  • the cutting edge side surface of the punch die 200 Similarly, the modified layer 204 can be formed by the discharge surface treatment using the gap discharge in the liquid.
  • the mold life can be further improved. Needless to say.
  • FIG. 6 shows a second embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a press die according to the present invention.
  • portions corresponding to FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof will be omitted.
  • a U-axis moving means 31 for moving the simple shape electrode 15 in the horizontal U-axis direction on the electrode support portion and a simple shape electrode 15 V-axis moving means 33 for moving in the V-axis direction is provided.
  • the U-axis moving means 31 and the V-axis moving means 33 are driven by the U-axis servomotor 35 and the V-axis servomotor 37, respectively. Evening 3 7 The position is controlled by each axis command output from the gap servo movement controller 39 of the numerical controller 23.
  • the gap servo movement control unit 39 inputs the average voltage between the simple shape electrode 15 and the material to be processed detected by the average voltage detecting means 41, and based on the average voltage (detection result), The U-axis position command and V-axis position command are output so that the distance g between the surface to be processed (cutting side surface 104) and the simple shape electrode 15 is kept constant.
  • the shape of the simple shape electrode 15 is adjusted so that the distance between the cutting edge side surface 104 and the simple shape electrode 15 becomes constant with respect to electrode wear.
  • the average voltage of the material to be processed and the simple shape electrode 15 is detected using the average voltage detecting means 41, and the average voltage is generally kept constant in the electric discharge machine. An average voltage constant servo for movement control is taken.
  • FIG. 7 shows the direction of the electrode movement path and the gap between the electrodes.
  • a side surface relief is taken in the normal direction to the electrode movement path.
  • the discharge surface treatment is performed so as to trace the cutting edge shape while removing the gap between the cutting edge side surface 104 to be processed and the simple shape electrode 15 between the poles.
  • a hard coating on the side surface 104 of the cutting edge it is possible to significantly improve the life of the mold as in the first embodiment, and at the same time remove the gap between the poles. Since the discharge surface treatment is performed, the effect that the machining time can be reduced can be obtained.
  • FIG. 8 shows a third embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a press die according to the present invention.
  • portions corresponding to FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and the description thereof is omitted.
  • This surface treatment device is a type of wire electric discharge machine, in which an X-axis table 51 movable in the horizontal X-axis direction and a Y-axis table 5.3 movable in the horizontal Y-axis direction are overlapped. It has a work table 55 with a matching structure. A work table 57 is provided on the worktable '55, and the work table 57 is provided on the work table 57. A press die as a base material, in the illustrated example, a die die 100 is mounted and fixed.
  • X-axis table 5 KY-axis table 53 are driven by X-axis servo motor 59 and Y-axis servo motor 61, respectively, and X-axis servo motor 59 and Y-axis servo motor 61 are numerically controlled. The position is controlled by each axis control command output by the trajectory movement control unit 25 of the device 23.
  • Wire electrode guides 63, 65 are provided above and below the workpiece mounting table 57, respectively, and the wire electrode 69 for surface treatment unreeled from the wire bobbin 67 is provided with the wire electrode guide 63. It is designed to run vertically between 65.
  • the wire electrode 69 is positioned between the wire electrode guides 63 and 65 in the die hole 102 of the die 100 on the workpiece mounting table 57 with respect to the cutting edge side surface 104. Run up and down while maintaining the prescribed discharge gap.
  • a machining fluid is sprayed from a machining fluid nozzle 71 to a discharge gap between the wire electrode 69 and the cutting edge side surface 104.
  • the die hole 102 is processed by grinding or wire electric discharge machining.
  • the die 100 having the shape of the cutting edge 106 already formed is set on the workpiece mounting table 57, and the processing liquid is sprayed from the processing liquid nozzle 71.
  • a pulse voltage is applied between the wire 4 and the wire electrode 69 to generate a pulse discharge in the machining fluid ejected from the machining fluid nozzle 71.
  • the electrode consumable molten material generated by the discharge energy or the reaction product of the electrode fluid and the machining fluid component adheres and accumulates on the cutting edge side surface 104 connected to the cutting edge 106 forming the opening edge of the die hole.
  • a reformed layer 108 made of the electrode consumable molten material or a reaction product thereof is formed on the cutting edge side surface 104 in a relatively wide area.
  • Wire electrode 69 made of hard metal such as Ti, Zr, V, Ta, etc.
  • the metal carbides such as TiC, ZrC, VC :, and TaC
  • the hard coating can be efficiently and satisfactorily formed on the cutting edge side surface 104.
  • the formation of the reformed layer 108 is performed uniformly over the entire circumference of the cutting edge side surface 104. To this end, the gap between the cutting edge side surface 104 and the wire electrode 69 is maintained at a predetermined value, and the wire electrode 69 and the die die 100 to be processed are pressed. It is necessary to make relative displacement according to the cutting edge side shape determined by the press processing shape (die hole plane shape), and the relative displacement causes the modified layer 108 to cover a relatively wide area all around the cutting edge side surface 104. Can be formed.
  • the relative displacement between the wire electrode 69 and the mold 100 following the shape of the cutting edge side surface is performed by moving the X-axis table 51 in the X-axis direction and the Y-axis table 53 in the Y-axis direction. Can be.
  • the trajectory movement control unit 25 provided inside the numerical control device 23 is based on the electrode movement path information created in advance by the electrode trajectory generation CAM 27 as in the first embodiment.
  • the drive control of the X-axis table 51 and the Y-axis table 53 is performed so that the locus movement of the wire electrode 69 traces the cutting edge side surface 104.
  • the electrode moving program for the electric discharge surface treatment is a special C
  • the die hole 102 of the die 100 is formed by wire electric discharge, the machining program used for wire electric discharge machining of the die hole is used.
  • the wire electrode 69 and the die 100 are relatively displaced using
  • a modified layer 108 can be formed on 104.
  • the formation of the modified layer 108 on the cutting edge side surface 104 of the die 100 is performed using the wire electrode 69 as shown in FIG. Power consumption ⁇ New wire electrode 69 for surface treatment is always supplied from wire bobbin 67, so discharge surface treatment can be performed without being aware of the wear of wire electrode 69
  • the electrode movement of wire electric discharge machining It may be as simple as a path.
  • the modified layer of the hard coating is formed on the side surface of the cutting edge in a relatively wide area. Can be formed.
  • FIG. 10 shows a fourth embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a press die according to the present invention.
  • portions corresponding to those in FIG. 8 are denoted by the same reference numerals as those in FIG. 8, and description thereof will be omitted.
  • wire electric discharge machining is performed separately from wire electrode 69 for surface treatment.
  • a wire electrode 73 for surface treatment and a wire electrode 73 for wire electric discharge machining are switched and used by a wire electrode switching means 75. .
  • the wire electrode 69 for surface treatment is paid out from the wire bobbin 67, guided by the wire electrode guide 63, reaches the wire electrode switching means 75, and the wire electrode switching means 75 and the wire electrode guide 6 are provided. Run vertically between 5.
  • the wire electrode 73 for wire electric discharge machining is drawn out from the wire bobbin 77, guided by the wire electrode guide section 79 to the wire electrode switching means 75, and the wire electrode switching means 75 and the wire electrode guide section. Drive vertically between 6 and 5.
  • the machining procedure is as follows: First, as a setup operation, a wire electrode 69 for surface treatment and a wire electrode 73 for wire electric discharge machining are set. 7 Set on top.
  • the first step is the wire electrode for wire electric discharge machining.
  • the die hole 102 is machined by wire electric discharge machining in a state where the machining fluid is jetted from the machining fluid nozzle 71 to the discharge gap portion by using 73 to form a cutting blade 106.
  • the wire electrode to be used is changed from the wire electrode for wire electric discharge machining 73 to the wire electrode for surface treatment 69 9 by the wire electrode switching means 75.
  • a wire electrode 69 for surface treatment was used, and a machining fluid nozzle 7 1 was attached to the discharge gap between the wire electrode 69 and the cutting edge side surface 104 as in the second embodiment.
  • the surface of the cutting edge side 104 of the die moss L102 processed by wire electric discharge machining was sprayed with a machining fluid, and the surface of the cutting edge 104 was modified with a hard coating on the side surface 104. 0 8 (see Fig. 9).
  • the trajectory of the wire electrode 73 is moved so as to machine the cutting edge 106 on the mold material 100a.
  • (Electrode movement path P a) needs to be controlled.
  • the trajectory movement control unit 25 provided inside the numerical control device 23 is based on the electrode path information created in advance by the electrode trajectory generation CAM 27, and is located next to the wire electrode 73 for wire electric discharge machining.
  • Direction relative movement control that is, axis control of the X-axis table 51 and Y-axis table 53, so that the trajectory movement of the wire electrode 73 conforms to the processing shape of the cutting edge type It shall be done.
  • the locus movement of the wire electrode 69 was changed to the cutting edge shape (die hole shape) of the die 100. It needs to be controlled to a solid one.
  • the locus movement control unit 25 of the numerical controller 23 is based on the electrode path information created in advance by the electrode locus generation CAM 27 in the same manner as the normal finishing process of wire electric discharge machining.
  • the axes of the X-axis table 51 and the Y-axis table 53 are controlled, and the trajectory of the wire electrode 69 is traced along the side surface 104 of the cutting blade.
  • the cutting edge processing of a press die such as a die is performed by wire electric discharge machining, and after the cutting edge processing, the discharge surface treatment by gap discharge in liquid is performed on the side surface of the cutting edge into a cutting edge shape.
  • the mold life can be greatly improved.
  • the wire electrode 73 for wire electric discharge machining and the wire electrode 69 for surface treatment are automatically switched using the electrode switching means 75.
  • the machining may be performed later by replacing the wire electrode manually. In this case, the trouble of replacing the wire electrode is increased, but there is a merit that the electrode switching means 75 can be omitted and the device can be provided at low cost.
  • the rod-shaped surface treatment electrode 81 is used before forming the die hole 102 of the die 100.
  • a modified layer 110 is formed on the upper surface of the die material 100a by electric discharge surface treatment, and after forming a die hole 102 by wire electric discharge machining, a modified layer is formed on the side surface 104 of the cutting edge. It can also be formed.
  • the processing steps are as follows: surface treatment (cutting blade upper surface part), wire electric discharge machining (cutting blade shape processing), and surface treatment processing (cutting blade side surface). Since the hard coating is formed on the side surface of the cutting edge by the discharge surface treatment, the life of the mold is further improved.
  • the press die and the surface treatment method of the press die according to the present invention include a press die used for shearing such as punching and punching, and a surface of a press die of such type. Suitable for processing.

Abstract

A die having a good abrasion resistance even at a cutting side face (104) including a die hole inner circumferential face and a long life and not inviting an increase in deform of a press-formed article due to the wear of the cutting side face after a long use by forming, on a cutting side face (104), a modified layer (108) of an electrode wear fused substance of a discharge electrode (15) produced by electric discharge energy of submerged electric discharge machining or of reaction products of the electrode wear fused substance.

Description

明 細 書 プレス加工金型およびプレス加工金型の表面処理方法 技術分野  Description Press working die and surface treatment method of press working die
この発明は、 プレス加工金型およびプレス加工金型の表面処理方法に関し、 特 に、 穴明け、 打ち抜き等の剪断加工に使用するプレス加工金型およびその種のプ レス加工金型の表面処理方法に関するものである。 背景技術  The present invention relates to a stamping die and a surface treatment method of the stamping die, and particularly to a stamping die used for shearing such as punching and punching, and a surface treatment method of such a stamping die. It is about. Background art
穴明け、 打ち抜き等の剪断加工に使用するプレス加工金型は、 所要の耐久性 ( 型寿命) を得るために、 特に切刃部分に高い耐摩耗性を要求される。  Pressing dies used for shearing such as drilling and punching require high wear resistance, especially at the cutting edge, in order to obtain the required durability (die life).
従来一般に、 プレス加工金型は、 炭素工具鋼、 合金工具鋼など、 高硬度の金属 材料で構成され、 熱処理により耐摩耗性の向上が図られている。  Conventionally, press working dies are generally made of high-hardness metal materials such as carbon tool steel and alloy tool steel, and their heat resistance has been improved by heat treatment.
プレス加工における金型の長寿命化はもつとも重要な課題の一^ ^であり、 プレ ス加工の高精度化、 多様化に伴い、 打ち抜き型等の寿命に対する要求が益々厳し くなつており、 熱処理による表面処理では、 要求される耐久性を確保することが 難しくなつてきている。  Extending the life of a die in press working is one of the most important issues. ^ With the increasing precision and diversification of press working, the demands on the life of punching dies etc. are becoming more and more severe. It has become increasingly difficult to ensure the required durability in surface treatments.
このことに対して、 レーザ等の高工ネルギによってダイ金型等のパンチプレス 金型の素材上面部の表面層を溶解し、 この溶解部分に、 金属炭化物など、 良好な 耐摩耗性を有する硬質成分を添加して硬質成分を含浸した表面処理ストリング部 をリング状に形成し、 この後にワイヤ放電加工によって表面処理ストリング部に 沿ったダイ孔を形成することが特表平 5— 5 0 8 6 8 4号公報に示されている。 プレス加工金型では、 型寿命の観点とプレス加工品の品質を考慮すると、 打抜 き型等の切刃として、 切刃縁部 (カッテングエッジ) のみならず、 切刃側面 (ダ ィ孔内周面) についても優れた耐摩耗性を有していることが要求される。  In response to this, the surface layer on the upper surface of the material of the punch press die such as a die is melted by high energy such as a laser, and the hardened material having good wear resistance such as metal carbide The surface-treated string portion impregnated with the hard component by adding the components is formed into a ring shape, and then a die hole is formed along the surface-treated string portion by wire electric discharge machining. No. 84 discloses this. In the case of stamping dies, considering the life of the mold and the quality of the stamped product, not only the cutting edge but also the cutting edge (cutting edge) The peripheral surface) is also required to have excellent wear resistance.
しかし、 上述のような従来技術では、 切刃緣部に、 局部的に硬質成分含浸部が 得られるたけで、 切刃縁部に連続する切刃側面の表面処理はできず、 すなわち、 比較的広域な面状の表面処理は行うことはできず、 切刃側面の耐摩耗性を向上さ せることはできない。 このため、 プレス加工金型の型寿命の向上に限界があり、 繰り返し使用による切刃側面の摩耗によってプレス加工品の剪断部のだれ量が増 加することを避けれない。 However, in the prior art as described above, a hard component-impregnated portion is locally provided at the cutting edge 緣 portion. As a result, the surface treatment of the cutting edge side surface that is continuous with the cutting edge edge cannot be performed, that is, relatively wide surface treatment cannot be performed, and the wear resistance of the cutting edge side surface is improved. I can't let it. For this reason, there is a limit to the improvement of the service life of the press-working die, and it is inevitable that the amount of shear in the sheared portion of the press-worked product increases due to wear of the cutting edge side surface due to repeated use.
この発明は、 上述の如き問題点を解消するためになされたもので、 ダイ孔内周 面などにより構成される切刃側面についても良好な耐摩耗性を有して優れた型寿 命を示し、 長期間の使用におレ、ても切刃側面の摩耗によるプレス加工品のだれ量 の増加を招くことがないプレス加工金型およびプレス加工金型の表面処理方法を 提供することを目的としている。 発明の開示  The present invention has been made in order to solve the above-mentioned problems, and has a good abrasion resistance on a cutting edge side surface constituted by an inner peripheral surface of a die hole and the like, and has an excellent die life. The object of the present invention is to provide a press-working die and a surface treatment method of a press-working die which do not cause an increase in the droop amount of a press-processed product due to wear of the cutting edge side even when used for a long time. I have. Disclosure of the invention
本発明によるプレス加工金型によれば、 切刃側面に液中ギヤップ放電による放 電表面処理によって電極消耗溶融物質あるいはそれの反応物による改質層が形成 されているから、 金型寿命が大幅に向上する。  According to the press-working die according to the present invention, since the reformed layer is formed on the side surface of the cutting edge by a discharge surface treatment by a gap discharge in the liquid, the molten material or the reactant thereof is used to greatly improve the life of the die. To improve.
また、 本発明によるプレス加工金型によれば、 切刃側面が液中ギャップ放電に よる放電表面処理によつて生成された硬質被膜により被覆されるから、 切刃側面 の耐摩耗性が向上し、 金型寿命が大幅に向上する。  Further, according to the press-working die according to the present invention, the wear resistance of the cutting edge side surface is improved because the cutting edge side surface is covered with the hard coating generated by the discharge surface treatment by the gap discharge in liquid. The mold life is greatly improved.
また、 本発明によるプレス加工金型によれば、 切刃側面に WC、 T i Z r C. V C、 T a C等の炭化物、 T i B 2 、 Z r B 2 等の硼化物、 T i N、 T r N 等の窒化物の単体、 あるいは組合せによる改質層が形成されるから、 切刃側面の 耐摩耗性が向上し、 金型寿命が大幅に向上する。 Further, according to the press working mold according to the present invention, WC the cutting edge side, T i Z r C. VC, carbides such as T a C, T i B 2 , Z r B 2 , etc. borides, T i Since a modified layer is formed by a single or combination of nitrides such as N and TrN, the wear resistance of the cutting edge side is improved, and the mold life is greatly improved.
また、 本発明によるプレス加工金型によれば、 ダイ金型のダイ孔の開口縁部が なす切刃に連続するダイ孔内側面に改質層が形成されるから、 ダイ金型の型寿命 が大幅に向上する。  Further, according to the press working die according to the present invention, since the modified layer is formed on the inner surface of the die hole that is continuous with the cutting edge formed by the opening edge of the die hole of the die, the die life of the die is reduced. Is greatly improved.
また、 本発明によるプレス加工金型の表面処理方法によれば、 プレス加工金型 の切刃側面に液中ギャップ放電による放電表面処理によって電極消耗溶融物質あ るいはそれの反応物による改質層を面状に形成するから、 プレス加工金型の型寿 命を大幅に向上させることができる。 Further, according to the surface treatment method of the press working die according to the present invention, the electrode depleted molten material is formed on the side surface of the cutting edge of the press working die by the discharge surface treatment by the gap discharge in the liquid. Alternatively, since the reformed layer is formed in a planar shape by the reaction product thereof, the life of the stamping die can be greatly improved.
また、 本発明によるプレス加工金型の表面処理方法によれば、 電極材料と放電 加工油の H Cとの反応により、 切刃側面を T i C、 Z r C、 V C、 T a C等の硬 質被膜により被覆するから、 切刃側面の耐摩耗性を向上して金型寿命を大幅に向 上させることができる。  In addition, according to the surface treatment method for a press-working die according to the present invention, the reaction between the electrode material and the HC of the electric discharge machining oil causes the cutting edge side surface to be hardened such as TiC, ZrC, VC, TaC or the like. Since it is coated with a porous coating, the abrasion resistance of the cutting edge side is improved, and the life of the mold can be greatly improved.
また、 本発明によるプレス加工金型の表面処理方法によれば、 単純形状電極を 使用し、 切刃側面と単純形状電極との間の間隙を所定値に保って単純形状電極と 処理対象のプレス加工金型とをプレス加工形状により決まる切刃側面形状に倣つ て相対変位させ、 切刃側面に改質層を形成するから、 プレス型形状毎に電極を準 備する必要がなく、 棒状微細形状電極の使用により I Cリードフレームに代表さ れる微細形状のプレス金型の型寿命を大幅に向上させることが可能となる。 また、 本発明によるプレス加工金型の表面処理方法によれば、 ダイ金型の切刃 側面と単純形状電極との間の間隙を所定値に保つて型形成のヮィャ放電加工で使 用した加工プログラムを使用して単純形状電極と処理対象のダイ金型とを相対変 位させ、 切刃側面に改質層を形成するから、 表面処理用の特別な加工プログラム を必要とすることなく、 プレス金型の切刃側面の表面処理を行うことができる。 また、 本発明によるプレス加工金型の表面処理方法によれば、 単純形状電極を 使用し、 切刃側面と単純形状電極との間で極間サ一ボ制御を行うことで切刃側面 と単純形状電極との間の間隙を所定値に保ち、 単純形状電極と処理対象のプレス 加工金型とをプレス加工形状により決まる切刃側面形状に倣って相対変位させて 切刃側面に改質層を形成するから、 切刃側面に硬質被膜を生成することが可能と なり、 プレス金型の寿命を大幅に向上させることが可能なることに加え、 表面処 理に要する時間を大幅に短縮できる。  Further, according to the surface treatment method for a press die according to the present invention, a simple shape electrode is used, the gap between the cutting edge side surface and the simple shape electrode is kept at a predetermined value, and the simple shape electrode and the processing target are pressed. Since the reforming layer is formed on the side of the cutting edge by displacing the cutting die relative to the side of the cutting edge determined by the press processing shape, there is no need to prepare an electrode for each pressing die shape. The use of shaped electrodes makes it possible to significantly improve the service life of micro-shaped press dies typified by IC lead frames. Further, according to the surface treatment method of the press die according to the present invention, the machining used in the wire electric discharge machining for forming the die while maintaining the gap between the side surface of the cutting edge of the die die and the simple shape electrode at a predetermined value. Using a program to relatively displace the simple shape electrode and the die to be processed and forming a modified layer on the side surface of the cutting edge, the press can be performed without the need for a special processing program for surface treatment. The surface treatment of the cutting blade side surface of the mold can be performed. Further, according to the surface treatment method for a press-working die according to the present invention, a simple shape electrode is used, and the gap between the cutting edge and the simple shape electrode is controlled by a gap. The gap between the shape electrode and the shape electrode is maintained at a predetermined value, and the simple shape electrode and the pressing die to be processed are displaced relative to each other according to the shape of the cutting edge side surface determined by the pressed shape, and the modified layer is formed on the side surface of the cutting edge. Forming a hard coating on the side surface of the cutting edge makes it possible to significantly improve the life of the press die and significantly reduce the time required for surface treatment.
また、 本発明によるプレス加工金型の表面処理方法によれば、 ワイヤ電極を使 用し、 切刃側面とワイヤ電極との間の間隙を所定値に保つてワイャ電極と処理対 象のプレス加工金型とをプレス加工形状により決まる切刃側面形状に倣つて相対 変位させ、 切刃側面に改質層を形成するから、 プレス型形状毎に電極を準備する 必要がなく、 I Cリードフレームに代表される微細形伏のプレス金型の型寿命を 大幅に向上させることが可能となる。 また、 電極消耗を意識することなく表面処 理加工を行うことができ、 切刃側面に改質層を高精度に形成することができる。 また、 本発明によるプレス加工金型の表面処理方法によれば、 ダイ金型の切刃 側面とワイヤ電極との間の間隙を所定値に保つて型形成のヮィャ放電加工で使用 した加工プログラムを使用して単純形状電極と処理対象のダイ金型とを相対変位 させ、 切刃側面に改質層を形成するから、 表面処理用の特別な加工プログラムを 必要とすることなく、 プレス金型の切刃側面の表面処理を行うことができる。 また、 本発明によるプレス加工金型の表面処理方法によれば、 同一のワイヤ放 電加工機において、 ワイヤ放電加工用のワイヤ電極を使用して型加工を行い、 こ の後に表面処理用のワイヤ電極を使用して切刃側面に改質層を形成するから、 切 刃の形状加工と表面処理加工とを同一段取りにして切刃側面に硬質被膜を生成す ることが可能となり、 プレス金型の寿命を大幅に向上させることができることに 加え、 表面処理に要する時間を大幅に短縮できる。 Further, according to the surface treatment method of the press die according to the present invention, the wire electrode is used and the gap between the cutting edge side surface and the wire electrode is maintained at a predetermined value, and the wire electrode and the target to be pressed are processed. Relative to the mold according to the cutting edge side shape determined by the pressed shape Because it displaces and forms a modified layer on the side surface of the cutting edge, there is no need to prepare an electrode for each press die shape, greatly improving the die life of a fine-shaped press die represented by an IC lead frame. It becomes possible. In addition, surface treatment can be performed without being conscious of electrode wear, and a modified layer can be formed on the side surface of the cutting blade with high precision. Further, according to the surface treatment method of the press die according to the present invention, the machining program used in the wire electric discharge machining of the die while maintaining the gap between the cutting edge side surface of the die die and the wire electrode at a predetermined value is provided. The simple shape electrode and the die to be processed are relatively displaced to form a modified layer on the side surface of the cutting edge, so a special processing program for surface treatment is not required. Surface treatment of the cutting edge side surface can be performed. Further, according to the surface treatment method for a press-working die according to the present invention, the same wire discharging machine is used to perform mold processing using the wire electrode for wire electric discharge machining, and thereafter, the wire for surface treatment is used. Since the modified layer is formed on the side surface of the cutting edge using electrodes, it is possible to form a hard film on the side surface of the cutting edge by setting the same processing for the shape processing and surface treatment of the cutting edge. In addition to greatly improving the life of the surface, the time required for surface treatment can be significantly reduced.
また、 本発明によるプレス加工金型の表面処理方法によれば、 ダイ金型のダイ 孔の作成前にダイ金型素材の上面に放電表面処理による改質層を形成し、 ダイ孔 の作成後に切刃側面に改質層を形成するから、 ダイ金型の型寿命をより一層向上 させることができる。 図面の簡単な説明  According to the surface treatment method for a press die according to the present invention, a modified layer is formed on the upper surface of a die material by a discharge surface treatment before the die hole is formed, and after the die hole is formed, Since the modified layer is formed on the side surface of the cutting edge, the life of the die can be further improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明によるプレス加工金型の表面処理方法の実施に使用される 表面処理装置の実施の形態 1を示す構成図であり、 第 2図は、 この発明によるプ レス加工金型の表面処理方法において単純形状電極を使用してダイ金型の切刃側 面に改質層を形成する様子を示す斜視図であり、 第 3図は、 この発明によるプレ ス加工金型の表面処理方法における単純形状電極の移動パスの補正要領を示す説 明図であり、 第 4図は、 単純形状電極の移動パスの補正値特性を示すグラフであ り、 第 5図は、 この発明によるプレス加工金型の表面処理方法により切刃側面に 改質層を形成されたパンチ金型を示す断面図であり、 第 6図は、 この発明による プレス加工金型の表面処理方法の実施に使用される表面処理装置の実施の形態 2 を示す構成図であり、 第 7図は、 極間サーボによる単純形状電極の移動パスを示 す説明図であり、 第 8図は、 この発明によるプレス加工金型の表面処理方法の実 施に使用される表面処理装置の実施の形態 3を示す構成図であり、 第 9図は、 こ の発明によるプレス加工金型の表面処理方法におし、てワイャ電極を使用してダイ 金型の切刃側面に改質層を形成する様子を示す斜視図であり、 第 1 0図は、 この 発明によるプレス加工金型の表面処理方法の実施に使用される表面処理装置の実 施の形態 4を示す構成図であり、 第 1 1図は、 (a ) 、 (b ) はこの発明による プレス加工金型の表面処理方法および型加工の手順を示す説明図であり、 第 1 2 図は、 (a ) 〜 (c ) はこの発明によるプレス加工金型の表面処理方法および型 加工の手順を示す説明図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram showing Embodiment 1 of a surface treatment apparatus used for carrying out a surface treatment method for a press working die according to the present invention, and FIG. 2 is a press working die according to the present invention. FIG. 3 is a perspective view showing a state in which a modified layer is formed on a cutting blade side surface of a die using a simple shape electrode in the surface treatment method of FIG. 3, and FIG. FIG. 4 is an explanatory view showing the correction procedure of the movement path of the simple shape electrode in the processing method, and FIG. 4 is a graph showing the correction value characteristics of the movement path of the simple shape electrode. FIG. 5 is a cross-sectional view showing a punch die having a modified layer formed on a side surface of a cutting edge by the surface treatment method for a press die according to the present invention, and FIG. 6 is a press die according to the present invention. FIG. 7 is a configuration diagram illustrating a second embodiment of a surface treatment apparatus used for performing a surface treatment method of a mold. FIG. 7 is an explanatory diagram illustrating a moving path of a simple shape electrode by inter-pole servo. FIG. 8 is a configuration diagram showing Embodiment 3 of a surface treatment apparatus used for performing the surface treatment method for a press working die according to the present invention, and FIG. 9 is a press working metal according to the present invention. FIG. 10 is a perspective view showing a state in which a modified layer is formed on a side surface of a cutting edge of a die using a wire electrode in the surface treatment method of the die. FIG. Embodiment of the surface treatment device used for performing the mold surface treatment method FIG. 11 is an explanatory view showing a surface treatment method and a mold processing procedure of a stamping die according to the present invention, and FIG. (A) to (c) are explanatory views showing a surface treatment method for a press-working die and a procedure of the die working according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付の図を参照して、 この発明にかかるプレス加工金型およびプレス加 ェ金型の表面処理方法の実施の形態を詳細に説明する。  With reference to the accompanying drawings, embodiments of a press processing die and a press processing die surface treatment method according to the present invention will be described in detail below.
第 1図は、 この発明によるプレス加工金型の表面処理方法の実施に使用される 表面処理装置の実施の形態 1を示している。  FIG. 1 shows a first embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a press die according to the present invention.
この表面処理装置は、 放電加工機の一種であり、 水平 X軸方向に移動可能な X 軸テーブル 1と水平方向である Y軸方向に移動可能な Y軸テーブル 3との重ね合 わせ構造体によるワークテーブル 5を有し、 ワークテーブル 5上に加工槽 7を固 定されている。  This surface treatment device is a kind of electric discharge machine, and has a superposed structure of an X-axis table 1 movable in the horizontal X-axis direction and a Y-axis table 3 movable in the horizontal Y-axis direction. A work table 5 is provided, and a processing tank 7 is fixed on the work table 5.
加工槽 7内には被処理材載置台 9が設けられており、 被処理材載置台 9上に被 処理材であるプレス加工金型、 図示例ではダイ金型 1 0 0が載置固定される。 ま た、 加工槽 7内には、 図示されていない加工液供給装置より加工液が供給され、 被処理材載置台 9上のダイ金型 1 0 0は加工液中に浸漬される。 加工槽 7の上方部には、 垂直 Z軸方向に移動可能な電極支持べッド 1 1が設け られており、 電極支持べッド 1 1の下部に回転式の電極支持装置 1 3が設けられ ている。 電極支持装置 1 3は、 钿棒による単純形状電極 1 5を交換可能に支持し 、 単純形状電極 1 5を電極軸心周りに回転させることができる。 単純形状電極 1 5は丸棒状をなしており、 これの外径寸法は被処理材の大きさに応じて選定され る。 被処理材がダイ金型 1 0 0である場合には、 単純形状電極 1 5がダイ孔 1 0 2内に入る寸法に設定されればよい。 A processing material mounting table 9 is provided in the processing tank 7, and a pressing die as a processing material, in the illustrated example, a die mold 100 is mounted and fixed on the processing material mounting table 9. You. A processing liquid is supplied into the processing tank 7 from a processing liquid supply device (not shown), and a die 100 on the workpiece mounting table 9 is immersed in the processing liquid. An electrode support bed 11 movable in the vertical Z-axis direction is provided above the processing tank 7, and a rotary electrode support device 13 is provided below the electrode support bed 11. It has been. The electrode support device 13 exchangeably supports the simple shape electrode 15 by a rod and can rotate the simple shape electrode 15 around the electrode axis. The simple shape electrode 15 is in the shape of a round bar, and its outer diameter is selected according to the size of the material to be processed. When the material to be processed is a die 100, the size may be set so that the simple shape electrode 15 is included in the die hole 102.
X軸テーブル 1、 Y軸テーブル 3、 電極支持べッド 1 1は、 それぞれ、 X軸サ —ボモ一夕 1 7、 Y軸サーボモータ 1 9、 Z軸サ一ボモータ 2 1により位置決め 駆動され、 X軸サーボモータ 1 7、 Y軸サ一ボモ一夕 1 9、 Z軸サ一ボモー夕 2 1は、 数値制御装置 2 3の軌跡移動制御部 2 5が出力する各軸指令により位置制 御される。  The X-axis table 1, Y-axis table 3, and electrode support bed 11 are positioned and driven by X-axis servo motor 17, Y-axis servo motor 19, and Z-axis servo motor 21, respectively. The X-axis servo motor 17, Y-axis servo motor 19, and Z-axis servo motor 21 are position-controlled by the axis commands output by the locus movement controller 25 of the numerical controller 23. You.
数値制御装置 2 3の軌跡移動制御部 2 5は、 電極移動軌跡生成用 C AM装置 2 7より軌跡移動データ (電極パス情報) を入力し、 軌跡移動データに基づいて X 軸、 Y軸、 Z軸の各軸の位置指合を生成する。  The trajectory movement control unit 25 of the numerical controller 23 receives the trajectory movement data (electrode path information) from the electrode movement trajectory generation CAM device 27, and based on the trajectory movement data, the X-axis, Y-axis, and Z-axis. Generate a position index for each axis.
上述のような構成による表面処理装置を用いてこの発明によるプレス加工金型 の表面処理方法を実施する場合には、 研削加工あるいはワイャ放電加工によつて ダイ孑 L 1 0 2の加工がなされ、 金型の切刃 1 0 6としての形状はすでに形成され ているダイ金型 1 0 0を被処理材載置台 9上にセットし、 加工槽 7内に加工液を 溜めて被処理材載置台 9上のダイ金型 1 0 0を加工液中に浸潰させる。  When the surface treatment method for a press-working die according to the present invention is performed using the surface treatment apparatus having the above-described configuration, the die mosquito L 102 is processed by grinding or wire electric discharge machining. For the shape of the cutting edge 106 of the mold, the die 100 already formed is set on the work table 9 and the processing liquid is stored in the processing tank 7 to process the work table. The die 100 on 9 is immersed in the working fluid.
加工槽 7内の加工液中において、 ダイ金型 1 0 0のダイ孔 1 0 2の内周面が与 える切刃側面 1 0 4と単純形状電極 1 5とを所定の放電ギヤップ g (第 3図参照 ) をおいて対向させて切刃側面 1 0 4と単純形状電極 1 5との間にパルス電圧を 印加してパルス放電を発生させる。 これにより、 放電エネルギによって生じる電 極消耗溶融物質あるいはそれと加工液成分との反応物がダイ孔 1 0 2の開口縁部 がなす切刃 1 0 6に連続する切刃側面 1 0 4に付着堆積し、 切刃側面 1 0 4に電 極消耗溶融物質あるいはそれの反応物による改質層 1 0 8 (第 2図参照) が比較 的広域の面状に形成される。 In the machining fluid in the machining tank 7, the cutting edge side surface 104 provided by the inner peripheral surface of the die hole 100 of the die 100 and the simple shape electrode 15 are fixed to a predetermined discharge gap g ( (See Fig. 3). A pulse voltage is applied between the cutting edge side surface 104 and the simple-shaped electrode 15 with the pulsed discharge generated. As a result, the electrode-consumed molten material generated by the discharge energy or a reaction product of the electrode-consumed molten material and the machining fluid component adheres and deposits on the cutting edge side surface 104 connected to the cutting edge 106 formed by the opening edge of the die hole 102. Then, the modified layer 108 (see Fig. 2) made of electrode-consumed molten material or its reactant is compared to the cutting edge side surface 104. It is formed in a wide area.
改質層 1 0 8は、 耐摩耗性に優れた硬質被膜であり、 改質層 1 0 8の材質とし ては、 WC、 T i C:、 Z r C、 V C、 T a C等の炭化物、 T i B 2 、 Z r B 2 等 の硼化物、 T i N、 T r N等の窒化物の単体、 あるいはそれらの組合せによるも のが挙げられる。 The modified layer 108 is a hard coating having excellent wear resistance. The material of the modified layer 108 is a carbide such as WC, TiC :, ZrC, VC, TaC, etc. , T i B 2, Z r B boride such as 2, T i N, single nitrides such as T r N, or also be mentioned that by a combination thereof.
また、 単純形状電極 1 5として、 T i、 Z r、 V、 T a等の硬質金属の粉体、 もしくはこれらの水素化物の粉体を圧縮成形した圧粉体電極、 あるいはこれらの 金属による金属電極を使用し、 加工液として H Cを含む放電加工油を使用し、 電 極材料と放電加工油中の H Cとの反応により、 T i C、 Z r C、 V C、 T a C等 の金属炭化物による硬質被膜を切刃側面 1 0 4に効率よく良好に形成することが できる。  In addition, as the simple shape electrode 15, a powder of a hard metal such as Ti, Zr, V, Ta, or a green compact electrode obtained by compression-molding a powder of a hydride thereof, or a metal of these metals Using electrodes and using EDM oil containing HC as the machining fluid, metal carbides such as TiC, ZrC, VC, and TaC are formed by the reaction between the electrode material and HC in the EDM oil. The hard coating can be efficiently and satisfactorily formed on the cutting edge side surface 104.
上述のようなパルス放電による改質層 1 0 8の形成法は、 液中ギャップ放電に よる放電表面処理法と呼ばれる方法に準拠したものであり、 この放電表面処理法 は、 特開平 6— 1 8 2 6 2 6号公報、 特開平 8— 2 5 7 8 4 1号公報、 特開平 9 - 1 9 8 2 9号公報、 特開平 9一 1 9 2 9 3 7号公報に示されている。  The method for forming the modified layer 108 by pulse discharge as described above conforms to a method called a discharge surface treatment method using gap discharge in liquid. This discharge surface treatment method is disclosed in It is shown in Japanese Patent Application Laid-Open No. 826266, Japanese Patent Application Laid-Open No. H8-2587841, Japanese Patent Application Laid-Open No. 9-198028, and Japanese Patent Application Laid-Open No. 9-1929337. .
改質層 1 0 8の形成は切刃側面 1 0 4の全周に亙って面状に一様に行われる。 このために、 切刃側面 1 0 4と単純形状電極 1 5との間の間隙 gを所定値に保つ て微細単純形状電極 1 5と処理対象のプレス加工金型であるダイ金型 1 0 0とを プレス加工形状 (ダイ孔平面形状) により決まる切刃側面形状に倣って相対変位 させることが必要であり、 この相対変位によって切刃側面 1 0 4の全周に改質層 1 0 8を形成することができる。  The formation of the reformed layer 108 is performed uniformly over the entire circumference of the cutting edge side surface 104. To this end, the gap g between the cutting edge side surface 104 and the simple shape electrode 15 is maintained at a predetermined value, and the fine simple shape electrode 15 and the die mold 100 which is a pressing die to be processed. It is necessary to make a relative displacement according to the cutting edge side shape determined by the press working shape (die hole plane shape), and this relative displacement causes the modified layer 108 to cover the entire periphery of the cutting edge side 104. Can be formed.
単純形状電極 1 5と金型 1 0 0とを切刃側面形状に倣って相対変位させること は、 X軸テーブル 1の X軸方向移動と Y軸テーブル 3の Y軸方向移動により行う ことができる。  The relative displacement between the simple shape electrode 15 and the mold 100 following the cutting edge side shape can be performed by moving the X-axis table 1 in the X-axis direction and the Y-axis table 3 in the Y-axis direction. .
数値制御装置 2 3の内部に設けられた軌跡移動制御部 2 5は、 予め電極軌跡生 成用 C AM 2 7によって作成された電極移動パス情報に基づき、 表面処理用の単 純形状電極 1 5の横方向の相対移動制御、 すなわち、 X軸テーブル 1と Y軸テー ブル 3の駆動制御を行い、 単純形状電極 1 5の軌跡移動を切刃側面 1 0 4をなぞ るようにしている。 ここで、 単純形状電極 1 5の Z軸方向 (深さ方向) の制御は 、 切刃 1 0 6の Z軸方向位置に合わせて一定の高さとしている。 The trajectory movement control unit 25 provided inside the numerical controller 23 is a simple shape electrode 15 for surface treatment based on the electrode movement path information created by the electrode trajectory generation CAM 27 in advance. Relative movement control of the X axis table 1 and Y axis table The drive control of the bull 3 is performed so that the locus movement of the simple shape electrode 15 traces the cutting edge side surface 104. Here, the simple shape electrode 15 is controlled in the Z-axis direction (depth direction) to have a constant height in accordance with the position of the cutting blade 106 in the Z-axis direction.
上述の実施の形態では、 放電表面処理加工の電極移動プログラムは、 専用の C AMを使用して作成している力 ダイ金型 1 0 0のダイ孔 1 0 2がワイヤ放電加 ェにより形成される場合には、 ダイ孔明けのワイヤ放電加工で使用した加工プロ グラムを使用して単純形状電極 1 5とダイ金型 1 0 0とを相対変位させ、 切刃側 面 1 0 2に改質層 1 0 8を形成することもできる。  In the above-described embodiment, the electrode moving program of the electric discharge surface treatment processing is such that the die hole 100 of the force die 100 created by using the dedicated CAM is formed by wire electric discharge. In this case, the simple shape electrode 15 and the die 100 are relatively displaced using the machining program used in wire electric discharge machining of the die hole, and the cutting edge side surface 102 is modified. Layer 108 can also be formed.
第 2図は、 被処理材であるダイ金型 1 0 0の切刃側面部分に放電表面処理加工 を行う状態を示している。 ダイ金型 1 0 0の切刃側面 1 0 4に対する改質層 1 0 8の形成は、 第 2図に示されているように、 単純形状電極 1 5の側面を使用して 行う。  FIG. 2 shows a state in which a discharge surface treatment is performed on a side surface of a cutting edge of a die 100 as a material to be processed. The formation of the modified layer 108 on the cutting edge side surface 104 of the die 100 is performed by using the side surface of the simple shape electrode 15 as shown in FIG.
この放電表面処理では、 放電表面処理の進行に伴し、電極材料が消耗するので、 単純形状電極 1 5の側面が消耗してやせ細り、 放電状態が安定しない。 そこで、 放電状態が安定するように、 回転式の電極支持装置 1 3を使用し、 単純形状電極 1 5を電極軸心周りに回転させている。  In this discharge surface treatment, the electrode material is consumed with the progress of the discharge surface treatment, so that the side surface of the simple shaped electrode 15 is worn and thinned, and the discharge state is not stable. Therefore, in order to stabilize the discharge state, the simple electrode 15 is rotated around the electrode axis by using the rotary electrode support device 13.
単純形状電極 1 5の側面を使用して、 切刃形状をなぞるようにして放電表面処 理を行うと、 放電表面処理の進行に伴い単純形状電極 1 5が消耗し、 電極径が次 第に小さくなるので、 第 3図に示されているように、 単純形状電極 1 5の移動量 (加工距離) に応じて電極移動パス Pを被処理材に近づける方向に補正する必要 がある。  When the discharge surface treatment is performed by tracing the cutting edge shape using the side surface of the simple shape electrode 15, the simple shape electrode 15 is consumed as the discharge surface treatment progresses, and the electrode diameter gradually increases. Therefore, as shown in FIG. 3, it is necessary to correct the electrode moving path P in a direction in which the electrode moving path P approaches the material to be processed, according to the moving amount (machining distance) of the simple shape electrode 15.
この補正量 e gは、 加工送り量、 電極回転数がともに一定であれば、 加工距離 に対する電極の消耗量が一定であることから、 第 4図に示されているように、 加 ェ距離に対して比例定数をもって線形の比例関係になる。 したがって、 補正量 c gをもつて切刃形状の法線方向に加工距離に対して直線的な工具径補正を行えば よい。  If the machining feed amount and the electrode rotation speed are both constant, the amount of electrode consumption with respect to the machining distance is constant if the machining feed amount and the electrode rotation speed are constant. Thus, a linear proportional relationship is obtained with a proportional constant. Therefore, it is sufficient to perform linear tool diameter correction with respect to the machining distance in the normal direction of the cutting edge shape with the correction amount c g.
上述のように、 切刃形状の側面をなぞるように単純形状電極 1 5を移動させ、 切刃形状の法線方向に電極消耗分の補正値 c gを与えながら適正間隙 (放電ギヤ ップ) gを保って放電表面処理を行うことで、 ダイ金型 1 0 0の切刃側面 1 0 4 の全域に硬質被膜による改質層 1 0 8を面状に形成することができる。 As described above, the simple shape electrode 15 is moved so as to trace the side surface of the cutting edge, The surface of the die 100 is subjected to a discharge surface treatment while maintaining a proper gap (discharge gap) g while giving a correction value cg for the electrode consumption in the normal direction of the cutting edge shape. The modified layer 108 made of a hard coating can be formed in a plane over the entire region of No. 4.
上述のような方法で、 打抜き型のダイ金型の切刃側面に放電表面処理による硬 質被膜を生成し、 プレスの打ち抜き試験を行った結果、 表面処理を行わない場合 と比較して、 4 0万ショット時のプレス加工品のだれ量が 1 Z 2以下となり、 金 型の長寿化力実現できた。  Using the method described above, a hard coating was formed on the side of the cutting edge of the punching die by electric discharge surface treatment, and a press punching test was performed. The drooping amount of the pressed product at the time of 100,000 shots was 1 Z 2 or less, and the longevity of the die was realized.
放電表面処理用の電極として、 0 0 . 1 mm程度の微細な単純形状電極 1 5を 使用すれば、 I Cリードフレームのような微細形状のプレス金型の切刃側面につ いても硬質被膜を生成することが可能となり、 これらの金型寿命を大幅に向上す ることができる。  If electrodes with a fine shape of about 0.1 mm 15 are used as electrodes for discharge surface treatment, hard coating can be applied to the side of the cutting edge of a micro-shaped press die such as an IC lead frame. The mold life can be greatly improved.
以上の説明は、 ダイ金型の切刃側面に放電表面処理による硬質被膜の作成方法 について述べた、 第 5図に示されているように、 パンチ金型 2 0 0の切刃側面 2 0 2にも、 同様に液中ギャップ放電による放電表面処理により改質層 2 0 4を形 成することができる。  The above description describes a method of forming a hard coating on the cutting edge side surface of the die by electric discharge surface treatment. As shown in FIG. 5, the cutting edge side surface of the punch die 200 Similarly, the modified layer 204 can be formed by the discharge surface treatment using the gap discharge in the liquid.
また、 切刃上面部にも放電表面処理を行い、 切刃上面部にも硬質被膜を形成し 、 この部分の耐摩耗性も向上させることで、 金型寿命を更に向上させることがで きることは云うまでもない。  In addition, by performing discharge surface treatment on the upper surface of the cutting blade, forming a hard coating on the upper surface of the cutting blade, and improving the wear resistance of this portion, the mold life can be further improved. Needless to say.
第 6図は、 この発明にかかるプレス加工金型の表面処理方法の実施に使用され る表面処理装置の実施の形態 2を示している。 なお、 第 6図において、 第 1図に 対応する部分は、 第 1図に付した符号と同一の符号を付けて、 その説明を省略す る。  FIG. 6 shows a second embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a press die according to the present invention. In FIG. 6, portions corresponding to FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof will be omitted.
この実施の形態では、 極間サ一ボ制御を行うために、 電極支持部に、 単純形状 電極 1 5を水平 U軸方向に移動させる U軸移動手段 3 1と、 単純形状電極 1 5を 水平 V軸方向に移動させる V軸移動手段 3 3とが設けられている。 U軸移動手段 3 1、 V軸移動手段 3 3はそれぞれ、 U軸サーボモータ 3 5、 V軸サーボモータ 3 7により位置決め駆動され、 U軸サ一ボモ一夕 3 5、 V軸サ一ボモ一夕 3 7は 、 数値制御装置 2 3の極間サーボ用移動制御部 3 9が出力する各軸指令により位 置制御される。 In this embodiment, in order to perform inter-electrode servo control, a U-axis moving means 31 for moving the simple shape electrode 15 in the horizontal U-axis direction on the electrode support portion and a simple shape electrode 15 V-axis moving means 33 for moving in the V-axis direction is provided. The U-axis moving means 31 and the V-axis moving means 33 are driven by the U-axis servomotor 35 and the V-axis servomotor 37, respectively. Evening 3 7 The position is controlled by each axis command output from the gap servo movement controller 39 of the numerical controller 23.
極間サーボ用移動制御部 3 9は、 平均電圧検出手段 4 1により検出される単純 形状電極 1 5と被処理材との間の平均電圧を入力し、 この平均電圧 (検出結果) に基づいて被処理面 (切刃側面 1 0 4 ) と単純形状電極 1 5の距離 gを一定に保 つように、 U軸位置指令と V軸位置指令を出力する。  The gap servo movement control unit 39 inputs the average voltage between the simple shape electrode 15 and the material to be processed detected by the average voltage detecting means 41, and based on the average voltage (detection result), The U-axis position command and V-axis position command are output so that the distance g between the surface to be processed (cutting side surface 104) and the simple shape electrode 15 is kept constant.
この実施の形態では、 電極消耗に対して切刃側面 1 0 4と単純形状電極 1 5と の距離が一定となるように、 第 7図に示されているように、 単純形状電極 1 5の 電極径の減少分に応じた U軸制御および V軸制御による極間サーボを行う。 極間サーボの方法としては、 平均電圧検出手段 4 1を使用して被処理材と単純 形状電極 1 5の平均電圧を検出し、 放電加工機では一般的な平均電圧を一定とな るように移動制御を行う平均電圧一定サ一ボを取るようにしている。  In this embodiment, as shown in FIG. 7, the shape of the simple shape electrode 15 is adjusted so that the distance between the cutting edge side surface 104 and the simple shape electrode 15 becomes constant with respect to electrode wear. Performs inter-pole servo by U-axis control and V-axis control according to the decrease in electrode diameter. As a method of inter-pole servo, the average voltage of the material to be processed and the simple shape electrode 15 is detected using the average voltage detecting means 41, and the average voltage is generally kept constant in the electric discharge machine. An average voltage constant servo for movement control is taken.
第 7図は、 電極移動パスと極間サ一ボの方向を示している。 極間サーボの方向 としては電極移動パスに対して法線方向に側面サ一ボを取るようなる。  FIG. 7 shows the direction of the electrode movement path and the gap between the electrodes. As for the direction of the gap-to-pole servo, a side surface relief is taken in the normal direction to the electrode movement path.
以上のように、 被処理面である切刃側面 1 0 4と単純形状電極 1 5の間で極間 サ一ボ (側面サ一ボ) を取りながら、 切刃形状になぞるように放電表面処理を行 い、 切刃側面 1 0 4に硬質被膜を生成することで、 実施の形態 1と同様に金型寿 命を大幅に向上させることが可能となるともに、 極間サ一ボを取りながら放電表 面処理加工を行うので、 加工時間を短縮できるという効果が得られる。  As described above, the discharge surface treatment is performed so as to trace the cutting edge shape while removing the gap between the cutting edge side surface 104 to be processed and the simple shape electrode 15 between the poles. By forming a hard coating on the side surface 104 of the cutting edge, it is possible to significantly improve the life of the mold as in the first embodiment, and at the same time remove the gap between the poles. Since the discharge surface treatment is performed, the effect that the machining time can be reduced can be obtained.
第 8図は、 この発明によるプレス加工金型の表面処理方法の実施に使用される 表面処理装置の実施の形態 3を示している。 なお、 第 8図においても、 第 1図に 対応する部分は、 第 1図に付した符号と同一の符号を付けて、 その説明を省略す る。  FIG. 8 shows a third embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a press die according to the present invention. In FIG. 8, portions corresponding to FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and the description thereof is omitted.
この表面処理装置は、 ワイヤ放電加工機の一種であり、 水平 X軸方向に移動可 能な X軸テーブル 5 1と水平方向である Y軸方向に移動可能な Y軸テーブル 5 .3 との重ね合わせ構造体によるワークテーブル 5 5を有している。 ワークテーブル ' 5 5上には被処理材載置台 5 7が設けられており、 被処理材載置台 5 7上に被処 理材であるプレス加工金型、 図示例ではダイ金型 1 0 0が載置固定される。This surface treatment device is a type of wire electric discharge machine, in which an X-axis table 51 movable in the horizontal X-axis direction and a Y-axis table 5.3 movable in the horizontal Y-axis direction are overlapped. It has a work table 55 with a matching structure. A work table 57 is provided on the worktable '55, and the work table 57 is provided on the work table 57. A press die as a base material, in the illustrated example, a die die 100 is mounted and fixed.
X軸テーブル 5 K Y軸テーブル 5 3は、 それぞれ、 X軸サーボモ一夕 5 9、 Y軸サーボモータ 6 1により位置決め駆動され、 X軸サーボモ一夕 5 9、 Y軸サ ーボモータ 6 1は、 数値制御装置 2 3の軌跡移動制御部 2 5が出力する各軸措令 により位置制御される。 X-axis table 5 KY-axis table 53 are driven by X-axis servo motor 59 and Y-axis servo motor 61, respectively, and X-axis servo motor 59 and Y-axis servo motor 61 are numerically controlled. The position is controlled by each axis control command output by the trajectory movement control unit 25 of the device 23.
被処理材載置台 5 7の上方と下方にはそれぞれワイヤ電極ガイド部 6 3、 6 5 が設けられており、 ワイヤボビン 6 7より繰り出される表面処理用のワイヤ電極 6 9がワイヤ電極ガイド部 6 3、 6 5間を垂直に走行するようになっている。 ヮィャ電極 6 9は、 ワイャ電極ガイド部 6 3、 6 5間で被処理材載置台 5 7上 のダイ金型 1 0 0のダイ孔 1 0 2内を、 切刃側面 1 0 4に対して所定の放電ギヤ ップを保って上下に走る。  Wire electrode guides 63, 65 are provided above and below the workpiece mounting table 57, respectively, and the wire electrode 69 for surface treatment unreeled from the wire bobbin 67 is provided with the wire electrode guide 63. It is designed to run vertically between 65. The wire electrode 69 is positioned between the wire electrode guides 63 and 65 in the die hole 102 of the die 100 on the workpiece mounting table 57 with respect to the cutting edge side surface 104. Run up and down while maintaining the prescribed discharge gap.
ワイヤ電極 6 9と切刃側面 1 0 4との放電ギヤップ部分には、 加工液ノズル 7 1より加工液が噴射される。  A machining fluid is sprayed from a machining fluid nozzle 71 to a discharge gap between the wire electrode 69 and the cutting edge side surface 104.
上述のような構成による表面処理装置を用いてこの発明によるプレス加工金型 の表面処理方法を実施する場合には、 研削加工あるいはワイャ放電加工によって ダイ孔 1 0 2の加工がなされ、 金型の切刃 1 0 6としての形状はすでに形成され ているダイ金型 1 0 0を被処理材載置台 5 7上にセットし、 加工液ノズル 7 1よ り加工液を噴射する。  When the surface treatment method for a press-working die according to the present invention is performed using the surface treatment apparatus having the above-described configuration, the die hole 102 is processed by grinding or wire electric discharge machining. The die 100 having the shape of the cutting edge 106 already formed is set on the workpiece mounting table 57, and the processing liquid is sprayed from the processing liquid nozzle 71.
この状態で、 ダイ金型 1 0 0のダイ孔 1 0 2の内周面が与える切刃側面 1 0 4 とワイヤ電極 6 9とを所定の放電ギヤップをおいて対向させて切刃側面 1 0 4と ワイヤ電極 6 9との間にパルス電圧を印加して加工液ノズル 7 1より噴射された 加工液中でパルス放電を発生させる。 これにより、 放電エネルギによって生じる 電極消耗溶融物質あるいはそれと加工液成分との反応物をダイ孔の開口縁部がな す切刃 1 0 6に連続する切刃側面 1 0 4に付着堆積し、 第 9図に示されているよ うに、 切刃側面 1 0 4に電極消耗溶融物質あるいはそれの反応物による改質層 1 0 8が比較的広域の面状に形成される。  In this state, the cutting edge side face 104 provided by the inner peripheral surface of the die hole 100 of the die 100 and the wire electrode 69 face each other with a predetermined discharge gap, and the cutting edge side face 10 0 A pulse voltage is applied between the wire 4 and the wire electrode 69 to generate a pulse discharge in the machining fluid ejected from the machining fluid nozzle 71. As a result, the electrode consumable molten material generated by the discharge energy or the reaction product of the electrode fluid and the machining fluid component adheres and accumulates on the cutting edge side surface 104 connected to the cutting edge 106 forming the opening edge of the die hole. As shown in FIG. 9, a reformed layer 108 made of the electrode consumable molten material or a reaction product thereof is formed on the cutting edge side surface 104 in a relatively wide area.
ワイヤ電極 6 9として、 T i、 Z r、 V、 T a等の硬質金属によるワイヤ電極 を使用し、 加工液として H Cを含む放電加工油を使用し、 電極材料と放電加工油 中の H Cとの反応により、 T i C、 Z r C、 V C:、 T a C等の金属炭化物による 硬質被膜を切刃側面 1 0 4に効率よく良好に形成することができる。 Wire electrode 69 made of hard metal such as Ti, Zr, V, Ta, etc. Using an EDM oil containing HC as the machining fluid, and by reacting the electrode material with HC in the EDM oil, the metal carbides such as TiC, ZrC, VC :, and TaC The hard coating can be efficiently and satisfactorily formed on the cutting edge side surface 104.
改質層 1 0 8の形成は切刃側面 1 0 4の全周に亙って面状に一様に行われる。 このために、 切刃側面 1 0 4とワイヤ電極 6 9との間の間隙を所定値に保ってヮ ィャ電極 6 9と処理対象のプレス加工金型であるダイ金型 1 0 0とをプレス加工 形状 (ダイ孔平面形状) により決まる切刃側面形状に倣って相対変位させる必要 があり、 この相対変位によって切刃側面 1 0 4の全周に改質層 1 0 8が比較的広 域の面状に形成することができる。  The formation of the reformed layer 108 is performed uniformly over the entire circumference of the cutting edge side surface 104. To this end, the gap between the cutting edge side surface 104 and the wire electrode 69 is maintained at a predetermined value, and the wire electrode 69 and the die die 100 to be processed are pressed. It is necessary to make relative displacement according to the cutting edge side shape determined by the press processing shape (die hole plane shape), and the relative displacement causes the modified layer 108 to cover a relatively wide area all around the cutting edge side surface 104. Can be formed.
ワイヤ電極 6 9と金型 1 0 0とを切刃側面形状に倣って相対変位させることは 、 X軸テーブル 5 1の X軸方向移動と Y軸テーブル 5 3の Y軸方向移動により行 うことができる。  The relative displacement between the wire electrode 69 and the mold 100 following the shape of the cutting edge side surface is performed by moving the X-axis table 51 in the X-axis direction and the Y-axis table 53 in the Y-axis direction. Can be.
数値制御装置 2 3の内部に設けられた軌跡移動制御部 2 5は、 実施の形態 1に おける場合と同様に、 予め電極軌跡生成用 C AM 2 7によって作成された電極移 動パス情報に基づき、 表面処理用のワイヤ電極 6 9の横方向の移動、 すなわち、 The trajectory movement control unit 25 provided inside the numerical control device 23 is based on the electrode movement path information created in advance by the electrode trajectory generation CAM 27 as in the first embodiment. The lateral movement of the wire electrode 69 for surface treatment, ie,
X軸テーブル 5 1と Y軸テーブル 5 3の駆動制御を行い、 ワイヤ電極 6 9の軌跡 移動を切刃側面 1 0 4をなぞるようにしている。 The drive control of the X-axis table 51 and the Y-axis table 53 is performed so that the locus movement of the wire electrode 69 traces the cutting edge side surface 104.
上述の実施の形態では、 放電表面処理加工の電極移動プログラムは、 専用の C In the above-described embodiment, the electrode moving program for the electric discharge surface treatment is a special C
AMを使用して作成しているが、 ダイ金型 1 0 0のダイ孔 1 0 2がワイヤ放電加 ェにより形成される場合には、 ダイ孔明けのワイヤ放電加工で使用した加工プロ グラムを使用してワイヤ電極 6 9とダイ金型 1 0 0とを相対変位させ、 切刃側面Although it is created using AM, if the die hole 102 of the die 100 is formed by wire electric discharge, the machining program used for wire electric discharge machining of the die hole is used. The wire electrode 69 and the die 100 are relatively displaced using
1 0 4に改質層 1 0 8を形成することもできる。 A modified layer 108 can be formed on 104.
ダイ金型 1 0 0の切刃側面 1 0 4に対する改質層 1 0 8の形成は、 第 9図に示 されているように、 ワイヤ電極 6 9を使用して行うから、 ワイヤ電極 6 9が消耗 する力 \ 表面処理用の新しいワイヤ電極 6 9がワイヤボビン 6 7より常に供給さ れるので、 ワイヤ電極 6 9の消耗を意識せずに放電表面処理を行うことができる The formation of the modified layer 108 on the cutting edge side surface 104 of the die 100 is performed using the wire electrode 69 as shown in FIG. Power consumption \ New wire electrode 69 for surface treatment is always supplied from wire bobbin 67, so discharge surface treatment can be performed without being aware of the wear of wire electrode 69
。 したがって、 ワイヤ電極 6 9の移動パスとしては、 ワイヤ放電加工の電極移動 パスと同様の単純なものでよい。 . Therefore, as the movement path of the wire electrode 69, the electrode movement of wire electric discharge machining It may be as simple as a path.
以上のように、 切刃形状の側面をなぞるようにワイヤ電極 6 9を移動させて表 面処理を行うことで、 切刃側面部分に、 硬質被膜の改質層を比較的広域な面状に 形成することができる。  As described above, by performing the surface treatment by moving the wire electrode 69 so as to trace the side surface of the cutting edge, the modified layer of the hard coating is formed on the side surface of the cutting edge in a relatively wide area. Can be formed.
これにより、 実施の形態 1における場合と同様のプレス加工金型が得られ、 金 型の長寿化を実現できる。  As a result, a press-working die similar to that in the first embodiment can be obtained, and the life of the die can be prolonged.
第 1 0図は、 この発明によるプレス加工金型の表面処理方法の実施に使用され る表面処理装置の実施の形態 4を示している。 なお、 第 1 0図において、 第 8図 に対応する部分は、 第 8図に付した符号と同一の符号を付けて、 その説明を省略 する。  FIG. 10 shows a fourth embodiment of a surface treatment apparatus used for carrying out the surface treatment method for a press die according to the present invention. In FIG. 10, portions corresponding to those in FIG. 8 are denoted by the same reference numerals as those in FIG. 8, and description thereof will be omitted.
この実施の形態では、 一つのワイヤ放電加工機において、 ダイ孔形成などの型 加工と放電表面処理とを行うために、 表面処理用のワイヤ電極 6 9とは別に、 型 加工を行うワイヤ放電加工用のワイヤ電極 7 3が設けられ、 表面処理用のワイヤ 電極 6 9とワイヤ放電加工用のワイヤ電極 7 3の何れか一方がワイヤ電極切替手 段 7 5によって切替使用されるようになっている。  In this embodiment, in order to perform die machining such as die hole formation and electric discharge surface treatment in one wire electric discharge machine, wire electric discharge machining is performed separately from wire electrode 69 for surface treatment. A wire electrode 73 for surface treatment and a wire electrode 73 for wire electric discharge machining are switched and used by a wire electrode switching means 75. .
表面処理用のワイヤ電極 6 9は、 ワイヤボビン 6 7より繰り出され、 ワイヤ電 極ガイド部 6 3に案内されてワイヤ電極切替手段 7 5に至り、 ワイヤ電極切替手 段 7 5とワイヤ電極ガイド部 6 5との間を垂直に走行する。  The wire electrode 69 for surface treatment is paid out from the wire bobbin 67, guided by the wire electrode guide 63, reaches the wire electrode switching means 75, and the wire electrode switching means 75 and the wire electrode guide 6 are provided. Run vertically between 5.
ワイヤ放電加工用のワイヤ電極 7 3は、 ワイヤボビン 7 7より繰り出され、 ヮ ィャ電極ガイド部 7 9に案内されてワイヤ電極切替手段 7 5に至り、 ワイヤ電極 切替手段 7 5とワイヤ電極ガイド部 6 5との間を垂直に走行する。  The wire electrode 73 for wire electric discharge machining is drawn out from the wire bobbin 77, guided by the wire electrode guide section 79 to the wire electrode switching means 75, and the wire electrode switching means 75 and the wire electrode guide section. Drive vertically between 6 and 5.
つぎに、 この実施の形態の動作について説明する。 なお、 ここでは、 被処理材 を打抜き型のダイ金型として使用する場合について説明する。 加工の手順として は、 まず、 段取り作業として、 表面処理用のワイヤ電極 6 9とワイヤ放電加工用 のワイヤ電極 7 3とをセットし、 ダイ金型 1 0 0の素材を被処理材載置台 5 7上 にセットする。  Next, the operation of this embodiment will be described. Here, a case where the material to be processed is used as a punch die is described. The machining procedure is as follows: First, as a setup operation, a wire electrode 69 for surface treatment and a wire electrode 73 for wire electric discharge machining are set. 7 Set on top.
上述の段取り作業完了後に、 第 1工程として、 ワイヤ放電加工用のワイヤ電極 7 3を使用し、 放電ギャップ部分に加工液ノズル 7 1より加工液を噴射した状態 で、 ワイヤ放電加工によってダイ孔 1 0 2を加工し、 切刃 1 0 6を形成する。 型加工 (第 1工程) が完了すれば、 つぎに、 使用するワイヤ電極をワイヤ電極 切替手段 7 5によってワイヤ放電加工用のワイヤ電極 7 3より表面処理用のワイ ャ電極 6 9に変更し、 第 2工程として、 表面処理用のワイヤ電極 6 9を使用し、 実施の形態 2の場合と同様に、 ワイヤ電極 6 9と切刃側面 1 0 4との放電ギヤッ プ部分に加工液ノズル 7 1より加工液を噴射し、 ワイヤ放電加工で加工したダイ 孑 L 1 0 2の切刃側面 1 0 4に対して放電表面処理加工を行い、 切刃側面 1 0 4に 硬質被膜による改質層 1 0 8 (第 9図参照) を形成する。 After the above-mentioned setup work is completed, the first step is the wire electrode for wire electric discharge machining. The die hole 102 is machined by wire electric discharge machining in a state where the machining fluid is jetted from the machining fluid nozzle 71 to the discharge gap portion by using 73 to form a cutting blade 106. When the die machining (the first step) is completed, the wire electrode to be used is changed from the wire electrode for wire electric discharge machining 73 to the wire electrode for surface treatment 69 9 by the wire electrode switching means 75. In the second step, a wire electrode 69 for surface treatment was used, and a machining fluid nozzle 7 1 was attached to the discharge gap between the wire electrode 69 and the cutting edge side surface 104 as in the second embodiment. The surface of the cutting edge side 104 of the die moss L102 processed by wire electric discharge machining was sprayed with a machining fluid, and the surface of the cutting edge 104 was modified with a hard coating on the side surface 104. 0 8 (see Fig. 9).
第 1工程であるワイヤ放電加工時には、 第 1 1図 (a ) に示されているように 、 型加工素材 1 0 0 aに切刃 1 0 6を加工するよう、 ワイヤ電極 7 3の軌跡移動 (電極移動パス P a ) を制御する必要がある。 数値制御装置 2 3の内部に設けら れた軌跡移動制御部 2 5は、 予め電極軌跡生成用 C AM 2 7によって作成された 電極パス情報に基づき、 ワイヤ放電加工用のワイヤ電極 7 3の横方向の相対移動 制御、 すなわち、 X軸テーブル 5 1、 Y軸テーブル 5 3の軸制御を行い、 ワイヤ 電極 7 3の軌跡移動を切刃形伏(ダイ孑 L 1 0 2 ) の加工形状に適合したものとす る。  At the time of wire electric discharge machining, which is the first step, as shown in FIG. 11 (a), the trajectory of the wire electrode 73 is moved so as to machine the cutting edge 106 on the mold material 100a. (Electrode movement path P a) needs to be controlled. The trajectory movement control unit 25 provided inside the numerical control device 23 is based on the electrode path information created in advance by the electrode trajectory generation CAM 27, and is located next to the wire electrode 73 for wire electric discharge machining. Direction relative movement control, that is, axis control of the X-axis table 51 and Y-axis table 53, so that the trajectory movement of the wire electrode 73 conforms to the processing shape of the cutting edge type It shall be done.
第 2工程である表面処理加工時には、 第 1 1図 (b ) に示されているように、 ワイヤ電極 6 9の軌跡移動をダイ金型 1 0 0の切刃形状 (ダイ孔形状) にしたが つたものに制御する必要がある。 この場合、 数値制御装置 2 3の軌跡移動制御部 2 5はワイヤ放電加工の通常の仕上げ加工と同様の方法にて、 予め電極軌跡生成 用 C AM 2 7により作成された電極パス情報に基づき、 X軸テーブル 5 1、 Y軸 テーブル 5 3の軸制御を行い、 ワイヤ電極 6 9の軌跡移動を、 切刃側面 1 0 4を なぞるものとする。  At the time of the surface treatment, which is the second step, as shown in FIG. 11 (b), the locus movement of the wire electrode 69 was changed to the cutting edge shape (die hole shape) of the die 100. It needs to be controlled to a solid one. In this case, the locus movement control unit 25 of the numerical controller 23 is based on the electrode path information created in advance by the electrode locus generation CAM 27 in the same manner as the normal finishing process of wire electric discharge machining. The axes of the X-axis table 51 and the Y-axis table 53 are controlled, and the trajectory of the wire electrode 69 is traced along the side surface 104 of the cutting blade.
上述のように、 ダイ金型のようなプレス加工金型の切刃加工をワイヤ放電加工 で行い、 切刃加工後に、 切刃側面に対して液中ギャップ放電による放電表面処理 を切刃形状になぞるように行い、 切刃側面 1 0 4に硬質被膜を形成することで、 実施の形態 1 と同様に金型寿命を大幅に向上させることが可能となる。 As mentioned above, the cutting edge processing of a press die such as a die is performed by wire electric discharge machining, and after the cutting edge processing, the discharge surface treatment by gap discharge in liquid is performed on the side surface of the cutting edge into a cutting edge shape. By tracing and forming a hard coating on the cutting edge side 104, As in the first embodiment, the mold life can be greatly improved.
また、 この場合、 プレス加工金型の切刃加工と表面処理加工とが同一段取りで 加工可能となるので、 加工時間の短縮と、 段取り作業を大幅に簡略化できるとい う効果がある。  Further, in this case, since the cutting edge processing and the surface treatment processing of the press die can be performed in the same setup, there is an effect that the processing time is shortened and the setup work can be greatly simplified.
なお、 この実施の形態では、 ワイヤ放電加工用のワイヤ電極 7 3と表面処理用 のワイヤ電極 6 9とを電極切替手段 7 5を使用して自動的に切り替えるようにし ているが、 ワイャ放電加工後に手作業にてヮィャ電極を交換して加工を行っても よい。 この場合には、 ワイヤ電極を交換する手間は増えるが、 電極切替手段 7 5 を省略でき、 装置を安価に提供できると云うメリッ 卜がある。  In this embodiment, the wire electrode 73 for wire electric discharge machining and the wire electrode 69 for surface treatment are automatically switched using the electrode switching means 75. The machining may be performed later by replacing the wire electrode manually. In this case, the trouble of replacing the wire electrode is increased, but there is a merit that the electrode switching means 75 can be omitted and the device can be provided at low cost.
また、 第 1 2図 (a )〜(c ) に示されているように、 ダイ金型 1 0 0のダイ 孔 1 0 2の作成前に、 棒状の表面処理用電極 8 1を使用してダイ金型素材 1 0 0 aの上面に放電表面処理による改質層 1 1 0を形成し、 ワイヤ放電加工によるダ ィ孔 1 0 2の作成後に、 切刃側面 1 0 4に改質層を形成することもできる。  As shown in FIGS. 12 (a) to 12 (c), before forming the die hole 102 of the die 100, the rod-shaped surface treatment electrode 81 is used. A modified layer 110 is formed on the upper surface of the die material 100a by electric discharge surface treatment, and after forming a die hole 102 by wire electric discharge machining, a modified layer is formed on the side surface 104 of the cutting edge. It can also be formed.
この場合の加工工程は、 表面処理加工 (切り刃上面部分)、 ワイヤ放電加工 ( 切り刃形状加工) 、 表面処理加工 (切り刃側面) と云う順番になり、 この場合に は、 切刃上面と切刃側面に放電表面処理による硬質被膜を形成されるから、 金型 寿命がより一層向上する。 産業上の利用可能性  In this case, the processing steps are as follows: surface treatment (cutting blade upper surface part), wire electric discharge machining (cutting blade shape processing), and surface treatment processing (cutting blade side surface). Since the hard coating is formed on the side surface of the cutting edge by the discharge surface treatment, the life of the mold is further improved. Industrial applicability
以上のように、 本発明にかかるプレス加工金型およびプレス加工金型の表面処 理方法は、 穴明け、 打ち抜き等の剪断加工に使用するプレス加工金型およびその 種のプレス加工金型の表面処理に適している。  As described above, the press die and the surface treatment method of the press die according to the present invention include a press die used for shearing such as punching and punching, and a surface of a press die of such type. Suitable for processing.

Claims

請 求 の 範 囲 The scope of the claims
1. 切刃側面に液中放電加工による放電エネルギによって生じる放電電極の電極 消耗溶融物質あるし、はそれの反応物が付着堆積し、 切刃側面に電極消耗溶融物質 あるいはそれの反応物による改質層が形成されていることを特徴とするプレス加 ェ金型。 1. Discharged electrode material of the discharge electrode generated by the discharge energy due to submerged electric discharge machining on the side of the cutting edge, and the reactant of the electrode is deposited and deposited on the side of the cutting edge. A press-working die, characterized in that a pressurized layer is formed.
2. 前記改質層が硬質被膜であることを特徴とする請求の範囲第 1項に記載のプ レス加工金型。 2. The press working die according to claim 1, wherein the modified layer is a hard coating.
3. 前記改質層が WC、 Ti C:、 ZrC:、 VC、 TaC等の炭化物、 Ti B2 、 Zr B2 等の硼化物、 TiN、 TrN等の窒化物の単体、 あるいは組合せによる ものであることを特徴とする請求の範囲第 1項に記載のプレス加工金型。 3. The modified layer is WC, Ti C :, ZrC :, VC , carbides such as TaC, Ti B 2, Zr B 2 , etc. borides, TiN, single nitrides such TrN or due combinations, The press-working die according to claim 1, wherein:
4. ダイ金型において、 ダイ孔の開口縁部がなす切刃に連続するダイ孔内側面に 前記改質層が形成されていることを特徴とする請求の範囲第 1項に記載のプレス 加工金型。 4. The press working according to claim 1, wherein in the die, the modified layer is formed on an inner surface of the die hole that is continuous with a cutting edge formed by an opening edge of the die hole. Mold.
5. 加工液中においてプレス加工金型の切刃側面と放電電極とを所定の放電ギヤ ップをおいて対向させて切刃側面と放電電極との間に放電を発生させ、 放電エネ ルギによって生じる電極消耗溶融物質あるいはそれの反応物を切刃側面に付着堆 積させ、 切刃側面に電極消耗溶融物質あるいはそれの反応物による改質層を形成 することを特徵とするプレス加工金型の表面処理方法。 5. In the working fluid, the cutting edge side of the press die and the discharge electrode are opposed to each other with a predetermined discharge gap, and a discharge is generated between the cutting edge side and the discharge electrode. The press-forming die, which specializes in depositing the generated electrode consumable molten material or its reactant on the side of the cutting edge and forming a reformed layer of the electrode consumable molten material or its reactant on the side of the cutting edge. Surface treatment method.
6. 放電電極として、 Ti、 Zr、 V、 T a等の硬質金属の粉体、 もしくはこれ らの水素化物の粉体を圧縮成形した圧粉体電極、 あるいはこれらの金属による金 属電極を使用し、 加工液として H Cを含む放電加工油を使用して改質層を形成す ることを特徴とする請求の範囲第 5項に記載のプレス加工金型の表面処理方法。 6. As the discharge electrode, use a powder of a hard metal such as Ti, Zr, V, or Ta, or a compact electrode formed by compressing and molding these hydride powders, or a metal electrode made of these metals Forming a reformed layer using EDM oil containing HC as the machining fluid 6. The surface treatment method for a press-working die according to claim 5, wherein:
7 . 単純形状電極を使用し、 切刃側面と単純形状電極との間の間隙を所定値に保 つて単純形状電極と処理対象のプレス加工金型とをプレス加工形状により決まる 切刃側面形状に倣って相対変位させ、 切刃側面に改質層を形成することを特徴と する請求の範囲第 5項に記載のプレス加工金型の表面処理方法。 7. The simple shape electrode is used, and the gap between the cutting edge side and the simple shape electrode is maintained at a predetermined value, and the simple shape electrode and the pressing die to be processed are set to the cutting edge side shape determined by the pressed shape. 6. The surface treatment method for a press-working die according to claim 5, wherein the modified layer is formed on a side surface of the cutting edge by relatively displacing the same.
8 . 処理対象のプレス加工金型がヮィャ放電加工により形成されたダイ金型であ り、 単純形状電極を使用し、 切刃側面と単純形状電極との間の間隙を所定値に保 つて前記ヮィャ放電加工で使用した加工プログラムを使用して単純形状電極と処 理対象のダイ金型とを相対変位させ、 切刃側面に改質層を形成することを特徴と する請求の範囲第 5項に記載のプレス加工金型の表面処理方法。 8. The stamping die to be processed is a die formed by wire discharge machining, using a simple shape electrode and maintaining the gap between the cutting edge side and the simple shape electrode at a predetermined value. 6. A modified layer is formed on a side surface of a cutting edge by relatively displacing a simple shape electrode and a die to be processed using a machining program used in wire electric discharge machining. 4. The surface treatment method for a press-working die according to 4. above.
9 . 単純形状電極を使用し、 前記切刃側面と微細単純形状電極との間で極間サ一 ボ制御を行うことで切刃側面と単純形状電極との間の間隙を所定値に保ち、 単純 形状電極と処理対象のプレス加工金型とをプレス加工形状により決まる切刃側面 形状に倣って相対変位させ、 切刃側面に改質層を形成することを特徴とする請求 の範囲第 5項に記載のプレス加工金型の表面処理方法。 9. The gap between the cutting edge side and the simple shape electrode is maintained at a predetermined value by using a simple shape electrode and performing inter-electrode servo control between the cutting edge side and the fine simple shape electrode, 6. The modified layer is formed on the side surface of the cutting edge, wherein the electrode having a simple shape and the pressing die to be processed are relatively displaced in accordance with the shape of the side surface of the cutting edge determined by the pressing shape. 4. The surface treatment method for a press-working die according to 4. above.
1 0 . ワイヤ電極を使用し、 切刃側面とワイヤ電極との間の間隙を所定値に保つ てワイヤ電極と処理対象のプレス加工金型とをプレス加工形伏により決まる切刃 側面形状に倣って相対変位させ、 切刃側面に改質層を形成することを特徴とする 請求の範囲第 5項に記載のプレス加工金型の表面処理方法。 10. Using a wire electrode, the gap between the cutting edge side and the wire electrode is kept at a predetermined value, and the wire electrode and the pressing die to be processed are shaped according to the cutting edge side shape determined by the pressing shape. 6. The surface treatment method for a press-working die according to claim 5, wherein the modified layer is formed on the side surface of the cutting edge by relative displacement.
1 1 . 処理対象のプレス加工金型がワイヤ放電加工により形成されたダイ金型で あり、 ワイヤ電極を使用し、 切刃側面とワイヤ電極との間の間隙を所定値に保つ て前記ワイャ放電加工で使用した加工プ πグラムを使用してワイヤ電極と処理対 象のダイ金型とを相対変位させ、 切刃側面に改質層を形成することを特徴とする 請求の範囲第 5項に記載のプレス加工金型の表面処理方法。 1 1. The die to be processed is a die formed by wire electric discharge machining. The wire discharge is performed by using a wire electrode and maintaining the gap between the cutting edge side surface and the wire electrode at a predetermined value. Using the processing program used in the processing 6. The surface treatment method for a press-working die according to claim 5, wherein a modified layer is formed on a side surface of the cutting edge by relatively displacing the elephant die.
1 2 . 同一のワイヤ放電加工機において、 ワイヤ放電加工用のワイヤ電極を使用 して型加工を行レ、、 この後に表面処理用のワイャ電極を使用して切刃側面に改質 層を形成することを特徴とする請求の範囲第 5項に記載のプレス加工金型の表面 処理方法。 1 2. In the same wire electric discharge machine, perform die machining using wire electrodes for wire electric discharge machining, and then form a modified layer on the side surface of the cutting edge using wire electrodes for surface treatment. 6. The surface treatment method for a press-working die according to claim 5, wherein:
1 3 . 処理対象のプレス加工金型がダイ金型であり、 ダイ金型のダイ孔の作成前 にダイ金型素材の上面に放電表面処理による改質層を形成し、 ダイ孔の作成後に 切刃側面に改質層を形成することを特徴とする請求の範囲第 5項に記載のプレス 加工金型の表面処理方法。 1 3. The die to be processed is a die, and before forming the die hole of the die, a modified layer is formed on the upper surface of the die material by discharge surface treatment, and after forming the die hole. 6. The surface treatment method for a press-working die according to claim 5, wherein a modified layer is formed on a side surface of the cutting blade.
PCT/JP1999/001700 1998-07-31 1999-03-31 Press die and method for treating surface of press die WO2000006331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/217176 1998-07-31
JP10217176A JP2000042838A (en) 1998-07-31 1998-07-31 Press working die and surface treatment method of press working die

Publications (1)

Publication Number Publication Date
WO2000006331A1 true WO2000006331A1 (en) 2000-02-10

Family

ID=16700063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001700 WO2000006331A1 (en) 1998-07-31 1999-03-31 Press die and method for treating surface of press die

Country Status (2)

Country Link
JP (1) JP2000042838A (en)
WO (1) WO2000006331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579444B2 (en) 2000-12-28 2003-06-17 Exxonmobil Research And Engineering Company Removal of sulfur compounds from hydrocarbon feedstreams using cobalt containing adsorbents in the substantial absence of hydrogen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698811B2 (en) * 2000-10-13 2011-06-08 有限会社タイガー恒産 Metal plate bending device
JP2007211351A (en) * 2007-05-28 2007-08-23 Suzuki Motor Corp Method of forming valve seat coating film
JP5354016B2 (en) * 2009-08-06 2013-11-27 株式会社Ihi How to close a hole
US9132480B2 (en) 2012-04-09 2015-09-15 Kennametal Inc. Multi-component powder compaction molds and related methods
CN103878452B (en) * 2014-03-26 2016-08-17 哈尔滨东安发动机(集团)有限公司 The electric discharge machining method of internal cavity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137010A (en) * 1977-05-04 1978-11-30 Inoue Japax Res Inc Surface treating apparatus
JPH05148615A (en) * 1991-11-18 1993-06-15 Res Dev Corp Of Japan Treatment for surface of metallic material
JPH06182626A (en) * 1992-12-17 1994-07-05 Hitachi Ltd High corrosion resisting surface finishing method
JPH08243843A (en) * 1995-03-14 1996-09-24 Sodick Co Ltd Powder mixed electric discharge machining fluid and electric discharge machining method using powder mixed machining fluid
JPH08300227A (en) * 1995-04-14 1996-11-19 Res Dev Corp Of Japan Electrode for electric discharge machining, and metal surface treating method by electric discharge
JPH0919829A (en) * 1995-07-04 1997-01-21 Mitsubishi Electric Corp Method and device for surface processing by electric discharge machining
JPH09192937A (en) * 1996-01-17 1997-07-29 Res Dev Corp Of Japan Surface treating method by submerged electric discharge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137010A (en) * 1977-05-04 1978-11-30 Inoue Japax Res Inc Surface treating apparatus
JPH05148615A (en) * 1991-11-18 1993-06-15 Res Dev Corp Of Japan Treatment for surface of metallic material
JPH06182626A (en) * 1992-12-17 1994-07-05 Hitachi Ltd High corrosion resisting surface finishing method
JPH08243843A (en) * 1995-03-14 1996-09-24 Sodick Co Ltd Powder mixed electric discharge machining fluid and electric discharge machining method using powder mixed machining fluid
JPH08300227A (en) * 1995-04-14 1996-11-19 Res Dev Corp Of Japan Electrode for electric discharge machining, and metal surface treating method by electric discharge
JPH0919829A (en) * 1995-07-04 1997-01-21 Mitsubishi Electric Corp Method and device for surface processing by electric discharge machining
JPH09192937A (en) * 1996-01-17 1997-07-29 Res Dev Corp Of Japan Surface treating method by submerged electric discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579444B2 (en) 2000-12-28 2003-06-17 Exxonmobil Research And Engineering Company Removal of sulfur compounds from hydrocarbon feedstreams using cobalt containing adsorbents in the substantial absence of hydrogen

Also Published As

Publication number Publication date
JP2000042838A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
KR0154178B1 (en) Method and apparatus for surface treatment by electrical discharge
JPH0919829A (en) Method and device for surface processing by electric discharge machining
JP3662595B2 (en) Tool surface treatment method and apparatus
WO2000006331A1 (en) Press die and method for treating surface of press die
US4544820A (en) Die forming method and machine
Moulton Wire EDM the fundamentals
Amorim et al. Performance and surface integrity of wire electrical discharge machining of thin Ti6Al4V plate using coated and uncoated wires
WO2000006330A1 (en) Die for drawing/extruding and method for treating surface of die for drawing/extruding
US6979795B1 (en) Sinker electric discharge machine jump control device
JP4333037B2 (en) Discharge surface treatment method and apparatus, and discharge surface treatment electrode
JPH08257841A (en) Device and method for reforming discharge surface
Patel et al. A review on advanced manufacturing techniques and their applications
JP3884210B2 (en) Processing method and apparatus using wire electrode
EP0491052A1 (en) Method of finishing gear by electrolytically machining and method of machining electrode used therein
JP2000071126A (en) Discarge surface processing method, and its device
JP4333068B2 (en) Discharge surface treatment method
JPH1043948A (en) Method of finish working by electrochemical machining
JPS6021385A (en) Die steel
JP3724173B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
WO2000006332A1 (en) Die and surface treating method for die
JP2004277803A (en) Green compact electrode for forming valve seat coating and method for forming valve seat coating
Erosion Die Manufacture by Electrical Discharge Machining
JPH0976123A (en) Electric discharge tool electrode and electric discharge machine using it
WO2001036709A1 (en) Method and device for electric discharge surface treatment
JPS63120023A (en) Electric-discharge machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09424764

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CH CN DE KR US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642