JPH09192937A - Surface treating method by submerged electric discharge - Google Patents

Surface treating method by submerged electric discharge

Info

Publication number
JPH09192937A
JPH09192937A JP8005560A JP556096A JPH09192937A JP H09192937 A JPH09192937 A JP H09192937A JP 8005560 A JP8005560 A JP 8005560A JP 556096 A JP556096 A JP 556096A JP H09192937 A JPH09192937 A JP H09192937A
Authority
JP
Japan
Prior art keywords
electrode
discharge
powder
surface treatment
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8005560A
Other languages
Japanese (ja)
Other versions
JP3537939B2 (en
Inventor
Nagao Saito
長男 斎藤
Naotake Mori
尚武 毛利
Hironao Sunada
洋尚 砂田
Takuji Magara
卓司 真柄
Akihiro Goto
昭弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Research Development Corp of Japan filed Critical Mitsubishi Electric Corp
Priority to JP00556096A priority Critical patent/JP3537939B2/en
Priority to CN97102050A priority patent/CN1118349C/en
Priority to DE19701170A priority patent/DE19701170C2/en
Priority to KR1019970001131A priority patent/KR100217293B1/en
Priority to TW086100994A priority patent/TW326008B/en
Publication of JPH09192937A publication Critical patent/JPH09192937A/en
Application granted granted Critical
Publication of JP3537939B2 publication Critical patent/JP3537939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/08Working media
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding

Abstract

PROBLEM TO BE SOLVED: To form a deposited layer having strong adhesive force on the front surface of an iron steel, a cemented alloy, or the like by using a material in which the powder containing metal halide compound powder is formed as a discharge electrode, and generating electric discharge between the electrode and a work piece in liquid in which carbon exists. SOLUTION: A submerged electric discharge deposited front surface by a TiH2 powder electrode is composed of Ti and TiC and bonded to a cemented alloy front surface of a base material without containing any oxide. In the reaction with the base material surface in electric discharge, since the temperature of the cemented front surface instantaneously reaches the boiling point of the material, the deposited Ti and TiC can be diffused and fused to the base material side. The component composition from the boundary surface to the base material to the front surface of the deposited layer is Ti and TiC, and the boundary surface and the front surface are bonded without containing any oxide. This Ti component of the topmost front surface part of the deposited layer is oxidized in the air into TiO2 , however, the inside is Ti with activity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料や導電性
セラミックス材料の上に、耐摩耗性あるいは耐蝕性の著
しく高い材料を高い密着度の基に堆積コーティングする
技術に関するもので、金型、工具、もしくは機械部品等
に優れた上記の特性を与える表面処理技術に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for depositing and coating a material having extremely high wear resistance or corrosion resistance on a metal material or a conductive ceramic material on the basis of a high degree of adhesion. The present invention relates to a surface treatment technology that gives the above-mentioned characteristics excellent to tools or machine parts.

【0002】[0002]

【従来の技術】液中放電によって金属材料等の表面を堆
積コーティングして、耐蝕性・耐摩耗性を与える技術
は、既に我々によって特許出願され公知となっている。
それらの公知となった技術の骨子は次の通りである。 (1)WCとCoの粉末を混合して圧縮成形した電極で
液中放電を行う。この時一度堆積加工を行った後、別の
電極(例えば銅電極、グラファイト電極)によって、再
溶融放電加工を行って、より高い硬度と高い密着性を得
る方法である。 (2)チタン(以下Ti)のように加工液が熱分解して
発生する炭素と高温化学反応を起こし、TiがTiC
(チタンカーバイト)となって極めて高硬度の物質とな
って、堆積コーティングさせる液中放電表面処理方法で
ある。この時、Co(コバルト)のようなバインダーと
なりうる金属を圧縮成形材料の中に添化している。
2. Description of the Related Art A technique for depositing and coating the surface of a metal material or the like by in-liquid discharge to provide corrosion resistance and wear resistance has already been patented and publicly known by us.
The outline of those known technologies is as follows. (1) The WC and Co powders are mixed and compression-molded in an electrode to perform in-liquid discharge. In this method, once the deposition processing is performed, another electrode (for example, a copper electrode or a graphite electrode) is used to perform remelting electric discharge processing to obtain higher hardness and high adhesion. (2) High-temperature chemical reaction occurs with carbon generated by thermal decomposition of the working fluid such as titanium (hereinafter Ti), and Ti is TiC.
(Titanium carbide), which is an extremely high-hardness substance, is a discharge surface treatment method in liquid for deposition coating. At this time, a metal that can serve as a binder, such as Co (cobalt), is added to the compression molding material.

【0003】以下、従来技術について図1を用いて説明
する。WC−Co(タングステンカーバイト−コバル
ト)の混合圧粉体電極を用いて、被処理材料(母材S5
0C)に液中で放電加工を行い堆積させる(1次加
工)。次いで銅電極のような、それほど消耗しない電極
によって再溶融加工(2次加工)を行う。1次加工の堆
積のままでは、組織は硬度もHv=1410程度であ
り、また空洞も多かったが、2次加工の再溶融加工によ
って被覆層の空洞がなくなり、硬度もHv=1750と
向上している。(図2)
The prior art will be described below with reference to FIG. Using the mixed powder compact electrode of WC-Co (tungsten carbide-cobalt), the material to be treated (base material S5
0C) is subjected to electric discharge machining in a liquid to be deposited (primary machining). Next, remelting processing (secondary processing) is performed using an electrode that does not wear so much, such as a copper electrode. In the as-deposited primary processing, the hardness of the structure was about Hv = 1410, and there were many cavities, but the remelting processing of the secondary processing eliminated the cavities in the coating layer, and the hardness also improved to Hv = 1750. ing. (Fig. 2)

【0004】これらの方法は鋼材に対しては高い密着度
の基によく堆積し、同一成分のWC+CoまたはTiC
+Coの焼結超硬合金よりは、50%程度高い硬度を示
す。例えばWC70,Co30の通常の超硬合金工具の
硬度はHv=850〜950であるが、これと同一成分
からなる超硬合金の放電加工処理表面では2次加工終了
後でHv=1710である。
These methods deposit well on steel materials on the basis of a high degree of adhesion, and have the same composition of WC + Co or TiC.
The hardness is about 50% higher than that of + Co sintered cemented carbide. For example, the hardness of a normal cemented carbide tool of WC70 and Co30 is Hv = 850 to 950, but on the surface of the cemented carbide of the same composition as the electric discharge machined, Hv = 1710 after the completion of secondary machining.

【0005】しかしながら従来方法においては、超硬質
合金バイトのような焼結材料の表面には、強固な密着力
を持った被覆層を形成することは困難であり、さらに被
覆層の付着強度にも大きなバラツキがある。
However, according to the conventional method, it is difficult to form a coating layer having a strong adhesive force on the surface of a sintered material such as a cemented carbide bite, and the adhesion strength of the coating layer is also increased. There are large variations.

【0006】従来技術が鉄鋼表面には被覆層をよく堆積
するが、超硬合金などの表面には被覆層を強固に堆積で
きない理由を述べる。ここでは、Ti及びその混合物に
よる堆積コーティングが、この発明の主要な項目になる
ので、Tiについて、これらの現象を述べることとす
る。
The reason why the prior art often deposits a coating layer on the surface of steel, but the coating layer cannot be firmly deposited on the surface of cemented carbide will be described. These phenomena will be described here for Ti, since deposited coatings with Ti and mixtures thereof are the main subject of this invention.

【0007】Tiは、融点が1800℃、沸点は300
0℃以上の金属である。常温で空気中にある状態では、
薄い緻密な酸化被膜(Ti−O2)に覆われており、化
学的にも安定である。これは、アルミニウムが緻密な酸
化膜Al23に覆われているのと似ている。そこでTi
の粉末を圧縮成形して放電加工の電極(以下圧粉体電極
という)として使用すると次のような現象を生ずる。放
電が電極面と被処理面との間に生ずると、放電点は材料
の沸点となり、同時に加工液(この場合鉱物性油)は気
化熱分解爆発を起し、高温になっている放電点の物質
は、飛散する。飛散物質は対極の被加工物の被処理面に
射突し、そのうち普通50%程度が堆積する。
Ti has a melting point of 1800 ° C. and a boiling point of 300.
It is a metal of 0 ° C or higher. In the air at room temperature,
It is chemically stable because it is covered with a thin and dense oxide film (Ti-O 2 ). This is similar to aluminum covered with a dense oxide film Al 2 O 3 . So Ti
The following phenomenon occurs when this powder is compression-molded and used as an electric discharge machining electrode (hereinafter referred to as a green compact electrode). When electric discharge occurs between the electrode surface and the surface to be treated, the discharge point becomes the boiling point of the material, and at the same time, the working fluid (in this case, mineral oil) causes vaporization pyrolysis explosion, and The substance disperses. The scattered substances impinge on the surface to be processed of the work piece of the opposite electrode, and about 50% of them are usually deposited.

【0008】Tiは空気中で薄い酸化被膜を形成しては
いるが放電は発生する。この理由は、この酸化被膜が非
常に薄い物であり絶縁破壊を起こし易いからである。放
電発生は絶縁破壊によって生起するものであり、電圧を
高くとるか、極間距離を短くとれば、極間に生ずる電位
傾度(V/cm)が高くなり、絶縁破壊を起こし放電発
生に至るものである。このことは、高圧送電線がコロナ
放電を起こしたり、薄い酸化膜であればトンネル電流が
流れることからも理解される。ただし、このように電位
傾度を高くするために、極間距離を小さくすれば、放電
が発生して溶融金属が放電圧力によって盛り上がってき
て、電極母体、もしくは被処理体母体より離れる前に相
手極と接触すれば、極間短絡と云う放電の停止状態が起
こる。要するに放電加工の不安定な現象が起こり得る。
Ti電極、Ti圧粉体電極は放電加工が不安定であるこ
とは、我々が既に経験しているところである。
Although Ti forms a thin oxide film in air, electric discharge occurs. The reason for this is that this oxide film is very thin and easily causes dielectric breakdown. Electric discharge occurs due to dielectric breakdown. If the voltage is increased or the distance between the electrodes is shortened, the potential gradient (V / cm) generated between the electrodes is increased, and the electric discharge is caused to cause electric discharge. Is. This can be understood from the fact that the high-voltage power transmission line causes corona discharge, or tunnel current flows in the case of a thin oxide film. However, in order to increase the potential gradient in this way, if the distance between the electrodes is reduced, a discharge occurs and the molten metal rises due to the discharge pressure, and the electrode is separated from the other electrode before it is separated from the electrode matrix or the object matrix. If it comes into contact with a contact, a discharge stop state called a short circuit between electrodes occurs. In short, an unstable phenomenon of electric discharge machining can occur.
We have already experienced that the electric discharge machining of the Ti electrode and the Ti powder compact electrode is unstable.

【0009】このTiが射突する過程、及び被処理面に
堆積して表面が次の射突で覆われるまでの間に、加工油
が分解して生成した炭素と高温のチタンとが化学反応を
起こし、その一部がTiCとなる。この場合に被処理材
料が鋼材のようにTiと合金を作り易く、また融点が超
硬合金等に比べ比較的低いもの(例えば鉄鋼では、融点
1560℃、沸点2500℃)に対しては、射突する際
によく母材に溶け込み、あるいは付着することによって
堆積する。
During the process of this Ti bombardment and during the time it accumulates on the surface to be treated and the surface is covered by the next bombardment, the carbon produced by the decomposition of the processing oil and the high-temperature titanium chemically react. Occurs, and part of it becomes TiC. In this case, if the material to be treated is likely to form an alloy with Ti, such as steel, and the melting point is relatively lower than that of cemented carbide (for example, in steel, the melting point is 1560 ° C. and the boiling point is 2500 ° C.) When it collides, it often melts into the base material or is deposited by adhering to it.

