JP3271836B2 - Surface treatment method for aluminum and its alloys by submerged discharge - Google Patents

Surface treatment method for aluminum and its alloys by submerged discharge

Info

Publication number
JP3271836B2
JP3271836B2 JP23884193A JP23884193A JP3271836B2 JP 3271836 B2 JP3271836 B2 JP 3271836B2 JP 23884193 A JP23884193 A JP 23884193A JP 23884193 A JP23884193 A JP 23884193A JP 3271836 B2 JP3271836 B2 JP 3271836B2
Authority
JP
Japan
Prior art keywords
surface layer
electric discharge
electrode
treatment
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23884193A
Other languages
Japanese (ja)
Other versions
JPH0770761A (en
Inventor
齋藤長男
毛利尚武
恒川好樹
奥宮正洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP23884193A priority Critical patent/JP3271836B2/en
Publication of JPH0770761A publication Critical patent/JPH0770761A/en
Application granted granted Critical
Publication of JP3271836B2 publication Critical patent/JP3271836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルミニウム及びその合
金の液中放電による表面硬化方法に関し、特に、航空
機、自動車等において燃料費の改善等のためのアルミ化
による軽量化に対し、金型、エンジン用部品等の耐摩耗
性を要する個所に充分な硬さ(Hv300〜1500)と
共に高い形状精度を与えることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hardening aluminum and its alloys by submerged electric discharge in a liquid. It is possible to provide high hardness (Hv 300 to 1500) and high shape accuracy to parts requiring wear resistance such as engine parts.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】アルミ
ニウム及びその合金に耐摩耗性を付与する場合、従来は
Al−Si合金に代表される高硬度(Hv200)を持つAl
合金が適用されてきたが、機械加工性が悪く、また硬度
も不充分であった。
2. Description of the Related Art When imparting wear resistance to aluminum and its alloys, Al having a high hardness (Hv 200) typified by an Al-Si alloy is conventionally used.
Although alloys have been applied, they have poor machinability and insufficient hardness.

【0003】更に、次に示すような硬化処理も行われて
いるが、それぞれ一長一短がある。 (1)硬質アルマイト:厚さ1μm以下、硬さHv450
以下 (2)イオン窒化:厚さ数μm/5hr、硬さHv2000 (3)イオンビームミキシング:厚さ18〜36μm/h
r、硬さHv1000以下 (4)熱CVD(WC):厚さ620μm/hr、硬さHv2
000 〃 (W):厚さ620μm/hr、硬さHv50〜60
0 但し、処理温度Tp=600℃ (5)めっき:Ni−Pめっき、Cuめっき等を行った
後、加熱によって拡散を行う。めっき時間は数時間、加
熱温度は400〜600℃のものが多い。厚さは数μm
〜60μm、硬さはHv450〜800である。 (6)溶射(Mo、TiN/Ti):厚さ300μm、硬さH
v500〜600
Further, the following curing treatments are also performed, but each has its advantages and disadvantages. (1) Hard alumite: thickness 1 μm or less, hardness Hv450
(2) Ion nitriding: thickness several μm / 5hr, hardness Hv2000 (3) Ion beam mixing: thickness 18 to 36 μm / h
r, hardness Hv 1000 or less (4) Thermal CVD (WC): thickness 620 μm / hr, hardness Hv2
000 (W): thickness 620 μm / hr, hardness Hv 50-60
0 However, treatment temperature Tp = 600 ° C. (5) Plating: After performing Ni-P plating, Cu plating, etc., diffusion is performed by heating. In many cases, the plating time is several hours, and the heating temperature is 400 to 600 ° C. Thickness is several μm
6060 μm and hardness is Hv450-800. (6) Thermal spraying (Mo, TiN / Ti): thickness 300 μm, hardness H
v500-600

【0004】以上の表面皮膜のうち、溶射は成膜速度は
速いが、密着性が悪く、形状精度を得るためには再加工
を必要とする。(1)〜(5)の場合は密着性は良い
が、成膜速度が遅く、処理設備としても真空槽、電解槽
等を必要とする。また高温処理を要するものは形状精度
が悪い。
[0004] Of the above surface coatings, thermal spraying has a high deposition rate, but has poor adhesion, and requires rework in order to obtain shape accuracy. In the cases of (1) to (5), the adhesion is good, but the film formation rate is low, and a vacuum tank, an electrolytic tank and the like are required as processing equipment. Those requiring high-temperature treatment have poor shape accuracy.

【0005】その他に、アーク溶融、プラズマ溶融、電
子ビームアロイング、レーザアロイング等による合金化
法があるが、密着性が良く、短時間で処理できる長所を
持っているものの、マクロな偏析による組織の欠陥、気
孔の発生、表面の再加工の必要などの欠点がある。また
一般にこれらの機械加工特性は悪い。
[0005] Other alloying methods such as arc melting, plasma melting, electron beam alloying, and laser alloying have the advantages of good adhesion and short processing time, but have the advantage of macrosegregation. There are drawbacks such as defects in the structure, generation of pores, and the need to rework the surface. Also, these machining properties are generally poor.

【0006】以上のような従来技術は、アルミニウム及
びその合金の表面硬化技術として多くの欠点を持ってい
る。すなわち、次のような複数の条件を満足し、しかも
経済的に成り立ち、更に作業環境を清潔に保つことが困
難である。また高い寸法精度で硬化する領域を限定する
ことが困難である。 成膜速度を大きくする。 密着性が良い。 数10μmの厚膜が形成できる。 必要にして充分な硬度を制御できる。 母材に熱影響による寸法変化等を与えない。 表面層にクラック等を生じない。 作業性が良い(真空槽を必要としない、特別な防塵装
置を必要としない、自動化が容易)。
The above prior arts have many drawbacks as surface hardening techniques for aluminum and its alloys. In other words, it is difficult to satisfy the following conditions and to be economically viable and to keep the working environment clean. Also, it is difficult to limit the region to be cured with high dimensional accuracy. Increase the deposition rate. Good adhesion. A thick film of several tens μm can be formed. If necessary, sufficient hardness can be controlled. Does not cause dimensional changes, etc., due to thermal effects on the base material. No cracks or the like are generated on the surface layer. Good workability (no need for vacuum chamber, no special dust-proof device, easy automation).

【0007】本発明は、上記従来技術の欠点を解消し
て、アルミニウム及びその合金の表面に、特に高硬度で
耐摩耗性に優れ、また密着性及び寸法精度の良い表面硬
化層を効率的に形成することができる表面処理方法を提
供することを目的としている。
The present invention solves the above-mentioned drawbacks of the prior art and efficiently forms a surface hardened layer having high hardness, excellent wear resistance, good adhesion and high dimensional accuracy on the surface of aluminum and its alloys. It is an object to provide a surface treatment method that can be formed.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記課題を
解決するために鋭意実験研究を重ねた結果、液中におけ
るパルス放電技術を適用することにより可能であること
を見い出した。
Means for Solving the Problems The inventor of the present invention has conducted intensive experiments and researches to solve the above-mentioned problems, and as a result, has found that it is possible by applying a pulse discharge technique in a liquid.

【0009】すなわち、本発明は、炭化しやすい金属の
単体粉末又は2種以上の混合粉末に結合金属を加えて所
望の形状に圧縮成形したものを放電加工用の電極とし、
放電によって炭素を分解生成する加工液中において、被
処理材料であるアルミニウム及びその合金を他方の電極
として放電加工することにより、上記金属とその炭化物
とを混合した表面層を被処理材料表面に形成することを
特徴とするアルミニウム及びその合金の液中放電による
表面処理方法を要旨としている。
That is, according to the present invention, an electrode for electric discharge machining is obtained by adding a binding metal to a simple powder or a mixed powder of two or more kinds of metals which are easily carbonized and compression-molding into a desired shape.
In a machining fluid that decomposes and generates carbon by electric discharge, aluminum and its alloy to be treated are subjected to electric discharge machining as the other electrode, thereby forming a surface layer containing a mixture of the above metal and its carbide on the surface of the material to be treated. The subject of the invention is a method for surface treatment of aluminum and its alloys by in-liquid discharge.

【0010】また、他の本発明は、上記の放電加工を一
次処理とし、この一次処理を行った後、比較的消耗の少
ない材料からなる電極を用いて、放電加工(二次処理)を
行うことにより、一次処理で形成された表面層を再溶融
させて緻密な表面層を形成すると共に寸法精度を高める
ことを特徴とするアルミニウム及びその合金の液中放電
による表面処理方法を要旨としている。
According to another aspect of the present invention, the above-described electric discharge machining is used as a primary treatment, and after the primary treatment is performed, electric discharge machining (secondary treatment) is performed using an electrode made of a material having relatively low consumption. The gist of the present invention is to provide a method for surface treatment of aluminum and its alloys by in-liquid discharge, wherein the surface layer formed by the primary treatment is remelted to form a dense surface layer and the dimensional accuracy is improved.

【0011】[0011]

【作用】以下に本発明を更に詳述する。The present invention will be described below in more detail.

【0012】本発明に用いる加工用電極には、炭化しや
すい金属の単体粉末又は2種以上の混合粉末に結合金属
を加えて所望の形状に圧縮成形したものを用いる。炭化
しやすい金属としては、Ti、Zr、V、Ta、Cr、M
o、W、Mn、Nb又はこれらの元素を含む合金が挙げら
れる。特にNbを1〜10wt%含む電極を用いると表面
層の靭性を高めることができる。
As the working electrode used in the present invention, a single powder of a metal which is easily carbonized or a powder obtained by adding a binding metal to a powder mixture of two or more kinds and compressing it into a desired shape is used. Examples of metals that are easily carbonized include Ti, Zr, V, Ta, Cr, and M.
o, W, Mn, Nb or alloys containing these elements. In particular, when an electrode containing 1 to 10 wt% of Nb is used, the toughness of the surface layer can be increased.

【0013】結合金属として、上記金属の粉末を成形す
る際にバインダーの作用を有する金属であれば良く、例
えば、アルミニウム粉末、錫粉末、亜鉛粉末の1種以上
を加える。
The binding metal may be any metal that acts as a binder when the above metal powder is formed. For example, one or more of aluminum powder, tin powder and zinc powder are added.

【0014】他方の電極には被処理材料であるアルミニ
ウム又は種々のアルミニウム合金が用いられる。被処理
材料は通常の放電加工によって予め所望の加工形状を作
っておくのが望ましい。
The other electrode is made of aluminum or various aluminum alloys to be processed. It is desirable that the material to be processed is previously formed into a desired machining shape by ordinary electric discharge machining.

【0015】放電加工液としては、放電によって炭素を
分解生成する液体を用いる。例えば、石油、灯油、又は
炭素化合物を含む液体などが挙げられる。このような加
工液は、放電によって分解して炭素を生成し、上記の炭
化しやすい金属と反応して炭化物を形成することによ
り、被処理材料の表面に炭化物と上記金属とが混合した
表面層を形成する。なお、表面層中の炭化物の混合割合
は、放電電気条件(電流値、パルス幅、デューティファ
クタなど)及び加工液の吐出流量を変えることにより制
御できる。
A liquid which decomposes and generates carbon by electric discharge is used as the electric discharge machining liquid. For example, petroleum, kerosene, or a liquid containing a carbon compound may be used. Such a machining fluid is decomposed by electric discharge to generate carbon, and reacts with the above-mentioned easily carbonizable metal to form a carbide, thereby forming a surface layer in which the carbide and the metal are mixed on the surface of the material to be treated. To form The mixing ratio of the carbide in the surface layer can be controlled by changing the electric discharge conditions (current value, pulse width, duty factor, etc.) and the discharge flow rate of the working fluid.

【0016】放電加工条件は、表面層中の炭化物の混合
割合のほか、成膜厚み等々を考慮して適宜決めれば良
い。
The electric discharge machining conditions may be appropriately determined in consideration of the mixing ratio of the carbide in the surface layer, the film thickness, and the like.

【0017】更に、本発明においては、上述の放電加工
を一次処理とし、この一次処理を行って得られた表面層
につき、二次処理として比較的消耗の少ない材料からな
る電極を用いた放電加工を行うことにより、一次処理で
形成された表面層を再溶融させて緻密な表面層を形成す
ることができ、また寸法精度を高めることができる。
Further, in the present invention, the above-mentioned electric discharge machining is regarded as primary treatment, and the surface layer obtained by performing this primary treatment is subjected to electric discharge machining using an electrode made of a material with relatively little consumption as a secondary treatment. By performing the above, the surface layer formed by the primary treatment can be re-melted to form a dense surface layer, and the dimensional accuracy can be improved.

【0018】二次処理の放電加工に際しては、一次処理
用の電極に変えて、Cu、グラファイト、タングステン
などの比較的消耗の少ない材料からなる電極を用いる。
この電極の形状は、目標寸法に到達するための修正加工
を可能とする所望の形状を有する電極が望ましい。その
ためには、一次処理に先立って通常の放電加工により形
状加工する際の電極(消耗しにくい電極)を二次処理用電
極として使用してもよい。
At the time of the electric discharge machining in the secondary treatment, an electrode made of a material with relatively low consumption, such as Cu, graphite, and tungsten, is used instead of the electrode for the primary treatment.
The shape of the electrode is desirably an electrode having a desired shape that enables correction processing to reach a target size. For that purpose, an electrode (electrode that is not easily consumed) when the shape is processed by ordinary electric discharge machining prior to the primary treatment may be used as the electrode for the secondary treatment.

【0019】目標寸法に到達するための修正加工のため
には、厚み又は形状を測定することによって表面層の寸
法を修正しつつ放電処理を行う。
In order to carry out the modification processing to reach the target dimensions, the discharge treatment is performed while the dimensions of the surface layer are modified by measuring the thickness or the shape.

【0020】次に本発明の実施例を示す。Next, an embodiment of the present invention will be described.

【0021】[0021]

【実施例1】本例は図1及び図2に示す装置を用いて一
次処理(放電加工)を行った例である。図中、1は圧粉体
で構成された加工用電極で、銅などの金属棒5の先端に
導電性接着剤4を用いて接着されている。電極1は放電
加工電源10に接続され(陽極、陰極の転極可能)、加工
液3を収納した加工槽3´の中に浸漬されている。
[Embodiment 1] This embodiment is an example in which primary processing (electric discharge machining) is performed using the apparatus shown in FIGS. In the figure, reference numeral 1 denotes a processing electrode formed of a green compact, which is bonded to the tip of a metal rod 5 made of copper or the like using a conductive adhesive 4. The electrode 1 is connected to an electric discharge machining power source 10 (the anode and the cathode can be inverted) and is immersed in a machining tank 3 ′ containing a machining fluid 3.

【0022】加工用電極1は、サーボ装置6により昇降
可能で、放電極間の距離を調整することができる。15
はZ軸スケールで、16は主軸側の進度位置を示す指針
であり、この信号は放電電気条件のプログラム装置13
に入力される。11は放電電流検出用のカーレントトラ
ンス、12は放電電流電圧観測用のシンクロスコープで
ある。14は加工液吐出量のプログラム装置で、タンク
7´内の加工液7を送給する加工液送給ポンプ8をコン
トロールする。9は加工液の噴流を発生させるエゼクタ
ーである。
The machining electrode 1 can be moved up and down by the servo device 6, and the distance between the discharge electrodes can be adjusted. Fifteen
Is a Z-axis scale, and 16 is a pointer indicating a progress position on the main shaft side.
Is input to Reference numeral 11 denotes a current transformer for detecting discharge current, and reference numeral 12 denotes a synchroscope for observing discharge current and voltage. Numeral 14 denotes a machining fluid discharge amount programming device which controls a machining fluid supply pump 8 for supplying the machining fluid 7 in the tank 7 '. An ejector 9 generates a jet of a machining liquid.

【0023】18は母材(Al又はその合金)の被処理材
料で、放電加工電源10に接続されている。2は被処理
材料表面である。母材18の裏面には表面層の厚さを直
接的に測定するための超音波厚み計17が設けられ、そ
の信号は放電電気条件のプログラム装置13に入力され
る。
Reference numeral 18 denotes a base material (Al or an alloy thereof) to be processed, which is connected to the electric discharge machining power source 10. 2 is the surface of the material to be treated. An ultrasonic thickness gauge 17 for directly measuring the thickness of the surface layer is provided on the back surface of the base material 18, and its signal is input to the program device 13 for electric discharge conditions.

【0024】まず、被処理材料にはアルミニウム合金A
DC12(Si11.2%、Cu2.74%を含む)の平板
(厚さ2.5mm)を用いた。電極材料には、炭化しやすい
金属であるTi粉末に結合金属としてのAl粉末をTi:
Al=36:64(wt%)の割合で混合した混合粉末(粉末
粒度44μm以下)を圧縮成形(成形圧力Pe:24.5〜
441MPa)した圧粉体電極を用いた。放電加工液及び
放電電気条件は以下のとおりである。
First, the material to be treated is aluminum alloy A
DC12 (including Si 11.2%, Cu 2.74%) flat plate
(2.5 mm thick). For the electrode material, Ti powder, which is a metal that is easily carbonized, and Al powder as a binding metal are used for Ti:
Al = 36: 64 (wt%) mixed powder (powder particle size: 44 μm or less) was compression-molded (molding pressure Pe: 24.5 to 4.5%).
441 MPa) was used. The electric discharge machining fluid and electric discharge conditions are as follows.

【0025】〈放電加工液〉 加工液:灯油、噴流圧力Pi:0〜78KPa 〈放電電気条件〉 パルス幅(一発の放電電流の流れている時間)τp:32
〜512μs 放電電流値(電流の最大値)Ip:5〜24A 有効パルスRp(デューティファクタD)=τp/(τp+τ
r)=0.8〜68% (ここでτr:休止時間)
<Electric discharge machining fluid> Machining fluid: kerosene, jet pressure Pi: 0 to 78 KPa <Electric discharge conditions> Pulse width (time during which one discharge current flows) τp: 32
Discharge current value (maximum current value) Ip: 5 to 24 A Effective pulse Rp (duty factor D) = τp / (τp + τ)
r) = 0.8-68% (where τr: pause time)

【0026】上記条件で放電加工(一次処理)を行い、母
材表面に表面層を形成した。この表面層は、図3のX線
回折図形より、TiC、TiAl、Al、TiAl3からなる
表面層であることが確認された。同図の表面層が得られ
たときの放電処理条件は、パルス幅τp=512μs、放
電電流値Ip=20A、Rp=D=33%(τr:1040
μs)、Pe:441MPa、加工液噴流圧力Pi=9.8K
Paである。
Under the above conditions, electric discharge machining (primary treatment) was performed to form a surface layer on the surface of the base material. The surface layer, the X-ray diffraction pattern of FIG. 3, TiC, TiAl, Al, that is a surface layer made of TiAl 3 were confirmed. The discharge treatment conditions when the surface layer shown in FIG. 4 was obtained were as follows: pulse width τp = 512 μs, discharge current value Ip = 20 A, Rp = D = 33% (τr: 1040
μs), Pe: 441 MPa, working fluid jet pressure Pi = 9.8 K
Pa.

【0027】図4に、パルス幅τpと表面層の厚さh及
び表面層中の炭化物TiCの体積率との関係を調べた結
果を示す。加工時間は3分間と一定であるが、パルス幅
τpの増加と共に表面層の厚さh及び表面層中の炭化物
TiCの体積率が増加していることがわかる。加工時間
が2分程度で厚さ50μm程度に達し、高成膜速度であ
る。
FIG. 4 shows the results of examining the relationship between the pulse width τp, the thickness h of the surface layer, and the volume fraction of carbide TiC in the surface layer. Although the processing time is constant at 3 minutes, it can be seen that the thickness h of the surface layer and the volume fraction of the carbide TiC in the surface layer increase as the pulse width τp increases. The processing time reaches about 50 μm in about 2 minutes, and the film formation rate is high.

【0028】図5に、表面層中の炭化物TiCの体積率
に及ぼす加工時間tw及びTi粒度の影響を調べた結果を
示す。加工時間が150秒程度でTiCの体積率は50
%を超え、加工時間が長くなると共にTiCの体積率の
増大する傾向が見られる。またTi粒度が小さいほど短
時間にTiCの体積率が増加している。
FIG. 5 shows the results of examining the effects of the processing time tw and the Ti particle size on the volume fraction of carbide TiC in the surface layer. Processing time is about 150 seconds and TiC volume ratio is 50
%, There is a tendency for the volume fraction of TiC to increase as the processing time increases. In addition, as the Ti particle size is smaller, the volume ratio of TiC increases in a shorter time.

【0029】図6に、放電処理を連続的に行った場合と
断続的に行った場合の表面層中のTiCの体積率を加工
液の噴流圧力Piの大小による関係を調べた結果を示
す。TiCの体積率は連続的に行った方が断続的に行っ
た場合よりも大きく、また加工液の噴流圧力Piが小さ
い方がTiCの体積率が大きい。これは放電によって生
成された炭素を排除した方が体積率を小さくすることを
示している。
FIG. 6 shows the results of examining the relationship between the volume ratio of TiC in the surface layer and the jet pressure Pi of the machining fluid when the discharge treatment is performed continuously and intermittently. The volume ratio of TiC is larger when the process is performed continuously than when it is performed intermittently, and the volume ratio of TiC is larger when the jet pressure Pi of the working fluid is smaller. This indicates that removing the carbon generated by the discharge reduces the volume ratio.

【0030】図7に、表面層厚さhに対する加工液の噴
流圧力Piの及ぼす影響を調べた結果を示す。噴流圧力
Piが大きいほど表面層厚さhが小さくなる。
FIG. 7 shows the result of examining the effect of the jet pressure Pi of the working fluid on the surface layer thickness h. The larger the jet pressure Pi, the smaller the surface layer thickness h.

【0031】図8に、表面層断面の元素分布を調べた結
果を示す。表面層中で傾斜的に組成化しており、表面層
の最外面はTi成分、C成分が多く、母材を構成するA
l、Siの成分は少ない。したがって、最外面はTiCの
体積率が高いことを示している。このことは、図9に表
面層の硬度分布を示すように、最外面の硬度が高く、母
材表面に近づくに従って母材成分が増加し、硬度が低下
することを意味すると共に、表面処理された物体が使用
温度の高下によっても、表面組成と内部構造とに対し緩
衝的に作用するため、クラック等の発生を予防するよう
な表面構造を与えることができる。
FIG. 8 shows the result of examining the element distribution in the cross section of the surface layer. The composition is graded in the surface layer, and the outermost surface of the surface layer has many Ti components and C components, and A
The components of l and Si are small. Therefore, the outermost surface indicates that the volume ratio of TiC is high. This means that, as shown in the hardness distribution of the surface layer in FIG. 9, the hardness of the outermost surface is high, and the base material component increases and decreases in hardness as approaching the base material surface. Even when the temperature of the object is high or low, the material acts as a buffer on the surface composition and the internal structure, so that a surface structure that prevents the occurrence of cracks and the like can be provided.

【0032】[0032]

【実施例2】本例は、実施例1の各種の実験に基づい
て、表面層として最外面の硬度が高く(TiCの濃度が高
く)、母材に接する最内面ではTiCの濃度が低くなるよ
うな分布の表面層を形成する例である。
Embodiment 2 In this embodiment, the hardness of the outermost surface is high (the concentration of TiC is high) as the surface layer, and the concentration of TiC is low on the innermost surface in contact with the base material, based on various experiments of the first embodiment. This is an example of forming a surface layer having such a distribution.

【0033】放電処理の初期はTiC濃度を小さくした
いので、パルス幅τpを20μs程度と狭く選び、また加
工液流も強く噴射するようにプログラムする。時間の経
過と共にパルス幅τpをτp=100μs、τp=500μ
sと大きく設定すれば、TiC濃度の異なる3つの層を表
面層として形成することができる。
In order to reduce the TiC concentration at the beginning of the electric discharge process, the pulse width τp is selected to be as small as about 20 μs, and the machining fluid flow is programmed to be strongly jetted. As the time elapses, the pulse width τp becomes τp = 100 μs, τp = 500 μ
If s is set to be large, three layers having different TiC concentrations can be formed as surface layers.

【0034】その際、どの段階で各プログラムを切り替
えるかについては、表面層の厚さを直接的に測定する超
音波厚み計17を使用して監視すればよい。それ以外の
場合には、圧粉体電極が消耗を多くするべく作成されて
いることから、Z軸スケール15に対する主軸側の進度
16をそのまま加工進度とすることができないので、予
備的実験で被処理材料への付着厚さHと電極の消耗長さ
Lの比率(付着率ε)を圧粉体電極の材料毎に調べてお
き、次式から付着厚さHを用いる。すなわち、H=L−
S(ここでSは主軸の進度)であるから、H=S/(1
/ε−1)で計算される。ε=0.1程度とすれば、H−
S/9となり、主軸の進度Sで付着厚さHがわかる。
At this time, the stage at which each program is switched may be monitored using an ultrasonic thickness gauge 17 for directly measuring the thickness of the surface layer. In other cases, the progress of the main shaft side 16 with respect to the Z-axis scale 15 cannot be directly used as the processing progress because the green compact electrode is formed so as to increase the wear. The ratio (adhesion ratio ε) between the thickness H of the electrode to be treated and the consumption length L of the electrode is determined for each material of the green compact electrode, and the thickness H is used from the following equation. That is, H = L−
S (where S is the progress of the spindle), H = S / (1
/ Ε-1). If ε = about 0.1, then H−
S / 9, and the adhesion thickness H can be determined from the progress S of the main shaft.

【0035】[0035]

【実施例3】本例は、靭性を持った表面層を形成する例
である。実験には、圧粉体電極として、実施例1と同じ
Ti:Al=36:64(wt%)の割合で混合した電極と、
Ti:Al:Nb=32:58:10(wt%)の割合で混合
した電極とを使用し、Pe:441MPa、放電電流値
(電流の最大値)Ip=20A、パルス幅τp=200μ
s、有効パルスRp=0.33%の条件で、加工液噴流圧
力Pi=9.8KPaとして放電処理を行った。その結
果、厚さが約100μmの表面層が得られた。折り曲げ
試験を行ったところ、(Ti+Al)圧粉体電極の場合に
は90゜の曲げでクラックを生じたが、(Ti+Al+N
b)圧粉体電極の場合には90゜の曲げでクラックを生じ
なかった。
Embodiment 3 In this embodiment, a tough surface layer is formed. In the experiment, an electrode mixed as Ti: Al = 36: 64 (wt%) as in Example 1 was used as a green compact electrode.
Using an electrode mixed at a ratio of Ti: Al: Nb = 32: 58: 10 (wt%), Pe: 441 MPa, discharge current value
(Maximum current) Ip = 20 A, pulse width τp = 200 μ
Under the conditions of s and effective pulse Rp = 0.33%, electric discharge treatment was performed with the working fluid jet pressure Pi = 9.8 KPa. As a result, a surface layer having a thickness of about 100 μm was obtained. When a bending test was performed, cracks were generated by bending at 90 ° in the case of the (Ti + Al) compacted electrode, but (Ti + Al + N
b) In the case of the green compact electrode, no crack was generated by bending at 90 °.

【0036】[0036]

【実施例4】本例は一次処理の放電処理を行った後、二
次処理の放電加工を行う例である。実施例1に示した
(Ti+Al)圧粉体電極による一次処理で得られた表面
層に対し、被処理材の加工物形状にほぼ対応する形状を
持ち且つ比較的消耗の少ない材料からなる電極を用いて
放電処理(二次処理)を行う。
[Embodiment 4] This embodiment is an example in which after the discharge treatment of the primary treatment is performed, the discharge machining of the secondary treatment is performed. Shown in Example 1
The surface layer obtained by the primary treatment using the (Ti + Al) green compact electrode is subjected to a discharge treatment using an electrode having a shape substantially corresponding to the shape of the workpiece to be treated and made of a material with relatively little wear. Next processing) is performed.

【0037】図10に二次処理用の装置を示す。図1に
示した一次処理用の装置に付加的に電極交換機構19、
母材移動機構20が設けられている。通常の放電加工に
より形状加工した際に用いた電極を、一次処理後に一次
処理用電極と交換して、二次処理用電極として使用す
る。加工条件は電極低消耗電気条件を使用すれば、加工
機主軸(サーボ機構6)の進度をもって加工進度として差
し支えない。
FIG. 10 shows an apparatus for secondary processing. In addition to the primary processing apparatus shown in FIG.
A base material moving mechanism 20 is provided. The electrode used when the shape is processed by ordinary electric discharge machining is replaced with the electrode for the primary treatment after the primary treatment, and is used as the electrode for the secondary treatment. As long as the processing condition uses the electrode low consumption electric condition, the progress of the main shaft (servo mechanism 6) of the processing machine may be used as the processing progress.

【0038】皮膜層の厚さを正確に計測して二次処理に
より修正加工するには、次のような工程で行う。
In order to accurately measure the thickness of the coating layer and correct it by the secondary processing, the following steps are performed.

【0039】始めに、被処理材料の形状加工を通常の放
電加工により行った後、加工電極を交換機構に格納する
と共に測定用の工具を交換機構より取付け、被処理材料
の上面を基準として加工深さを計測し、これを記憶装置
に記憶しておく(深さD)。
First, after machining the shape of the material to be processed by ordinary electric discharge machining, the machining electrode is stored in the exchange mechanism, and a tool for measurement is attached from the exchange mechanism. The depth is measured and stored in a storage device (depth D).

【0040】次に一次処理を行い、二次処理の切り替え
に当たっては、まず表面層厚さHを定めたならば、先に
記憶装置に記憶した数値より表面層厚さを差し引き、主
軸の進入深さM(M=D−H)を定める。
Next, the primary processing is performed, and when the secondary processing is switched, first, after the surface layer thickness H is determined, the surface layer thickness is subtracted from the numerical value previously stored in the storage device, and the approach depth of the main shaft is determined. M (M = D−H) is determined.

【0041】二次処理(修正加工)ではMだけの進入加工
を行うが、加工終了後、更に計測用の工具を自動的に切
り替えて計測を行う。厚さの許容値の範囲内に入ったな
らば、作業完了となる。これらの工程図を図11に示
す。
In the secondary processing (correction processing), the approach processing of only M is performed, but after the processing is completed, the measurement tool is automatically switched to perform the measurement. When the thickness falls within the allowable range, the operation is completed. FIG. 11 shows these process diagrams.

【0042】図12は金型表面処理に二次処理(修正加
工)を行った例である。金型はその形状精度を±0.01
mm程度に保つ必要がある場合が多い。図4からもわかる
ように、圧粉体電極を用いた一次処理で得られる表面層
の厚さは数分内の放電加工で数10μmの厚さに達す
る。そのため形状精度を±0.01mm(±10μm)に保つ
ためには二次処理を必要とする場合がある。図12中、
(1)は通常の放電加工用電極(Cu)を用いて放電加工
により金型形状を加工した状態を示し、(2)は電極を
一次処理用の圧粉体電極(Ti:Fe=50:50(wt%))
に取り替えて一次処理の放電処理により表面層を形成し
た状態を示し、(3)は再び電極を通常の放電加工用電
極に取り替えて±0.01mmの加工精度に二次処理(修正
加工)により仕上げ加工した状態を示している。
FIG. 12 shows an example in which secondary processing (correction processing) has been performed on the mold surface treatment. The mold has a shape accuracy of ± 0.01.
It is often necessary to keep it to the order of mm. As can be seen from FIG. 4, the thickness of the surface layer obtained by the primary treatment using the green compact electrode reaches a thickness of several tens of μm by electric discharge machining within several minutes. Therefore, secondary processing may be required to maintain the shape accuracy at ± 0.01 mm (± 10 μm). In FIG.
(1) shows a state in which a mold shape is processed by electric discharge machining using a normal electrode (Cu) for electric discharge machining, and (2) shows a state where the electrode is a green compact electrode for primary treatment (Ti: Fe = 50: 50 (wt%))
Shows the state in which the surface layer was formed by the discharge treatment of the primary treatment and the electrode was replaced with a normal electrode for electric discharge machining again, and the secondary treatment (correction machining) was performed to a machining accuracy of ± 0.01 mm. This shows a state after finishing.

【0043】[0043]

【発明の効果】以上詳述したように、本発明によれば、
数10μmの厚みの成膜速度が速く、高い密着性を持
ち、必要にして充分な硬度を持ち、母材に熱影響による
寸法変化を与えず、また表面層にクラック等を生じない
表面硬化処理を行うことができる。また真空層や防塵装
置も必要とせず、本来、作業性が良く、また自動化も容
易である。金型、エンジン用部品等々の表面硬化処理と
して好適である。
As described in detail above, according to the present invention,
Surface hardening treatment with high film forming speed of several tens of μm, high adhesion, sufficient and necessary hardness, no dimensional change due to heat on the base material, and no cracks in the surface layer It can be performed. In addition, a vacuum layer and a dust proof device are not required, and the workability is originally good, and automation is easy. It is suitable as a surface hardening treatment for molds, engine parts and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液中放電による表面処理装置の概略を示す説明
図である。
FIG. 1 is an explanatory view schematically showing a surface treatment apparatus using discharge in liquid.

【図2】図1の表面処理装置における表面層の厚さ計測
手段を説明する図である。
FIG. 2 is a view for explaining a thickness measuring means of a surface layer in the surface treatment apparatus of FIG. 1;

【図3】実施例で得られた表面層のX線回折図形であ
る。
FIG. 3 is an X-ray diffraction pattern of a surface layer obtained in an example.

【図4】パルス幅τpと表面層の厚さh及び表面層中の
炭化物TiCの体積率との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a pulse width τp, a thickness h of a surface layer, and a volume fraction of carbide TiC in the surface layer.

【図5】表面層中の炭化物TiCの体積率に及ぼす加工
時間tw及びTi粒度の影響を示す図である。
FIG. 5 is a diagram showing the influence of the processing time tw and the Ti particle size on the volume fraction of carbide TiC in the surface layer.

【図6】放電処理を連続的に行った場合と断続的に行っ
た場合の表面層中のTiCの体積率を加工液の噴流圧力
Piの大小による関係を示す図である。
FIG. 6 is a diagram showing the relationship between the volume ratio of TiC in the surface layer and the magnitude of the jet pressure Pi of the machining fluid when the discharge treatment is performed continuously and intermittently.

【図7】表面層厚さhに対する加工液の噴流圧力Piの
及ぼす影響を示す図である。
FIG. 7 is a diagram showing the effect of the jet pressure Pi of the working fluid on the surface layer thickness h.

【図8】表面層断面の元素分布を示す図である。FIG. 8 is a diagram showing element distribution in a cross section of a surface layer.

【図9】表面層の硬度分布を示す図である。FIG. 9 is a diagram showing a hardness distribution of a surface layer.

【図10】二次処理用の装置の概略を示す説明図であ
る。
FIG. 10 is an explanatory view schematically showing an apparatus for secondary processing.

【図11】通じようの放電加工による形状加工、一次処
理、二次処理の工程図である。
FIG. 11 is a process diagram of a shape machining, a primary treatment, and a secondary treatment by a common electric discharge machining.

【図12】(a)〜(c)は金型表面処理に二次処理を
適用した場合の各工程の説明図である。
12 (a) to 12 (c) are explanatory views of each step when a secondary treatment is applied to a mold surface treatment.

【符号の説明】[Explanation of symbols]

1 圧粉体電極(一次処理用) 2 被処理材料表面 3 加工液 3´ 加工槽 4 導電性接着剤 5 金属棒 6 放電極間のサーボ機構 7 加工液 7´ 加工液循環タンク 8 加工液送給ポンプ 9 エゼクター 10 放電加工用電極 11 放電電流検出用カーレントトランス 12 放電電流電圧観測用シンクロスコープ 13 放電電気条件プログラム装置 14 加工液吐出量プログラム装置 15 Z軸スケール 16 主軸側の進度位置を示す指針 17 超音波厚み計 18 母材 19 電極交換機構 20 テーブル移動機構 DESCRIPTION OF SYMBOLS 1 Green compact electrode (for primary processing) 2 Surface of material to be processed 3 Processing liquid 3 'Processing tank 4 Conductive adhesive 5 Metal rod 6 Servo mechanism between discharge electrodes 7 Processing liquid 7' Processing liquid circulation tank 8 Processing liquid feed Supply pump 9 Ejector 10 Electrode for electric discharge machining 11 Current transformer for detecting discharge current 12 Synchronoscope for observing discharge current voltage 13 Electric discharge condition programming device 14 Machining fluid discharge amount programming device 15 Z-axis scale 16 Shows the progress position on the main shaft side Pointer 17 Ultrasonic thickness gauge 18 Base material 19 Electrode exchange mechanism 20 Table moving mechanism

フロントページの続き (56)参考文献 特開 昭53−100932(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 26/00 Continuation of the front page (56) References JP-A-53-100932 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 26/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化しやすい金属の単体粉末又は2種以
上の混合粉末に結合金属を加えて所望の形状に圧縮成形
したものを放電加工用の電極とし、放電によって炭素を
分解生成する加工液中において、被処理材料であるアル
ミニウム及びその合金を他方の電極として放電加工する
ことにより、上記金属とその炭化物とを混合した表面層
を被処理材料表面に形成することを特徴とするアルミニ
ウム及びその合金の液中放電による表面処理方法。
1. A machining fluid which is formed by adding a binding metal to a simple powder or a mixed powder of two or more kinds of metals that are easily carbonized and compression-molding the powder into a desired shape as an electrode for electric discharge machining, and decomposing and generating carbon by electric discharge. Wherein, by subjecting the material to be treated, aluminum and its alloy, to electrical discharge machining as the other electrode, forming a surface layer in which the metal and its carbide are mixed on the surface of the material to be treated, A surface treatment method for alloys by submerged discharge.
【請求項2】 炭化しやすい金属が、Ti、Zr、V、T
a、Cr、Mo、W、Mn、Nbである請求項1に記載の方
法。
2. The metal which is easily carbonized is Ti, Zr, V, T
The method of claim 1, wherein a, Cr, Mo, W, Mn, Nb.
【請求項3】 放電加工用電極中にNb量を1〜10wt
%含有させる請求項2に記載の方法。
3. An Nb content of 1 to 10 wt.
%.
【請求項4】 結合金属として、アルミニウム粉末、錫
粉末、亜鉛粉末の1種以上を加える請求項1に記載の方
法。
4. The method according to claim 1, wherein at least one of aluminum powder, tin powder and zinc powder is added as the binding metal.
【請求項5】 加工液が石油又は炭素化合物を含む液体
である請求項1に記載の方法。
5. The method according to claim 1, wherein the processing liquid is a liquid containing petroleum or a carbon compound.
【請求項6】 請求項1に記載の放電加工を一次処理と
し、この一次処理を行った後、比較的消耗の少ない材料
からなる電極を用いて、放電加工(二次処理)を行うこと
により、一次処理で形成された表面層を再溶融させて緻
密な表面層を形成すると共に寸法精度を高めることを特
徴とするアルミニウム及びその合金の液中放電による表
面処理方法。
6. The electric discharge machining according to claim 1, which is a primary treatment, and after performing the primary treatment, an electric discharge machining (secondary treatment) is performed by using an electrode made of a material with relatively little consumption. A method of refining a surface layer formed by a primary treatment to form a dense surface layer and improve dimensional accuracy by discharging submerged aluminum and its alloys.
【請求項7】 比較的消耗の少ない材料がCu、グラフ
ァイト、タングステンである請求項6に記載の方法。
7. The method of claim 6, wherein the relatively less wearable material is Cu, graphite, tungsten.
【請求項8】 厚み又は形状を測定することによって表
面層の寸法を修正しつつ放電加工(二次処理)を行う請求
項6に記載の方法。
8. The method according to claim 6, wherein the electric discharge machining (secondary treatment) is performed while modifying the dimensions of the surface layer by measuring the thickness or the shape.
JP23884193A 1993-08-31 1993-08-31 Surface treatment method for aluminum and its alloys by submerged discharge Expired - Fee Related JP3271836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23884193A JP3271836B2 (en) 1993-08-31 1993-08-31 Surface treatment method for aluminum and its alloys by submerged discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23884193A JP3271836B2 (en) 1993-08-31 1993-08-31 Surface treatment method for aluminum and its alloys by submerged discharge

Publications (2)

Publication Number Publication Date
JPH0770761A JPH0770761A (en) 1995-03-14
JP3271836B2 true JP3271836B2 (en) 2002-04-08

Family

ID=17036073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23884193A Expired - Fee Related JP3271836B2 (en) 1993-08-31 1993-08-31 Surface treatment method for aluminum and its alloys by submerged discharge

Country Status (1)

Country Link
JP (1) JP3271836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398764B1 (en) * 1998-03-11 2003-09-19 미쓰비시덴키 가부시키가이샤 Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
US6793982B1 (en) * 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
CH693955A5 (en) * 1999-09-30 2004-05-14 Mitsubishi Electric Corp Electric discharge surface treatment electrode production involves mixing tungsten carbide powder with tungsten powder and charging the mixture in a press die for compression molding
WO2001036710A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Denki Kabushiki Kaisha Method and device for electric discharge surface treatment
WO2001036709A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Denki Kabushiki Kaisha Method and device for electric discharge surface treatment
WO2001055481A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Power supply for discharge surface treatment and discharge surface treatment method
WO2004108990A1 (en) 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
CN1798871B (en) * 2003-05-29 2011-08-10 三菱电机株式会社 Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
WO2004108988A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment method and discharge surface treatment apparatus
JP4170340B2 (en) 2003-06-11 2008-10-22 三菱電機株式会社 Discharge surface treatment method
JP4534633B2 (en) * 2004-07-02 2010-09-01 三菱電機株式会社 Discharge surface treatment method and surface-treated mold
WO2007043102A1 (en) 2005-09-30 2007-04-19 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, discharge surface treatment method, and film
WO2007043104A1 (en) 2005-09-30 2007-04-19 Honda Motor Co., Ltd. Belt-type continuous variable transmission and method of operating the same
WO2007148716A1 (en) * 2006-06-21 2007-12-27 Bosch Corporation Surface treating method by electric discharge, and dressing method
US9347137B2 (en) 2006-09-11 2016-05-24 Ihi Corporation Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment

Also Published As

Publication number Publication date
JPH0770761A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP3271836B2 (en) Surface treatment method for aluminum and its alloys by submerged discharge
Yan et al. The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium
Chen et al. Surface modification using semi-sintered electrodes on electrical discharge machining
JPH07197275A (en) Surface treating method of metallic material by submerged discharge
JPH05148615A (en) Treatment for surface of metallic material
US7537808B2 (en) Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP3376174B2 (en) Surface treatment method and apparatus by electric discharge machining
US5698114A (en) Surface layer forming process using electric discharge machining
EP1995344A1 (en) Injection layers with diffusion treatment
Narayanan et al. Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation
WO2010016121A1 (en) Electric discharge surface treatment method
Gill et al. Investigation of micro-hardness in electrical discharge alloying of En31 tool steel with Cu–W powder metallurgy electrode
Cheng et al. Improvement in corrosion resistance of a nodular cast iron surface modified by plasma beam treatment
Tijo et al. Hard and wear resistance TiC-composite coating on AISI 1020 steel using powder metallurgy tool by electro-discharge coating process
Khan et al. A framework for surface modification by electrical discharge coating using variable density electrodes
Min et al. Microstructure, microhardness and corrosion resistance of laser cladding Ni–WC coating on AlSi5Cu1Mg alloy
Paustovskii et al. Optimization of the composition, structure, and properties of electrode materials and electrospark coatings for strengthening and reconditioningof metal surfaces
RU2418074C1 (en) Procedure for strengthening items out of metal materials for production of nano structured surface layers
Mukanov et al. Surface modification of titanium VT6 alloy obtained by additive technologies using reactive electrospark treatment
Kushwaha et al. Assessment of surface integrity during electrical discharge machining of titanium grade 5 Alloys (Ti-6Al-4V)
WO1999047730A1 (en) Method for discharge surface treatment, and device and electrode for conducting the method
Pyachin et al. Formation of intermetallic coatings by electrospark deposition of titanium and aluminum on a steel substrate
Tarelnyk et al. ELECTRIC-SPARK ALLOYING OF METAL SURFACES WITH GRAPHITE.
Li et al. Experimental study in SEAM machining performance of W-Cu alloy electrode materials
Kalra et al. Experimental study on developed electrochemical micro machining of hybrid MMC

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees