WO2000006332A1 - Die and surface treating method for die - Google Patents
Die and surface treating method for die Download PDFInfo
- Publication number
- WO2000006332A1 WO2000006332A1 PCT/JP1999/002215 JP9902215W WO0006332A1 WO 2000006332 A1 WO2000006332 A1 WO 2000006332A1 JP 9902215 W JP9902215 W JP 9902215W WO 0006332 A1 WO0006332 A1 WO 0006332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- die
- electrode
- hard coating
- mold
- cutting edge
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
Definitions
- the present invention relates to a metal mold such as a press die used for shearing such as punching and punching, a die for drawing, a die used for extrusion, and a die for metal processing such as a die for extrusion.
- a metal mold such as a press die used for shearing such as punching and punching, a die for drawing, a die used for extrusion, and a die for metal processing such as a die for extrusion.
- the present invention relates to a mold surface treatment method.
- Pressing dies used for shearing such as drilling and punching require high wear resistance, especially at the cutting edge, in order to obtain the required durability (mold life), and are used for drawing and extrusion.
- the drawing die and the extrusion die require high wear resistance on the inner peripheral surface of the die hole, which is the processing surface.
- the wear resistance is improved by heat treatment with a specified hardness.
- ceramic-based hard materials are made of PVD (physical vapor deposition), CVD ( Coating methods such as chemical vapor deposition have also been proposed, but they have not been sufficiently effective.
- the present invention has been made in order to solve the above-mentioned problems, and even if the mold is made of tool steel as a base material, it is an excellent mold that is at least as good as a cemented carbide mold. It is an object of the present invention to provide a long-lasting and high-precision mold and a surface treatment method for the mold. Disclosure of the invention
- the die according to the present invention is characterized in that the electrode-depleted molten material of the discharge electrode or the molten material generated by the discharge energy generated by the electric discharge machining in the liquid is formed on the side surface of the cutting edge of the press-working die or on the inner peripheral surface of the die hole of the drawing die.
- the hard coating is formed on the side surface of the cutting edge or the inner peripheral surface of the die hole by the electrode consumable molten material or its reactant, and the hard coating is finished by electric discharge machining or grinding. Things.
- a tool steel as a base material wherein the hard coating is WC, Ti C, Z r C , VC, Nb C, carbides such as Ta C, T i B 2, Z r B 2 , etc. It is based on a simple substance or a combination of nitrides such as boride, TiN and TrN.
- the surface treatment method of the mold according to the present invention is characterized in that a predetermined discharge gap is formed between the discharge electrode and the side surface of the cutting edge of the press working die or the inner peripheral surface of the die hole of the drawing / extruding die in the liquid.
- the discharge electrode generates a discharge between the side surface of the cutting edge or the inner peripheral surface of the die hole and the discharge electrode, and the molten material consumed by the electrode generated by the discharge energy or the reactant thereof is discharged to the side surface of the cutting edge or the inner peripheral surface of the die hole.
- the electrode-consuming molten material is formed on the side surface of the cutting edge or the inner peripheral surface of the die hole, and a hard film is formed by a reaction product of the electrode. After the film is formed, the surface layer of the hard film is subjected to electric discharge machining. Is to remove the blade or die hole to the final dimensions by grinding.
- the hard coating is WC :, Ti C :, Zr C, VC, NbC, carbides such as T a C, Ti B 2, Zr B boride such as 2, T
- WC WC
- Ti C Zr C
- VC VC
- NbC NbC
- carbides such as T a C
- Ti B 2 Zr B boride
- T This is based on a single nitride or a combination of nitrides such as iN and TrN.
- the surface treatment method of the mold according to the next invention is characterized in that the discharge electrode is a green compact formed by compression molding a hard metal powder such as Ti, Zr, V, Nb, Ta, or a powder of a hydride thereof.
- a hard coating is formed using electrodes or metal electrodes made of these metals, and using EDM oil containing HC as a machining fluid.
- the surface treatment method of the mold according to the next invention has the same shape as the shape of the die hole and the depth of the die hole.
- a groove having the same depth as that of the die material is formed in the die material, a start hole for wire electric discharge machining is formed in the groove, and the hard coating is formed on the inner surface of the groove.
- the die through hole is machined in accordance with the groove shape by wire electric discharge machining starting from the start hole, and at the same time, the surface layer portion of the hard coating is removed, and the blade portion is finished to the final dimensions.
- FIG. 1 is a configuration diagram showing a first embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a mold according to the present invention
- FIG. In the surface treatment method a perspective view showing the formation of a modified layer on the side of the cutting edge of a die using a simple shape electrode
- FIG. 2 (b) shows the finishing process by wire electric discharge machining
- FIG. 3 is a perspective view
- FIGS. 3 (a) to (f) are explanatory views showing processing steps of a mold surface treatment method according to the present invention
- FIG. 4 is a mold surface treatment according to the present invention.
- FIGS. 5A and 5B are perspective views showing an embodiment in which the method is applied to a punching die.
- FIGS. 5A and 5B are perspective views showing an embodiment in which the method is applied to a punching die.
- 5A and 5B show an embodiment in which the die surface treatment method according to the present invention is applied to a drawing die.
- 6 (a) and 6 (b) are cross-sectional views showing a method of extruding a mold surface according to the present invention. Is a cross-sectional view showing the embodiment applied to engineering die.
- FIG. 1 shows a first embodiment of a surface treatment apparatus used for carrying out a mold surface treatment method according to the present invention.
- This surface treatment device is a kind of electric discharge machine and has a superimposed structure of an X-axis table 1 movable in the horizontal X-axis direction and a Y-axis table 3 movable in the horizontal Y-axis direction.
- the work tank 5 is fixed on the work table 5.
- a processing material mounting table 9 is provided in the processing tank 7, and a press processing die as a processing material, in the illustrated example, a die mold 100 is mounted and fixed on the processing material mounting table 9. You.
- a processing liquid is supplied into the processing tank 7 from a processing liquid supply device (not shown), and the die 100 on the workpiece mounting table 9 is immersed in the processing liquid.
- An electrode support head i 1 movable in the vertical Z-axis direction is provided above the processing tank 7, and a rotary electrode support device 13 is provided below the electrode support head i 1. ing.
- the electrode support device 13 exchangeably supports the simple shape electrode 15 by a thin rod, and can rotate the simple shape electrode 15 around the electrode axis.
- the simple shape electrode 15 has a round bar shape, and the outer diameter of the electrode is selected according to the size of the material to be processed. When the material to be processed is a die 100, the dimension may be set so that the simple shape electrode 15 is included in the die hole 102.
- the X-axis table 1, the Y-axis table 3, and the electrode support head 11 are positioned and driven by the X-axis servo motor 17, the Y-axis servo motor 19, and the Z-axis servo motor 21, respectively.
- the sub-bodies 17 and 17, the Y-axis sub-bodies 19 and the Z-axis sub-bodies 21 are determined by the respective axes output by the locus movement control unit 25 of the numerical controller 23. Position controlled.
- the trajectory movement control unit 25 of the numerical controller 23 receives the trajectory movement data (electrode path information) from the electrode movement trajectory generation CAM device 27, and based on the trajectory movement data, the X-axis, Y-axis, and Z-axis. Generate a position alignment for each axis.
- the die hole 102 is formed by grinding or wire electric discharge machining.
- the die 100 made of tool steel, which has already been formed is set on the work table 9 and the machining fluid is stored in the processing tank 7.
- the die 100 on the workpiece mounting table 9 is immersed in the working fluid.
- a predetermined discharge gap g (third part) is formed by cutting the cutting edge side surface 104 provided by the inner peripheral surface of the die hole 100 of the die 100 and the simple shape electrode 15 into a predetermined shape.
- Figure A pulse voltage is applied between the cutting edge side surface 104 and the simple shape electrode 15 so that a pulse discharge is generated.
- the electrode consumable molten material generated by the discharge energy or the reaction product of the electrode fluid and the machining fluid component adheres to the cutting edge side surface 104 connected to the cutting edge 106 formed by the opening edge of the die hole 102.
- a hard film 108 (see FIG. 2) of the electrode consumable molten material or its reactant is formed on the cutting edge side surface 104 in a relatively wide area.
- the hard coating 108 is a hard coating having excellent wear resistance.
- Examples of the material of the hard coating 108 include carbides such as WC, TiC, ZrC :, VC, TaC, and Ti. B 2, Z r B 2, etc. borides, T i N, single nitrides such as T r N, or O shall the like combinations thereof.
- a compacted electrode obtained by compression molding a hard metal powder such as Ti, Zr, V, Ta, etc., or a hydride powder thereof, or by using these metals
- a metal electrode an electric discharge machining oil containing HC as the machining fluid, and the reaction between the electrode material and HC in the electric discharge machining oil, T i C :, Z r C ;, VC :, T a C
- T i C an electric discharge machining oil containing HC as the machining fluid, and the reaction between the electrode material and HC in the electric discharge machining oil, T i C :, Z r C ;, VC :, T a C
- a hard coating made of such a metal carbide can be efficiently and satisfactorily formed on the cutting edge side surface 104.
- the method of forming the hard coating i 08 by the pulse discharge as described above conforms to a method called a discharge surface treatment method by gap discharge in liquid.
- This discharge surface treatment method is disclosed in No. 6 26, Japanese Unexamined Patent Application Publication No. Hei 8-2585741, Japanese Unexamined Patent Application Publication No. 9-198928, and Japanese Unexamined Patent Application Publication No. ing.
- the hard coating 108 is formed uniformly in a plane over the entire circumference of the cutting edge side surface 104.
- the gap between the j-side 104 on the cutting edge side and the simple shaped electrode 15 is maintained at a predetermined value, and the fine simple shaped electrode 15 and the die to be processed are the die 1
- This relative displacement causes a hard coating 10 on the entire circumference of the cutting edge side surface 104. 8 can be formed.
- the relative displacement between the simple shape electrode 15 and the mold 100 following the cutting edge side shape can be performed by moving the X-axis table 1 in the X-axis direction and the Y-axis table 3 in the Y-axis direction. .
- the trajectory movement control unit 25 provided inside the numerical control device 23 has a simple shape electrode 15 for surface treatment based on the electrode path information created in advance by the CAM device 27 for electrode movement trajectory generation. Is performed, that is, drive control of the X-axis table 1 and the Y-axis table 3 is performed so that the locus movement of the simple shape electrode 15 traces the cutting edge side surface 104.
- the control of the simple shape electrode 15 in the Z-axis direction (depth direction) is made constant in accordance with the position of the cutting edge 106 in the Z-axis direction.
- FIG. 2 (a) shows a die for forming a long hole, and a hard coating 108 is formed on the entire periphery of the cutting edge side surface 104.
- the hard coating 108 is formed slightly thicker so that the dimension of the die hole is slightly smaller than the final dimension and a finishing allowance can be secured.
- the surface layer of the hard coating 108 is removed by wire electric discharge machining. Finish the die hole 102 and the blade to the final dimensions.
- the wire electrode 31 used in the wire electric discharge machining is made of an electrode material such as copper which causes relatively little electrode wear.
- the mold base material is a general tool steel, die machining such as die drilling is easily performed with high productivity.
- the surface layer of the hard coating 108 is removed by wire electric discharge machining, so that the die hole 102 and the blade are finished to the final dimensions, so that a high-precision die 100 And high-precision press working can be performed.
- a groove 112 having the same shape as the shape of the die hole and having the same depth as the die hole depth is formed in the die material 100a.
- a start hole 1 i0 for wire electric discharge machining is formed through the groove 1 12 and a hard coating 108 is formed on the inner surface of the groove 112.
- Die hole 1Q2 which is a through hole, is formed by wire electric discharge machining starting from hole 110, and at the same time, the surface layer of hard coating i08 is removed and the blade is finished to the final dimensions. it can.
- a start hole 110 for wire electric discharge machining is formed through a drill tool 51, and then, as shown in FIG. As shown in b), the groove 1 12 is machined by the end mill 53.
- the inner surface of the groove 112 is hard-coated by a discharge surface treatment method using a simple-shaped electrode 15 by a submerged-gap discharge.
- the wire electrode 31 is passed through the start hole 110, and wire electric discharge machining is started from the start hole 110 to form the groove.
- the die hole 102 which is a through hole, is machined according to the shape of 112, and at the same time, the surface layer of the hard coating 108 is removed, and the blade is finished to the final dimensions.
- a tapered back escape hole 114 can be formed.
- the cutting edge can be easily and reliably formed even in a die having a narrow width.
- the formation of the hard coating 108 as described above, the finishing of the hard coating 108, and as shown in FIG. 4, can also be applied to the cutting edge side 202 of the punch die 200. It can -To finish the outer diameter of the punch die 200 to the final dimensions by removing the surface layer of the hard coating 108 formed on the cutting edge side surface 202 of the die 200, it is necessary to use a die.
- the mold 100 it can be performed by wire electric discharge machining, but in addition to this, as shown in FIG. 4, the grinding process is performed by a grinding wheel 41 using a grinding machine. Can also be performed.
- the present invention can also be applied to the inner peripheral surface 402 of a die hole of an extrusion die 400.
- a hard coating 108 was formed on the inner peripheral surface 302 or 402 of the die hole by a discharge surface treatment method using gap discharge in liquid using the simple shape electrode 15 and the wire electrode 3 was formed.
- the surface layer of the hard coating 108 is removed by wire electric discharge machining (1), and the die hole is finished to the final dimensions.
- the discharge generated by the discharge energy by the submerged discharge machining on the side surface of the cutting edge of the press working die or the inner peripheral surface of the die hole of the drawing / extrusion die The electrode consumable molten material or its reactant adheres and accumulates on the electrode, and if the electrode consumable molten material is on the side of the cutting edge or the inner peripheral surface of the die hole, a hard film is formed by the reactant and the hard film is discharged. Since it is finished by machining or grinding, even if the tool steel is used as the base material, it exhibits the same or better mold life as the cemented carbide mold and high precision Press, bow ⁇ Punching and extrusion can be performed.
- a tool steel as a base material wherein the hard coating is WC :, T i C :, Z r C, VC :, N b C ;, T a carbide such as C, T i B 2 , boride such as Z r B 2, T i N , single nitrides such as T r N, or since it is due to a combination, making full use of special processing techniques that required when processing the cemented carbide alloy It can be manufactured with high productivity without requiring special know-how.
- the discharge due to the liquid gap discharge A hard coating is formed on the side surface of the cutting edge or on the inner peripheral surface of the die hole by the surface treatment method, and a hard coating made of the electrode consumable molten material or its reactant is formed. After the coating is formed, the surface layer of the hard coating is removed by electric discharge welding or grinding. Since the cutting edge or the die hole is finished to the final dimensions, even with a tool steel-based mold, it exhibits an excellent mold life equivalent to or better than that of a cemented carbide mold, and has a long life. An accurate mold can be obtained.
- the hard coating is WC ;, T i C, Z r C ;, VC, N b C :, T a carbide such as C, T i B 2, Z boride such as r B 2, T i N, T r single nitrides such as N, or since it is due to a combination, to improve the wear resistance of the cutting edge side or die hole inner peripheral surface, the mold life Is greatly improved.
- the reaction between the electrode material and the HC of the electric discharge machining oil causes the cutting edge side surface to be formed by a hard coating such as Tic, Zrc, VC; Since the coating is performed, the wear resistance of the side surface of the cutting edge or the inner peripheral surface of the die hole is improved, and the life of the mold can be greatly improved.
- a groove having the same shape as the dice L-shape and having the same depth as the depth of the die hole is formed in the die material, and the wire is subjected to wire electric discharge machining in the groove.
- a hard film is formed on the inner surface of the groove, and after forming the film, the die through-hole is formed by wire electric discharge machining starting from the start hole, following the groove shape. Since the surface layer of the hard coating is removed and the cutting edge is finished to the final dimensions, even if the tool steel is used as the base material, the tool life is as good as or better than that of the cemented carbide mold. In addition, it is possible to obtain a high-precision mold, and it is possible to easily and reliably configure even a narrow cutting edge. Industrial applicability
- the mold and the surface treatment method of the mold according to the present invention have the required durability.
- Pressing dies used for shearing, such as drilling and punching which require high wear resistance, especially at the cutting edge, in order to obtain the moldability (die life).
- metal working dies such as bow dies used for extrusion, extrusion dies, and extrusion dies, which require high wear and wear resistance on the inner peripheral surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
Abstract
A surface treating method for a die, wherein electrode consumable melted substance of a discharge electrode produced by a discharge energy by means of electro-hydraulic machining or its reactant is bonded to and deposited on the cutting edge side face (104) of a stamping die or the inner peripheral surface of a die hole of an extracting/extruding die to form a hard coating (108) consisting of the electrode consumable melted substance or its reactant on the cutting edge side face or the die hole inner peripheral surface and the hard coating (108) is finished by discharge machining or grinding, thereby providing a die which is equivalent or superior in service life to a cemented carbide die and high in precision even when a tool steel is used as its base metal.
Description
明 細 書 金型および金型の表面処理方法 技術分野 Description Mold and mold surface treatment method
この発明は、 穴明け、 打ち抜き等の剪断加工に使用するプレス加工金型や引抜 き加工、 押出し加工に使用する引抜き加工用ダイス、 押出し加工用ダイスのよう な金属加工用の金型およびそれら金型の表面処理方法に関するものである。 背景技術 The present invention relates to a metal mold such as a press die used for shearing such as punching and punching, a die for drawing, a die used for extrusion, and a die for metal processing such as a die for extrusion. The present invention relates to a mold surface treatment method. Background art
穴明け、 打ち抜き等の剪断加工に使用するプレス加工金型は、 所要の耐久性 ( 型寿命) を得るために、 特に切刃部分に高い耐摩耗性を要求され、 引抜き加工、 押出し加工に使用する引抜き加工用ダイス、 押出し加工用ダイスでは、 同様に、 加工面であるダイス孔内周面に高い耐摩耗性を要求される。 Pressing dies used for shearing such as drilling and punching require high wear resistance, especially at the cutting edge, in order to obtain the required durability (mold life), and are used for drawing and extrusion. Similarly, the drawing die and the extrusion die require high wear resistance on the inner peripheral surface of the die hole, which is the processing surface.
一般に、 プレス加工金型や引抜き加工用ダイス、 押出し加工用ダイスでは、 炭 素工具鋼、 合金工具鋼など、 高硬度の金属材料で構成され、 ロックゥヱル硬度 ( Cスケール) で HRC=64で 64Hr c程度の硬度指定による熱処理により耐 摩耗性の向上を図られている。 In general, press dies, drawing dies, and extrusion dies are made of high-hardness metal materials such as carbon tool steel and alloy tool steel, and have a rock hardness (C scale) of 64 Hrc with HRC = 64. The wear resistance is improved by heat treatment with a specified hardness.
これらの金型の長寿命化はもつとも大きな課題の一^ ^であり、 プレス加工、 引 抜き加工や押出し加工用の高精度化、 多様化に伴い、 型寿命に対する要求が厳し くなつており、 熱処理による表面処理では、 耐摩耗性が不足し、 要求される型寿 命を確保すること力難しくなってきている。 Extending the life of these dies is one of the major issues at all, and the demands on the mold life are becoming stricter with the increasing precision and diversification of stamping, drawing and extrusion. With surface treatment by heat treatment, the abrasion resistance is insufficient, and it is becoming difficult to secure the required mold life.
このため、 長寿命、 高精度を要求される金型では、 一般的な工具鋼に代えて、 高融点金属の炭化物粉末を F e、 Co、 N iなどの鉄系金属で焼結結合した高級 な超硬合金 (s i n t e r ed ha r d me t a l) を採用することが行わ れ、 最近では、 半導体用のリードフレーム製作用などのプレス金型によく用いら れている。
しかしながら、 超硬合金を金型材質として使用する場合には、 高価であること と、 加工法が限定され、 使用設備費が高く、 生産性が工具鋼における場合と比較 して低いという欠点があり、 金型業界では、 超硬合金に代わる高性能な金型材質 を求める声が大きくなってきている。 For this reason, in molds that require long life and high precision, instead of using general tool steel, high-grade sintering of carbide powder of high melting point metal with iron-based metals such as Fe, Co, and Ni is used. Sintered hard metal has been adopted, and recently it is often used in press dies for manufacturing lead frames for semiconductors. However, the use of cemented carbide as a mold material has the disadvantage that it is expensive, the machining method is limited, the equipment cost is high, and the productivity is lower than in the case of tool steel. In the mold industry, there is a growing demand for high-performance mold materials to replace cemented carbide.
超硬合金の場合には、 硬度がピツカ—ス硬度で H V二 1 2 0 0程度であること から切削加工は到底不可能であり、 研削加工や形彫放電加工、 ヮィャ放電加工に よる加工に限られる。 し力、しなカ ら、 前述したように、 加工性が悪いことと材料 価額が高価であることにより、 頻繁な製品のモデルチ Xンジに伴う金型の変更に 対して応えていくことは相当な無理をしいることになる。 しかしながら、 型寿命 や加工精度の維持を考慮すると、 単純に工具鋼を採用するわけにはいかない現実 もある。 In the case of cemented carbide, since the hardness is about HV21200 in Pickers hardness, cutting is impossible at all. Limited. As described above, due to poor workability and high material prices, it is quite possible to respond to frequent changes in molds due to the model change of products. It will be impossible. However, in view of maintaining the tool life and machining accuracy, there is a reality that tool steel cannot be simply adopted.
これらの解決手段として、 工具鋼の金型に対して、 ショッ トピーニングなどに より表面硬度の改善ゃ耐磨耗性を付与するためセラミックス系の硬質材料を P V D (物理的蒸着法) 、 C V D (化学的蒸着法) などでコーティングする方法も提 案されているが、 それぞれ十分な効果を得ていない。 To solve these problems, tool steel molds are improved in surface hardness by means of shot peening, etc. To harden the abrasion resistance, ceramic-based hard materials are made of PVD (physical vapor deposition), CVD ( Coating methods such as chemical vapor deposition have also been proposed, but they have not been sufficiently effective.
たとえば、 ショットピーニングは、 加工硬化を目的としたもので抜本的な解決 にはならないし、 P V D、 C V Dによるコーティングで形成される硬質被膜は、 せレ、ぜレ、数 m程度の厚みであることと、 密着強度が金型の要求に対して不足し 、 効果を発揮するまでには至っていないのが現伏である。 また、 P V D、 C V D の場合には、 処理温度が高く、 焼き入れした材料の硬度が軟化するなどの基本的 な問題もあり、 実質的には適応困難である。 For example, shot peening is intended for work hardening and does not provide a drastic solution.Hard coatings formed by PVD or CVD coating must have a thickness of about several meters. And the adhesion strength is insufficient for the requirements of the mold, and the effect has not yet been achieved. In the case of PVD and CVD, there are also basic problems such as the high processing temperature and the softened hardness of the quenched material, and it is practically difficult to adapt.
また、 浸炭処理、 高周波焼き入れなどの従来の手法も用いられているが、 それ ほどの効果を発揮しているとはレ、えない。 Conventional methods such as carburizing and induction quenching are also used, but they are not as effective.
この発明は、 上述の如き問題点を解消するためになされたもので、 工具鋼を母 材とする金型であっても、 超硬合金製の金型と同程度乃至それ以上の優れた型寿 命を示し、 しかも高精度な金型およびそれら金型の表面処理方法を提供すること を目的としている。
発明の開示 The present invention has been made in order to solve the above-mentioned problems, and even if the mold is made of tool steel as a base material, it is an excellent mold that is at least as good as a cemented carbide mold. It is an object of the present invention to provide a long-lasting and high-precision mold and a surface treatment method for the mold. Disclosure of the invention
この発明による金型は、 プレス加工金型の切刃側面あるいは引抜き '押出し加 ェ用ダイスのダイス孔内周面に液中放電加工による放電エネルギによつて生じる 放電電極の電極消耗溶融物質あるいはそれの反応物が付着堆積し、 切刃側面ある いはダイス孔内周面に電極消耗溶融物質あるいはそれの反応物による硬質被膜が 形成され、 前記硬質被膜が放電加工あるいは研削加工により仕上げ加工されてい るものである。 The die according to the present invention is characterized in that the electrode-depleted molten material of the discharge electrode or the molten material generated by the discharge energy generated by the electric discharge machining in the liquid is formed on the side surface of the cutting edge of the press-working die or on the inner peripheral surface of the die hole of the drawing die. The hard coating is formed on the side surface of the cutting edge or the inner peripheral surface of the die hole by the electrode consumable molten material or its reactant, and the hard coating is finished by electric discharge machining or grinding. Things.
つぎの発明による金型は、 工具鋼を母材とし、 前記硬質被膜が WC、 Ti C、 Z r C、 VC、 Nb C、 Ta C等の炭化物、 T i B2 、 Z r B2 等の硼化物、 T iN、 TrN等の窒化物の単体、 あるいは組合せによるものである。 Mold according to another aspect of the present invention, a tool steel as a base material, wherein the hard coating is WC, Ti C, Z r C , VC, Nb C, carbides such as Ta C, T i B 2, Z r B 2 , etc. It is based on a simple substance or a combination of nitrides such as boride, TiN and TrN.
また、 この発明による金型の表面処理方法は、 液中においてプレス加工金型の 切刃側面あるいは引抜き ·押出し加工用ダイスのダイス孔内周面と放電電極とを 所定の放電ギャップをおレ、て対向させて切刃側面あるいはダイス孔内周面と放電 電極との間に放電を発生させ、 放電エネルギによって生じる電極消耗溶融物質あ るいはそれの反応物を切刃側面あるいはダイス孔内周面に付着堆積させ、 切刃側 面あるいはダイス孔内周面に電極消耗溶融物質あるし、はそれの反応物による硬質 被膜を形成し、 被膜形成後に前記硬質被膜の表層部を放電加工あるレ、は研削加工 により除去し、 刃部あるいはダイス孔を最終寸法に仕上げるものである。 Further, the surface treatment method of the mold according to the present invention is characterized in that a predetermined discharge gap is formed between the discharge electrode and the side surface of the cutting edge of the press working die or the inner peripheral surface of the die hole of the drawing / extruding die in the liquid. The discharge electrode generates a discharge between the side surface of the cutting edge or the inner peripheral surface of the die hole and the discharge electrode, and the molten material consumed by the electrode generated by the discharge energy or the reactant thereof is discharged to the side surface of the cutting edge or the inner peripheral surface of the die hole. The electrode-consuming molten material is formed on the side surface of the cutting edge or the inner peripheral surface of the die hole, and a hard film is formed by a reaction product of the electrode. After the film is formed, the surface layer of the hard film is subjected to electric discharge machining. Is to remove the blade or die hole to the final dimensions by grinding.
つぎの発明による金型の表面処理方法は、 前記硬質被膜が WC:、 Ti C:、 Zr C, VC、 NbC、 T a C等の炭化物、 Ti B2 、 Zr B2 等の硼化物、 T iN 、 TrN等の窒化物の単体、 あるいは組合せによるものである。 The surface treatment method of a mold according to the invention follows, the hard coating is WC :, Ti C :, Zr C, VC, NbC, carbides such as T a C, Ti B 2, Zr B boride such as 2, T This is based on a single nitride or a combination of nitrides such as iN and TrN.
つぎの発明による金型の表面処理方法は、 放電電極として、 Ti、 Zr、 V、 Nb、 T a等の硬質金属の粉体、 もしくはこれらの水素化物の粉体を圧縮成形し た圧粉体電極、 あるいはこれらの金属による金属電極を使用し、 加工液として H Cを含む放電加工油を使用して硬質被膜を形成するものである。 The surface treatment method of the mold according to the next invention is characterized in that the discharge electrode is a green compact formed by compression molding a hard metal powder such as Ti, Zr, V, Nb, Ta, or a powder of a hydride thereof. A hard coating is formed using electrodes or metal electrodes made of these metals, and using EDM oil containing HC as a machining fluid.
つぎの発明による金型の表面処理方法は、 ダイス孔形状と同形状でダイス孔深
さと同程度の深さを有する溝をダイス素材に形成すると共に、 その溝内にワイヤ 放電加工のためのスタート孔を貫通形成しておき、 前記溝の内面に前記硬質被膜 を形成し、 被膜形成後に、 前記スタート孔より開始するワイヤ放電加工により前 記溝形状に倣ってダイス貫通孔を加工すると同時に前記硬質被膜の表層部を除去 し、 刃部を最終寸法に仕上げるものである。 図面の簡単な説明 The surface treatment method of the mold according to the next invention has the same shape as the shape of the die hole and the depth of the die hole. A groove having the same depth as that of the die material is formed in the die material, a start hole for wire electric discharge machining is formed in the groove, and the hard coating is formed on the inner surface of the groove. Later, the die through hole is machined in accordance with the groove shape by wire electric discharge machining starting from the start hole, and at the same time, the surface layer portion of the hard coating is removed, and the blade portion is finished to the final dimensions. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明による金型の表面処理方法の実施に使用される表面処理装 置の実施の形態 1を示す構成図であり、 第 2図 (a ) は、 この発明による金型の 表面処理方法におし、て単純形状電極を使用してダイス金型の切刃側面に改質層を 形成する様子を示す斜視図、 第 2図 (b ) はワイヤ放電加工による仕上げ工程を 示す斜視図であり、 第 3図 (a ) 〜 (f ) は、 この発明による金型の表面処理方 法の加工工程を示す説明図であり、 第 4図は、 この発明による金型の表面処理方 法をパンチ金型に適用した実施の形態を示す斜視図であり、 第 5図 (a ) 、 ( b ) は、 この発明による金型の表面処理方法を引抜き加工ダイスに適用した実施の 形態を示す断面図であり、 第 6図 (a ) 、 (b ) は、 この発明による金型の表面 処理方法を押出し加工ダイスに適用した実施の形態を示す断面図である。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram showing a first embodiment of a surface treatment apparatus used for carrying out a surface treatment method for a mold according to the present invention, and FIG. In the surface treatment method, a perspective view showing the formation of a modified layer on the side of the cutting edge of a die using a simple shape electrode, and FIG. 2 (b) shows the finishing process by wire electric discharge machining. FIG. 3 is a perspective view, FIGS. 3 (a) to (f) are explanatory views showing processing steps of a mold surface treatment method according to the present invention, and FIG. 4 is a mold surface treatment according to the present invention. FIGS. 5A and 5B are perspective views showing an embodiment in which the method is applied to a punching die. FIGS. 5A and 5B show an embodiment in which the die surface treatment method according to the present invention is applied to a drawing die. 6 (a) and 6 (b) are cross-sectional views showing a method of extruding a mold surface according to the present invention. Is a cross-sectional view showing the embodiment applied to engineering die. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付の図を参照して、 この発明にかかる金型および金型の表面処理方法 の実施の形態を詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Exemplary embodiments of a mold and a mold surface treatment method according to the present invention will be described in detail below with reference to the accompanying drawings.
第 1図はこの発明による金型の表面処理方法の実施に使用される表面処理装置 の実施の形態 1を示している。 FIG. 1 shows a first embodiment of a surface treatment apparatus used for carrying out a mold surface treatment method according to the present invention.
この表面処理装置は、 放電加工機の一種であり、 水平方向の X軸方向に移動可 能な X軸テーブル 1と水平方向の Y軸方向に移動可能な Y軸テーブル 3との重ね 合わせ構造体によるワークテーブル 5を有し、 ワークテーブル 5上に加工槽 7が 固定されている。
加工槽 7内には被処理材載置台 9が設けられており、 被処理材載置台 9上に被 処理材であるプレス加工金型、 図示例ではダイス金型 1 0 0が載置固定される。 また、 加工槽 7内には、 図示されていない加工液供給装置より加工液が供給され 、 被処理材載置台 9上のダイス金型 1 0 0は加工液中に浸漬される。 This surface treatment device is a kind of electric discharge machine and has a superimposed structure of an X-axis table 1 movable in the horizontal X-axis direction and a Y-axis table 3 movable in the horizontal Y-axis direction. The work tank 5 is fixed on the work table 5. A processing material mounting table 9 is provided in the processing tank 7, and a press processing die as a processing material, in the illustrated example, a die mold 100 is mounted and fixed on the processing material mounting table 9. You. In addition, a processing liquid is supplied into the processing tank 7 from a processing liquid supply device (not shown), and the die 100 on the workpiece mounting table 9 is immersed in the processing liquid.
加工槽 7の上方部には、 垂直 Z軸方向に移動可能な電極支持へッ ド i 1が設け られており、 電極支持ヘッ ド i 1の下部に回転式の電極支持装置 1 3が設けられ ている。 電極支持装置 1 3は、 細棒による単純形状電極 1 5を交換可能に支持し 、 単純形状電極 1 5を電極軸心周りに回転させることができる。 単純形状電極 1 5は丸棒状をなしており、 これの外径寸法は被処理材の大きさに応じて選定され る。 被処理材がダイス金型 1 0 0である場合には、 単純形状電極 1 5がダイス孔 1 0 2内に入る寸法に設定されればよい。 An electrode support head i 1 movable in the vertical Z-axis direction is provided above the processing tank 7, and a rotary electrode support device 13 is provided below the electrode support head i 1. ing. The electrode support device 13 exchangeably supports the simple shape electrode 15 by a thin rod, and can rotate the simple shape electrode 15 around the electrode axis. The simple shape electrode 15 has a round bar shape, and the outer diameter of the electrode is selected according to the size of the material to be processed. When the material to be processed is a die 100, the dimension may be set so that the simple shape electrode 15 is included in the die hole 102.
X軸テーブル 1、 Y軸テーブル 3、 電極支持へッ ド 1 1は、 それぞれ、 X軸サ ーボモー夕 1 7、 Y軸サーボモ一夕 1 9、 Z軸サーボモータ 2 1により位置決め 駆動され、 X軸サ一ボモ一夕 1 7、 Y軸サ一ボモ一夕 1 9、 Z軸サ一ボ乇一夕 2 1は、 数値制御装置 2 3の軌跡移動制御部 2 5が出力する各軸指合により位置制 御される。 The X-axis table 1, the Y-axis table 3, and the electrode support head 11 are positioned and driven by the X-axis servo motor 17, the Y-axis servo motor 19, and the Z-axis servo motor 21, respectively. The sub-bodies 17 and 17, the Y-axis sub-bodies 19 and the Z-axis sub-bodies 21 are determined by the respective axes output by the locus movement control unit 25 of the numerical controller 23. Position controlled.
数値制御装置 2 3の軌跡移動制御部 2 5は、 電極移動軌跡生成用 C AM装置 2 7より軌跡移動データ (電極パス情報) を入力し、 軌跡移動データに基づいて X 軸、 Y軸、 Z軸の各軸の位置措合を生成する。 The trajectory movement control unit 25 of the numerical controller 23 receives the trajectory movement data (electrode path information) from the electrode movement trajectory generation CAM device 27, and based on the trajectory movement data, the X-axis, Y-axis, and Z-axis. Generate a position alignment for each axis.
上述のような構成による表面処理装置を用いて、 この発明によるプレス加工金 型の表面処理方法を実施する場合には、 研削加工あるいはワイヤ放電加工によつ てダイス孔 1 0 2の加工がなされ、 金型の切刃 1 0 6としての形状はすでに形成 されている工具鋼製のダイス金型 1 0 0を被処理材載置台 9上にセッ 卜し、 加工 槽 7内に加工液を溜めて被処理材載置台 9上のダイス金型 1 0 0を加工液中に浸 漬させる。 When the surface treatment method for a press-working die according to the present invention is performed using the surface treatment apparatus having the above-described configuration, the die hole 102 is formed by grinding or wire electric discharge machining. In order to form the cutting edge 106 of the mold, the die 100 made of tool steel, which has already been formed, is set on the work table 9 and the machining fluid is stored in the processing tank 7. The die 100 on the workpiece mounting table 9 is immersed in the working fluid.
加工槽 7内の加工液中において、 ダイス金型 1 0 0のダイス孔 1 0 2の内周面 が与える切刃側面 1 0 4と単純形状電極 1 5とを所定の放電ギヤップ g (第 3図
参照) をおいて対向させて切刃側面 1 0 4と単純形状電極 1 5との間にパルス電 圧を印加してパルス放電を発生させる。 これにより、 放電エネルギによって生じ る電極消耗溶融物質あるいはそれと加工液成分との反応物がダイス孔 1 0 2の開 口縁部がなす切刃 1 0 6に連続する切刃側面 1 0 4に付着堆積し、 切刃側面 1 0 4に電極消耗溶融物質あるいはそれの反応物による硬質被膜 1 0 8 (第 2図参照 ) が比較的広域の面状に形成される。 In the machining fluid in the machining tank 7, a predetermined discharge gap g (third part) is formed by cutting the cutting edge side surface 104 provided by the inner peripheral surface of the die hole 100 of the die 100 and the simple shape electrode 15 into a predetermined shape. Figure A pulse voltage is applied between the cutting edge side surface 104 and the simple shape electrode 15 so that a pulse discharge is generated. As a result, the electrode consumable molten material generated by the discharge energy or the reaction product of the electrode fluid and the machining fluid component adheres to the cutting edge side surface 104 connected to the cutting edge 106 formed by the opening edge of the die hole 102. A hard film 108 (see FIG. 2) of the electrode consumable molten material or its reactant is formed on the cutting edge side surface 104 in a relatively wide area.
硬質被膜 1 0 8は、 耐摩耗性に優れた硬質被膜であり、 硬質被膜 1 0 8の材質 としては、 WC、 T i C、 Z r C:、 V C、 T a C等の炭化物、 T i B 2 、 Z r B 2 等の硼化物、 T i N、 T r N等の窒化物の単体、 あるいはそれらの組合せによ るものが挙げられる。 - また、 単純形状電極 1 5として、 T i、 Z r、 V、 T a等の硬質金属の粉体、 もしくはこれらの水素化物の粉体を圧縮成形した圧粉体電極、 あるいはこれらの 金属による金属電極を使用し、 加工液として H Cを含む放電加工油を使用し、 電 極材料と放電加工油中の H Cとの反応により、 T i C:、 Z r C;、 V C:、 T a C等 の金属炭化物による硬質被膜を切刃側面 1 0 4に効率よく良好に形成することが できる。 The hard coating 108 is a hard coating having excellent wear resistance. Examples of the material of the hard coating 108 include carbides such as WC, TiC, ZrC :, VC, TaC, and Ti. B 2, Z r B 2, etc. borides, T i N, single nitrides such as T r N, or O shall the like combinations thereof. -Also, as the simple shaped electrode 15, a compacted electrode obtained by compression molding a hard metal powder such as Ti, Zr, V, Ta, etc., or a hydride powder thereof, or by using these metals Using a metal electrode, an electric discharge machining oil containing HC as the machining fluid, and the reaction between the electrode material and HC in the electric discharge machining oil, T i C :, Z r C ;, VC :, T a C A hard coating made of such a metal carbide can be efficiently and satisfactorily formed on the cutting edge side surface 104.
上述のようなパルス放電による硬質被膜 i 0 8の形成法は、 液中ギャップ放電 による放電表面処理法と呼ばれる方法に準拠したものであり、 この放電表面処理 法は、 特開平 6 - 1 8 2 6 2 6号公報、 特開平 8— 2 5 7 8 4 1号公報、 特開平 9 - 1 9 8 2 9号公報、 特開平 9— 1 9 2 9 3 7号公報の各公報にそれぞれ示さ れている。 The method of forming the hard coating i 08 by the pulse discharge as described above conforms to a method called a discharge surface treatment method by gap discharge in liquid. This discharge surface treatment method is disclosed in No. 6 26, Japanese Unexamined Patent Application Publication No. Hei 8-2585741, Japanese Unexamined Patent Application Publication No. 9-198928, and Japanese Unexamined Patent Application Publication No. ing.
硬質被膜 1 0 8の形成は切刃側面 1 0 4の全周に亙って面状に一様に行われる 。 このために、 切刃側 j面 1 0 4と単純形伏電極 1 5との間の間隙を所定値に保つ て微細単純形状電極 1 5と処理対象のプレス加工金型であるダイス金型 1 0 0と をプレス加工形状 (ダイス孔平面形状) により決まる切刃側面形状に倣って相対 変位させることが必要であり、 この相対変位によって切刃側面 1 0 4の全周に硬 質被膜 1 0 8を形成することができる。
単純形状電極 1 5と金型 1 0 0とを切刃側面形状に倣って相対変位させること は、 X軸テーブル 1の X軸方向移動と Y軸テーブル 3の Y軸方向移動により行う ことができる。 The hard coating 108 is formed uniformly in a plane over the entire circumference of the cutting edge side surface 104. To this end, the gap between the j-side 104 on the cutting edge side and the simple shaped electrode 15 is maintained at a predetermined value, and the fine simple shaped electrode 15 and the die to be processed are the die 1 It is necessary to relatively displace 0 and in accordance with the cutting edge side shape determined by the press working shape (die hole flat shape), and this relative displacement causes a hard coating 10 on the entire circumference of the cutting edge side surface 104. 8 can be formed. The relative displacement between the simple shape electrode 15 and the mold 100 following the cutting edge side shape can be performed by moving the X-axis table 1 in the X-axis direction and the Y-axis table 3 in the Y-axis direction. .
数値制御装置 2 3の内部に設けられた軌跡移動制御部 2 5は、 予め電極移動軌 跡生成用 C AM装置 2 7によって作成された電極パス情報に基づき、 表面処理用 の単純形状電極 1 5の横方向の相対移動制御、 すなわち、 X軸テーブル 1 と Y軸 テーブル 3の駆動制御を行い、 単純形状電極 1 5の軌跡移動を切刃側面 1 0 4を なぞるようにしている。 ここで、 単純形状電極 1 5の Z軸方向 (深さ方向) の制 御は、 切刃 1 0 6の Z軸方向位置に合わせて一定の高さとしている。 The trajectory movement control unit 25 provided inside the numerical control device 23 has a simple shape electrode 15 for surface treatment based on the electrode path information created in advance by the CAM device 27 for electrode movement trajectory generation. Is performed, that is, drive control of the X-axis table 1 and the Y-axis table 3 is performed so that the locus movement of the simple shape electrode 15 traces the cutting edge side surface 104. Here, the control of the simple shape electrode 15 in the Z-axis direction (depth direction) is made constant in accordance with the position of the cutting edge 106 in the Z-axis direction.
円柱状の単純形状電極 1 5を使用する場合にあっては、 単純形状電極 1 5を自 身軸線周りに回転させながら加工することができるから、 電極消耗による形状の 変形を補正することができ、 電極を均一に消耗させることができるため、 加工能 率を改善できる。 When using a cylindrical simple shaped electrode 15, it is possible to process the simple shaped electrode 15 while rotating it around its own axis, so that deformation of the shape due to electrode wear can be corrected. Since the electrodes can be uniformly consumed, the processing efficiency can be improved.
第 2図 (a ) は長孔加工用のダイス金型を示しており、 これの切刃側面 1 0 4 の全周に硬質被膜 1 0 8が形成される。 ここでは、 硬質被膜 1 0 8は、 ダイス孔 寸法が最終寸法より少し小さく、 仕上げ代が確保できる程度に、 少し厚めに形成 する。 FIG. 2 (a) shows a die for forming a long hole, and a hard coating 108 is formed on the entire periphery of the cutting edge side surface 104. Here, the hard coating 108 is formed slightly thicker so that the dimension of the die hole is slightly smaller than the final dimension and a finishing allowance can be secured.
上述のように、 硬質被膜 1 0 8が形成されたならば、 仕上げ工程として、 第 2 図 (b ) に示されているように、 ワイヤ放電加工によって硬質被膜 1 0 8の表層 部を除去し、 ダイス孔 1 0 2ならび刃部を最終寸法に仕上げる。 このワイヤ放電 加工で使用するワイヤ電極 3 1は、 銅など、 電極消耗が比較的少ない電極材料に より構成されたものである。 As described above, when the hard coating 108 is formed, as a finishing step, as shown in FIG. 2 (b), the surface layer of the hard coating 108 is removed by wire electric discharge machining. Finish the die hole 102 and the blade to the final dimensions. The wire electrode 31 used in the wire electric discharge machining is made of an electrode material such as copper which causes relatively little electrode wear.
これにより、 切刃側面 1 0 4の全周が、 T i C等、 ピツカ一ス硬度で H V = 2 5 0 0程度の硬質被膜 1 0 8により被覆されることにより、 金型母材が一般的な 工具鋼で構成されていても、 切刃表面の高度な耐摩耗性の下に、 超硬合金製の金 型以上の優れた型寿命が得られる。 金型母材が一般的な工具鋼であることにより 、 ダイス孔明け等の型加工が容易に、 生産性よく行われる。
しかも、 仕上げ工程として、 ワイヤ放電加工によって硬質被膜 1 0 8の表層部 を除去することで、 ダイス孔 1 0 2ならび刃部が最終寸法に仕上げているから、 高精度なダイス金型 1 0 0が得られ、 高精度なプレス加工を行うができるように なる。 As a result, the entire circumference of the cutting edge side surface 104 is covered with a hard coating 108 having a hardness of about HV = 250, such as TiC, with a pick hardness of approximately 400%. Even if it is made of conventional tool steel, the tool life is superior to that of cemented carbide dies, due to the high wear resistance of the cutting edge surface. Since the mold base material is a general tool steel, die machining such as die drilling is easily performed with high productivity. In addition, as a finishing step, the surface layer of the hard coating 108 is removed by wire electric discharge machining, so that the die hole 102 and the blade are finished to the final dimensions, so that a high-precision die 100 And high-precision press working can be performed.
また、 第 3図 (a ) 〜 (ί ) に示されているように、 ダイス孔形状と同形状で ダイス孔深さと同程度の深さを有する溝 1 1 2をダイス素材 1 0 0 aに形成する と共に、 その溝 1 1 2内にワイヤ放電加工のためのスタート孔 1 i 0を貫通形成 しておき、 溝 1 1 2の内面に硬質被膜 1 0 8を形成し、 被膜形成後に、 スタート 孔 1 1 0より開始するワイヤ放電加工により溝形状に倣って貫通孔であるダイス 孔 1 Q 2を加工すると同時に硬質被膜 i 0 8の表層部を除去し、 刃部を最終寸法 に仕上げることができる。 Also, as shown in FIGS. 3 (a) to (、), a groove 112 having the same shape as the shape of the die hole and having the same depth as the die hole depth is formed in the die material 100a. At the same time, a start hole 1 i0 for wire electric discharge machining is formed through the groove 1 12 and a hard coating 108 is formed on the inner surface of the groove 112. Die hole 1Q2, which is a through hole, is formed by wire electric discharge machining starting from hole 110, and at the same time, the surface layer of hard coating i08 is removed and the blade is finished to the final dimensions. it can.
この加工手順は、 第 3図 (a ) に示されているように、 ドリル工具 5 1によつ てワイヤ放電加工のためのスタート孔 1 1 0を貫通形成し、 つぎに、 第 3図 (b ) に示されているように、 ェンドミル 5 3によって溝 1 1 2を加工する。 つぎに 、 第 3図 (c ) に示されているように、 単純形状電極 1 5を使用して液中ギヤッ プ放電による放電表面処理法により溝 1 1 2の内面に硬質被膜 1 0 8 (第 3図 ( d ) 参照) を形成し、 硬質被膜 1 0 8を形成した後に、 スタート孔 1 1 0にワイ ャ電極 3 1を通し、 スタート孔 1 1 0よりワイヤ放電加工を開始し、 溝 1 1 2の 形状に倣って貫通孔であるダイス孔 1 0 2を加工すると同時に硬質被膜 1 0 8の 表層部を除去し、 刃部を最終寸法に仕上げる。 In this machining procedure, as shown in FIG. 3 (a), a start hole 110 for wire electric discharge machining is formed through a drill tool 51, and then, as shown in FIG. As shown in b), the groove 1 12 is machined by the end mill 53. Next, as shown in Fig. 3 (c), the inner surface of the groove 112 is hard-coated by a discharge surface treatment method using a simple-shaped electrode 15 by a submerged-gap discharge. After the hard coating 108 is formed, the wire electrode 31 is passed through the start hole 110, and wire electric discharge machining is started from the start hole 110 to form the groove. The die hole 102, which is a through hole, is machined according to the shape of 112, and at the same time, the surface layer of the hard coating 108 is removed, and the blade is finished to the final dimensions.
なお、 ダイス孔 1 0 2の貫通形成後に、 テーパ状の裏逃げ孔 1 1 4を形成する ことができる。 Note that, after the die hole 102 is formed to penetrate, a tapered back escape hole 114 can be formed.
これにより、 切刃の幅寸法が狭いダイス金型でも、 切刃を簡単に確実に構成す ることができる。 As a result, the cutting edge can be easily and reliably formed even in a die having a narrow width.
上述のような硬質被膜 1 0 8の形成、 硬質被膜 1 0 8の仕上げ、 第 4図に示さ れているように、 パンチ金型 2 0 0の切刃側面 2 0 2にも適用することができる
-金型 2 0 0の切刃側面 2 0 2に形成された硬質被膜 1 0 8の表層部を除 去してパンチ金型 2 0 0の刃部外径を最終寸法に仕上げることは、 ダイス金型 1 0 0における場合と同様に、 ワイヤ放電加工によって行うことが可能であるが、 これ以外に、 第 4図に示されているように、 研削加工装置による研削砥石車 4 1 によって研削加工により行うこともできる。 The formation of the hard coating 108 as described above, the finishing of the hard coating 108, and as shown in FIG. 4, can also be applied to the cutting edge side 202 of the punch die 200. it can -To finish the outer diameter of the punch die 200 to the final dimensions by removing the surface layer of the hard coating 108 formed on the cutting edge side surface 202 of the die 200, it is necessary to use a die. As in the case of the mold 100, it can be performed by wire electric discharge machining, but in addition to this, as shown in FIG. 4, the grinding process is performed by a grinding wheel 41 using a grinding machine. Can also be performed.
また、 上述のような硬質被膜 1 0 8の形成、 硬質被膜 i 0 8の仕上げ、 第 5図 ( a ) 、 (b ) に示されているように引抜き加工用ダイス 3 0 0のダイス孔内周 面 3 0 2、 第 6図 (a ) 、 ( b ) に示されているように押出し加工用ダイス 4 0 0のダイス孔内周面 4 0 2にも適用できる。 Further, the formation of the hard coating 108 as described above, the finishing of the hard coating i08, and the inside of the die hole of the drawing die 300 as shown in FIGS. 5 (a) and 5 (b). As shown in the peripheral surface 302 and FIGS. 6 (a) and 6 (b), the present invention can also be applied to the inner peripheral surface 402 of a die hole of an extrusion die 400.
いずれの場合も、 単純形状電極 1 5を使用して液中ギャップ放電による放電表 面処理法によりダイス孔内周面 3 0 2あるいは 4 0 2に硬質被膜 1 0 8を形成し 、 ワイヤ電極 3 1によるワイヤ放電加工によって硬質被膜 1 0 8の表層部を除去 し、 ダイス孔を最終寸法に仕上げる。 In any case, a hard coating 108 was formed on the inner peripheral surface 302 or 402 of the die hole by a discharge surface treatment method using gap discharge in liquid using the simple shape electrode 15 and the wire electrode 3 was formed. The surface layer of the hard coating 108 is removed by wire electric discharge machining (1), and the die hole is finished to the final dimensions.
以上の説明から理解される如く、 この発明による金型によれば、 プレス加工金 型の切刃側面あるいは引抜き ·押出し加工用ダイスのダイス孔内周面に液中放電 加工による放電エネルギによって生じる放電電極の電極消耗溶融物質あるいはそ れの反応物が付着堆積し、 切刃側面あるいはダイス孔内周面に電極消耗溶融物質 あるレ、はそれの反応物による硬質被膜が形成され、 硬質被膜が放電加工あるいは 研削加工により仕上げ加工されているから、 工具鋼を母材とする金型であっても 、 超硬合金製の金型と同程度乃至それ以上の優れた型寿命を示し、 しかも高精度 なプレス加工、 弓 ί抜き ·押出し加工を行うことができる。 As can be understood from the above description, according to the mold according to the present invention, the discharge generated by the discharge energy by the submerged discharge machining on the side surface of the cutting edge of the press working die or the inner peripheral surface of the die hole of the drawing / extrusion die. The electrode consumable molten material or its reactant adheres and accumulates on the electrode, and if the electrode consumable molten material is on the side of the cutting edge or the inner peripheral surface of the die hole, a hard film is formed by the reactant and the hard film is discharged. Since it is finished by machining or grinding, even if the tool steel is used as the base material, it exhibits the same or better mold life as the cemented carbide mold and high precision Press, bow ίPunching and extrusion can be performed.
つぎの発明による金型は、 工具鋼を母材とし、 前記硬質被膜が WC:、 T i C:、 Z r C、 V C:、 N b C;、 T a C等の炭化物、 T i B 2 、 Z r B 2 等の硼化物、 T i N、 T r N等の窒化物の単体、 あるいは組合せによるものであるから、 超硬合 金を加工する場合に必要する特別な加工技術を駆使したり、 特別のノゥハウを必 要とすることなく、 生産性よく製造することができる。 Mold according to another aspect of the present invention, a tool steel as a base material, wherein the hard coating is WC :, T i C :, Z r C, VC :, N b C ;, T a carbide such as C, T i B 2 , boride such as Z r B 2, T i N , single nitrides such as T r N, or since it is due to a combination, making full use of special processing techniques that required when processing the cemented carbide alloy It can be manufactured with high productivity without requiring special know-how.
つぎの発明による金型の表面処理方法によれば、 液中ギヤップ放電による放電
表面処理法により切刃側面あるいはダイス孔内周面に電極消耗溶融物質あるいは それの反応物による硬質被膜を形成し、 被膜形成後に硬質被膜の表層部を放電加 ェぁるいは研削加工により除去し、 刃部あるいはダイス孔を最終寸法に仕上げる から、 工具鋼を母材とする金型であっても、 超硬合金製の金型と同程度乃至それ 以上の優れた型寿命を示し、 しかも高精度な金型を得ることができる。 According to the surface treatment method of the mold according to the next invention, the discharge due to the liquid gap discharge A hard coating is formed on the side surface of the cutting edge or on the inner peripheral surface of the die hole by the surface treatment method, and a hard coating made of the electrode consumable molten material or its reactant is formed. After the coating is formed, the surface layer of the hard coating is removed by electric discharge welding or grinding. Since the cutting edge or the die hole is finished to the final dimensions, even with a tool steel-based mold, it exhibits an excellent mold life equivalent to or better than that of a cemented carbide mold, and has a long life. An accurate mold can be obtained.
また、 超硬合金を加工するためには非常に難しい加工技術を駆使する必要があ る力 \ 工具鋼を母材とすることにより、 特別な加工技術を駆使したり、 特別のノ ゥハウを必要とすることなく、 生産性よく型加工を行うことができる。 Also, in order to machine cemented carbide, it is necessary to make full use of extremely difficult machining techniques.By using tool steel as the base material, special machining techniques and special know-how are required. It is possible to perform the mold processing with high productivity without performing the above.
つぎの発明による金型の表面処理方法によれば、 前記硬質被膜が WC;、 T i C 、 Z r C;、 V C、 N b C:、 T a C等の炭化物、 T i B 2 、 Z r B 2 等の硼化物、 T i N、 T r N等の窒化物の単体、 あるいは組合せによるものであるから、 切刃 側面あるいはダイス孔内周面の耐摩耗性が向上し、 金型寿命が大幅に向上する。 つぎの発明による金型の表面処理方法によれば、 電極材料と放電加工油の H C との反応により、 切刃側面を T i C、 Z r C、 V C;、 T a C等の硬質被膜により 被覆するから、 切刃側面あるいはダイス孔内周面の耐摩耗性を向上して金型寿命 を大幅に向上させることができる。 According to the surface treatment method of a mold according to another aspect of the present invention, the hard coating is WC ;, T i C, Z r C ;, VC, N b C :, T a carbide such as C, T i B 2, Z boride such as r B 2, T i N, T r single nitrides such as N, or since it is due to a combination, to improve the wear resistance of the cutting edge side or die hole inner peripheral surface, the mold life Is greatly improved. According to the surface treatment method of the mold according to the next invention, the reaction between the electrode material and the HC of the electric discharge machining oil causes the cutting edge side surface to be formed by a hard coating such as Tic, Zrc, VC; Since the coating is performed, the wear resistance of the side surface of the cutting edge or the inner peripheral surface of the die hole is improved, and the life of the mold can be greatly improved.
つぎの発明による金型の表面処理方法によれば、 ダイス孑 L形状と同形状でダイ ス孔深さと同程度の深さを有する溝をダイス素材に形成すると共に、 その溝内に ワイヤ放電加工のためのスタート孔を貫通形成しておき、 その溝の内面に硬質被 膜を形成し、 被膜形成後に、 スタート孔より開始するワイヤ放電加工により溝形 伏に倣ってダイス貫通孔を加工すると同時に硬質被膜の表層部を除去し、 刃部を 最終寸法に仕上げるから、 工具鋼を母材とする金型であっても、 超硬合金製の金 型と同程度乃至それ以上の優れた型寿命を示し、 しかも高精度な金型を得ること ができ、 幅の挟い切刃でも簡単に確実に構成することができる。 産業上の利用可能性 According to the surface treatment method of the mold according to the next invention, a groove having the same shape as the dice L-shape and having the same depth as the depth of the die hole is formed in the die material, and the wire is subjected to wire electric discharge machining in the groove. A hard film is formed on the inner surface of the groove, and after forming the film, the die through-hole is formed by wire electric discharge machining starting from the start hole, following the groove shape. Since the surface layer of the hard coating is removed and the cutting edge is finished to the final dimensions, even if the tool steel is used as the base material, the tool life is as good as or better than that of the cemented carbide mold. In addition, it is possible to obtain a high-precision mold, and it is possible to easily and reliably configure even a narrow cutting edge. Industrial applicability
以上のように、 本発明にかかる金型および金型の表面処理方法は、 所要の耐久
性 (型寿命) を得るために、 特に切刃部分に高い耐摩耗性を要求される穴明け、 打ち抜き等の剪断加工に使用するプレス加工用金型、 同様に、 加工面であるダイ ス孔内周面に高レ、耐摩耗性を要求される弓 I抜き加工、 押出し加工に使用する弓 き加工用ダイス、 押出し加工用ダイスのような金属加工用金型の表面処理に適し ている。
As described above, the mold and the surface treatment method of the mold according to the present invention have the required durability. Pressing dies used for shearing, such as drilling and punching, which require high wear resistance, especially at the cutting edge, in order to obtain the moldability (die life). It is suitable for the surface treatment of metal working dies such as bow dies used for extrusion, extrusion dies, and extrusion dies, which require high wear and wear resistance on the inner peripheral surface.
Claims
1. プレス加工金型の切刃側面あるいは引抜き ·押出し加工用ダイスのダイス孔 内周面に液中放電加工による放電エネルギによって生じる放電電極の電極消耗溶 融物質あるいはそれの反応物が付着堆積し、 切刃側面あるいはダイス孔内周面に 電極消耗溶融物質あるレ、はそれの反応物による硬質被膜が形成され、 前記硬質被 膜が放電加工あるいは研削加工により仕上げ加工されていることを特徴とする金 1. Discharged electrode electrode consumables generated by the discharge energy from submerged discharge machining or the reactants thereof are deposited on the inner peripheral surface of the die side of the die or the die for extrusion. The electrode consumable molten material is formed on the side surface of the cutting edge or the inner peripheral surface of the die hole, a hard coating is formed by a reaction product thereof, and the hard coating is finished by electric discharge machining or grinding. Money to do
2. 具鋼を母材とし、 前記硬質被膜が WC;、 T i C;、 Z r C、 VC;、 Nb C、 T a C等の炭化物、 T i B2 、 Z r B2 等の硼化物、 T i N、 Tr N等の窒化物の 単体、 あるいは組合せによるものであることを特徴とする請求の範囲第 1項に記 載の金型。 2. tool steel as a base material, wherein the hard coating is WC ;, T i C ;, Z r C, VC ;, Nb C, carbides such as T a C, T i B 2 , Z r B 2 etc. the boron of 2. The mold according to claim 1, wherein the mold is a simple substance or a combination of a nitride such as a nitride, a TiN, and a TrN.
3. 加工液中においてプレス加工金型の切刃側面あるいは引抜き ·押出し加工用 ダイスのダイス孔内周面と放電電極とを所定の放電ギャップをおし、て対向させて 切刃側面あるいはダイス孔内周面と放電電極との間に放電を発生させ、 放電エネ ルギによつて生じる電極消耗溶融物質あるいはそれの反応物を切刃側面あるいは ダイス孔内周面に付着堆積させ、 切刃側面あるレ、はダイス孔内周面に電極消耗溶 融物質あるいはそれの反応物による硬質被膜を形成し、 被膜形成後に前記硬質被 膜の表層部を放電加工あるレ、は研削加工により除去し、 刃部あるいはダイス孔を 最終寸法に仕上げることを特徴とする金型の表面処理方法。 3. In the working fluid, the cutting edge side of the press die or the pulling-out ・ The inner peripheral surface of the die hole of the extrusion die and the discharge electrode are passed through a predetermined discharge gap, facing each other, and the cutting edge side or the die hole A discharge is generated between the inner peripheral surface and the discharge electrode, and the molten material consumed by the electrode generated by the discharge energy or its reactant is deposited on the side surface of the cutting edge or the inner peripheral surface of the die hole. A hard coating is formed on the inner peripheral surface of the die hole by a melted electrode consumable material or a reactant thereof. After the coating is formed, the surface layer of the hard coating is removed by electric discharge machining. A surface treatment method for a mold, comprising finishing a part or a die hole to a final dimension.
4. 前記硬質被膜が W (:、 T i C、 Zr C;、 VC, NbC:、 TaC等の炭化物、 T i B2 、 Z r B2 等の硼化物、 T i N、 T r N等の窒化物の単体、 あるいは組 合せによるものであることを特徴とする請求の範囲第 3項に記載の金型の表面処 理方法。
4. The hard coating is W (:, T i C, Zr C ;, VC, carbides such as NbC :, TaC, T i B 2 , Z r B 2 , etc. borides, T i N, T r N such 4. The mold surface treatment method according to claim 3, wherein the nitride is a simple substance or a combination thereof.
5 . 放電電極として、 T i、 Z r、 V、 N b、 T a等の硬質金属の粉体、 もしく はこれらの水素化物の粉体を圧縮成形した圧粉体電極、 あるいはこれらの金属に よる金属電極を使用し、 加工液として H Cを含む放電加工油を使用して硬質被膜 を形成することを特徴とする請求の範囲第 3項に記載の金型の表面処理方法。 5. As the discharge electrode, a powder of hard metal such as Ti, Zr, V, Nb, Ta, or a green compact electrode obtained by compression molding of these hydride powders, or a metal of these metals 4. The mold surface treatment method according to claim 3, wherein a hard coating is formed by using a metal electrode according to claim 1 and an electric discharge machining oil containing HC as a machining fluid.
6 . ダイス孔形状と同形状でダイス孔深さと同程度の深さを有する溝をダイス素 材に形成すると共に、 その溝内にワイヤ放電加工のためのスタート孔を貫通形成 しておき、 前記溝の内面に前記硬質被膜を形成し、 被膜形成後に、 前記スタート 孔より開始するワイャ放電加工により前記溝形状に倣つてダイス貫通孔を加工す ると同時に前記硬質被膜の表層部を除去し、 刃部を最終寸法に仕上げることを特 徵とする請求の範囲第 3項に記載の金型の表面処理方法。
6. A groove having the same shape as the shape of the die hole and having the same depth as the depth of the die hole is formed in the die material, and a start hole for wire electric discharge machining is formed in the groove so as to penetrate. Forming the hard coating on the inner surface of the groove, after forming the coating, processing the die through-hole according to the groove shape by wire electric discharge machining starting from the start hole, and simultaneously removing a surface layer portion of the hard coating; 4. The mold surface treatment method according to claim 3, wherein the blade portion is finished to a final dimension.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21717898 | 1998-07-31 | ||
JP10/217178 | 1998-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000006332A1 true WO2000006332A1 (en) | 2000-02-10 |
Family
ID=16700094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/002215 WO2000006332A1 (en) | 1998-07-31 | 1999-04-26 | Die and surface treating method for die |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2000006332A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53137010A (en) * | 1977-05-04 | 1978-11-30 | Inoue Japax Res Inc | Surface treating apparatus |
JPH05148615A (en) * | 1991-11-18 | 1993-06-15 | Res Dev Corp Of Japan | Treatment for surface of metallic material |
JPH06182626A (en) * | 1992-12-17 | 1994-07-05 | Hitachi Ltd | High corrosion resisting surface finishing method |
JPH08243843A (en) * | 1995-03-14 | 1996-09-24 | Sodick Co Ltd | Powder mixed electric discharge machining fluid and electric discharge machining method using powder mixed machining fluid |
JPH08300227A (en) * | 1995-04-14 | 1996-11-19 | Res Dev Corp Of Japan | Electrode for electric discharge machining, and metal surface treating method by electric discharge |
JPH0919829A (en) * | 1995-07-04 | 1997-01-21 | Mitsubishi Electric Corp | Method and device for surface processing by electric discharge machining |
JPH09192937A (en) * | 1996-01-17 | 1997-07-29 | Res Dev Corp Of Japan | Surface treating method by submerged electric discharge |
-
1999
- 1999-04-26 WO PCT/JP1999/002215 patent/WO2000006332A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53137010A (en) * | 1977-05-04 | 1978-11-30 | Inoue Japax Res Inc | Surface treating apparatus |
JPH05148615A (en) * | 1991-11-18 | 1993-06-15 | Res Dev Corp Of Japan | Treatment for surface of metallic material |
JPH06182626A (en) * | 1992-12-17 | 1994-07-05 | Hitachi Ltd | High corrosion resisting surface finishing method |
JPH08243843A (en) * | 1995-03-14 | 1996-09-24 | Sodick Co Ltd | Powder mixed electric discharge machining fluid and electric discharge machining method using powder mixed machining fluid |
JPH08300227A (en) * | 1995-04-14 | 1996-11-19 | Res Dev Corp Of Japan | Electrode for electric discharge machining, and metal surface treating method by electric discharge |
JPH0919829A (en) * | 1995-07-04 | 1997-01-21 | Mitsubishi Electric Corp | Method and device for surface processing by electric discharge machining |
JPH09192937A (en) * | 1996-01-17 | 1997-07-29 | Res Dev Corp Of Japan | Surface treating method by submerged electric discharge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Beri et al. | Technological advancement in electrical discharge machining with powder metallurgy processed electrodes: a review | |
US6602561B1 (en) | Electrode for discharge surface treatment and manufacturing method therefor and discharge surface treatment method and device | |
Menges et al. | How to make injection molds | |
Puri et al. | Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology | |
JP5289042B2 (en) | Multilayer hard material coating for tools | |
Mandal et al. | State of art in wire electrical discharge machining process and performance | |
US6086684A (en) | Electric discharge surface treating method and apparatus | |
Aspinwall et al. | Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire | |
JPH0919829A (en) | Method and device for surface processing by electric discharge machining | |
Sharma et al. | Review on tools and tool wear in EDM | |
Arunkumar et al. | Investigation on the effect of process parameters for machining of EN31 (Air Hardened Steel) By EDM | |
Todd et al. | Fundamental principles of manufacturing processes | |
WO2000006332A1 (en) | Die and surface treating method for die | |
JP5547864B2 (en) | Discharge surface treatment method and apparatus | |
JP2001279465A (en) | Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film | |
JP3798100B2 (en) | Discharge surface treatment method and treatment apparatus | |
JP4575924B2 (en) | Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line | |
WO2000006331A1 (en) | Press die and method for treating surface of press die | |
JP2001138141A (en) | Method for surface coating treatment using submerged discharge and consumable electrode used therefor | |
JP4333037B2 (en) | Discharge surface treatment method and apparatus, and discharge surface treatment electrode | |
Laxminarayana et al. | Study of surface morphology on micro machined surfaces of AISI 316 by Die Sinker EDM | |
JPH11320272A (en) | Discharged surface treatment method and object to be treated by the method | |
US3920407A (en) | Ruthenium or osmium on hard metals | |
WO2000006330A1 (en) | Die for drawing/extruding and method for treating surface of die for drawing/extruding | |
JP2000343152A (en) | Punch press metal mold and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CH CN DE JP US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 2000562169 Format of ref document f/p: F |