【0010】一度堆積したものに対して、同じ電極もし
くは別の電極によって電極極性や放電電気条件を変え
て、2次加工を行えば、はじめの堆積によって生じた空
洞を再溶融によってつぶし、密度の高い堆積コーティン
グができることは、既出願に述べているとおりである。
念のため、図2にそのはじめに堆積した層(1次加工)
と2次加工による組織の顕微鏡写真を示す。
If the electrode polarity and discharge electric conditions are changed by the same electrode or another electrode with respect to the once-deposited material and the secondary processing is performed, the cavities generated by the first deposition are crushed by remelting, and the density of As described in the previous application, high deposition coating can be achieved.
Just in case, the layer deposited at the beginning in Figure 2 (primary processing)
And the micrograph of the structure by secondary processing are shown.

【0011】ところが、被処理材料が超硬合金(WC+
Co,WC+Co+TiCの焼結合金)等に対しては、
前記のTi粉末の圧縮成形したものは、堆積したとして
も、非常に剥離しやすく殆どは堆積しない。このことを
理解するには、金属材料の溶接現象から推論してみるの
がよい。鉄鋼等はアーク溶接が可能である。超硬合金同
志はアーク溶接は不可能である。また超硬合金と鉄鋼等
とのアーク溶接も不可能である。しかし、鉄鋼のアーク
溶接に於いても、材料表面が酸化している場合は、溶接
が不可能なので、溶接棒や溶接線材には酸化防止のフラ
ックスを使用することが常識となっている。また、アル
ミニウムのように融点の低いものであっても、通常の状
態ではアーク溶接が困難なものもある。その理由はアル
ミニウムの表面には空気中で薄い酸化アルミニウムの緻
密な膜が常に生成して覆っているからであり、これを超
音波振動のようなもので破壊すれば、溶接が可能である
ことが知られている。
However, the material to be treated is cemented carbide (WC +
For Co, WC + Co + TiC sintered alloys), etc.,
If the above Ti powder is compression molded, even if it is deposited, it is very easy to peel off and hardly deposits. To understand this, it is better to infer from the welding phenomenon of metallic materials. Steel can be arc welded. Arc welding is impossible for cemented carbide alloy comrades. Also, arc welding of cemented carbide and steel is impossible. However, even in the arc welding of steel, if the material surface is oxidized, the welding cannot be performed. Therefore, it is common knowledge to use an anti-oxidation flux for the welding rod and the welding wire. Further, even in the case of aluminum, which has a low melting point, arc welding is difficult in a normal state. The reason is that a dense film of thin aluminum oxide is constantly generated and covered on the surface of aluminum in the air, and it is possible to weld by breaking it with something like ultrasonic vibration. It has been known.

【0012】以上の溶接現象から、Tiの圧粉体電極に
よって、超硬合金の表面に射突によっても堆積しない理
由を説明する。Tiの粉末表面が薄い酸化被膜(TiO
2)で覆われているため、これが堆積層と母材金属との
接合を阻害していると考えられる。すなわち、Tiの粉
末は粒度が小さくなればなるほど、表面積の割合が体積
に比べて大きくなるから、酸化物の表面に占める割合が
増加することになる。これは溶接に於ける酸化された表
面あるいは、付着している酸化物の量を著しく大きく作
用させた場合に似ている。このことを次に示す。
From the above welding phenomenon, the reason why the powder compact electrode of Ti does not deposit even on the surface of the cemented carbide by impact will be explained. The surface of Ti powder is a thin oxide film (TiO
Since it is covered with 2 ), it is considered that this hinders the bond between the deposited layer and the base metal. That is, the smaller the particle size of the Ti powder, the larger the surface area ratio relative to the volume, and therefore the larger the ratio of the oxide powder to the surface. This is similar to the case where the oxidized surface in welding or the amount of attached oxide is significantly increased. This is shown below.

【0013】粒体の表面積と体積との割合を求めてみ
る。 (1)粒体が球であると仮定した場合 表面積 S=π・d2 粒体の体積 V=π・d3/6(但しdは粒体の直径) 表面積と体積の比 S/V=6/d (2)粒体が立方体であると仮定した場合 表面積 S=6・d2 粒体の体積 V=d3(但しdは一辺の長さ) 表面積と体積の比 S/V=6/d 以上の考察から、粒体が小さければ小さいほど、表面積
の割合が増加することがわかる。これより、表面が酸化
膜等で緻密に覆われている場合には、粒体が小さいほ
ど、酸化膜による影響を受けることになる。また、超硬
合金が融点が高いということも溶接接合を難しくしてい
ると考えられる。融点が高いと溶接融合部が流動しにく
くなるためである。これに対し、鉄鋼では溶接融合部が
流動し易い。
The ratio between the surface area and the volume of the granules will be calculated. (1) the volume of the case where the particle body is assumed to be a sphere surface area S = π · d 2 grain body V = π · d 3/6 ( where d is the diameter of the granules) surface area to volume ratio S / V = 6 / d (2) Assuming that the particles are cubes Surface area S = 6 · d 2 Volume of particles V = d 3 (where d is the length of one side) Ratio of surface area to volume S / V = 6 / D From the above consideration, it can be seen that the smaller the granules, the greater the surface area ratio. From this, when the surface is densely covered with an oxide film or the like, the smaller the particles, the more affected by the oxide film. It is also considered that the high melting point of cemented carbide makes welding and joining difficult. This is because if the melting point is high, it becomes difficult for the weld fusion portion to flow. On the other hand, in steel, the weld fusion portion is likely to flow.

【0014】尚、上記の表面酸化物層が、堆積による融
合を阻害しているとする考え方からすれば、圧縮成形し
た粉体は酸化物の影響が大きく粒度が細かいほどその影
響は増大する。それに比べれば、ソリッドのTi金属チ
タン電極は酸化層の表面に占める割合は小さいので、金
属Ti電極でコーティングする事は、効率は良くない
が、可能である。Tiソリッド電極は、かなりよく堆積
する。また、真空炉等で焼結叉は仮焼結したTi電極等
もかなり良く堆積する。但し、Tiソリッド電極もTi
焼結電極も堆積量(厚さ)は小さく、密着力も後述のT
iH2には及ばない。すなわち、酸化物の阻害要因は、
残っているからと考えられる。
Considering that the surface oxide layer inhibits fusion due to deposition, the effect of oxides on the compression-molded powder is large, and the smaller the particle size, the greater the effect. Compared with this, since the solid Ti metal titanium electrode occupies a small proportion on the surface of the oxide layer, coating with the metal Ti electrode is not efficient but is possible. Ti solid electrodes deposit fairly well. Further, a Ti electrode or the like that is sintered or pre-sintered in a vacuum furnace or the like is also deposited quite well. However, Ti solid electrode is also Ti
The amount of deposition (thickness) of the sintered electrode is also small, and the adhesion is
It does not reach iH 2 . That is, the inhibiting factor of the oxide is
It is thought that it remains.

【0015】[0015]

【発明が解決しようとする課題】以上の説明から明らか
なように、従来の放電加工を用いた表面処理方法におい
ては、Ti等の粉体を圧縮成形した電極の場合は、表面
を緻密に覆っている酸化膜(TiO2)が存在するた
め、放電時に酸素が分離したとしても、電極を構成する
粉体金属が被処理面に堆積したり相手金属と融合するの
を阻止しているものと考えられる。さらに、TiO2
熱分解温度は極めて高温であるため(1800℃)、電
極体が放電圧力で飛散した場合にTiO2のままで、被
処理面に射突することが多くなる。また、それだけでな
く、放電発生の極間距離が狭くなるため(酸化膜のため
に放電が発生しにくいので)加工に於ける短絡が多くな
り、加工表面を劣化させると共に加工能率を阻害してい
るものと考えられる。
As is clear from the above description, in the conventional surface treatment method using electric discharge machining, in the case of an electrode in which powder of Ti or the like is compression-molded, the surface is closely covered. The presence of the oxide film (TiO 2 ) prevents the powder metal that composes the electrode from depositing on the surface to be processed or fusing with the mating metal even if oxygen is separated during discharge. Conceivable. Furthermore, since the thermal decomposition temperature of TiO 2 is extremely high (1800 ° C.), when the electrode body scatters due to the discharge pressure, the TiO 2 remains as it is and is often impinged on the surface to be treated. Not only that, but because the gap between the discharges is narrowed (since discharges are less likely to occur due to the oxide film), short-circuiting during machining increases, which deteriorates the machining surface and hinders machining efficiency. It is believed that

【0016】本発明は、上記の課題を解決するためにな
されたもので、焼結超硬合金のようなものに対しても、
よく堆積し、しかもその密着力が強固であり、さらに、
加工に於ける短絡も殆ど発生せず、加工能率も高く、叉
仕上げ面粗さも美麗である放電加工による表面処理方法
を提供するものである。
The present invention has been made in order to solve the above-mentioned problems, and even for a sintered cemented carbide or the like,
It accumulates well, its adhesion is strong, and
It is intended to provide a surface treatment method by electric discharge machining, in which a short circuit hardly occurs in machining, the machining efficiency is high, and the finished surface roughness is also beautiful.

【0017】[0017]

【課題を解決するための手段】第1の発明の液中放電に
よる表面処理方法は、金属の水素化合物粉末を含む粉末
を成形したものを放電電極として用い、炭素の存在する
液中で上記電極と被加工物間に放電を発生させ、上記被
加工物表面上に上記金属の化合物を含む表面層を形成す
るようにしたものである。
According to a first aspect of the present invention, there is provided a surface treatment method by submerged discharge, wherein a powder containing a metal hydrogen compound powder is molded as a discharge electrode, and the above electrode is used in a liquid containing carbon. A discharge is generated between the workpiece and the workpiece to form a surface layer containing the compound of the metal on the surface of the workpiece.

【0018】第2の発明の液中放電による表面処理方法
は、金属の水素化合物粉末を含む粉末を成形したものを
放電電極として用い、熱分解して炭素を生ずる高分子材
料の存在する液中で上記電極と被加工物間に放電を発生
させ、上記被加工物表面上に上記金属の化合物を含む表
面層を形成するようにしたものである。
In the surface treatment method by submerged discharge of the second invention, a powder obtained by molding a powder containing a metal hydrogen compound powder is used as a discharge electrode, and in a liquid in which a polymer material which thermally decomposes to generate carbon exists. Then, a discharge is generated between the electrode and the workpiece to form a surface layer containing the compound of the metal on the surface of the workpiece.

【0019】第3の発明の液中放電による表面処理方法
は、第1の発明または第2の発明のいずれかにおいて、
水素化合物として電極に含まれる金属に遷移金属を用い
るようにしたものである。
The surface treatment method by submerged discharge of the third invention is the method according to the first invention or the second invention,
A transition metal is used as the metal contained in the electrode as a hydrogen compound.

【0020】第4の発明の液中放電による表面処理方法
は、金属の水素化合物粉末に他の金属、炭化物、窒化
物、ほう化物粉末を混合して成形したものを液中放電の
電極として用い、炭素の存在する液中で上記電極と被加
工物間で放電を発生させ、上記被加工物表面上に高硬度
の化合物を含む表面層を形成するようにしたものであ
る。
In the surface treatment method by submerged discharge of the fourth aspect of the present invention, a metal hydrogen compound powder is mixed with another metal, a carbide, a nitride or a boride powder to be molded and used as an electrode for submerged discharge. A discharge is generated between the electrode and the workpiece in a liquid containing carbon to form a surface layer containing a high hardness compound on the surface of the workpiece.

【0021】第5の発明の液中放電による表面処理方法
は、金属の水素化合物粉末に他の金属、炭化物、窒化
物、ほう化物粉末を混合して成形したものを液中放電の
電極として用い、熱分解して炭素を生ずる高分子材料の
存在する液中で上記電極と被加工物間で放電を発生さ
せ、上記被加工物表面上に高硬度の化合物を含む表面層
を形成するようにしたものである。
In the surface treatment method by submerged discharge of the fifth invention, a powder obtained by mixing powder of a metal hydrogen compound with powder of another metal, carbide, nitride or boride is used as an electrode for submerged discharge. In order to form a surface layer containing a high hardness compound on the surface of the workpiece by causing an electric discharge between the electrode and the workpiece in a liquid containing a polymer material that thermally decomposes to generate carbon. It was done.

【0022】第6の発明の液中放電による表面処理方法
は、第2の発明または第5の発明のいずれかにおいて、
熱分解して炭素を生ずる高分子材料に鉱物性油脂もしく
は植物性油脂非を用いるようにしたものである。
A surface treatment method by submerged discharge according to a sixth aspect of the invention is the method according to the second aspect or the fifth aspect,
A mineral oil or vegetable oil is used as the polymer material that thermally decomposes to generate carbon.

【0023】第7の発明の液中放電による表面処理方法
は、第1ないし第6のいずれかの発明において、電極材
料にジルコン,バナジウム,ニオブ,タンタル等の粉末
を1種もしくは複合して加えたものを成形して電極とし
て用い、この電極と被加工物間で放電を発生させ、上記
被加工物表面上に高靱性の表面層を形成するようにした
ものである。
A surface treatment method by submerged discharge of a seventh invention is the method according to any one of the first to sixth inventions, wherein one or more powders of zircon, vanadium, niobium, tantalum or the like are added to the electrode material. This is molded and used as an electrode, and an electric discharge is generated between the electrode and the work to form a high toughness surface layer on the surface of the work.

【0024】第8の発明の液中放電による表面処理方法
は、第1ないし第7のいずれかの発明において、被加工
物と同種の金属粉末を加えたものを成形して電極として
用い、この電極と被加工物間で放電を発生させ、上記被
加工物の表面の性状を向上するようにしたものである。
The surface treatment method by submerged electric discharge of the eighth invention is the method according to any one of the first to seventh inventions, in which a metal powder of the same kind as that of the workpiece is added and used as an electrode. Electric discharge is generated between the electrode and the workpiece to improve the surface properties of the workpiece.

【0025】第9の発明の液中放電による表面処理方法
は、第1ないし第7のいずれかの発明によって被加工物
表面に表面層を形成した後、非消耗電極を用いて2次加
工を行い、上記表面層の物性を向上させるようにしたも
のである。
In the surface treatment method by submerged electric discharge of the ninth invention, after the surface layer is formed on the surface of the workpiece by any one of the first to seventh inventions, the secondary processing is performed by using the non-consumable electrode. It is carried out to improve the physical properties of the surface layer.

【0026】第10の発明の液中放電による表面処理方
法は、第9の発明において、非消耗電極にグラファイ
ト、銅、タングステン、銀タングステン、銅タングステ
ン、タングステンカーバイドの何れかを用いるようにし
たものである。
According to a tenth aspect of the present invention, there is provided a surface treatment method by submerged discharge in which the non-consumable electrode is made of graphite, copper, tungsten, silver tungsten, copper tungsten, or tungsten carbide. Is.

【0027】第11の発明の液中放電による表面処理方
法は、第1ないし第10のいずれかの発明において、被
加工物に非鉄金属を用いたものである。
An eleventh aspect of the present invention is the surface treatment method by submerged electric discharge according to any one of the first to tenth aspects, wherein a non-ferrous metal is used as the work piece.

【0028】第12の発明の液中放電による表面処理方
法は、第1ないし第10のいずれかの発明において、被
加工物に超合金を用いたものである。
A surface treatment method by submerged discharge according to the twelfth invention is the method according to any one of the first to tenth inventions, wherein a superalloy is used for the work piece.

【0029】[0029]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

発明の実施の形態1.TiH2を圧縮成形した電極とし
て用いた場合の特長的な作用効果を述べることとする。
TiH2は300℃以上の温度に於いて水素が離脱を始
める。放電が開始してから終了するまでの時間(通常
0.1μs〜1000μs)は、放電点の表面はその材
料の沸点にあると考えられるので、TiH2は完全に分
解する。その際Tiおよび分解した水素は、極めて活性
の強い化学反応を呈する。すなわち、TiH2のような
水素化物は不安定な化合物であり、化学変化の常識から
云っても活性度の高い反応を起こす。即ち、発生期の水
素が被処理表面を叩くことによって、表面に存在する酸
化膜等(超硬合金や鉄鋼等の表面も、緻密か否かは別と
して、酸化物等は存在している)を除去(クリーニン
グ)する作用がある。
First Embodiment of the Invention The characteristic effects of using TiH 2 as a compression-molded electrode will be described.
Hydrogen starts desorbing from TiH 2 at a temperature of 300 ° C. or higher. It is considered that the surface at the discharge point is at the boiling point of the material during the time from the start to the end of discharge (usually 0.1 μs to 1000 μs), so TiH 2 is completely decomposed. At that time, Ti and decomposed hydrogen exhibit a very strong chemical reaction. That is, a hydride such as TiH 2 is an unstable compound and causes a highly active reaction even if common knowledge of chemical changes is taken. That is, when nascent hydrogen hits the surface to be treated, an oxide film or the like existing on the surface (the surface of cemented carbide, steel, etc., whether dense or not, has oxides etc.) Has the action of removing (cleaning).

【0030】また、Tiは全く酸化物を含むことなく、
活性を持ったまま被処理面に射突するので、高い密着性
をもって堆積することができる。しかも、TiH2は本
来脆い物質であるから放電発生によって微細化し、Ti
2本来の粒度よりも細かくなると考えられる。そのた
め、同一電気条件で加工した場合、従来のWC−Co圧
粉体によるよりも、良い仕上げ面粗さが得られる。従来
30〜40μmRmaxに対し6〜12μmRmaxが得られ
ている。
Ti does not contain any oxide,
Since it hits the surface to be treated while maintaining its activity, it can be deposited with high adhesion. Moreover, since TiH 2 is essentially a brittle substance, it is refined by the occurrence of electric discharge,
It is considered that the particle size becomes smaller than the original particle size of H 2 . Therefore, when processed under the same electrical conditions, a better finished surface roughness can be obtained than with the conventional WC-Co green compact. Conventionally, 6 to 12 μmRmax has been obtained as compared with 30 to 40 μmRmax.

【0031】しかも、被処理面の最初の状態は、発生期
の水素でクリーニングされた被処理金属材料であるが、
一旦処理部分が表面を一巡し、TiもしくはTiCで一
通りコーティングされると、次からはTiもしくはTi
C(油分解による炭素との化合による)の表面となる
が、これには従来のようなTiO2を含むようなTiで
覆われた粒子は全く存在していないことになる。そのた
め次から行われるコーティングも極めて密着性の高い堆
積層となる。このために、超硬合金に対しても著しく高
い密着性を示し、摩耗試験に於いても、従来得られなか
った画期的な耐摩耗性を示すことが判明した。
Moreover, the initial state of the surface to be treated is the metallic material to be treated which has been cleaned with nascent hydrogen.
Once the treated part goes around the surface and is coated with Ti or TiC, the next step is Ti or Ti.
It becomes the surface of C (due to the combination with carbon by oil decomposition), but it means that there are no particles covered with Ti such as TiO 2 as in the conventional case. Therefore, the subsequent coating is also a deposited layer with extremely high adhesion. For this reason, it has been found that it exhibits extremely high adhesion even to cemented carbide, and also exhibits epoch-making wear resistance that has not been obtained in the past even in the wear test.

【0032】尚、普通のアーク溶接で超硬合金の溶接は
不可能であるが、放電加工に於いては、放電点が材料の
沸点まで達し、しかも、アーク溶接等に比べエネルギー
密度が数100倍も高いので、上記のようにクリーニン
グされていれば密着すると考えられる。
Although it is impossible to weld cemented carbide by ordinary arc welding, in electric discharge machining, the electric discharge point reaches the boiling point of the material, and moreover, the energy density is several hundreds compared to arc welding. Since it is twice as high, it is considered that it adheres if it is cleaned as described above.

【0033】[0033]

【実施例】【Example】

実施例1.TiH2の粒度10μs以下の粉末を次の条
件で圧縮成形する。 直径:15mm, 荷重:11.4トン(約6500kg/cm
2),厚み:約5mm これを銅の棒体に導電性接着剤で接着し放電加工電極と
して使用する。加工は1次加工のみによる。被処理材
料、超硬合金(WC+TiC+Co:GTi30三菱マ
テリアル)に対し、次の条件で放電加工を行い、表面に
堆積層を形成した。 (1)加工条件、硬度、仕上げ面粗さ、摩耗試験結果 1)加工条件: 放電電流Ip=3.5A,パルス幅τp=32μs, 加工時間=2分、圧粉体電極極性(−) 2)硬度、仕上げ面粗さ: ビッカース硬度Hv=600〜900(測定圧10
g)、 堆積層厚さ 13μm、仕上げ面粗さ 10μmRZ 3)摩耗試験(大越式ピンテ゛ィスク方式)結果: 雰囲気 大気中、ピン形状 φ7.98mm(0.5c
m2) 押し付力 0.5Kgf、押付圧力 1Kgf/cm2 摩擦速度 1m/s,ディスク材 SKH-3, 摩耗試験走行25Kmに於いて、摩耗量0mgを得た。
Embodiment 1 FIG. A powder of TiH 2 having a particle size of 10 μs or less is compression-molded under the following conditions. Diameter: 15 mm, load: 11.4 tons (about 6500 kg / cm
2 ), thickness: about 5 mm This is bonded to a copper rod with a conductive adhesive and used as an electric discharge machining electrode. Processing is based on primary processing only. The material to be treated and cemented carbide (WC + TiC + Co: GTi30 Mitsubishi Material) were subjected to electrical discharge machining under the following conditions to form a deposited layer on the surface. (1) Machining condition, hardness, finished surface roughness, wear test result 1) Machining condition: discharge current Ip = 3.5 A, pulse width τp = 32 μs, machining time = 2 minutes, powder compact electrode polarity (−) 2 ) Hardness, surface roughness: Vickers hardness Hv = 600 to 900 (measurement pressure 10
g), Deposition layer thickness 13μm, Finished surface roughness 10μm R Z 3) Wear test (Okoshi type pin disk method) Results: Atmosphere, pin shape φ7.98mm (0.5c
m 2 ) Pressing force 0.5 Kgf, pressing pressure 1 Kgf / cm 2 friction speed 1 m / s, disk material SKH-3, wear amount 0 mg was obtained in 25 km of wear test run.

【0034】尚、摩耗試験結果の比較のために超硬材料
について摩耗量を示すと次の通りである。 表面を研削した超硬合金(GTi30)の摩耗量 :2.1mg チタン金属電極による放電コーティング処理面 :0.7〜1.5mg TiN+Ti2N(膜厚2μm)イオンミキシング処理面:1.5mg (注)(摩耗量計測の分解能0.1mgと考えられる) 以上の結果を図3に示す。ここで得られた硬度Hv=6
00〜900は焼入鋼もしくは、焼戻した鋼程度に過ぎ
ないが、その耐摩耗性は著しく高い。母材の超硬合金の
硬度はHv=1500〜1800程度と高いけれども、
表面を研削しただけの超硬合金では、上記結果が示すよ
うに2.1mgも摩耗する。
For comparison of the wear test results, the wear amount of the cemented carbide material is shown below. Abrasion amount of cemented carbide (GTi30) whose surface is ground: 2.1 mg Discharge coating surface with titanium metal electrode: 0.7 to 1.5 mg TiN + Ti 2 N (film thickness 2 μm) Ion mixing surface: 1.5 mg ( Note) (It is considered that the resolution of wear measurement is 0.1 mg.) The above results are shown in Fig. 3. Hardness Hv = 6 obtained here
Although 0 to 900 is only a hardened steel or a tempered steel, its wear resistance is extremely high. Although the hardness of the cemented carbide of the base material is as high as Hv = 1500 to 1800,
Cemented carbides whose surface has just been ground will wear as much as 2.1 mg, as the above results show.

【0035】(2)耐摩耗性が著しく向上したことに対
する考察 1)このように硬度が低いにもかかわらず耐摩耗性が高
いと云う点については、現在のところ明確な解析はでき
ていないのであるが、発明者らは次のように考えてい
る。TiH2粉体電極による液中放電堆積表面は、Ti
とTiCとから組成されていて、母材の超硬合金表面と
は、酸化物を全く含むことなく密着している。母材面と
の放電時に於ける反応は、超硬表面も瞬間的にその材料
の沸点までになり得るから、堆積したTiとTiCは母
材側にある程度拡散融合することができる。母材との境
界面から、堆積層の表面まで(この場合は約13μm)
の成分組成もTiとTiCであり、酸化物を全く含むこ
となく密着している。このTi成分は堆積層の最上表面
部は気中で酸化されTiO2となるものの、内部は活性
をもったままのTiとなっている。
(2) Consideration for remarkable improvement in wear resistance 1) Since the wear resistance is high despite the low hardness, no clear analysis has been made so far. However, the inventors think as follows. The surface of the in-liquid discharge deposition by the TiH 2 powder electrode is Ti
And TiC, and is in close contact with the surface of the cemented carbide of the base material without containing any oxide. The reaction with the surface of the base material at the time of discharge can instantaneously reach the boiling point of the material on the cemented carbide surface, so that the deposited Ti and TiC can diffuse and fuse to the base material side to some extent. From the interface with the base material to the surface of the deposited layer (in this case, about 13 μm)
The composition of is also Ti and TiC, and they are in close contact without containing any oxide. This Ti component is oxidized in the air at the uppermost surface portion of the deposited layer to become TiO 2 , but the inside remains as active Ti.

【0036】そのため摩耗試験を行うと、ディスク材
(SK−3)と接触した時、最上表面部が摩耗除去され
た後は、ディスク材がTi堆積層側に融合して除去さ
れ、被処理表面の方に付着移転すると考えられる。元々
被処理面にはTiCも存在しているので、やや軟らかい
Ti表面を付着移転したディスク材(SK−3)が付着
保護していると考えている。
Therefore, when a wear test is carried out, when the uppermost surface portion is worn and removed when it comes into contact with the disk material (SK-3), the disk material is fused and removed to the Ti deposition layer side, and the surface to be treated is removed. It is thought that they will be attached to and transferred to. Since TiC originally exists on the surface to be treated, it is considered that the disk material (SK-3) having the slightly soft Ti surface adhered and transferred protects it.

【0037】2)上記のように考察した場合、電気メッ
キ面の密着性及び放電による加工液の分解水素との論理
上の相違点を述べておかなければならない。電気メッキ
もメッキ金属は陰極に析出する。その場合、メッキ水溶
液の分解による発生期の水素によって陰極面もクリーニ
ングされる筈であるが、メッキの密着性は高くはない。
むしろ水素脆性によって母材及びメッキ表面が脆くなる
ことが知られている。 これは、メッキも表面はクリー
ニングされるかも知れないが、高温高圧ではないため
に、メッキ金属が、母材に融合拡散することはできない
ためと考えてよい。
2) In consideration of the above, it is necessary to state the adhesiveness of the electroplating surface and the logical difference from the decomposed hydrogen of the working fluid due to electric discharge. Electroplating also deposits plated metal on the cathode. In that case, the cathode surface should be cleaned by hydrogen in the nascent stage due to the decomposition of the plating aqueous solution, but the adhesion of the plating is not high.
Rather, it is known that hydrogen embrittlement makes the base material and the plating surface brittle. This may be because the surface of the plating may be cleaned by plating, but the plating metal cannot be fused and diffused into the base material because it is not at high temperature and high pressure.

【0038】3)また、放電加工によって、加工油が分
解する場合には、炭素と水素に分かれ、陽極側は炭素が
多く析出するから、陰極には水素が射突してクリーニン
グする事になるのではないかと云うことである。この作
用は無視できない。たしかに鉄鋼表面にWC+Coの圧
粉体を堆積させた際に、著しい密着性の高い堆積層を得
ている。しかしながら、これを超硬合金表面に堆積させ
ようとしても、高い密着性は得られなかった。また、単
なるチタン粉の圧粉体電極で鋼材に堆積させようとして
も、よく堆積する条件を見い出すことはできなかった。
このような実験結果より、液中放電によって分解した水
素では、超硬合金への堆積は不可能であったことから、
チタン粉のように表面が酸化膜で覆われているものの還
元作用までは不可能であると考えられる。
3) Further, when the processing oil is decomposed by electric discharge machining, it is divided into carbon and hydrogen, and a large amount of carbon is deposited on the anode side, so that hydrogen is bombarded on the cathode for cleaning. That is to say. This effect cannot be ignored. It is true that when a WC + Co green compact is deposited on the surface of steel, a deposited layer with extremely high adhesion is obtained. However, even if it was attempted to be deposited on the surface of the cemented carbide, high adhesion could not be obtained. In addition, even if an attempt was made to deposit on a steel material by simply using a titanium powder compact electrode, it was not possible to find a condition for good deposition.
From such experimental results, it was impossible to deposit hydrogen on the cemented carbide with hydrogen decomposed by in-liquid discharge,
It is considered that even though the surface is covered with an oxide film like titanium powder, the reducing action is impossible.

【0039】実施例2.次に放電電気条件を変えた場合
の、TiH2圧粉体電極による実験結果を示す。加工は
1次加工のみによる。 (1)電極極性を変えた場合 TiH2の圧粉体成形条件は実施例1と同様 1)圧粉体電極極性(−) 放電電流Ip=10A,パルス幅τp=32μs 加工時間=5分のとき 被処理表面の硬度Hv=670〜900(測定圧10
g) 2)圧粉体電極極性(+) 同上電気条件にて 被処理表面の硬度Hv=1450〜1550(測定圧1
0g) 上記1)2)より極性の変更により硬度も変わる。
Embodiment 2 FIG. Next, the experimental results using the TiH 2 green compact electrode when changing the electrical discharge conditions are shown. Processing is based on primary processing only. (1) When the electrode polarity is changed The powder compacting conditions for TiH 2 are the same as in Example 1) 1) Powder compact electrode polarity (−) Discharge current Ip = 10 A, pulse width τp = 32 μs Processing time = 5 minutes When the hardness of the surface to be treated Hv = 670-900 (measurement pressure 10
g) 2) Polarity of green compact electrode (+) Same as above Electrical hardness Hardness of treated surface Hv = 1450 to 1550 (measurement pressure 1
0g) From the above 1) and 2), hardness changes depending on the polarity.

【0040】(2)放電電流を大きくし、パルス幅を非
常に小さくした場合 放電電流Ip=45A,パルス幅τp=0.5μs 加工時間=2分,圧粉体電極極性(−) 被処理表面の硬度Hv=2000〜3000(測定圧1
0g) 被処理表面の硬度Hv=1300〜2000(測定圧5
0g) 堆積厚み 2μm,仕上げ面粗さ 6μmRz 測定荷重が小さい場合に硬度大であり、荷重大で少し軟
らかくなるのは、表面が硬く内部が少し軟らかい傾向を
持つと云うことであり、硬さに傾斜性を形成しているこ
とになる。これは、実用の際、熱膨張や衝撃等に対して
強いとされている。
(2) When the discharge current is increased and the pulse width is made extremely small: discharge current Ip = 45 A, pulse width τp = 0.5 μs, processing time = 2 minutes, powder compact electrode polarity (−) surface to be treated Hardness Hv = 2000-3000 (measurement pressure 1
0g) Hardness of treated surface Hv = 1300-2000 (measurement pressure 5
0g) Deposition thickness 2μm, Finished surface roughness 6μm Rz The hardness is large when the measured load is small, and it becomes a little soft when the load is large, which means that the surface is hard and the inside tends to be a little soft. This means that it forms a slope. This is said to be strong against thermal expansion and impact in practical use.

【0041】(3)上記(1)(2)の結果より、表面
を著しく硬くし、内部に入るに従い充分に軟らかくし、
傾斜性を著しく高める手段として、はじめに上記(1)
の1)の条件とし、次に(2)の条件とする加工工程が
存在する。あるいは、電極極性を(+)(−)に変える
などの方法がある。
(3) From the results of (1) and (2) above, the surface was made extremely hard and softened as it entered the inside.
As a means for significantly increasing the inclination, first, the above (1)
There is a processing step under the condition 1) and then the condition 2). Alternatively, there is a method of changing the electrode polarity to (+) (-).

【0042】実施例3.TiH2の圧粉体電極による鋼
材への放電表面処理の実験結果を示す。 (1)TiH2の圧粉体電極を用いて、実施例1と同様
の条件にて鋼材(SK−3)に放電表面処理(1次加工
のみ)を行った。 放電電流Ip=3.5A,パルス幅τp=32μs 加工時間=5分 被処理表面の硬度Hv=900〜1000(測定圧10
g) 堆積厚み 47μm,摩耗試験結果の摩耗量0mg (2)上記実施例3.の(1)の条件にて鋼材(SK−
3)に加工処理後、グラファイト電極によって2次加工
を行った結果を示す。2次加工条件は 放電電流Ip=3.5A,パルス幅τp=4μs 加工時間=5分,グラファイト電極の極性(−) 被処理面の硬度Hv=1600〜1750 これより、2次加工を行えば硬度が著しく上昇している
ことが判る。銅電極で2次加工を行ったものも、同様に
硬度が上昇した。
Embodiment 3 FIG. The experimental result of the electric discharge surface treatment to the steel material by the powder compact electrode of TiH 2 is shown. (1) Using a TiH 2 powder compact electrode, a steel material (SK-3) was subjected to electric discharge surface treatment (primary processing only) under the same conditions as in Example 1. Discharge current Ip = 3.5 A, pulse width τp = 32 μs Processing time = 5 minutes Hardness Hv of the surface to be treated Hv = 900 to 1000 (measurement pressure 10
g) Deposition thickness 47 μm, wear amount 0 mg as a result of wear test (2) Example 3 above. Under the conditions of (1) of No.
3) shows the results of secondary processing using a graphite electrode after the processing. Secondary processing conditions are discharge current Ip = 3.5A, pulse width τp = 4 μs, processing time = 5 minutes, polarity of graphite electrode (−), hardness of surface to be processed Hv = 1600 to 1750. It can be seen that the hardness has increased remarkably. The hardness of the copper electrode subjected to the secondary processing similarly increased.

【0043】この理由は、2次加工により新しいTiも
しくはTiCが堆積しない状態で、加工油が分解して生
じたCが被覆層中の残留Tiと結合して被覆層中のTi
Cの占める割合が増加するからである。
The reason for this is that in the state where new Ti or TiC is not deposited by the secondary processing, C generated by decomposition of the processing oil is combined with residual Ti in the coating layer to form Ti in the coating layer.
This is because the proportion of C increases.

【0044】発明の実施の形態2.TiH2に他の金
属、炭化物、窒化物、ほう化物を混合した圧粉体電極を
用いた実施例を示す。TiH2が有している上記の優れ
た特性をさらに拡張するために (1)液中放電により炭化物になり得る金属(例:T
a,Nb,V,Zr) (2)炭化物(例:TiC,TaC,NbC,VC,B
C,B4C) (3)窒化物(例:TiN,hBN,CBN) (4)ほう化物(例:TiB2,ほう酸H2BO3,ほう
砂Na247・10H2O) (5)イットリア(Y23) をTiH2に混合して圧粉体電極を形成した実験を多く
行った。その中の代表例として、TiB2混合のもの、
TiNを混合のもの、及びTiB2とTiNを合わせて
混合したものを示す。
Embodiment 2 of the Invention An example using a powder compact electrode in which TiH 2 is mixed with another metal, carbide, nitride, or boride will be shown. In order to further expand the above-mentioned excellent properties of TiH 2 , (1) a metal that can become a carbide by a discharge in liquid (eg, T
a, Nb, V, Zr) (2) Carbide (Example: TiC, TaC, NbC, VC, B
C, B 4 C) (3) Nitride (Example: TiN, hBN, CBN) (4) Boride (Example: TiB 2 , boric acid H 2 BO 3 , borax Na 2 B 4 O 7 · 10H 2 O) (5) Many experiments were carried out in which yttria (Y 2 O 3 ) was mixed with TiH 2 to form a powder compact electrode. As a typical example among them, a mixture of TiB 2
A mixture of TiN and a mixture of TiB 2 and TiN are shown.

【0045】1次加工のみの場合も硬度は超硬合金以上
であるが、グラファイト電極等(銅やタングステン等の
電極でもよい)で2次加工を行うと、硬度は更に向上
し、表面はダイヤモンドの1/2(CBNと同等Hv5
000以上)となり、内部が柔らかくなると云う傾斜性
を持つことが判った。
Even when only the primary processing is performed, the hardness is higher than that of the cemented carbide, but when the secondary processing is performed with a graphite electrode or the like (electrodes such as copper and tungsten may be used), the hardness is further improved and the surface is diamond. 1/2 (Hv5 equivalent to CBN
000) or more), and it has been found that it has an inclination that the inside becomes soft.

【0046】実施例4. 電極材料:TiH2+TiB2(7:3重量比) 1)圧粉体加圧条件等は実施例1と同様で、1次加工の
みを行った場合 電気条件:Ip=5.5A,τp=32μs,加工時間
=5分では 硬度:Hv=1850〜2500(荷重10g),厚
み:24〜28μm及び 硬度:Hv=1650〜2500(荷重50g)が得ら
れた。 これを実施例1と同様摩耗試験を行った結果、被処理面
の摩耗量は0mgであった。また、超硬バイト(三菱マ
テリアルUTi20)のすくい面、前逃げ面にそれぞれ
2分間宛上記の放電処理を行い、旋盤による切削試験を
行い、切削工具への適応性を調べた。その結果、次の切
削条件に於いて放電処理しないものと比べ、1.9倍の
長寿命を示した。
Embodiment 4 FIG. Electrode material: TiH 2 + TiB 2 (7: 3 weight ratio) 1) The pressing conditions of the green compact are the same as in Example 1, and only the primary processing is performed Electrical conditions: Ip = 5.5A, τp = When 32 μs and processing time = 5 minutes, hardness: Hv = 1850 to 2500 (load 10 g), thickness: 24 to 28 μm and hardness: Hv = 1650 to 2500 (load 50 g) were obtained. As a result of performing a wear test on this in the same manner as in Example 1, the amount of wear on the treated surface was 0 mg. Further, the rake surface and the front flank of the carbide tool (Mitsubishi Material UTi20) were each subjected to the above-mentioned discharge treatment for 2 minutes, and a cutting test by a lathe was performed to examine the adaptability to a cutting tool. As a result, under the following cutting conditions, the life was 1.9 times longer than that of the case where no discharge treatment was performed.

【0047】また、電気条件:Ip=8A,τp=8μ
s,加工時間=5分では、次の切削条件に於いて放電処
理しないものと比べ、2.8倍の長寿命を示した。 切削条件:被切削材 S45C,切り込み 0.5mm 送り 0.3mm/rev, 切削速度 160m/min 乾式切削 寿命判定:切削距離7Kmに於ける前逃げ面の摩耗幅 (一般にVBとして示される)
Electrical conditions: Ip = 8A, τp = 8μ
s, machining time = 5 minutes, the life was 2.8 times longer than that of the case where no electric discharge treatment was performed under the following cutting conditions. Cutting conditions: Work material S45C, Depth of cut 0.5 mm, Feed 0.3 mm / rev, Cutting speed 160 m / min Dry cutting Life judgment: Wear width of front flank at cutting distance 7 km (generally indicated as VB)

【0048】2)上記の1次加工後、グラファイト電極
で5分間次の電気条件で加工した 電気条件:Ip=3.5A,τp=4μs,加工時間=
5分 硬度:Hv=2100〜5100(荷重10g),圧粉
体電極(−) Hv=1500〜3000(荷重50g),厚み32〜
36μm 硬度Hv=5000と云うのは、ダイヤモンドの100
00に次ぐものであり、CBNの5000に匹敵してい
る。この場合も表面が著しく硬く、内部に入るに従って
次第に軟らかくなる傾斜性硬度分布を示しており、表面
硬度と靭性とを兼ね備える性質をもっているので極めて
有用である。
2) After the above-mentioned primary processing, the graphite electrode was processed for 5 minutes under the following electrical conditions: Electrical conditions: Ip = 3.5 A, τp = 4 μs, processing time =
5 minutes Hardness: Hv = 2100 to 5100 (load 10g), green compact electrode (-) Hv = 1500 to 3000 (load 50g), thickness 32 to
36 μm hardness Hv = 5000 is 100 for diamond
It is second only to 00 and equal to 5000 of CBN. In this case as well, the surface is extremely hard and shows a gradient hardness distribution that gradually becomes softer as it enters the inside, and is extremely useful because it has both surface hardness and toughness.

【0049】実施例5. 電極材料:TiH2+TiN(7:3重量比) 1)1次加工条件: 電気条件:Ip=5.5A,τp=32μs,加工時間
=5分 硬度:Hv=1050〜1800(荷重10g), 電極
(−) 一次加工のみの時は、TiB2混入程ではないがこれは
TiB2を混入したときに次いで硬度が高い。 2)上記一次加工の後、グラファイト電極で2次加工を
行った場合の硬度はHv=1700〜2300程度とな
る。
Embodiment 5 FIG. Electrode material: TiH 2 + TiN (7: 3 weight ratio) 1) Primary processing conditions: Electric conditions: Ip = 5.5 A, τp = 32 μs, processing time = 5 minutes Hardness: Hv = 1050 to 1800 (load 10 g), electrode (-) when the primary processing only, but not as TiB 2 mixed which has high hardness next to when mixed with TiB 2. 2) After the above-mentioned primary processing, the hardness when the secondary processing is performed with the graphite electrode is about Hv = 1700 to 2300.

【0050】実施例6. 電極材料:TiH2+TiB2+TiN(2:1:1) 1)1次加工のみによる硬度 加工条件は実施例1と同様、加工時間=5分 硬度 Hv=2000〜2300(荷重10g) 厚さ 12〜18μm 2)2次加工をグラファイト電極で行った場合 加工条件は実施例1と同様、加工時間=5分 硬度 Hv=2550〜6050(荷重10g) 厚さ 14〜18μm 測定荷重を高くとり50grとするとHv=1800程度
に低下するので、これも傾斜性をもっていることが明か
である。
Embodiment 6 FIG. Electrode material: TiH 2 + TiB 2 + TiN (2: 1: 1) 1) Hardness by primary processing only Processing conditions are the same as in Example 1 Processing time = 5 minutes Hardness Hv = 2000 to 2300 (load 10 g) Thickness 12 -18 μm 2) When the secondary processing is performed with a graphite electrode Processing conditions are the same as in Example 1 Processing time = 5 minutes Hardness Hv = 2550-6050 (load 10 g) Thickness 14-18 μm Measured load is high and 50 gr Then, since Hv is reduced to about 1800, it is clear that this also has a gradient.

【0051】発明の実施の形態3.以上述べた実施の形
態に於いては、耐摩耗性を高めることを目的としてい
る。TiH2圧粉体の1次加工では硬度はそれほど高く
なくとも、密着性が著しく強いためと考えるが、耐摩耗
性が高いと云う結果は得られている。さらにTiB2
を添加した場合は高硬度で耐摩耗が高い。硬度が高すぎ
て脆性破壊の恐れがあるような場合には、靭性を賦与す
るために、Nb,Ta,もしくはNbC,TaC等を加え
るのが有効とされている。(これは、超硬工具の方で知
られている知識である)
Third Embodiment of the Invention The above-described embodiments are intended to improve wear resistance. In the primary processing of the TiH 2 green compact, it is considered that the adhesion is remarkably strong even if the hardness is not so high, but the result is that the abrasion resistance is high. Further, when TiB 2 or the like is added, the hardness is high and the wear resistance is high. When the hardness is too high and brittle fracture is likely, it is effective to add Nb, Ta, NbC, TaC or the like in order to impart toughness. (This is the knowledge known to carbide tools)

【0052】Ta,Nb,VをTiH2に10%程度加
えて実施例1と同一条件で加工を行った結果はTa,N
bでHv=600〜700、Vで900と硬度は上昇し
ないが、表面をハンマー等で打撃しても欠落しにくいこ
とから、靭性も向上していると見られる。厚みも5分加
工で10〜20μmと安定加工状態で堆積する。
Ta, Nb and V were added to TiH 2 in an amount of about 10%, and the processing was carried out under the same conditions as in Example 1. The results are Ta, N
Although the hardness does not increase to Hv = 600 to 700 for b and 900 for V, the toughness is considered to be improved because the surface is less likely to be chipped even when hit with a hammer or the like. The thickness is 10 to 20 μm after being processed for 5 minutes, and is deposited in a stable processed state.

【0053】Nb,TaC,VC等も切削工具では、断
続切削に対する靭性向上のために、有効とされているの
で、この実験に於いても、10%程度の重量比で加えて
みた。その結果、Hv=900〜1050程度と、あま
り高くならないが、5分加工で、20μm以上30μm
程度の厚みに安定状態で堆積され、打撃等に対しても強
靭である。
Nb, TaC, VC, etc. are also effective in cutting tools for improving toughness against interrupted cutting, so in this experiment, addition was made at a weight ratio of about 10%. As a result, Hv = 900 to 1050, which is not so high, but after 5 minutes processing, 20 μm or more and 30 μm
It is deposited in a stable state with a certain thickness and is tough against impacts.

【0054】発明の実施の形態4.以上述べたようにT
iH2を基本として、単体もしくは、TiB2,TiNな
どを加えることによって、より高い硬度の表面堆積層を
得られることが明かとなった。TiH2が被処理材料に
対して密着する理由は、発明の実施の形態の項で前述の
通り、水素化物が分解するときに生ずる発生期水素イオ
ンによる堆積表面の還元作用と、分解したTiが極めて
活性化されていることによるものである。また、Tiが
放電発生の際微細化するために、母材への接触実効面積
が大きくなることも作用しているものと思われる。さら
に、Tiの微細化によって堆積した組織が細かくなるた
め、仕上げ面粗さも精細になり易いという特色もある。
Fourth Embodiment of the Invention As mentioned above, T
It has been clarified that a surface deposited layer having a higher hardness can be obtained by adding iB 2 alone or TiB 2 or TiN based on iH 2 . The reason why TiH 2 adheres to the material to be treated is, as described above in the section of the embodiment of the invention, that the decomposed Ti is caused by the reducing action of the deposited surface by nascent hydrogen ions generated when the hydride is decomposed. This is because it is extremely activated. It is also considered that the effective contact area with the base material increases because Ti becomes finer when electric discharge occurs. Further, since the fine structure of Ti makes the deposited structure finer, the finished surface roughness tends to be fine.

【0055】この原理を拡張すれば、金属の水素化物を
用いて表面処理に使用することができる。表面処理に使
用できると考えている水素化物は次のようなものであ
る。 ZrH2,VH,VH2,NbH,TaH,FeTi
2,LaNi56,TiMnH2,NaBH4 この内、一例としてZrH2について実験を行ったので
実施例6として述べる。Zrは耐熱性、耐蝕性に優れ、
熱中性子の減速剤として、原子炉にも使用される。切削
工具、ベアリング、熱機関耐熱摩耗部分、ポンプ部品等
に使用される。
Extending this principle, metal hydrides can be used for surface treatment. The hydrides considered to be usable for the surface treatment are as follows. ZrH 2 , VH, VH 2 , NbH, TaH, FeTi
H 2, LaNi 5 H 6, TiMnH 2, NaBH 4 among this describes ZrH 2 as Example 6 so experiments were conducted as an example. Zr has excellent heat resistance and corrosion resistance,
It is also used in nuclear reactors as a thermal neutron moderator. Used for cutting tools, bearings, heat engine heat resistant wear parts, pump parts, etc.

【0056】実施例7.ZrH2の粉末を実施例1と同
じ条件で圧粉体とし(圧縮圧力6,500Kg/cm2)、
鋼材SK−3に対し、Ip=5.5A,τp=32μs
で加工し、極めて安定な加工状態でよく堆積する。5分
加工で厚み8〜10μm、硬度Hv=660〜690で
それ程高硬度ではないが、これだけでも高い耐摩耗性を
示している。高硬度を必要とする場合には、グラファイ
ト電極等により2次加工を行えば、硬度は上昇する。2
次加工を行った場合の電気条件はIp=3.5A,τp
=4μs,グラファイト電極(−)により、硬度Hv=
1350〜2000〜2350が得られる。
Example 7. ZrH 2 powder was made into a green compact under the same conditions as in Example 1 (compressing pressure 6,500 kg / cm 2 ),
For steel SK-3, Ip = 5.5 A, τp = 32 μs
Processed in, and deposits well in an extremely stable processing state. Although the thickness is 8 to 10 μm and the hardness Hv is 660 to 690 after processing for 5 minutes and the hardness is not so high, this alone shows high wear resistance. When high hardness is required, the hardness is increased by performing secondary processing with a graphite electrode or the like. 2
The electrical conditions for the next processing are Ip = 3.5A, τp
= 4 μs, hardness Hv = due to the graphite electrode (-)
1350-2000-2350 are obtained.

【0057】発明の実施の形態5..アルミニウム、亜
鉛、あるいは鉄鋼(特に軟鋼)表面に、それほど高い硬
度でなくともよいが、耐摩耗性の高い表面等を必要とす
る場合がある。例えば、アルミニウムならば、アルミニ
ウムエンジンの耐摩耗部分、亜鉛ならば、亜鉛で形状が
作られている金型、軟鋼で作られている機械部品の表面
を、さほど硬くなく、耐摩耗を加えたい場合がある。こ
のような場合にTiH2粉末と表面処理を必要とする金
属の粉末を混合して使用すると、密着力の高い、母材よ
りは硬度の高い表面被膜が形成される。具体例としてア
ルミニウム上にTiH2+Alの圧粉体電極による例を
述べる。
Fifth Embodiment of the Invention . The surface of aluminum, zinc, or steel (particularly mild steel) does not need to be so high in hardness, but a surface having high wear resistance may be required. For example, in the case of aluminum, the wear resistant part of the aluminum engine, in the case of zinc, the mold made of zinc, the surface of machine parts made of mild steel is not so hard, and you want to add wear resistance. There is. In such a case, when TiH 2 powder and metal powder requiring surface treatment are mixed and used, a surface coating having high adhesion and hardness higher than that of the base material is formed. As a specific example, an example of a powder compact electrode of TiH 2 + Al on aluminum will be described.

【0058】実施例8.被処理素材Siを11%含むア
ルミダイカスト材料TiH2対Alの重量比3:7の圧
粉体電極を使用する。電流Ip=5A,τp=32μs
程度の時は、硬度もHv=400〜600程度である
が、Ip=20A,τp=260μs程度の時は表層部
は、Hv=1400程度にも達する。この電極組成で亜
鉛に処理しても、同様の結果が得られる。
Embodiment 8 FIG. An aluminum die casting material containing 11% of the material to be treated, a powder electrode having a weight ratio of TiH 2 to Al of 3: 7 is used. Current Ip = 5 A, τp = 32 μs
When the hardness is about Hv = 400 to 600, the hardness reaches about Hv = 1400 at the surface layer when Ip = 20 A and τp = 260 μs. Similar results are obtained by treating zinc with this electrode composition.

【0059】発明の実施の形態6.非鉄金属の中に超耐
合金(超合金)といわれるものがあり、この材料も、放
電表面処理技術の対象となる。すなわち、Tiと6%A
l4%Vの材料は100kg/mm2程度の引っ張り強度が
あり、ビッカース硬度Hv=260程度である。これに
ZrH2の圧粉体電極で表面処理を行い、面積1.7cm2
の電極で、Ip=5.5A,τp=32μsで加工し、
硬度Hv=660〜690,厚み10μmを得ている。
尚、グラファイト電極で二次加工を行うとHv=135
0〜2000程度が得られている。この加工をNi−A
l−Ti−Nb−Ta合金に対し放電被覆し、同様の結
果を得ている。
Sixth Embodiment of the Invention Some non-ferrous metals are called superalloys (superalloys), and this material is also subject to discharge surface treatment technology. That is, Ti and 6% A
The material of 14% V has a tensile strength of about 100 kg / mm 2 and a Vickers hardness Hv of about 260. Surface treatment was performed with a ZrH 2 powder compact electrode, and the area was 1.7 cm 2.
Process with Ip = 5.5A, τp = 32μs,
The hardness Hv = 660 to 690 and the thickness 10 μm are obtained.
Hv = 135 when secondary processing is performed with a graphite electrode.
About 0 to 2000 is obtained. This processing is Ni-A
The same result was obtained by discharge coating the 1-Ti-Nb-Ta alloy.

【0060】以上の本発明に於いて、被処理材料(電極
と対向して放電を発生する物質)は、鉄鋼及び特殊鋼、
超硬合金、サーメット、アルミニウム及びその合金、亜
鉛及びその合金、銅及び銅合金、並びにNi,Co等を
主成分とする超耐熱合金(超合金とも呼ぶ)が対象とな
る。いわゆる非鉄材料及び非鉄合金も対象となる。
In the present invention as described above, the material to be treated (the substance that generates an electric discharge facing the electrode) is steel or special steel,
Cemented carbide, cermet, aluminum and its alloys, zinc and its alloys, copper and copper alloys, and super heat-resistant alloys (also called superalloys) containing Ni, Co, etc. as the main components are targeted. So-called non-ferrous materials and non-ferrous alloys are also applicable.

【0061】[0061]

【発明の効果】以上の如く、Ti,Zr,V,Nb,T
a等の金属もしくは水素化物を圧粉体として形成して、
液中放電を行うことにより、鉄鋼、超硬合金等の表面に
強力な密着力を持つ数μm〜数10μmの厚みを持つ堆
積層を形成することができる。この堆積層は著しく耐摩
耗性が良い。また、仕上げ面粗さも同一電気条件で行っ
た他の例(WC+Co)に比べ良好で、1/2〜1/3
の粗さとなる。また、上記の水素化物の中に、硬度を上
昇させるために、TiB2,TiN,TiC,TaC,
NbC,VCなどを混入すれば、更に硬度を上昇させる
ことができる。Ta,Nb,Vの金属を圧粉体成分に加
えれば、靭性が向上する。グラファイト電極や銅電極で
2次加工を行えば、50%以上から2倍程度まで硬度が
上昇する。
As described above, Ti, Zr, V, Nb, T
forming a metal such as a or a hydride as a green compact,
By performing in-liquid discharge, it is possible to form a deposition layer having a thickness of several μm to several tens of μm, which has a strong adhesive force, on the surface of steel, cemented carbide or the like. This deposited layer has extremely good wear resistance. In addition, the finished surface roughness is better than that of the other example (WC + Co) performed under the same electrical conditions, and is 1/2 to 1/3.
It becomes the roughness of. In addition, in order to increase hardness in the above hydride, TiB 2 , TiN, TiC, TaC,
The hardness can be further increased by mixing NbC, VC and the like. The toughness is improved by adding Ta, Nb, and V metals to the green compact component. When secondary processing is performed with a graphite electrode or a copper electrode, the hardness increases from 50% or more to about twice.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 WC+Coの混合物の圧粉体を電極として1
次加工及び2次加工を行う原理を示す図である。
FIG. 1 is an example of a green compact of a mixture of WC + Co used as an electrode.
It is a figure which shows the principle which performs secondary processing and secondary processing.

【図2】 圧粉体を電極に用いた場合の1次加工後及び
2次加工後における被処理材の処理層断面の顕微鏡写真
である。
FIG. 2 is a micrograph of a cross section of a treatment layer of a material to be treated after primary processing and secondary processing when a green compact is used for an electrode.

【図3】 摩耗試験結果の比較を示す図である。FIG. 3 is a diagram showing a comparison of wear test results.

【符号の説明】[Explanation of symbols]

1 電極、2 母材 1 electrode, 2 base materials

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 長男 愛知県春日井市岩成台九丁目12番地の12 (72)発明者 毛利 尚武 名古屋市天白区八事石坂661−51 (72)発明者 砂田 洋尚 名古屋市瑞穂区田辺通3−44 三明荘10号 室 (72)発明者 真柄 卓司 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 後藤 昭弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Nagao Saito 12-12, 9-12 Iwanaridai, Kasugai City, Aichi Prefecture (72) Inventor Naotake Mohri 661-51 Yakuji Ishizaka, Tenpaku-ku, Nagoya (72) Inventor Hirohisa Sunada Sanyoso, Mizuho-ku, Nagoya City, 3-44, Sanmeiso 10 (72) Inventor Takuji Maji 2-3-3, Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Akihiro Goto Marunouchi, Chiyoda-ku, Tokyo 2-3-2 Sanryo Electric Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 金属の水素化合物粉末を含む粉末を成形
したものを放電電極として用い、炭素の存在する液中で
上記電極と被加工物間に放電を発生させ、上記被加工物
表面上に上記金属の化合物を含む表面層を形成すること
を特徴とする液中放電による表面処理方法。
1. A powder obtained by molding a powder containing a metal hydrogen compound powder is used as a discharge electrode, and an electric discharge is generated between the electrode and a workpiece in a liquid containing carbon to form a discharge on the surface of the workpiece. A surface treatment method by in-liquid discharge, which comprises forming a surface layer containing the compound of the above metal.
【請求項2】 金属の水素化合物粉末を含む粉末を成形
したものを放電電極として用い、熱分解して炭素を生ず
る高分子材料の存在する液中で上記電極と被加工物間に
放電を発生させ、上記被加工物表面上に上記金属の化合
物を含む表面層を形成することを特徴とする液中放電に
よる表面処理方法。
2. Electric discharge is generated between the electrode and a workpiece in a liquid containing a polymer material which is thermally decomposed to generate carbon, by using a powder formed of a powder containing a metal hydrogen compound powder as an electric discharge electrode. And forming a surface layer containing the compound of the metal on the surface of the object to be processed.
【請求項3】 請求項1または2いずれかに記載の液中
放電による表面処理方法において、水素化合物として電
極に含まれる金属が遷移金属であることを特徴とする液
中放電による表面処理方法。
3. The surface treatment method by submerged discharge according to claim 1 or 2, wherein the metal contained in the electrode as a hydrogen compound is a transition metal.
【請求項4】 金属の水素化合物粉末に他の金属、炭化
物、窒化物、ほう化物粉末を混合して成形したものを液
中放電の電極として用い、炭素の存在する液中で上記電
極と被加工物間で放電を発生させ、上記被加工物表面上
に高硬度の化合物を含む表面層を形成することを特徴と
する液中放電による表面処理方法。
4. A metal hydrogen compound powder mixed with another metal, a carbide, a nitride, or a boride powder, which is molded, is used as an electrode for in-liquid discharge, and is used as an electrode for the in-liquid discharge. A method of surface treatment by in-liquid discharge, characterized in that an electric discharge is generated between workpieces to form a surface layer containing a compound of high hardness on the surface of the workpiece.
【請求項5】 金属の水素化合物粉末に他の金属、炭化
物、窒化物、ほう化物粉末を混合して成形したものを液
中放電の電極として用い、熱分解して炭素を生ずる高分
子材料の存在する液中で上記電極と被加工物間で放電を
発生させ、上記被加工物表面上に高硬度の化合物を含む
表面層を形成することを特徴とする液中放電による表面
処理方法。
5. A polymer material, which is formed by mixing powder of a metal hydrogen compound with powder of another metal, carbide, nitride or boride, and is used as an electrode for in-liquid discharge to thermally decompose to generate carbon. A surface treatment method by in-liquid discharge, characterized in that an electric discharge is generated between the electrode and a workpiece in an existing liquid to form a surface layer containing a compound of high hardness on the surface of the workpiece.
【請求項6】 請求項2または5いずれかに記載の液中
放電による表面処理方法において、熱分解して炭素を生
ずる高分子材料が鉱物性油脂もしくは植物性油脂である
ことを特徴とする液中放電による表面処理方法。
6. The surface treatment method by submerged discharge according to claim 2 or 5, wherein the polymer material that thermally decomposes to produce carbon is a mineral oil or vegetable oil. Surface treatment method by medium discharge.
【請求項7】 請求項1ないし6いずれかに記載の液中
放電による表面処理方法において、電極材料にジルコ
ン,バナジウム,ニオブ,タンタルの粉末を1種もしく
は複合して加えたものを成形して電極として用い、この
電極と被加工物間で放電を発生させ、上記被加工物表面
上に高靱性の表面層を形成することを特徴とする液中放
電による表面処理方法。
7. The method of surface treatment by submerged discharge according to claim 1, wherein a zircon, vanadium, niobium or tantalum powder is added to the electrode material in one kind or in a composite form. A surface treatment method by in-liquid discharge, which is used as an electrode to generate an electric discharge between the electrode and a work to form a surface layer with high toughness on the surface of the work.
【請求項8】 請求項1ないし7いずれかに記載の液中
放電による表面処理方法において、被加工物と同種の金
属粉末を加えたものを成形して電極として用い、この電
極と被加工物間で放電を発生させ、上記被加工物の表面
の性状を向上することを特徴とする液中放電による表面
処理方法。
8. The method for surface treatment by submerged discharge according to claim 1, wherein a metal powder of the same kind as that of the workpiece is added and used as an electrode, and the electrode and the workpiece are processed. A surface treatment method by in-liquid discharge, characterized in that a discharge is generated between the two to improve the properties of the surface of the workpiece.
【請求項9】 請求項1ないし7いずれかに記載の液中
放電による表面処理方法にて被加工物表面に表面層を形
成した後、非消耗電極を用いて2次加工を行い、上記表
面層の物性を向上させることを特徴とする液中放電によ
る表面処理方法。
9. The surface treatment method according to claim 1, wherein a surface layer is formed on the surface of the workpiece, and then the secondary processing is performed using a non-consumable electrode. A surface treatment method by electric discharge in a liquid, which is characterized by improving physical properties of a layer.
【請求項10】 請求項9記載の液中放電による表面処
理方法において、非消耗電極がグラファイト、銅、タン
グステン、銀タングステン、銅タングステン、タングス
テンカーバイドの何れかであることを特徴とする液中放
電による表面処理方法。
10. The method for surface treatment by submerged discharge according to claim 9, wherein the non-consumable electrode is any one of graphite, copper, tungsten, silver tungsten, copper tungsten, and tungsten carbide. Surface treatment method.
【請求項11】 請求項1ないし10いずれかに記載の
液中放電による表面処理方法において、被加工物が非鉄
金属であることを特徴とする液中放電による表面処理方
法。
11. The surface treatment method by submerged discharge according to claim 1, wherein the workpiece is a non-ferrous metal.
【請求項12】 請求項1ないし10いずれかに記載の
液中放電による表面処理方法において、被加工物が超合
金であることを特徴とする液中放電による表面処理方
法。
12. The surface treatment method by submerged discharge according to claim 1, wherein the work piece is a superalloy.
JP00556096A 1996-01-17 1996-01-17 Surface treatment by submerged discharge Expired - Fee Related JP3537939B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00556096A JP3537939B2 (en) 1996-01-17 1996-01-17 Surface treatment by submerged discharge
CN97102050A CN1118349C (en) 1996-01-17 1997-01-13 Sunface treatment method using discharging in liquid
DE19701170A DE19701170C2 (en) 1996-01-17 1997-01-15 Surface treatment process
KR1019970001131A KR100217293B1 (en) 1996-01-17 1997-01-16 Surface treating method by discharging in a water
TW086100994A TW326008B (en) 1996-01-17 1997-01-29 Surface treatment method by electric discharge in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00556096A JP3537939B2 (en) 1996-01-17 1996-01-17 Surface treatment by submerged discharge

Publications (2)

Publication Number Publication Date
JPH09192937A true JPH09192937A (en) 1997-07-29
JP3537939B2 JP3537939B2 (en) 2004-06-14

Family

ID=11614594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00556096A Expired - Fee Related JP3537939B2 (en) 1996-01-17 1996-01-17 Surface treatment by submerged discharge

Country Status (5)

Country Link
JP (1) JP3537939B2 (en)
KR (1) KR100217293B1 (en)
CN (1) CN1118349C (en)
DE (1) DE19701170C2 (en)
TW (1) TW326008B (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046424A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment
WO1999046423A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
WO1999047730A1 (en) * 1998-03-16 1999-09-23 Mitsubishi Denki Kabushiki Kaisha Method for discharge surface treatment, and device and electrode for conducting the method
WO1999047290A1 (en) * 1998-03-18 1999-09-23 Mitsubishi Denki Kabushiki Kaisha Rolling die and method of treating surface of rolling die
WO1999058282A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discharge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
WO2000006330A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die for drawing/extruding and method for treating surface of die for drawing/extruding
WO2000006331A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Press die and method for treating surface of press die
WO2000006332A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die and surface treating method for die
WO2000029159A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method
WO2000029154A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Apparatus for discharge surface treatment and method for discharge surface treatment
WO2001024961A1 (en) * 1999-09-30 2001-04-12 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treating and production method thereof and discharge surface treating method
WO2001036710A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Denki Kabushiki Kaisha Method and device for electric discharge surface treatment
US6314778B1 (en) 1998-03-18 2001-11-13 Mitsubishi Denki Kabushiki Kaisha Rolling die and surface processing method for rolling die
US6376793B1 (en) 2000-03-08 2002-04-23 Mitsubishi Denki Kabushiki Kaisha Method and device for electric discharge surface treatment using a wire electrode
US6417480B2 (en) 1998-11-13 2002-07-09 Mitsubishi Denki Kabushiki Kaisha Method of processing a surface of a mold using electric discharge, an electrode used in such processing and a method of manufacturing such an electrode
US6492611B2 (en) 1998-11-13 2002-12-10 Mitsubishi Denki Kabushiki Kaisha Method of surface treatment using electric discharge and an electrode
US6501232B1 (en) 2000-01-11 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Electric power unit for electric discharge surface treatment and method of electric discharge surface treatment
US6521301B1 (en) 1999-11-08 2003-02-18 Mitsubishi Denki Kabushiki Kaisha Discharge surface processing method
US6602561B1 (en) 1998-05-13 2003-08-05 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and manufacturing method therefor and discharge surface treatment method and device
US6617544B1 (en) 2000-05-19 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine
US6808604B1 (en) 1999-09-30 2004-10-26 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, manufacturing method thereof and discharge surface treating method
US6821579B2 (en) 1998-11-13 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Surface treatment method using electric discharge, and an electrode for the surface treatment method
WO2004108990A1 (en) 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
WO2004111303A1 (en) * 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal product producing method, metal product, metal component connecting method, and connection structure
WO2004111304A1 (en) * 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
WO2004111394A1 (en) * 2003-06-10 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine component, gas turbine engine, method for manufacturing turbine component, surface processing method, vane component, metal component, and steam turbine engine
WO2004113587A1 (en) * 2003-06-10 2004-12-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal component, turbine component, gas turbine engine, surface processing method, and steam turbine engine
WO2005068845A1 (en) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
JP2005213554A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Discharge surface treatment method and discharge surface treatment apparatus
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
JP2005214054A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Turbine part and gas turbine
US6935917B1 (en) 1999-07-16 2005-08-30 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode and production method thereof
WO2007060729A1 (en) * 2005-11-25 2007-05-31 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating method and electric discharge surface treating apparatus
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US7537809B2 (en) 2002-10-09 2009-05-26 Ihi Corporation Rotating member and method for coating the same
DE19983550B4 (en) * 1999-07-16 2009-07-09 Mitsubishi Denki K.K. Electrode for a spark discharge coating and manufacturing method therefor
JP2010082701A (en) * 2008-09-29 2010-04-15 Tsugami Corp Collet chuck
JP2010082702A (en) * 2008-09-29 2010-04-15 Tsugami Corp Guide bush
WO2011027825A1 (en) * 2009-09-03 2011-03-10 株式会社Ihi Electric discharge surface treatment
CN103978215A (en) * 2014-06-03 2014-08-13 中国工程物理研究院流体物理研究所 Method and device for manufacturing metal hydride electrode and using method of device
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9234284B2 (en) 2008-08-06 2016-01-12 Mitsubishi Electric Corporation Electrical discharge surface treatment method
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086684A (en) * 1997-06-04 2000-07-11 Japan Science And Technology Corporation Electric discharge surface treating method and apparatus
DE19850048A1 (en) * 1998-10-30 2000-05-04 Christian Majaura Hard material layers, especially for wear protection, are spark discharge deposited using a process-controlled, three-dimensional coordinate robot system and a vanadium-containing hard material electrode
KR100354864B1 (en) * 2000-08-22 2002-10-05 강신일 Method of carbon cathode fabrication for micro-electric discharge machining
WO2004108989A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, and method for manufacturing and storing the same
CN104668677A (en) * 2013-12-02 2015-06-03 天津大学 Non-water-based electrolyte used for titanium alloy electrolytic machining and preparation method of non-water-based electrolyte
CN114309836B (en) * 2022-01-24 2023-05-12 南京苏曼等离子科技有限公司 Surface treatment method and device for workpiece material of metal rotator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828336A (en) * 1956-11-14 1960-02-17 Ass Elect Ind Improvements in and relating to metal surfaces

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354454C (en) * 1998-03-11 2007-12-12 三菱电机株式会社 Compact electrode for discharge surface treatment and method for mfg. discharge surface treatment compact electrode
WO1999046423A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
US6441333B1 (en) 1998-03-11 2002-08-27 Mitsubishi Denki K.K. Green compact electrode for discharge surface treatment and method of manufacturing green compact electrode for discharge surface treatment
US6437278B1 (en) 1998-03-11 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Green compact electrode for discharge surface treatment
WO1999046424A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment
WO1999047730A1 (en) * 1998-03-16 1999-09-23 Mitsubishi Denki Kabushiki Kaisha Method for discharge surface treatment, and device and electrode for conducting the method
US6365008B1 (en) 1998-03-16 2002-04-02 Mitsubishi Denki Kabushiki Kaisha Electric-discharge surface treatment method, and apparatus and electrode for carrying out the method
US6314778B1 (en) 1998-03-18 2001-11-13 Mitsubishi Denki Kabushiki Kaisha Rolling die and surface processing method for rolling die
WO1999047290A1 (en) * 1998-03-18 1999-09-23 Mitsubishi Denki Kabushiki Kaisha Rolling die and method of treating surface of rolling die
DE19882576B4 (en) * 1998-05-13 2007-09-27 Mitsubishi Denki K.K. Grinder electrode for spark discharge treatment, related manufacturing method, and method for recycling a green body electrode
US6793982B1 (en) 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
WO1999058282A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discharge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
US6602561B1 (en) 1998-05-13 2003-08-05 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and manufacturing method therefor and discharge surface treatment method and device
CN1087991C (en) * 1998-05-13 2002-07-24 三菱电机株式会社 Electrode of green compact for discharge surface treatment, method of producing the same, method and apparatus for discharge surface treatment and green compact for discharge surface treatment
WO2000006332A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die and surface treating method for die
WO2000006331A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Press die and method for treating surface of press die
WO2000006330A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die for drawing/extruding and method for treating surface of die for drawing/extruding
KR100411454B1 (en) * 1998-11-13 2003-12-18 미쓰비시덴키 가부시키가이샤 Apparatus for discharge surface treatment and method for discharge surface treatment
DE19883021B4 (en) * 1998-11-13 2006-02-02 Mitsubishi Denki K.K. Apparatus for discharge surface treatment comprises a number of electrodes insulated electrically from each other, and connected to a power supply
US6492611B2 (en) 1998-11-13 2002-12-10 Mitsubishi Denki Kabushiki Kaisha Method of surface treatment using electric discharge and an electrode
WO2000029159A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method
WO2000029154A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Apparatus for discharge surface treatment and method for discharge surface treatment
US6548028B1 (en) 1998-11-13 2003-04-15 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment device and a discharge surface treatment method
CN1106902C (en) * 1998-11-13 2003-04-30 三菱电机株式会社 Apparatus for discharge surface treatment and method for discharge surface treatment
DE19883017B4 (en) * 1998-11-13 2007-09-27 Mitsubishi Denki K.K. Discharge surface treating method comprises generating a pulsating discharge between an object to be surface treated and a discharge electrode containing a corrosion resistant material, e.g. chromium, in a working fluid
US6417480B2 (en) 1998-11-13 2002-07-09 Mitsubishi Denki Kabushiki Kaisha Method of processing a surface of a mold using electric discharge, an electrode used in such processing and a method of manufacturing such an electrode
DE19883018C2 (en) * 1998-11-13 2003-10-09 Mitsubishi Electric Corp Methods of machining a surface of a mold using an electric discharge, electrode used in such machining, and methods of manufacturing such an electrode
US6929829B2 (en) 1998-11-13 2005-08-16 Mitsubishi Denki Kabushiki Kaisha Method and device discharging surface treatment
US6821579B2 (en) 1998-11-13 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Surface treatment method using electric discharge, and an electrode for the surface treatment method
DE19983550B4 (en) * 1999-07-16 2009-07-09 Mitsubishi Denki K.K. Electrode for a spark discharge coating and manufacturing method therefor
US6935917B1 (en) 1999-07-16 2005-08-30 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode and production method thereof
DE19983980B3 (en) * 1999-09-30 2013-09-05 Mitsubishi Denki K.K. A method for producing a discharge surface treatment electrode, hereinafter obtained discharge surface treatment electrode and use thereof
WO2001024961A1 (en) * 1999-09-30 2001-04-12 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treating and production method thereof and discharge surface treating method
US6808604B1 (en) 1999-09-30 2004-10-26 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, manufacturing method thereof and discharge surface treating method
US6521301B1 (en) 1999-11-08 2003-02-18 Mitsubishi Denki Kabushiki Kaisha Discharge surface processing method
DE19983887B3 (en) * 1999-11-08 2007-02-01 Mitsubishi Denki K.K. Funk coating process
WO2001036710A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Denki Kabushiki Kaisha Method and device for electric discharge surface treatment
US6501232B1 (en) 2000-01-11 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Electric power unit for electric discharge surface treatment and method of electric discharge surface treatment
US6376793B1 (en) 2000-03-08 2002-04-23 Mitsubishi Denki Kabushiki Kaisha Method and device for electric discharge surface treatment using a wire electrode
US6617544B1 (en) 2000-05-19 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US7537809B2 (en) 2002-10-09 2009-05-26 Ihi Corporation Rotating member and method for coating the same
US7918460B2 (en) 2002-10-09 2011-04-05 Ihi Corporation Rotating member and method for coating the same
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
WO2004108990A1 (en) 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JP4553843B2 (en) * 2003-06-10 2010-09-29 株式会社Ihi Surface treatment method, turbine rotor blade, gas turbine engine, turbine component, and steam turbine engine
JPWO2004111394A1 (en) * 2003-06-10 2006-07-27 石川島播磨重工業株式会社 Turbine component, gas turbine engine, turbine component manufacturing method, surface treatment method, blade component, metal component, and steam turbine engine
WO2004113587A1 (en) * 2003-06-10 2004-12-29 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal component, turbine component, gas turbine engine, surface processing method, and steam turbine engine
WO2004111394A1 (en) * 2003-06-10 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine component, gas turbine engine, method for manufacturing turbine component, surface processing method, vane component, metal component, and steam turbine engine
JP2010151148A (en) * 2003-06-10 2010-07-08 Ihi Corp Surface treatment method, turbine moving blade, gas turbine engine, and steam turbine engine
US7713361B2 (en) 2003-06-11 2010-05-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal product producing method, metal product, metal component connecting method, and connection structure
JP2010100940A (en) * 2003-06-11 2010-05-06 Ihi Corp Method for repairing machine component, method for manufacturing restored machine component, method for manufacturing machine component and gas-turbine engine
WO2004111303A1 (en) * 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal product producing method, metal product, metal component connecting method, and connection structure
US7723636B2 (en) 2003-06-11 2010-05-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
WO2004111304A1 (en) * 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
WO2005068845A1 (en) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
US7824159B2 (en) 2004-01-14 2010-11-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
JP2005213554A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Discharge surface treatment method and discharge surface treatment apparatus
JP2005214054A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Turbine part and gas turbine
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
JP4608220B2 (en) * 2004-01-29 2011-01-12 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment method
WO2007060729A1 (en) * 2005-11-25 2007-05-31 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating method and electric discharge surface treating apparatus
US9234284B2 (en) 2008-08-06 2016-01-12 Mitsubishi Electric Corporation Electrical discharge surface treatment method
JP2010082701A (en) * 2008-09-29 2010-04-15 Tsugami Corp Collet chuck
JP2010082702A (en) * 2008-09-29 2010-04-15 Tsugami Corp Guide bush
WO2011027825A1 (en) * 2009-09-03 2011-03-10 株式会社Ihi Electric discharge surface treatment
US20120156394A1 (en) * 2009-09-03 2012-06-21 Ihi Corporation Discharge surface treatment
JPWO2011027825A1 (en) * 2009-09-03 2013-02-04 株式会社Ihi Discharge surface treatment
CN103978215A (en) * 2014-06-03 2014-08-13 中国工程物理研究院流体物理研究所 Method and device for manufacturing metal hydride electrode and using method of device

Also Published As

Publication number Publication date
DE19701170A1 (en) 1997-07-24
KR970059301A (en) 1997-08-12
DE19701170C2 (en) 1999-09-09
CN1161894A (en) 1997-10-15
JP3537939B2 (en) 2004-06-14
CN1118349C (en) 2003-08-20
TW326008B (en) 1998-02-01
KR100217293B1 (en) 1999-09-01

Similar Documents

Publication Publication Date Title
JP3537939B2 (en) Surface treatment by submerged discharge
US5858479A (en) Surface treating method by electric discharge
Chen et al. Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization
Patowari et al. An experimental investigation of surface modification of C-40 steel using W–Cu powder metallurgy sintered compact tools in EDM
Tijo et al. Mechanical performance of in-situ TiC-TiB2 composite coating deposited on Ti-6Al-4V alloy by powder suspension electro-discharge coating process
Chen et al. Surface modification using semi-sintered electrodes on electrical discharge machining
CN113122841B (en) Corrosion-resistant and wear-resistant coating with gradient composite structure and preparation method thereof
JPH07197275A (en) Surface treating method of metallic material by submerged discharge
Kumari et al. Ceramic-metal composite coating on steel using a powder compact tool electrode by the electro-discharge coating process
Oskolkova et al. Surface hardening of hard tungsten-carbide alloys: A review
EP1630254B1 (en) Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
Ananthi et al. Effect of WC–Cu composite electrodes on material deposition rate, microhardness and microstructure of electrical discharge coated magnesium alloy
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
Elaiyarasan et al. Effect of electrical discharge coating on ZE41A magnesium alloy using sintered WC/Cu composite
Kumari Study of TiC coating on different type steel by electro discharge coating
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4766443B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4535254B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in a high-speed cutting process.
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
Banai et al. Effect of composite coating using TIG cladding process: A review
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
CN116024526A (en) Composite coating for cutter as well as preparation method and application thereof
CN114196953A (en) Method for increasing surface pulse plasma electric spark alloying depth of metal part

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees