JP2007211351A - Method of forming valve seat coating film - Google Patents

Method of forming valve seat coating film Download PDF

Info

Publication number
JP2007211351A
JP2007211351A JP2007140434A JP2007140434A JP2007211351A JP 2007211351 A JP2007211351 A JP 2007211351A JP 2007140434 A JP2007140434 A JP 2007140434A JP 2007140434 A JP2007140434 A JP 2007140434A JP 2007211351 A JP2007211351 A JP 2007211351A
Authority
JP
Japan
Prior art keywords
valve seat
forming
electrode
green compact
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007140434A
Other languages
Japanese (ja)
Inventor
Masahiko Kobayashi
雅彦 小林
Naoki Ozaki
直樹 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2007140434A priority Critical patent/JP2007211351A/en
Publication of JP2007211351A publication Critical patent/JP2007211351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a valve seat coating film, which speeds up overall processing operation for forming a valve seat coating film on a valve seat part of a cylinder head using discharge energy and can be applied to mass production. <P>SOLUTION: A green compact electrode 25 for forming the valve seat coating film is rotated to intermittently induce dielectric breakdown between itself and the valve seat part 102, the discharge energy generated thereby is used to melt a green compact component of the green compact electrode 25 for forming the valve seat coating film, and the green compact component is reacted with carbon atoms in a machining fluid 24 in an electric discharging tank 23 to produce a hard carbide which is transferred and laminated onto the valve seat part 102. By rotating the green compact electrode 25 for forming the valve seat coating film, the carbide can be uniformly laminated on different sites of the valve seat part 102 so that a process for forming the coating film can be stabilized and that settings of working voltage or current, pulse width, duty ratio, etc. can be increased compared to those in conventional technology. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バルブシート皮膜形成方法の改良、具体的には、バルブシートリングに代わるバルブシート皮膜を放電エネルギーを利用してシリンダヘッドのバルブシート部に形成するための処理操作を全体として高速化し、量産技術として適用するための改良に関する。   The present invention improves the valve seat film forming method, specifically, speeds up the processing operation for forming a valve seat film instead of the valve seat ring on the valve seat portion of the cylinder head using discharge energy as a whole. , Relating to improvements for application as mass production technology.

従来、シリンダヘッドのバルブシート部にはシリンダヘッドと別の部材から成るバルブシートリングを圧入して取り付け、このバルブシートリングによってバルブ周辺の機密性を確保するのが一般的であったが、この種の従来技術には、バルブシートリングが熱伝導の阻害要因となってバルブに過剰な温度上昇が生じたり、更には、この温度上昇によってエンジンの正常な点火が妨げられたりする欠点があった。   Conventionally, a valve seat ring made of a different member from the cylinder head has been press-fitted and attached to the valve seat portion of the cylinder head, and this valve seat ring has generally secured confidentiality around the valve. Some prior arts have the disadvantage that the valve seat ring interferes with heat conduction, causing an excessive temperature rise in the valve, and this temperature rise prevents normal ignition of the engine. .

そこで、シリンダヘッドと別の部材から成るバルブシートリングの使用を避け、レーザー加工を利用してバルブシート部に肉盛りを施すようにした技術が、特許文献1として既に提案されている。   In view of this, Patent Document 1 has already proposed a technique that avoids the use of a valve seat ring composed of a member different from the cylinder head and that applies laser beam machining to the valve seat portion.

しかし、レーザー加工を利用してバルブシート部に肉盛りを施すためには、大エネルギーのレーザー光を環状のバルブシート部に一巡させてレーザーを照射する必要がある。この結果、レーザー光の照射開始位置(加工開始点)とレーザー光の照射終了位置(加工終了点)とが重複してしまい、この重複部分に照射されるエネルギーがバルブシート部の他の箇所よりも大きくなり、全体としての肉盛りの厚みが一定とならず、圧力漏れ等の問題が発生する可能性があった。   However, in order to build up the valve seat portion by using laser processing, it is necessary to irradiate the laser with a large energy laser beam circulating around the annular valve seat portion. As a result, the laser beam irradiation start position (machining start point) overlaps with the laser beam irradiation end position (machining end point), and the energy irradiated to this overlapping portion is from other parts of the valve seat portion. As a result, the thickness of the entire overlay is not constant, and there is a possibility that problems such as pressure leakage may occur.

更に厳密に言えば、レーザー光の照射開始直後から、バルブシート部の周方向に隣接する各箇所に時系列に沿って連続的にレーザー光が照射されるのであるが、このエネルギーはバルブシート部の周辺に積算的に蓄積されていくので、レーザー光の強度を一定にしたとしても、バルブシート部の各箇所に供給されるエネルギーの量が時系列に沿って徐々に大きくなってしまうといった弊害がある。このようなエネルギー量の変化は連続的であり、従って、バルブシート部の周方向に隣接する各箇所間での温度の相違は僅かとも言えるが、前述した通り、レーザー光を環状のバルブシート部に一巡させて照射する関係上、加工開始時点の温度と加工終了時点の温度の相違は無視できない。   Strictly speaking, immediately after the start of laser light irradiation, laser light is continuously irradiated in time series to each location adjacent to the circumferential direction of the valve seat portion. Is accumulated cumulatively in the vicinity of the valve, so that even if the intensity of the laser beam is kept constant, the amount of energy supplied to each part of the valve seat will gradually increase in time series There is. Such a change in the energy amount is continuous. Therefore, as described above, although the difference in temperature between the portions adjacent to each other in the circumferential direction of the valve seat portion is slight, the laser light is circulated in the annular valve seat portion. Therefore, the difference between the temperature at the start of processing and the temperature at the end of processing cannot be ignored.

そこで、本出願人らは、前述の不都合を解消すべく、バルブシートリングやレーザー加工を利用した肉盛りに代わるバルブシート部の構成について研究を重ね、放電エネルギーを用いて、バルブシートリングやレーザーを利用した肉盛りに代わるバルブシート皮膜を形成するようにしたバルブシート皮膜形成技術を特許文献2として提案した。   Therefore, in order to solve the above-mentioned problems, the present applicants have repeatedly studied the configuration of the valve seat portion instead of the overlay using the valve seat ring and laser processing, and using the discharge energy, the valve seat ring and the laser Patent Document 2 proposes a valve seat film forming technique in which a valve seat film is formed in place of the build-up using the above.

このバルブシート皮膜形成技術は、簡潔に言えば、バルブシート皮膜形成用圧粉体電極とシリンダヘッドのバルブシート部との間に所定の放電ギャップを維持した状態で両者間に間欠的な絶縁破壊を励起し、この際に生じる放電エネルギーでバルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融し、更に、放電加工槽中の加工液の炭素原子と反応させ、硬質の炭化物を生成してバルブシート部に移着させ積層することによってバルブシート部の表面にバルブシート皮膜を形成するものである。   Briefly speaking, this valve seat film formation technology is intermittent dielectric breakdown between the two while maintaining a predetermined discharge gap between the green electrode for forming the valve sheet film and the valve seat part of the cylinder head. The green powder component of the green compact electrode for forming the valve seat film is melted by the discharge energy generated at this time, and further reacted with carbon atoms in the working fluid in the electric discharge machining tank to produce hard carbides. Then, a valve seat film is formed on the surface of the valve seat portion by transferring and laminating to the valve seat portion.

この際に使用したバルブシート皮膜形成用圧粉体電極を図6(a)に示す。このバルブシート皮膜形成用圧粉体電極100は、シリンダヘッド101側に形成されたバルブシート部102の形状に倣った外周形状(テーパ面)を備えた圧粉体電極部103と、放電加工機のサーボヘッドから圧粉体電極部103に通電するための導電性支持部材104とから成る。   The green compact electrode for valve seat film formation used at this time is shown in FIG. The green compact electrode 100 for forming the valve seat film includes a green compact electrode portion 103 having an outer peripheral shape (tapered surface) following the shape of the valve seat portion 102 formed on the cylinder head 101 side, and an electric discharge machine. And a conductive support member 104 for energizing the green compact electrode portion 103 from the servo head.

導電性支持部材104は銅等によって形成された円柱体、また、圧粉体電極部103は中空の環状体であり、圧粉体電極部103の上面を導電性支持部材104の先端面に導電性の接着剤105を用いて接着することにより両者が実質的に一体化されている。   The conductive support member 104 is a cylindrical body formed of copper or the like, and the green compact electrode portion 103 is a hollow annular body, and the upper surface of the green compact electrode portion 103 is electrically connected to the distal end surface of the conductive support member 104. The two are substantially integrated by bonding with the adhesive 105.

このバルブシート皮膜形成用圧粉体電極100は、圧粉体電極部103が中空の環状体とされていることから圧粉体成分の材料を節約できるが、同時に、導電性支持部材104と圧粉体電極部103との間の接着面が僅かとなるため、加工中に圧粉体電極部103が導電性支持部材104の先端面から脱落する等の弊害もあった。この結果、皮膜形成作業を連続的に継続して行うことが困難で、結果として、全体としての処理操作に遅れが生じ、シリンダヘッドの量産化には不都合があった。   In the green compact electrode 100 for forming the valve seat film, the green compact electrode portion 103 is formed into a hollow annular body, so that the material of the green compact component can be saved. Since the adhesion surface with the powder electrode portion 103 becomes slight, there is a problem that the green compact electrode portion 103 falls off from the front end surface of the conductive support member 104 during processing. As a result, it is difficult to continuously perform the film forming operation. As a result, the processing operation as a whole is delayed, which is inconvenient for mass production of cylinder heads.

そこで、本出願人らは、更に、図6(b)に示すようなバルブシート皮膜形成用圧粉体電極106を開発した。   Therefore, the present applicants further developed a green compact electrode 106 for forming a valve seat film as shown in FIG.

このバルブシート皮膜形成用圧粉体電極106は、バルブシート部102の形状に倣った外周形状(テーパ面)を備えた圧粉体電極部103と、放電加工機のサーボヘッドから圧粉体電極部103に通電するための導電性支持部材107とから成る点では図6(a)のものと同様であるが、導電性支持部材107の先端部に縮径部107aを形成し、圧粉体電極部103の上面と導電性支持部材107の先端面、および、圧粉体電極部103の内周面と縮径部107aの外周面との間を導電性の接着剤105で接着するように改良したため、加工中に圧粉体電極部103が導電性支持部材107から脱落する等の問題が解消された。   The green compact electrode 106 for forming the valve seat film includes a green compact electrode portion 103 having an outer peripheral shape (tapered surface) following the shape of the valve seat portion 102, and a green compact electrode from the servo head of the electric discharge machine. 6 is the same as that of FIG. 6A in that it comprises a conductive support member 107 for energizing the portion 103, but a reduced diameter portion 107a is formed at the tip of the conductive support member 107, and a green compact is formed. A conductive adhesive 105 is used to bond the upper surface of the electrode portion 103 and the distal end surface of the conductive support member 107, and the inner peripheral surface of the green compact electrode portion 103 and the outer peripheral surface of the reduced diameter portion 107a. Due to the improvement, the problem that the green compact electrode portion 103 dropped from the conductive support member 107 during processing was solved.

これにより、皮膜形成作業を連続して継続することが可能となったかに見えたが、実際に皮膜形成作業を行ってみると、図6(b)の(イ)に示されるように、圧粉体電極部103とバルブシート部102との間よりも先に、導電性支持部材107の縮径部107aの先端外周部とバルブシート部102との間で絶縁破壊が生じてしまうことがあり、圧粉体成分による皮膜形成が阻害される場合があることが判明した。   As a result, it seemed that it was possible to continue the film forming operation continuously. However, when the film forming operation was actually performed, as shown in FIG. Dielectric breakdown may occur between the outer peripheral portion of the reduced diameter portion 107a of the conductive support member 107 and the valve seat portion 102 before the portion between the powder electrode portion 103 and the valve seat portion 102. It has been found that film formation by the green compact component may be inhibited.

また、一定以上の作業の継続によって圧粉体電極部103が消耗してくると、図6(b)の(ロ)に示されるように、導電性支持部材107の縮径部107aの先端外周部とバルブシート部102またはポート108との間で頻繁に放電が生じるといった重大な弊害が生じてしまう。   Further, when the green compact electrode portion 103 is consumed due to the continuation of a certain work or more, as shown in (b) of FIG. 6B, the outer periphery of the distal end of the reduced diameter portion 107a of the conductive support member 107 This causes a serious problem that frequent discharge occurs between the valve portion and the valve seat portion 102 or the port 108.

このため、圧粉体電極部103の脱落は解消されても、同じバルブシート皮膜形成用圧粉体電極106を連続して使用することができない。つまり、圧粉体電極部103の部分を頻繁に交換しなければならず、導電性支持部材107に対する接着剤105の塗布、導電性支持部材107に対する圧粉体電極部103の接着、接着剤105の加熱硬化処理等の段取り作業が煩雑となり、全体としての処理操作に遅れが生じ、シリンダヘッドの量産化には不向きとなる欠点がある。   For this reason, even if the omission of the green compact electrode part 103 is eliminated, the same green compact electrode 106 for forming a valve seat film cannot be used continuously. That is, the portion of the green compact electrode portion 103 must be frequently replaced, the adhesive 105 applied to the conductive support member 107, the green compact electrode portion 103 adhered to the conductive support member 107, and the adhesive 105. However, there is a drawback that the set-up work such as the heat curing process is complicated, a delay occurs in the entire processing operation, and it is not suitable for mass production of the cylinder head.

また、本出願人らは、この他にも、この種の皮膜形成技術を適用したシリンダヘッドの量産化を困難とする原因として、以下の2点に想到した。   In addition to the above, the present inventors have conceived the following two points as the cause of difficulty in mass production of a cylinder head to which this kind of film forming technology is applied.

まず、その1つは、放電加工機のサーボヘッドに対するバルブシート皮膜形成用圧粉体電極の取付構造にある。   First of all, there is an attachment structure of a compact electrode for forming a valve seat film to a servo head of an electric discharge machine.

この種の皮膜形成技術は通常の型彫り放電加工機を流用して行われるが、型彫り放電加工機の電極取付構造は、サーボヘッドに着脱自在に装着される電極ホルダによって構成され、銅等の非磁性体から形成された電極が電極ホルダを介してサーボヘッドに装着されるようになっている。電極ホルダに対する電極の取り付けは、一般に、電極ホルダに設けられた略L字型の電極受けと2本の固定用ボルトによって実現されるが、電極ホルダに電極を取り付ける作業それ自体が煩雑であり、この段取りの悪さが全体としての処理操作の遅れを増長している。   This type of film formation technology is carried out using an ordinary die-sinking electric discharge machine, but the electrode attachment structure of the die-sinking electric discharge machine is composed of an electrode holder that is detachably attached to the servo head, such as copper. An electrode formed of a nonmagnetic material is attached to the servo head via an electrode holder. The attachment of the electrode to the electrode holder is generally realized by a substantially L-shaped electrode receiver and two fixing bolts provided on the electrode holder, but the operation of attaching the electrode to the electrode holder itself is complicated. This poor setup increases the delay in processing operations as a whole.

また、皮膜形成技術を適用したシリンダヘッドの量産化が困難とされるもう1つの原因は、放電エネルギーによってバルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融し、放電加工槽中の加工液の炭素原子と反応させて硬質の炭化物を生成し、バルブシート部に移着させて積層するという皮膜形成のプロセスそれ自体にある。   Another cause of the difficulty in mass production of cylinder heads to which the film forming technology is applied is that the green compact component of the green compact electrode for forming the valve seat film is melted by the discharge energy, It is in the process of forming a film itself, which reacts with carbon atoms in the working fluid to form hard carbide, which is transferred to the valve seat and laminated.

つまり、皮膜形成に用いる加工用のパルス電源は、放電加工機のパルス電源をそのまま流用することが可能であり、加工電圧や加工電流およびパルス幅やデューティ比等に関しては自由に設定することが可能であるが、例えば、皮膜形成速度を速くするためにパルス幅を長めに設定すると皮膜の面粗度が粗くなる等の問題が生じ、皮膜形成速度と精度の両立を図ることは非常に難しい。つまり、面粗度を向上させるためには加工速度が遅くなり、当然、全体としての処理操作が遅れてしまう。   In other words, the pulse power supply for machining used to form the film can be used directly for the electrical discharge machine, and the machining voltage, machining current, pulse width, duty ratio, etc. can be set freely. However, for example, if the pulse width is set to be long in order to increase the film formation speed, there arises a problem that the surface roughness of the film becomes rough, and it is very difficult to achieve both the film formation speed and accuracy. That is, in order to improve the surface roughness, the processing speed is slow, and naturally the processing operation as a whole is delayed.

除去加工の一種である通常の放電加工においては、荒取り用の電源条件と仕上げ用の電源条件とをNC装置によって個別に設定し、加工の初期段階で大電力の除去加工を行い、最終的に残された取り代を仕上げ用の電源条件で綺麗に仕上げるといったことも可能であるが、放電エネルギーを利用して皮膜を形成する場合においては、初期の段階で皮膜面に荒れや凹凸が生じてしまうと、これらの荒れや凹凸が最後までウネリあるいは形状誤差として残ってしまうため、初期段階に粗い加工を行って加工所要時間を短縮するといったことはできない。つまり、放電加工の技術をそのまま適用しても皮膜形成速度と精度の両立を図ることはできない。   In normal electric discharge machining, which is a type of removal machining, the power supply conditions for roughing and the power supply conditions for finishing are individually set by the NC device, and high power removal machining is performed at the initial stage of machining. It is possible to clean the remaining machining allowance under the power supply conditions for finishing, but when forming a film using discharge energy, the film surface becomes rough or uneven at the initial stage. If this is the case, these roughnesses and irregularities remain as undulations or shape errors until the end, so that it is not possible to perform rough machining in the initial stage to shorten the time required for machining. In other words, even if the electric discharge machining technique is applied as it is, it is impossible to achieve both film formation speed and accuracy.

特許第2964819号Japanese Patent No. 2964819 特開2002−242621号公報JP 2002-242621 A

そこで、本発明の課題は、前記従来技術の問題点を改善し、放電エネルギーを利用してバルブシート皮膜をシリンダヘッドのバルブシート部に形成するための処理操作を全体として高速化し、量産技術として適用することのできるバルブシート皮膜形成方法を提供することにある。   Therefore, the problem of the present invention is to improve the problems of the above-described conventional technology, speed up the processing operation for forming the valve seat film on the valve seat portion of the cylinder head using discharge energy as a whole, and as mass production technology An object of the present invention is to provide a valve seat film forming method which can be applied.

本発明のバルブシート皮膜形成方法は、シリンダヘッドのバルブシートリングに代わるバルブシート皮膜を放電エネルギーを利用してシリンダヘッドのバルブシート部に形成するバルブシート皮膜形成方法であり、前記課題を達成するため、特に
バルブシート部の形状に倣った外周形状を備えたバルブシート皮膜形成用圧粉体電極を回転させながら前記外周形状とバルブシート部との間で間欠的に絶縁破壊を励起し、この際に生じる放電エネルギーによってバルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融し、放電加工槽中の加工液の炭素原子と反応させ、硬質の炭化物を生成してバルブシート部に移着させて積層することを特徴とした構成を有する。
The valve seat film forming method of the present invention is a valve seat film forming method for forming a valve seat film instead of a valve seat ring of a cylinder head on a valve seat part of a cylinder head using discharge energy. Therefore, the dielectric breakdown is intermittently excited between the outer peripheral shape and the valve seat portion while rotating the green electrode for forming the valve seat film having the outer peripheral shape following the shape of the valve seat portion. The green compact component of the green compact electrode for forming the valve seat film is melted by the discharge energy generated during the reaction, and reacts with the carbon atoms of the machining fluid in the electric discharge machining tank to form hard carbides that are transferred to the valve seat. It has a structure characterized by being laminated by wearing.

バルブシート皮膜形成用圧粉体電極を回転(自転)させながらバルブシート部との間で間欠的に絶縁破壊を励起するようにしているため、バルブシート部の各箇所に炭化物が平均的に積層されて皮膜形成のプロセスが安定化するので、加工電圧や加工電流およびパルス幅やデューティ比等の条件を従来以上に高パワー側に設定しても、従来と同等の面粗度や形状誤差を保証することができる。
つまり、従来と同等の精度を維持した状態で皮膜形成のプロセスを高速化することができ、全体としての処理操作が高速化される結果、シリンダヘッドの量産化が可能となった。
また、全体としての処理操作の所要時間が従来と同等でよいのであれば、バルブシート皮膜の形成に際して従来以上の面粗度と形状精度を得ることが可能となる。
Since the dielectric breakdown is intermittently excited between the valve seat part while rotating (rotating) the green electrode for forming the valve seat film, carbide is laminated on each part of the valve seat part on average. Since the film formation process is stabilized, even if the conditions such as machining voltage, machining current, pulse width and duty ratio are set higher than before, the same surface roughness and shape error as before can be achieved. Can be guaranteed.
That is, the film formation process can be speeded up while maintaining the same accuracy as before, and the overall processing operation is speeded up. As a result, mass production of cylinder heads has become possible.
Further, if the time required for the processing operation as a whole can be the same as that of the prior art, it is possible to obtain surface roughness and shape accuracy higher than those of the prior art when forming the valve seat film.

更に、バルブシート部の斜面に倣った外周形状を備えたバルブシート皮膜形成用圧粉体電極を回転(自転)させると共に、前記外周形状とバルブシート部の斜面との間に所定の放電ギャップが維持されるようにしてバルブシート皮膜形成用圧粉体電極を公転させながら、前記外周形状とバルブシート部との間で間欠的に絶縁破壊を励起し、この際に生じる放電エネルギーによってバルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融し、放電加工槽中の加工液の炭素原子と反応させ、硬質の炭化物を生成してバルブシート部に移着させて積層するようにしてもよい。   Further, the green electrode for forming a valve seat film having an outer peripheral shape following the inclined surface of the valve seat portion is rotated (spinned), and a predetermined discharge gap is formed between the outer peripheral shape and the inclined surface of the valve seat portion. While maintaining the revolution of the green electrode for forming the valve seat film, the dielectric breakdown is intermittently excited between the outer peripheral shape and the valve seat portion, and the valve seat film is generated by the discharge energy generated at this time. The green compact component of the green compact electrode for forming is melted and reacted with carbon atoms in the machining fluid in the electric discharge machining tank to form hard carbides that are transferred to the valve seat and laminated. Good.

バルブシート皮膜形成用圧粉体電極を公転させることで、直径の小さなバルブシート皮膜形成用圧粉体電極を使用した場合であっても、より大きな直径を有するバルブシート部の斜面との間に一定の放電ギャップを保って放電を行いながらバルブシート皮膜を形成することが可能となる。この際、バルブシート皮膜形成用圧粉体電極自体が回転(自転)しているので、電極の圧粉体成分が部分的に消耗する心配はなく、前記と同様、バルブシート部の各箇所に炭化物を平均的に積層して精密なバルブシート皮膜を形成することができる。
つまり、バルブシート部の斜面の傾きさえ一致していればバルブシート皮膜形成用圧粉体電極を交換することなく別の仕様を有する(直径の異なる)シリンダヘッドのバルブシート部に対してバルブシート皮膜を形成することが可能となり、電極の交換に関連する段取り作業の所要時間が短縮され、全体としての処理操作が高速化される。
By revolving the compacted electrode for forming the valve seat film, even if the compacted electrode for forming the valve seat film with a small diameter is used, it is between the inclined surface of the valve seat part having a larger diameter. It is possible to form a bulb seat film while discharging while maintaining a constant discharge gap. At this time, since the green compact electrode for forming the valve seat film is rotating (spinning), there is no fear that the green compact component of the electrode is partially consumed. Carbide can be averaged to form a precise valve seat film.
In other words, as long as the slopes of the slopes of the valve seats are the same, the valve seats with respect to the valve seats of the cylinder heads having different specifications (different diameters) can be used without replacing the green electrode for forming the valve seat film A film can be formed, the time required for setup work related to electrode replacement is shortened, and the overall processing operation is speeded up.

本発明のバルブシート皮膜形成方法は、バルブシート皮膜形成用圧粉体電極を回転させながらバルブシート部との間で間欠的に絶縁破壊を励起し、この際に生じる放電エネルギーによってバルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融すると共に、放電加工槽中の加工液の炭素原子と反応させ、硬質の炭化物を生成してバルブシート部に移着させて積層するようにしているため、バルブシート皮膜形成用圧粉体電極の回転によってバルブシート部の各箇所に炭化物を平均的に積層して皮膜形成のプロセスを安定化することができる。この結果、加工電圧や加工電流およびパルス幅やデューティ比等の条件を従来以上に高パワー側に設定しても、従来と同等の面粗度や形状誤差を保証することが可能となり、従来と同等の精度を維持した状態で皮膜形成のプロセスを高速化して全体としての処理操作を高速化し、シリンダヘッドの量産化を達成することができる。(全体としての処理操作の所要時間が従来と同等でよいのであれば、従来以上の面粗度と形状精度を得ることが可能である。)   In the valve seat film forming method of the present invention, the dielectric breakdown is intermittently excited between the valve seat portion while rotating the green compact electrode for forming the valve seat film, and the valve seat film is formed by the discharge energy generated at this time. In addition to melting the green compact component of the green compact electrode, it reacts with the carbon atoms of the machining fluid in the electric discharge machining tank to produce hard carbides that are transferred to the valve seat and stacked. Therefore, by rotating the green compact electrode for forming the valve seat film, carbide can be averagely laminated at each location of the valve seat portion to stabilize the film forming process. As a result, even if conditions such as machining voltage, machining current, pulse width, and duty ratio are set on the higher power side than before, it is possible to guarantee the same surface roughness and shape error as before. It is possible to speed up the film forming process while maintaining the same accuracy, speed up the overall processing operation, and achieve mass production of cylinder heads. (If the time required for the processing operation as a whole is the same as that of the prior art, it is possible to obtain surface roughness and shape accuracy higher than those of the prior art.)

更に、バルブシート皮膜形成用圧粉体電極を回転および公転させることにより、直径の小さなバルブシート皮膜形成用圧粉体電極で大きな直径を有するバルブシート部にバルブシート皮膜を形成することもできるので、バルブシート部の斜面の傾きさえ一致していればバルブシート皮膜形成用圧粉体電極を交換することなく別の仕様を有するシリンダヘッドのバルブシート部に対してバルブシート皮膜を形成することも可能であり、電極の交換に関連する段取り作業の所要時間を短縮してバルブシート皮膜の形成に関わる全体的な作業の流れを更に高速化することができる。   Further, by rotating and revolving the green compact electrode for forming the valve seat film, it is also possible to form the valve seat film on the valve seat portion having a large diameter with the small compact diameter electrode for forming the valve seat film. As long as the slope of the slope of the valve seat part matches, the valve seat film can be formed on the valve seat part of the cylinder head having a different specification without replacing the green compact electrode for forming the valve seat film. It is possible to shorten the time required for the setup work related to the replacement of the electrodes, and to further speed up the overall work flow related to the formation of the valve seat film.

以下、図面を参照して本発明の実施形態の幾つかについて詳細に説明する。   Hereinafter, some embodiments of the present invention will be described in detail with reference to the drawings.

まず、バルブシート皮膜形成用圧粉体電極の構造について説明する。   First, the structure of the green compact electrode for valve seat film formation will be described.

図1(a)は、バルブシート皮膜形成用圧粉体電極1の構造について例示した断面図である。   FIG. 1A is a cross-sectional view illustrating the structure of the green compact electrode 1 for forming a valve seat film.

このバルブシート皮膜形成用圧粉体電極1は、シリンダヘッド101側に形成されたバルブシート部102の形状に倣った外周形状(テーパ面)を備えた圧粉体電極部2と、放電加工機のサーボヘッドから圧粉体電極部2に通電するための導電性支持部材3、および、導電性支持部材3と実質的に一体化されて導電性支持部材3の先端から突出した非導電性支持部材4とによって構成される。   The green compact electrode 1 for forming the valve seat film includes a green compact electrode portion 2 having an outer peripheral shape (tapered surface) following the shape of the valve seat portion 102 formed on the cylinder head 101 side, and an electric discharge machine. Conductive support member 3 for energizing the green compact electrode portion 2 from the servo head, and non-conductive support that is substantially integrated with the conductive support member 3 and protrudes from the tip of the conductive support member 3 It is comprised by the member 4.

非導電性支持部材4は、電気的な絶縁機能を備えたセラミックス製であり、銅製の導電性支持部材3の中心部に形成された孔3aに固着されて、導電性支持部材3と実質的に一体化している。   The non-conductive support member 4 is made of ceramics having an electrical insulating function, and is fixed to the hole 3a formed at the center of the copper conductive support member 3 so as to be substantially the same as the conductive support member 3. It is integrated with.

また、圧粉体電極部2の中央部には孔5が形成され、圧粉体電極部2は、非導電性支持部材4の先端に孔5を嵌合させた状態で、導電性の接着剤105により、導電性支持部材3の先端面3bおよび非導電性支持部材4の外周面4aに固着されている。   In addition, a hole 5 is formed at the center of the green compact electrode portion 2, and the green compact electrode portion 2 is electrically conductively bonded with the hole 5 fitted to the tip of the non-conductive support member 4. The agent 105 is fixed to the distal end surface 3 b of the conductive support member 3 and the outer peripheral surface 4 a of the nonconductive support member 4 by the agent 105.

このようにして、圧粉体電極部2が導電性支持部材3の先端面3b、および、導電性支持部材3と一体化された非導電性支持部材4の外周面4aに固着されて支えられるため、導電性支持部材4に対する圧粉体電極部2の取り付け強度が増し、また、圧粉体電極部2の部分的な欠け落ち等が未然に防止され、バルブシート皮膜の形成中に圧粉体電極部2が導電性支持部材4から脱落するといった問題も発生しない。   In this way, the green compact electrode portion 2 is fixedly supported by the distal end surface 3 b of the conductive support member 3 and the outer peripheral surface 4 a of the nonconductive support member 4 integrated with the conductive support member 3. Therefore, the mounting strength of the green compact electrode part 2 with respect to the conductive support member 4 is increased, and partial chipping of the green compact electrode part 2 is prevented in advance, and the green compact is formed during the formation of the valve seat film. The problem that the body electrode part 2 falls off from the conductive support member 4 does not occur.

また、圧粉体電極部2の中央部の孔5に嵌合された非導電性支持部材4は電気を通さない絶縁体であるため、図6(b)の(イ)に示されるようなものとは違って、皮膜形成時に非導電性支持部材4の先端外周部とバルブシート部102との間で絶縁破壊が生じてしまうようなことは一切なく、仮に、圧粉体電極部2が消耗して非導電性支持部材4の先端が露出した状態でギャップ一定のサーボ送りが進められて非導電性支持部材4の先端がポート108内に突入したような場合であっても、図6(b)の(ロ)に示されるものとは違って、非導電性支持部材4とバルブシート部102またはポート108との間で異常放電が生ずる心配がない。   Further, since the non-conductive support member 4 fitted in the hole 5 in the central portion of the green compact electrode portion 2 is an insulator that does not conduct electricity, as shown in FIG. Unlike the case, no dielectric breakdown occurs between the outer peripheral portion of the tip of the non-conductive support member 4 and the valve seat portion 102 during film formation. Even when the servo feed is performed with a constant gap while the tip of the non-conductive support member 4 is exposed and the tip of the non-conductive support member 4 enters the port 108 even when the tip of the non-conductive support member 4 is exposed, FIG. Unlike the case shown in (b) of (b), there is no fear that abnormal discharge occurs between the nonconductive support member 4 and the valve seat portion 102 or the port 108.

従って、バルブシート皮膜形成用圧粉体電極1を頻繁に交換しなくても異常な放電を防止して圧粉体電極部2の圧粉体成分による皮膜形成のプロセスを安定的に継続することができ、全体としての処理操作が高速化され、シリンダヘッドの量産化が可能となる。   Therefore, even if the green compact electrode 1 for forming the valve seat film is not frequently replaced, abnormal discharge is prevented and the process of forming the film with the green compact component of the green compact electrode part 2 is stably continued. As a result, the processing operation as a whole can be speeded up, and mass production of cylinder heads becomes possible.

図1(b)は、バルブシート皮膜形成用圧粉体電極1に代えて利用可能な他のバルブシート皮膜形成用圧粉体電極6の構造について示した断面図である。   FIG. 1B is a cross-sectional view showing the structure of another green compact electrode 6 for forming a valve seat film that can be used in place of the green compact electrode 1 for forming a valve seat film.

このバルブシート皮膜形成用圧粉体電極6は、シリンダヘッド101側に形成されたバルブシート部102の形状に倣った外周形状(テーパ面)を備えた圧粉体電極部7と、放電加工機のサーボヘッドから圧粉体電極部7に通電するための銅等から成る導電性支持部材8、および、導電性支持部材8の先端外周を旋盤加工等で切削して形成された縮径部9とから構成されている。   The green compact electrode 6 for forming the valve seat film includes a green compact electrode portion 7 having an outer peripheral shape (tapered surface) following the shape of the valve seat portion 102 formed on the cylinder head 101 side, and an electric discharge machine. A conductive support member 8 made of copper or the like for energizing the green compact electrode portion 7 from the servo head, and a reduced diameter portion 9 formed by cutting the outer periphery of the end of the conductive support member 8 by lathe processing or the like. It consists of and.

そして、縮径部9の外周部および先端面にはポリマーコーティング等による非導電性皮膜10が形成され、この縮径部9が、外部に対して電気的に絶縁される。縮径部9と非導電性皮膜10とを合わせたものが非導電性支持部材11である。   A non-conductive film 10 made of polymer coating or the like is formed on the outer peripheral portion and the front end surface of the reduced diameter portion 9, and the reduced diameter portion 9 is electrically insulated from the outside. A combination of the reduced diameter portion 9 and the nonconductive film 10 is a nonconductive support member 11.

図1(a)に示したものと同様、粉体電極部7は、非導電性支持部材11に孔12を嵌合させた状態で導電性の接着剤105によって導電性支持部材8の先端面8bおよび非導電性支持部材11の外周面11aに固着されている。   Similar to that shown in FIG. 1A, the powder electrode portion 7 is formed by the conductive adhesive 105 with the hole 12 fitted in the nonconductive support member 11 and the front end surface of the conductive support member 8. 8b and the outer peripheral surface 11a of the non-conductive support member 11 are fixed.

図1(a)に示したものとの相違は、導電性支持部材8の一部を利用して非導電性支持部材11を形成している点にあり、導電性支持部材8の先端外周を旋削して非導電性皮膜10をコーティングするだけの簡単な作業で非導電性支持部材11を形成することができるため、バルブシート皮膜形成用圧粉体電極6の製作に必要とされる材料費や製造コストを低減化できるメリットがある。   The difference from the one shown in FIG. 1A is that the non-conductive support member 11 is formed by using a part of the conductive support member 8. Since the non-conductive support member 11 can be formed by a simple operation of turning and coating the non-conductive film 10, the material cost required for manufacturing the green compact electrode 6 for forming the valve seat film is required. There is an advantage that manufacturing costs can be reduced.

その他の点に関しては図1(a)に示したバルブシート皮膜形成用圧粉体電極1と同様であるので説明を省略する。   The other points are the same as those of the green electrode 1 for forming a valve seat film shown in FIG.

以上、バルブシート皮膜形成用圧粉体電極の実質的な耐用時間を延長して電極の交換回数を削減することで全体としての処理操作を高速化してシリンダヘッドの量産化を図った例について述べた。   In the above, an example in which the cylinder head is mass-produced by speeding up the overall processing operation by extending the substantial service life of the compacted electrode for forming the valve seat film and reducing the number of electrode replacements has been described. It was.

次に、バルブシート皮膜形成用圧粉体電極の交換に要する段取り作業の所要時間を短縮することで全体としての処理操作を高速化してシリンダヘッドの量産化を図った例について説明する。   Next, an example will be described in which cylinder heads are mass-produced by speeding up the overall processing operation by reducing the time required for the setup work required to replace the compacted electrode for forming the valve seat film.

図2(a)は更に別のバルブシート皮膜形成用圧粉体電極13の構造について示した側面図、また、図2(b)は、バルブシート皮膜形成用圧粉体電極13の製造工程について簡略化して示した模式図である。   FIG. 2 (a) is a side view showing the structure of another green compact electrode 13 for forming a valve seat film, and FIG. 2 (b) is a manufacturing process of the green compact electrode 13 for forming a valve seat film. It is the schematic diagram simplified and shown.

このバルブシート皮膜形成用圧粉体電極13は、シリンダヘッド101側に形成されたバルブシート部102の形状に倣った外周形状(テーパ面)を備えた圧粉体電極部14と、放電加工機のサーボヘッドに設けられた電磁チャックに圧粉体電極部14を装着して通電するための導電性支持部材15とによって完全に一体に形成されている。   The green compact electrode 13 for forming the valve seat film includes a green compact electrode portion 14 having an outer peripheral shape (tapered surface) following the shape of the valve seat portion 102 formed on the cylinder head 101 side, and an electric discharge machine. And a conductive support member 15 for energizing the electromagnetic chuck provided in the servo head with the green compact electrode portion 14 attached thereto.

バルブシート皮膜形成用圧粉体電極13の製造工程は図2(b)に示す通りのもので、まず、バルブシート皮膜形成用圧粉体電極13を成形するための圧粉体成形金型16を予め準備しておき、この圧粉体成形金型16に圧粉体電極部14を形成するための圧粉体14’を投入し、更に、この圧粉体14’に積層するようにして導電性支持部材15を形成するための磁性粉末15’を投入した後、圧粉体成形金型16にピストン状の押圧部材17を内嵌して強力にプレスする。   The manufacturing process of the green compact electrode 13 for forming the valve seat film is as shown in FIG. 2B. First, the green compact molding die 16 for molding the green compact electrode 13 for forming the valve seat film is shown. Is prepared in advance, and a green compact 14 ′ for forming the green compact electrode portion 14 is introduced into the green compact molding die 16, and further laminated on the green compact 14 ′. After introducing the magnetic powder 15 ′ for forming the conductive support member 15, a piston-like pressing member 17 is fitted into the green compact molding die 16 and pressed strongly.

この1つの成形工程により圧粉体14’と磁性粉末15’とが一体化して固化され、圧粉体電極部14と導電性支持部材15とから成る一体のバルブシート皮膜形成用圧粉体電極13が形成される。このバルブシート皮膜形成用圧粉体電極13を圧粉体成形金型16から取り出せば、成形工程の作業は完了である。   The green compact 14 ′ and the magnetic powder 15 ′ are integrated and solidified by this one molding process, and the green compact electrode for forming a valve seat film comprising the green compact electrode portion 14 and the conductive support member 15. 13 is formed. If the green compact electrode 13 for forming the valve seat film is taken out from the green compact molding die 16, the work of the molding process is completed.

この例では、圧粉体電極部14を形成するための圧粉体14’として表1に示される金属粉末の混合体を、また、磁性粉末15’としては通常の鉄粉を使用した。   In this example, a mixture of metal powders shown in Table 1 was used as the green compact 14 ′ for forming the green compact electrode portion 14, and ordinary iron powder was used as the magnetic powder 15 ′.

Figure 2007211351
Figure 2007211351

図3はバルブシート皮膜形成用圧粉体電極13を用いてバルブシート皮膜を形成する際に使用される型彫り放電加工機の主要部の構造を簡略化して示した模式図である。   FIG. 3 is a schematic diagram showing a simplified structure of a main part of a die-sinking electric discharge machine used when forming a valve seat film using the green compact electrode 13 for forming a valve sheet film.

サーボヘッド18は、放電加工機のコラム部分に固設されており、図示しないNC装置により設定された加工電圧や加工電流およびパルス幅やデューティ比等の加工条件に基いて加工用のパルス電源19から電力を供給され、電極ホルダ20および電磁チャック21を介してバルブシート皮膜形成用圧粉体電極13に通電する。   The servo head 18 is fixed to the column portion of the electric discharge machine, and a pulse power supply 19 for machining based on machining conditions such as machining voltage, machining current, pulse width and duty ratio set by an NC device (not shown). Is supplied with electric power, and the green compact electrode 13 for forming the valve seat film is energized through the electrode holder 20 and the electromagnetic chuck 21.

電磁チャック21自体は従来の放電加工用電極のようにして電極ホルダ20に対し固定用ボルト等によって着脱可能に固定されているが、バルブシート皮膜形成用圧粉体電極13は鉄粉を固化して形成した導電性支持部材15を備えているため、電極ホルダ20に電磁チャック21を装着したまま電磁チャック21の磁化状態をON/OFFするだけの簡単な操作で電磁チャック21に対するバルブシート皮膜形成用圧粉体電極13の着脱作業を行うことができ、電極ホルダ20それ自体に対しては何らの操作も要求されない。   The electromagnetic chuck 21 itself is detachably fixed to the electrode holder 20 by a fixing bolt or the like like a conventional electrode for electric discharge machining, but the green compact electrode 13 for forming the valve seat film solidifies iron powder. Since the conductive support member 15 is formed, the valve seat film is formed on the electromagnetic chuck 21 by a simple operation of turning on / off the magnetized state of the electromagnetic chuck 21 while the electromagnetic chuck 21 is mounted on the electrode holder 20. The attaching / detaching operation of the green compact electrode 13 can be performed, and no operation is required for the electrode holder 20 itself.

なお、電極ホルダ20は既に述べたように電極受けや固定用ボルト等によって構成され、様々な形状および大きさの放電加工用電極に対処することが可能な構造となっているので、これらの電極受けや固定用ボルト等を上手く利用すれば、電磁チャック21として改めて格別なものを設計製作する必要はなく、市販品から流用された電磁チャック21をそのまま電極ホルダ20に装着することも可能である。   Since the electrode holder 20 is constituted by an electrode holder, a fixing bolt or the like as already described, and has a structure capable of dealing with electrodes for electric discharge machining having various shapes and sizes, these electrodes are used. If a receiver, a fixing bolt, etc. are used well, it is not necessary to design and manufacture a special one as the electromagnetic chuck 21, and the electromagnetic chuck 21 diverted from a commercially available product can be mounted on the electrode holder 20 as it is. .

また、加工対象となるシリンダヘッド101は、バルブシート部102を上方に向けてバルブシート皮膜形成用圧粉体電極13の圧粉体電極部14に対向させた状態で図3のようにして放電加工機のテーブル22上に固定され、テーブル22にはサーボヘッド18側と逆の極性でパルス電源19が接続されている。   Further, the cylinder head 101 to be processed is discharged as shown in FIG. 3 with the valve seat portion 102 facing upward and facing the green compact electrode portion 14 of the green compact electrode 13 for forming the valve seat film. A pulse power source 19 is connected to the table 22 with a polarity opposite to that of the servo head 18 side.

そして、テーブル22を覆う放電加工槽23に満たされた加工液(油)24によってバルブシート皮膜形成用圧粉体電極13とシリンダヘッド101との間が絶縁されている。   The green sheet electrode 13 for forming the valve seat film and the cylinder head 101 are insulated from each other by the machining fluid (oil) 24 filled in the electric discharge machining tank 23 covering the table 22.

サーボヘッド18は、図示しないNC装置によって、バルブシート皮膜形成用圧粉体電極13の先端と被加工物となるシリンダヘッド101のバルブシート部102との間の離間距離が一定となるようにして上下方向の送りを掛けられ、放電ギャップを一定の値に保持するようになっている。これは、放電加工の分野でサーボ送りと呼ばれる制御方式であり、実際には、放電電流の値を予め決められた設定値に保持するようにZ軸のサーボモータをフィードバック制御することで両者間の放電ギャップが一定の値に保持されるようになっている。   The servo head 18 is configured so that the separation distance between the tip of the compact electrode 13 for forming the valve seat film and the valve seat portion 102 of the cylinder head 101 to be processed becomes constant by an NC device (not shown). A vertical feed is applied to maintain the discharge gap at a constant value. This is a control method called servo feed in the field of electric discharge machining. Actually, feedback control of the Z-axis servo motor is performed so as to maintain the discharge current value at a predetermined set value. The discharge gap is maintained at a constant value.

また、バルブシート皮膜形成用圧粉体電極13の交換に際しては、手動制御装置からのジョグ送り指令等によってコラム自体を上方に退避させ、上下方向に十分な作業スペースを確保してバルブシート皮膜形成用圧粉体電極13の交換作業を行うことが可能である。   Further, when replacing the green compact electrode 13 for forming the valve seat film, the column itself is retracted upward by a jog feed command or the like from the manual control device, and a sufficient working space is secured in the vertical direction to form the valve seat film. It is possible to replace the working green compact electrode 13.

ここで、図4を参照して従来の電極交換作業との相違について説明する。   Here, the difference from the conventional electrode replacement work will be described with reference to FIG.

図6(b)に示されるような従来型のバルブシート皮膜形成用圧粉体電極106を使用した場合、通常、電極の交換作業は、銅製の導電性支持部材107のコストが高いこと等を理由に、圧粉体電極部103のみを取り替えることによって行われる。   When the conventional green compact electrode 106 for forming a valve seat film as shown in FIG. 6 (b) is used, it is usually necessary to replace the electrode because the cost of the conductive support member 107 made of copper is high. This is done by replacing only the green compact electrode portion 103.

従って、この電極交換作業で必要とされる工程は図4に示されるように、圧粉体電極部103の成形工程(所要時間t1)と、導電性支持部材107に対する接着剤105の塗布工程(所要時間t2)、および、導電性支持部材107の先端に対する圧粉体電極部103の接着工程(所要時間t3)、ならびに、接着剤105を加熱して実用的な強度を発揮させるための加熱硬化工程(所要時間t4)、更に、接着により一体化された圧粉体電極部103と導電性支持部材107とから成るバルブシート皮膜形成用圧粉体電極106を放電加工機の電極ホルダに装着するための装着工程(所要時間t5)の5工程である。   Therefore, as shown in FIG. 4, the steps required for this electrode replacement operation are a forming step of the green compact electrode portion 103 (required time t 1) and a step of applying the adhesive 105 to the conductive support member 107 ( The required time t2), the step of bonding the green compact electrode part 103 to the tip of the conductive support member 107 (the required time t3), and the heat curing for heating the adhesive 105 to exhibit practical strength Step (required time t4), and further, the green compact electrode 106 for forming the valve seat film composed of the green compact electrode portion 103 and the conductive support member 107 integrated by bonding is mounted on the electrode holder of the electric discharge machine. There are five steps of the mounting step (required time t5).

これに対し、バルブシート皮膜形成用圧粉体電極13を使用した場合の電極交換作業で必要とされる工程は、図4に示されるように、圧粉体14’と磁性粉末15’からバルブシート皮膜形成用圧粉体電極13を一体に成形する成形工程と、このバルブシート皮膜形成用圧粉体電極13を放電加工機の電磁チャック21に装着する装着工程の2工程のみである。   On the other hand, as shown in FIG. 4, the steps required for the electrode replacement work when the green compact electrode 13 for forming the valve seat film is used are as follows. There are only two steps: a molding step for integrally molding the green compact electrode 13 for forming the sheet coating and a mounting step for mounting the green compact electrode 13 for forming the valve seat coating to the electromagnetic chuck 21 of the electric discharge machine.

このうち、バルブシート皮膜形成用圧粉体電極13の成形工程は、前述した通り、単一の圧粉体成形金型16に圧粉体14’および磁性粉末15’を投入して加圧プレスする1つの成形工程で済むため、その所要時間は、従来技術を適用して圧粉体電極部103を成形する場合の成形工程(所要時間t1)と実質的に同一である。   Among these, as described above, the compacting process of the compacting electrode 13 for forming the valve seat film is performed by pressing the compact 14 'and the magnetic powder 15' into a single compacting mold 16 and pressurizing. Therefore, the required time is substantially the same as the forming process (required time t1) when the green compact electrode portion 103 is formed by applying the conventional technique.

また、バルブシート皮膜形成用圧粉体電極13の装着工程は、電極ホルダ20に対して固定用ボルト等を用いてバルブシート皮膜形成用圧粉体電極13を装着する必要はなく、電極ホルダ20に電磁チャック21を取り付けたまま、電磁チャック21側の磁化状態をON/OFFと切り替えてバルブシート皮膜形成用圧粉体電極13の着脱を行うだけで済むから、その装着工程(所要時間t5’)は、従来技術における装着工程(所要時間t5)に比べて遥かに短くて済む。   In addition, in the mounting process of the compact electrode 13 for forming the valve seat film, it is not necessary to mount the compact electrode 13 for forming the valve seat film on the electrode holder 20 using a fixing bolt or the like. It is only necessary to switch the magnetized state on the electromagnetic chuck 21 side to ON / OFF while attaching the electromagnetic chuck 21 to the valve seat film forming powder electrode 13, so that the mounting process (required time t 5 ′) is required. ) Is much shorter than the mounting process (required time t5) in the prior art.

このように、バルブシート皮膜形成用圧粉体電極13によれば、従来と同等の頻度でバルブシート皮膜形成用圧粉体電極13を交換する場合であっても、接着剤の塗布工程(所要時間t2)や接着工程(所要時間t3)および接着後の加熱硬化工程(所要時間t4)を完全に省略することができ、しかも、電磁チャック21にバルブシート皮膜形成用圧粉体電極13を取り付ける装着工程(所要時間t5’)は、電極ホルダ20に対して固定用ボルト等を用いて行われる従来の電極装着工程(所要時間t5)に比べて遥かに迅速に行うことができる。従って、電極交換の全体的な所要時間、言い換えれば、放電加工機の稼動休止時間を従来のものに比べて大幅に短縮することができ、全体としての処理操作が高速化されてシリンダヘッドの量産化が可能となる。   As described above, according to the green compact electrode 13 for forming the valve seat film, even when the green compact electrode 13 for forming the valve seat film is replaced with the same frequency as before, an adhesive application process (required) The time t 2), the bonding step (required time t 3), and the heat curing step after bonding (required time t 4) can be omitted completely, and the green compact electrode 13 for forming the valve seat film is attached to the electromagnetic chuck 21. The mounting process (required time t5 ′) can be performed much more quickly than the conventional electrode mounting process (required time t5) that is performed on the electrode holder 20 using a fixing bolt or the like. Therefore, the overall time required for electrode replacement, in other words, the downtime of the electric discharge machine can be greatly reduced compared to the conventional one, and the overall processing operation is speeded up so that mass production of cylinder heads can be achieved. Can be realized.

なお、図6(b)に示されるような従来技術においても、バルブシート皮膜形成用圧粉体電極106を予め多数準備しておき、電極106全体を次々と交換することで接着剤の塗布工程(所要時間t2),接着工程(所要時間t3),接着後の加熱硬化工程(所要時間t4)を省略して電極の交換作業の所要時間を短縮することが可能であるが、バルブシート皮膜形成用圧粉体電極13を使用する場合においても、バルブシート皮膜形成用圧粉体電極13を予め多数準備しておけば、これと同様のことが実現可能である。   In the prior art as shown in FIG. 6B as well, an adhesive application step is performed by preparing a large number of green compact electrodes 106 for forming a valve seat film in advance and replacing the entire electrodes 106 one after another. (Required time t2), Adhesion process (Required time t3), Heat-curing process after adhesion (Required time t4) can be omitted to shorten the required time for electrode replacement work. Even when the green compact electrode 13 is used, if a large number of green compact electrodes 13 for forming the valve seat film are prepared in advance, the same can be realized.

何れにしても、電極の装着工程は必要であり、従来技術における電極の装着工程(所要時間t5)に比べてバルブシート皮膜形成用圧粉体電極13を使用した場合の電極の装着工程(所要時間t5’)の方が短時間で済むので、予め多数の電極を準備しておいたような場合でも、全体としての処理操作の高速化のためにはバルブシート皮膜形成用圧粉体電極13を使用した方が遥かに有利である。   In any case, the electrode mounting process is necessary, and the electrode mounting process (required) when using the green electrode 13 for forming the valve seat film as compared with the electrode mounting process (required time t5) in the prior art. Since the time t5 ′) is shorter, even when a large number of electrodes are prepared in advance, in order to speed up the processing operation as a whole, the green compact electrode 13 for forming the valve seat film is used. It is much more advantageous to use

また、バルブシート皮膜形成用圧粉体電極13を使用する場合においては、図6(b)に示されるような従来例と違って、高価な銅からなる導電性支持部材107を多数準備する必要はなく、鉄粉等の磁性粉末15’を用いた圧粉体成形で廉価に製造された導電性支持部材15を利用することができるため、バルブシート皮膜形成用圧粉体電極13の製造コスト自体が軽減化されるメリットがある。   Further, when the green compact electrode 13 for forming the valve seat film is used, it is necessary to prepare a large number of conductive support members 107 made of expensive copper, unlike the conventional example as shown in FIG. Since the conductive support member 15 manufactured at a low cost by compacting using a magnetic powder 15 ′ such as iron powder can be used, the manufacturing cost of the compact electrode 13 for forming a valve seat film is not required. There is a merit that itself is reduced.

最大の作業効率を得るためには、前述のようにして製造されたバルブシート皮膜形成用圧粉体電極13を予め幾つも準備しておき、電極の消耗に応じて次々とバルブシート皮膜形成用圧粉体電極13を交換していくようにすればよく、その際に必要とされる段取りの所要時間つまり加工の停止時間は、高々、電磁チャック21の磁化状態を切り替えて皮膜形成用圧粉体電極13を取り替えるために必要とされる所要時間t5’のみである。   In order to obtain the maximum working efficiency, several green sheet electrodes 13 for forming a valve seat film manufactured as described above are prepared in advance, and for forming a valve sheet film one after another according to the consumption of the electrodes. It is only necessary to replace the green compact electrode 13, and the time required for setup, that is, the processing stoppage time, is changed at most by switching the magnetization state of the electromagnetic chuck 21 and compacting powder for film formation. Only the required time t5 ′ required to replace the body electrode 13 is obtained.

次に、本発明のバルブシート皮膜形成方法を適用してバルブシート皮膜形成用圧粉体電極を回転(自転)させてバルブシート皮膜の形成プロセスそれ自体を相対的に高速化することで全体としての処理操作を高速化してシリンダヘッドの量産化を図った場合の実施形態について説明する。   Next, the valve seat film forming method of the present invention is applied to rotate (spin) the green electrode for forming the valve seat film to relatively speed up the formation process of the valve seat film as a whole. An embodiment will be described in which the processing operation is speeded up to achieve mass production of cylinder heads.

図5(a)は一実施形態のバルブシート皮膜形成方法について示した概念図である。バルブシート皮膜形成用圧粉体電極25としては、図1(a),図1(b)で示したようなバルブシート皮膜形成用圧粉体電極、または、図2(a)で示したようなバルブシート皮膜形成用圧粉体電極、更には、図6(a),図6(b)で示したような従来型のバルブシート皮膜形成用圧粉体電極を利用することができる。   FIG. 5A is a conceptual diagram showing a valve seat film forming method according to an embodiment. As the green electrode 25 for forming the valve seat film, the green electrode for forming the valve seat film as shown in FIG. 1 (a) and FIG. 1 (b), or as shown in FIG. 2 (a). A green electrode for forming a valve seat film, and a conventional green electrode for forming a valve seat film as shown in FIGS. 6 (a) and 6 (b) can be used.

バルブシート皮膜形成用圧粉体電極25は、シリンダヘッド101側に形成されたバルブシート部102の形状に倣った外周形状(テーパ面)を備えた圧粉体電極部26と、放電加工機のサーボヘッドから圧粉体電極部26に通電するための導電性支持部材27とによって実質的に一体に形成され、放電加工機のサーボヘッドに固設された電極回転機構(図示せず)に電極ホルダを介して取り付けられている。   The green compact electrode 25 for forming the valve seat film includes a green compact electrode portion 26 having an outer peripheral shape (tapered surface) following the shape of the valve seat portion 102 formed on the cylinder head 101 side, and an electric discharge machine. A conductive support member 27 for energizing the green compact electrode portion 26 from the servo head is substantially integrated with the electrode rotating mechanism (not shown) fixed to the servo head of the electric discharge machine. It is attached via a holder.

この電極回転機構は、円柱状の放電加工用電極を使用して放電加工を行う際に電極先端部の消耗を均一化するために電極の回転中心を所定位置に止めたまま電極を回転(自転)させたり、更には、小径の円柱状放電加工用電極を使用して電極径よりも大きな径の穴をワークに穿設したり、あるいは、廉価な管状の放電加工用電極を使用して芯を残さずにワークに穴明またはポケット加工を行うために電極を回転(自転)させつつ公転動作させることを目的として考案されたもので、型彫り放電加工機の分野では既に公知である。   This electrode rotation mechanism rotates (rotates) the electrode while keeping the center of rotation of the electrode at a predetermined position in order to equalize the wear of the electrode tip when performing electric discharge machining using a cylindrical electrode for electric discharge machining. Furthermore, using a small-diameter cylindrical electric discharge machining electrode, a hole having a diameter larger than the electrode diameter is drilled in the workpiece, or using an inexpensive tubular electric discharge machining electrode. In order to perform drilling or pocket machining on a workpiece without leaving a gap, it was devised for the purpose of revolving while rotating (spinning) the electrode, and is already known in the field of die-sinking electric discharge machines.

本実施形態においては、この電極回転機構が有する電極の回転(自転)機能を、バルブシート部102の各箇所に炭化物を平均的に積層させて皮膜形成のプロセスを安定化させ、加工電圧や加工電流およびパルス幅やデューティ比等の条件を高パワー側に設定して従来と同等の面粗度や形状誤差を得るために流用する。   In the present embodiment, the electrode rotation mechanism (rotation) function of the electrode rotation mechanism stabilizes the film formation process by stacking carbides on each part of the valve seat portion 102 on average, thereby enabling processing voltage and processing The conditions such as current, pulse width, duty ratio, etc. are set on the high power side and used to obtain the same surface roughness and shape error as in the prior art.

ワークのセッティング等の段取りに関しては前記と同様であり、加工対象となるシリンダヘッド101は、バルブシート部102を上方に向けてバルブシート皮膜形成用圧粉体電極25の圧粉体電極部26に対向させた状態で図5(a)のようにして放電加工槽23内に設置され、放電加工槽23に満たされた加工液(油)24によってバルブシート皮膜形成用圧粉体電極25とシリンダヘッド101との間が絶縁される。   The setup for workpiece setting and the like is the same as described above, and the cylinder head 101 to be machined is directed to the green compact electrode portion 26 of the green compact electrode 25 for forming the valve seat film with the valve seat portion 102 facing upward. In the state of being opposed to each other, as shown in FIG. 5 (a), the green compact electrode 25 for forming the valve seat film and the cylinder are installed in the electric discharge machining tank 23 by the machining liquid (oil) 24 filled in the electric discharge machining tank 23. The head 101 is insulated.

この実施形態のシリンダヘッド101はアルミ合金製であり、バルブシート皮膜形成用圧粉体電極25の圧粉体電極部26には、Al,Zn,Sn,Cuと炭化して硬質の炭化物を生成するTi,Nb,V,Cr,Mn,Zr,Mo,W,Hf,Ta,Co,Niの金属粉末を混合した圧粉体を使用し、図5(a)の構成に従って油中放電を行うことで、バルブシート部102に耐磨耗性に優れた炭化チタンを主成分とする硬質のバルブシート皮膜を形成した。加工用のパルス電源に設定した電源条件と電極回転機構の駆動条件を表2に示す。   The cylinder head 101 of this embodiment is made of an aluminum alloy, and the green compact electrode portion 26 of the green compact electrode 25 for forming the valve seat film is carbonized with Al, Zn, Sn, Cu to produce a hard carbide. A green compact mixed with metal powders of Ti, Nb, V, Cr, Mn, Zr, Mo, W, Hf, Ta, Co, and Ni is used, and discharge in oil is performed according to the configuration of FIG. Thus, a hard valve seat film mainly composed of titanium carbide having excellent wear resistance was formed on the valve seat portion 102. Table 2 shows the power supply conditions set for the pulse power supply for machining and the drive conditions for the electrode rotation mechanism.

Figure 2007211351
Figure 2007211351

但し、バルブシート皮膜形成用圧粉体電極25とバルブシート部102との相対速度を示す0.5〜15mm/secの値は圧粉体電極部26の外周部のテーパ面の周速である。   However, the value of 0.5 to 15 mm / sec indicating the relative speed between the compact electrode 25 for forming the valve seat film and the valve seat portion 102 is the peripheral speed of the tapered surface of the outer peripheral portion of the compact electrode portion 26. .

一般に、バルブシート皮膜の形成速度を速くするためにパルス幅やデューティ比および放電電流等を大きめに設定するとバルブシート皮膜の面粗度が粗くなる等の問題が生じ、また、十分な面粗度を得るためにはパルス幅やデューティ比および放電電流等を小さ目に設定する必要があるため、バルブシート皮膜の形成速度と精度の両立を図ることは困難であるが、このようにしてバルブシート皮膜形成用圧粉体電極25を回転(自転)させながら表2に示されるような条件で圧粉体電極部26の外周形状(テーパ面)とバルブシート部102との間で間欠的に絶縁破壊を励起し、この際に生じる放電エネルギーによって圧粉体電極部26の圧粉体成分を溶融し、放電加工槽23中の加工液(油)24の炭素原子と反応させ、硬質の炭化物を生成してバルブシート部102に移着させて積層することで、高精度の面粗度と一様な組成を有する炭化チタンのバルブシート皮膜を比較的短時間のうちにバルブシート部102上に形成することができるようになる。   In general, if the pulse width, duty ratio, discharge current, etc. are set large to increase the speed of forming the valve seat film, problems such as rough surface roughness of the valve seat film occur, and sufficient surface roughness Since it is necessary to set the pulse width, duty ratio, discharge current, etc. to a small value in order to obtain the same, it is difficult to achieve both the formation speed and accuracy of the valve seat film. Breaking down intermittently between the outer peripheral shape (tapered surface) of the green compact electrode portion 26 and the valve seat portion 102 under the conditions shown in Table 2 while rotating (rotating) the green compact electrode 25 for forming. The green compact component of the green compact electrode portion 26 is melted by the discharge energy generated at this time, and reacted with carbon atoms of the working fluid (oil) 24 in the electric discharge machining tank 23 to produce hard carbides. Then, a valve seat film of titanium carbide having a highly accurate surface roughness and a uniform composition is formed on the valve seat portion 102 in a relatively short time by transferring and laminating to the valve seat portion 102. Will be able to.

つまり、圧粉体電極部26とバルブシート部102との間に生じる放電自体は分散的なものであっても、圧粉体電極部26自体を回転(自転)させることで、この分散的な放電がバルブシート部102上の各個所で頻繁に平均的に発生するようになるので、全体として、バルブシート部102上の全域に亘って均等に炭化物の皮膜が形成されるのである。また、これによりバルブシート皮膜の表面が多孔質状に荒れるといった弊害も解消される。   In other words, even if the discharge itself generated between the green compact electrode part 26 and the valve seat part 102 is dispersive, by rotating (spinning) the green compact electrode part 26 itself, Since electric discharge frequently occurs at various locations on the valve seat portion 102 on average, a carbide film is uniformly formed over the entire area on the valve seat portion 102 as a whole. This also eliminates the adverse effect that the surface of the valve seat film becomes porous.

但し、バルブシート皮膜形成用圧粉体電極25の回転数は皮膜の形成対象となるバルブシート部102の大きさ(直径)に応じて調整する必要があり、回転数が高すぎるとバルブシート部102上での放電点(絶縁が破壊される箇所)が定まり難くなるためにバルブシート皮膜の形成が困難となり、また、回転数が低いと面粗度が粗くなる弊害が生じるため、バルブシート皮膜形成用圧粉体電極25とバルブシート部102との相対速度が0.5〜15mm/secとなるように電極回転機構の回転速度を設定することが望ましい。   However, the rotational speed of the green compact electrode 25 for forming the valve seat film needs to be adjusted according to the size (diameter) of the valve seat part 102 to be coated, and if the rotational speed is too high, the valve seat part Since it is difficult to determine the discharge point (where insulation is broken) on 102, it is difficult to form a valve seat film, and when the number of revolutions is low, the surface roughness becomes rough. It is desirable to set the rotation speed of the electrode rotation mechanism so that the relative speed between the forming green compact electrode 25 and the valve seat portion 102 is 0.5 to 15 mm / sec.

以上に述べたように、バルブシート皮膜形成用圧粉体電極25を回転(自転)させながら放電を行ってバルブシート皮膜を形成することでバルブシート皮膜の面粗度と平滑性が保証されるので、加工電圧や加工電流およびパルス幅やデューティ比等の条件を従来以上に高パワー側に設定しても最終的に従来と同等の面粗度や形状誤差を維持することができる。   As described above, the surface roughness and smoothness of the valve seat film are ensured by forming the valve seat film by discharging while rotating (spinning) the green electrode 25 for forming the valve seat film. Therefore, even if conditions such as the machining voltage, machining current, pulse width, and duty ratio are set on the higher power side than before, it is possible to maintain the same surface roughness and shape error as in the past.

つまり、加工電圧や加工電流およびパルス幅やデューティ比等の条件を高パワー側に設定してバルブシート皮膜の形成速度を高速化することが可能であり、全体としての処理操作が高速化される結果、シリンダヘッドの量産化が容易となる。   In other words, conditions such as machining voltage, machining current, pulse width, duty ratio, etc. can be set on the high power side to speed up the formation of the valve seat film, thereby speeding up the overall processing operation. As a result, mass production of the cylinder head is facilitated.

また、全体としての処理操作の所要時間が従来と同等でよいのであれば、従来以上の面粗度と形状精度を獲得することができるので、より精密なバルブシート皮膜の形成にも適する。   Further, if the time required for the processing operation as a whole can be the same as that of the prior art, it is possible to obtain surface roughness and shape accuracy higher than those of the prior art, which is suitable for forming a more precise valve seat film.

次に、バルブシート皮膜形成用圧粉体電極を回転(自転)させると共に公転させながらバルブシート皮膜を形成するようにしたバルブシート皮膜形成方法の実施形態について図5(b)を参照して説明する。   Next, an embodiment of a valve seat film forming method in which the valve seat film is formed while rotating (rotating) and revolving the green electrode for forming the valve seat film will be described with reference to FIG. To do.

この場合も、バルブシート皮膜形成用圧粉体電極28としては、図1(a),図1(b)で示したようなバルブシート皮膜形成用圧粉体電極、または、図2(a)で示したようなバルブシート皮膜形成用圧粉体電極、更には、図6(a),図6(b)で示したような従来型のバルブシート皮膜形成用圧粉体電極を利用することが可能である。   Also in this case, as the green compact electrode 28 for forming the valve seat film, the green compact electrode for forming the valve seat film as shown in FIGS. 1 (a) and 1 (b), or FIG. 2 (a). And a green electrode for forming a valve seat film as shown in FIG. 6 and a conventional green electrode for forming a valve seat film as shown in FIGS. Is possible.

バルブシート皮膜形成用圧粉体電極28は、シリンダヘッド101側に形成されたバルブシート部102の斜面に倣った外周形状(テーパ面)を備え、かつ、バルブシート部102の直径よりも小さな直径を有する圧粉体電極部29と、放電加工機のサーボヘッドから圧粉体電極部29に通電するための導電性支持部材30とによって実質的に一体に形成され、放電加工機のサーボヘッドに固設された電極回転機構に電極ホルダを介して取り付けられている。   The green compact electrode 28 for forming the valve seat film has an outer peripheral shape (tapered surface) following the slope of the valve seat portion 102 formed on the cylinder head 101 side, and has a diameter smaller than the diameter of the valve seat portion 102. And a conductive support member 30 for energizing the green compact electrode portion 29 from the servo head of the electric discharge machine, and the servo head of the electric discharge machine. It is attached to a fixed electrode rotation mechanism via an electrode holder.

この実施形態のバルブシート皮膜形成方法は、直径の小さなバルブシート皮膜形成用圧粉体電極28を使用して大きな直径を有するバルブシート部102の斜面にバルブシート皮膜を形成する際に使用するためのもので、その目的は、前述の電極回転機構を利用して、バルブシート皮膜形成用圧粉体電極28を回転(自転)させ、かつ、圧粉体電極部29の外周形状(テーパ面)とバルブシート部102の斜面との間に所定の放電ギャップが維持されるようにしてバルブシート皮膜形成用圧粉体電極28を公転させることで達成される。   The valve seat film forming method of this embodiment is used when a valve seat film is formed on the slope of the valve seat portion 102 having a large diameter by using the compacted electrode 28 for forming a valve seat film having a small diameter. The purpose is to rotate (rotate) the green compact electrode 28 for forming the valve seat film using the above-mentioned electrode rotating mechanism, and to form the outer peripheral shape (tapered surface) of the green compact electrode portion 29. This is achieved by revolving the green compact electrode 28 for forming the valve seat film such that a predetermined discharge gap is maintained between the valve seat 102 and the slope of the valve seat portion 102.

仮に、図5(b)の例に示されるように、バルブシート部102の直径がDでバルブシート部102の斜面の傾きがθ、また、圧粉体電極部29の外周形状(テーパ面)の直径がdで所望される放電ギャップがSであるとすれば、バルブシート部102の中心から半径r=(D−d)/2−(S/sinθ)の円に沿ってバルブシート皮膜形成用圧粉体電極28の回転中心を公転させるようにすればよい。   As shown in the example of FIG. 5B, the diameter of the valve seat portion 102 is D, the slope of the inclined surface of the valve seat portion 102 is θ, and the outer peripheral shape (tapered surface) of the green compact electrode portion 29. If the desired discharge gap is S and the desired discharge gap is S, the valve seat film is formed along a circle having a radius r = (D−d) / 2− (S / sin θ) from the center of the bulb seat portion 102. The rotation center of the green compact electrode 28 may be revolved.

このようにして、バルブシート皮膜形成用圧粉体電極28を自転させると共に公転させることで、直径の小さなバルブシート皮膜形成用圧粉体電極28を使用した場合であっても、より大きな直径を有するバルブシート部102の斜面との間で一定の放電ギャップを保ってバルブシート皮膜を形成することが可能となる。この際、バルブシート皮膜形成用圧粉体電極28自体が回転(自転)しているので圧粉体電極部29の圧粉体成分が部分的に消耗する心配はなく、また、この回転により図5(a)の実施形態と同様にしてバルブシート部102の各箇所に炭化物が平均的に積層されるので、面粗度と平滑性に優れたバルブシート皮膜を比較的短時間のうちに形成することができる。   Thus, by rotating and revolving the compacted electrode 28 for forming the valve seat film, a larger diameter can be obtained even when the compacted electrode 28 for forming the valve seat film having a small diameter is used. The valve seat film can be formed while maintaining a constant discharge gap with the slope of the bulb seat portion 102 having the same. At this time, since the green compact electrode 28 for forming the valve seat film is rotating (autorotating), there is no concern that the green compact component of the green compact electrode portion 29 is partially consumed. In the same manner as in the embodiment of 5 (a), carbide is averagely laminated at each location of the valve seat portion 102, so that a valve seat film excellent in surface roughness and smoothness is formed in a relatively short time. can do.

つまり、バルブシート部102の斜面の傾きさえ一致していればバルブシート皮膜形成用圧粉体電極28を交換することなくバルブシート部102の直径が相違する別の仕様のシリンダヘッド101のバルブシート部102に対してバルブシート皮膜の形成作業を継続して行うことが可能であり、電極の交換に関連する段取り作業の所要時間が短縮され、全体としての処理操作が高速化されることになる。   That is, the valve seat of the cylinder head 101 of another specification in which the diameter of the valve seat portion 102 is different without replacing the green compact electrode 28 for forming the valve seat film as long as the slopes of the slopes of the valve seat portion 102 match. It is possible to continue the formation work of the valve seat film on the part 102, the time required for the setup work related to the electrode replacement is shortened, and the overall processing operation is speeded up. .

バルブシート皮膜形成用圧粉体電極28とバルブシート部102との相対速度は前記と同様に0.5〜15mm/secとすることが望ましいが、この場合の相対速度はバルブシート皮膜形成用圧粉体電極28自体の回転(自転)による外周部の周速にバルブシート皮膜形成用圧粉体電極28の公転による外周部の周速を加えた値〔公転方向と回転(自転)方向が一致している場合〕、または、バルブシート皮膜形成用圧粉体電極28自体の回転(自転)による外周部の周速からバルブシート皮膜形成用圧粉体電極28の公転による外周部の周速を減じた値の絶対値〔公転方向と回転(自転)方向が逆の場合〕である。   The relative speed between the compact electrode 28 for forming the valve seat film and the valve seat portion 102 is preferably 0.5 to 15 mm / sec as described above. In this case, the relative speed is the pressure for forming the valve seat film. The value obtained by adding the peripheral speed of the outer peripheral portion due to the revolution of the powder electrode 28 for forming the valve seat film to the peripheral speed of the outer peripheral portion due to the rotation (rotation) of the powder electrode 28 itself [the revolution direction and the rotation (rotation) direction are the same. Or the peripheral speed of the outer peripheral portion by the revolution of the valve seat film forming powder electrode 28 from the peripheral speed of the outer periphery of the powder electrode 28 for forming the valve seat film by rotation (spinning). The absolute value of the subtracted value [when the revolution direction and the rotation (spinning) direction are reversed].

バルブシート皮膜形成用圧粉体電極の構造について例示した断面図であり、図1(a)は非導電性支持部材をセラミックスで形成した場合の例、また、図1(b)は非導電性支持部材を導電性支持部材の縮径部と非導電性皮膜とで形成した例である。It is sectional drawing illustrated about the structure of the compacting electrode for valve seat film formation, FIG.1 (a) is an example at the time of forming a nonelectroconductive support member with ceramics, and FIG.1 (b) is nonelectroconductive. This is an example in which the support member is formed of a reduced diameter portion of the conductive support member and a non-conductive film. バルブシート皮膜形成用圧粉体電極の交換に要する段取り作業について示したもので、図2(a)はバルブシート皮膜形成用圧粉体電極の構造について示した図、図2(b)はバルブシート皮膜形成用圧粉体電極の製造工程について示した図である。FIG. 2 (a) is a diagram showing the structure of a green compact electrode for forming a valve seat film, and FIG. It is the figure shown about the manufacturing process of the green compact electrode for sheet membrane formation. バルブシート皮膜を形成する際に使用される型彫り放電加工機について放電加工槽の周辺の構造を簡略化して示した模式図である。It is the schematic diagram which simplified and showed the structure of the periphery of an electric discharge machining tank about the die-sinking electric discharge machine used when forming a valve seat membrane | film | coat. 電極交換作業の工程について示した概念図である。It is the conceptual diagram shown about the process of the electrode replacement | exchange operation | work. 本発明のバルブシート皮膜形成方法を適用して皮膜形成のプロセスを相対的に高速化することで全体としての処理操作を高速化してシリンダヘッドの量産化を図った場合の実施形態について示したもので、図5(a)はバルブシート皮膜形成用圧粉体電極を回転させて皮膜の面粗度と平滑性を保証した状態で放電条件を高パワー側に設定して全体としての処理操作を高速化した例、図5(b)はバルブシート皮膜形成用圧粉体電極を回転と同時に公転させて大径のバルブシート部への皮膜形成に対処した例である。The embodiment in which the valve seat film forming method of the present invention is applied to relatively speed up the film forming process to speed up the overall processing operation and achieve mass production of cylinder heads. FIG. 5 (a) shows the overall processing operation by rotating the green electrode for forming the valve seat film to ensure the surface roughness and smoothness of the film and setting the discharge condition to the high power side. FIG. 5 (b) shows an example of dealing with film formation on a large-diameter valve seat portion by revolving the green electrode for forming the valve seat film simultaneously with rotation. バルブシート皮膜形成用圧粉体電極の従来例について示した断面図で、図6(a)は最初に開発されたバルブシート皮膜形成用圧粉体電極、また、図6(b)は改良を施したバルブシート皮膜形成用圧粉体電極である。FIG. 6A is a cross-sectional view showing a conventional example of a green electrode for forming a valve seat film. FIG. 6A is a first developed green electrode for forming a valve seat film, and FIG. 6B is an improvement. It is a green electrode for forming a valve seat film.

符号の説明Explanation of symbols

1 バルブシート皮膜形成用圧粉体電極
2 圧粉体電極部
3 導電性支持部材
3a 孔
3b 先端面
4 非導電性支持部材
4a 外周面
5 孔
6 バルブシート皮膜形成用圧粉体電極
7 圧粉体電極部
8 導電性支持部材
8b 先端面
9 縮径部
10 非導電性皮膜
11 非導電性支持部材
11a 外周面
12 孔
13 バルブシート皮膜形成用圧粉体電極
14 圧粉体電極部
14’ 圧粉体
15 導電性支持部材
15’ 磁性粉末
16 圧粉体成形金型
17 押圧部材
18 サーボヘッド
19 パルス電源
20 電極ホルダ
21 電磁チャック
22 テーブル
23 放電加工槽
24 加工液
25 バルブシート皮膜形成用圧粉体電極
26 圧粉体電極部
27 導電性支持部材
28 バルブシート皮膜形成用圧粉体電極
29 圧粉体電極部
30 導電性支持部材
100 バルブシート皮膜形成用圧粉体電極(従来例)
101 シリンダヘッド
102 バルブシート部
103 圧粉体電極部(従来例)
104 導電性支持部材(従来例)
105 導電性の接着剤
106 バルブシート皮膜形成用圧粉体電極(従来例)
107 導電性支持部材(従来例)
107a 縮径部(従来例)
108 ポート
DESCRIPTION OF SYMBOLS 1 Compact electrode for valve seat film formation 2 Compact electrode part 3 Conductive support member 3a Hole 3b Tip surface 4 Non-conductive support member 4a Outer peripheral surface 5 Hole 6 Compact sheet electrode 7 for forming valve seat film Body electrode part 8 Conductive support member 8b Tip face 9 Reduced diameter part 10 Non-conductive coating 11 Non-conductive support member 11a Outer peripheral face 12 Hole 13 Compact electrode 14 for forming valve seat film Compact electrode 14 'Pressure Powder 15 Conductive support member 15 ′ Magnetic powder 16 Compact molding die 17 Press member 18 Servo head 19 Pulse power source 20 Electrode holder 21 Electromagnetic chuck 22 Table 23 Electric discharge machining tank 24 Processing fluid 25 Compact for forming valve seat film Body electrode 26 Compact electrode part 27 Conductive support member 28 Compact sheet electrode for forming valve seat film 29 Compact electrode part 30 Conductive support member 100 Compact for forming valve sheet film Electrode (conventional example)
101 Cylinder Head 102 Valve Seat Part 103 Compact Electrode Part (Conventional Example)
104 Conductive support member (conventional example)
105 conductive adhesive 106 green sheet electrode for valve seat film formation (conventional example)
107 conductive support member (conventional example)
107a Reduced diameter part (conventional example)
108 ports

Claims (2)

シリンダヘッドのバルブシートリングに代わるバルブシート皮膜を放電エネルギーを利用してシリンダヘッドのバルブシート部に形成するバルブシート皮膜形成方法であって、
前記バルブシート部の形状に倣った外周形状を備えたバルブシート皮膜形成用圧粉体電極を回転させながら前記外周形状とバルブシート部との間で間欠的に絶縁破壊を励起し、この際に生じる放電エネルギーによって前記バルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融し、放電加工槽中の加工液の炭素原子と反応させ、硬質の炭化物を生成して前記バルブシート部に移着させて積層することを特徴としたバルブシート皮膜形成方法。
A valve seat film forming method for forming a valve seat film instead of a valve seat ring of a cylinder head on a valve seat part of a cylinder head using discharge energy,
While rotating the green compact electrode for forming the valve seat film having the outer peripheral shape following the shape of the valve seat portion, the dielectric breakdown is intermittently excited between the outer peripheral shape and the valve seat portion. The green compact component of the green compact electrode for forming the valve seat film is melted by the generated discharge energy and reacted with the carbon atoms of the working fluid in the electric discharge machining tank to form hard carbides and transferred to the valve seat portion. A valve seat film forming method characterized in that it is laminated by laminating.
シリンダヘッドのバルブシートリングに代わるバルブシート皮膜を放電エネルギーを利用してシリンダヘッドのバルブシート部に形成するバルブシート皮膜形成方法であって、
前記バルブシート部の斜面に倣った外周形状を備えたバルブシート皮膜形成用圧粉体電極を回転させると共に、前記外周形状と前記バルブシート部の斜面との間に所定の放電ギャップが維持されるようにして前記バルブシート皮膜形成用圧粉体電極を公転させながら、前記外周形状とバルブシート部との間で間欠的に絶縁破壊を励起し、この際に生じる放電エネルギーによって前記バルブシート皮膜形成用圧粉体電極の圧粉体成分を溶融し、放電加工槽中の加工液の炭素原子と反応させ、硬質の炭化物を生成して前記バルブシート部に移着させて積層することを特徴としたバルブシート皮膜形成方法。
A valve seat film forming method for forming a valve seat film instead of a valve seat ring of a cylinder head on a valve seat part of a cylinder head using discharge energy,
A green electrode for forming a valve seat film having an outer peripheral shape following the inclined surface of the valve seat portion is rotated, and a predetermined discharge gap is maintained between the outer peripheral shape and the inclined surface of the valve seat portion. Thus, while revolving the green compact electrode for forming the valve seat film, the dielectric breakdown is intermittently excited between the outer peripheral shape and the valve seat portion, and the valve seat film is formed by the discharge energy generated at this time. The green compact component of the green compact electrode for use is melted and reacted with carbon atoms in the machining fluid in the electric discharge machining tank to form hard carbides that are transferred to the valve seat portion and laminated. Valve seat film forming method.
JP2007140434A 2007-05-28 2007-05-28 Method of forming valve seat coating film Pending JP2007211351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140434A JP2007211351A (en) 2007-05-28 2007-05-28 Method of forming valve seat coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140434A JP2007211351A (en) 2007-05-28 2007-05-28 Method of forming valve seat coating film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003070125A Division JP3991893B2 (en) 2003-03-14 2003-03-14 Green compact electrode for valve seat film formation

Publications (1)

Publication Number Publication Date
JP2007211351A true JP2007211351A (en) 2007-08-23

Family

ID=38490039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140434A Pending JP2007211351A (en) 2007-05-28 2007-05-28 Method of forming valve seat coating film

Country Status (1)

Country Link
JP (1) JP2007211351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967720B1 (en) * 2006-12-07 2010-07-05 캐논 가부시끼가이샤 Image processing apparatus, printing apparatus and image processing method
WO2011016516A1 (en) * 2009-08-06 2011-02-10 株式会社Ihi Method for closing hole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152533A (en) * 1980-04-23 1981-11-26 Mitsubishi Electric Corp Electric discharge machining method
JPH068059A (en) * 1992-06-30 1994-01-18 Fanuc Ltd Electric discharge machine
JPH11229158A (en) * 1998-02-16 1999-08-24 Mitsubishi Electric Corp Electric discharge surface treatment and device therefor
JP2000042838A (en) * 1998-07-31 2000-02-15 Mitsubishi Electric Corp Press working die and surface treatment method of press working die
JP2002370127A (en) * 2001-06-15 2002-12-24 Suzuki Motor Corp Electrode for surface treatment of aluminum alloy and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152533A (en) * 1980-04-23 1981-11-26 Mitsubishi Electric Corp Electric discharge machining method
JPH068059A (en) * 1992-06-30 1994-01-18 Fanuc Ltd Electric discharge machine
JPH11229158A (en) * 1998-02-16 1999-08-24 Mitsubishi Electric Corp Electric discharge surface treatment and device therefor
JP2000042838A (en) * 1998-07-31 2000-02-15 Mitsubishi Electric Corp Press working die and surface treatment method of press working die
JP2002370127A (en) * 2001-06-15 2002-12-24 Suzuki Motor Corp Electrode for surface treatment of aluminum alloy and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967720B1 (en) * 2006-12-07 2010-07-05 캐논 가부시끼가이샤 Image processing apparatus, printing apparatus and image processing method
WO2011016516A1 (en) * 2009-08-06 2011-02-10 株式会社Ihi Method for closing hole
CN102471894A (en) * 2009-08-06 2012-05-23 株式会社Ihi Method for closing hole
RU2496914C1 (en) * 2009-08-06 2013-10-27 АйЭйчАй КОРПОРЕЙШН Method of bore stopping
JP5354016B2 (en) * 2009-08-06 2013-11-27 株式会社Ihi How to close a hole

Similar Documents

Publication Publication Date Title
KR0154178B1 (en) Method and apparatus for surface treatment by electrical discharge
US20070246372A1 (en) Electrochemical Machining Tool and Method for Machining a Product Using the Same
EP2170546B1 (en) Apparatus and method for hybrid machining a contoured, thin-walled workpiece
SE1450461A1 (en) Hybrid cutting tools, chip transporting part and process for making a cutting tool
EP2489456A2 (en) Electroerosion machining systems and methods
KR102260510B1 (en) The method Cathode drum and Cathode drum for electrolytic deposition
JP2005224865A (en) Ultrasonic spindle working machine and tip unit used for the same
Yan et al. An experimental study on micro wire-EDM of polycrystalline diamond using a novel pulse generator
CN102069243B (en) Cathode for electrolysis mechanical combined machine tool
CN109551245A (en) Arc discharge microexplosion processing and turning composite processing machine tool
JP3991893B2 (en) Green compact electrode for valve seat film formation
JP2007211351A (en) Method of forming valve seat coating film
US20080142188A1 (en) Production Method of Consumable Electrode for Consumable Electrode Arc Remelting and End Face Cutter for Use Therein
CN109702281B (en) Electric arc grinding composite tool electrode
US20100126877A1 (en) Electrochemical grinding electrode, and apparatus and method using the same
CN212495834U (en) Device for grinding micro-groove on surface by electric spark
US10717140B2 (en) Device for the electrochemical processing of a metal workpiece
TWI594826B (en) A hybrid micro electrical discharge machining and precise grinding machine table
CN112809108B (en) Ion/molecule oscillation discharge machining device and machining method
CN201399632Y (en) Spark machine workbench
CN209698455U (en) Arc discharge microexplosion processing and turning composite processing machine tool
JP2006213004A (en) Member for injection molding machine and film forming method
JP4333037B2 (en) Discharge surface treatment method and apparatus, and discharge surface treatment electrode
GB2586497A (en) Plasma constriction nozzle
CN114571247B (en) Electrochemical discharge-grinding combined machining tool and using method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A131 Notification of reasons for refusal

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406