WO2001055481A1 - Power supply for discharge surface treatment and discharge surface treatment method - Google Patents

Power supply for discharge surface treatment and discharge surface treatment method Download PDF

Info

Publication number
WO2001055481A1
WO2001055481A1 PCT/JP2000/000303 JP0000303W WO0155481A1 WO 2001055481 A1 WO2001055481 A1 WO 2001055481A1 JP 0000303 W JP0000303 W JP 0000303W WO 0155481 A1 WO0155481 A1 WO 0155481A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
discharge
pulse width
workpiece
discharge surface
Prior art date
Application number
PCT/JP2000/000303
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Goto
Toshio Moro
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2000/000303 priority Critical patent/WO2001055481A1/en
Priority to CH01772/01A priority patent/CH695567A5/en
Priority to CN00805400.2A priority patent/CN1210128C/en
Priority to DE10084316T priority patent/DE10084316B4/en
Priority to TW089101612A priority patent/TW483948B/en
Publication of WO2001055481A1 publication Critical patent/WO2001055481A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Definitions

  • a discharge is generated between an electrode for discharge surface treatment and a workpiece, and a hard coating made of the electrode material or a substance in which the electrode material reacts with the discharge energy by the energy of the discharge.
  • TECHNICAL FIELD The present invention relates to a power supply device for electric discharge surface treatment and an electric discharge surface treatment method used for electric discharge surface treatment for forming a hard coating made of the following. Background art
  • techniques for forming a hard coating on the surface of a workpiece to impart corrosion resistance and wear resistance include, for example, a discharge surface disclosed in Japanese Patent Application Laid-Open No. 5-148615.
  • a processing method In this technology, primary processing (deposition processing) is performed using a green compact electrode, which is a discharge surface treatment electrode formed by mixing WC (tandustane carbide) powder and Co (cobalt) powder and compression molding.
  • This is a method for treating the discharge surface of a metal material, which consists of two steps: performing a secondary process (remelting process) by replacing the electrode with a relatively low electrode consumption such as a copper electrode.
  • This method can form a hard coating with strong adhesion to steel, but cannot form a hard coating with strong adhesion to sintered materials such as cemented carbide. Have difficulty.
  • the green compact electrode is an electrode for electrical-discharge surface treatment with a mixture of other metals or ceramics hydride such as T i H 2, when a discharge is generated between the metal material as a workpiece, the hardness It is important that hard coatings having various properties such as abrasion resistance can be quickly formed.
  • FIG. 4 is a block diagram showing an example of an apparatus used for such a discharge surface treatment.
  • 1 is a green compact electrode which is an electrode for discharge surface treatment formed by compression molding of TiH2 powder
  • 2 is a workpiece
  • 3 is a heating tank
  • 4 is a working fluid
  • 5 is a green compact.
  • Such a conventional discharge surface treatment power supply device is basically based on a rectangular discharge current pulse, and as shown in FIG. 5, by changing the discharge current peak value I p and the pulse width T, Hard coating formed on workpiece Is to adjust the film thickness or the like.
  • FIG. 6 is an explanatory diagram of the adhesion of the electrode material to the workpiece
  • FIG. 7 is a diagram showing changes in the current density and the diameter of the discharge arc column with the passage of time from the start of discharge.
  • 1 is an electrode for electrical discharge surface treatment
  • 2 is a workpiece
  • 10 is a discharge arc column
  • 11 is an electrode component that is rapidly heated, vaporized, exploded and released
  • 12 is a workpiece 2 This is the electrode component attached.
  • the diameter of the discharge arc column 10 is small and the current density is extremely high, as shown in (a) of FIG. 6 and FIG.
  • the electrode for electric discharge surface treatment is different from the normal electrode for electric discharge machining that performs removal machining, in which the heat conduction and the mechanical strength are deliberately reduced to improve the productivity of the surface treatment work ;
  • the portion near the discharge arc column 10 of the discharge surface treatment electrode 1 is rapidly heated, and a part of the discharge surface treatment electrode 1 is vaporized and exploded. It will be scattered around (in the machining fluid).
  • the rapidly heated, vaporized, exploded, and released electrode component 11 is rapidly cooled by the heating solution, and does not become a hard coating of the workpiece 2.
  • the current density is appropriate, as shown in FIG. 6 (b), since the diameter of the discharge arc column 10 is widened, a wide area of the discharge surface treatment electrode 1 is heated and covered. The amount of the electrode component 12 attached to the workpiece 2 increases.
  • the ratio of the electrode material adhering to the workpiece is small. Therefore, the ratio of the electrode material adhering to the workpiece is about 10% to 50% by weight, and there is a problem that the surface treatment cost is increased due to the large waste of the electrode material.
  • the electrode material is released by the heat of the discharge, and a part of the material is melted and adhered to the surface of the workpiece as a hard film.
  • the discharge energy has a function of releasing the electrode material and a function of melting the released material and the workpiece.
  • Fig. 8 is a photograph of the surface of the workpiece when the discharge surface treatment was performed by a single discharge current pulse on the steel material as the workpiece.
  • Fig. 8 (a) shows the amount of release of the electrode material. If too much, FIG. 8 (b) shows the case where the amount of the released electrode material is too small. If the release amount of the electrode material is too large ((a) in Fig.
  • the electrode material released by the discharger energy will not melt sufficiently, and a dense hard film cannot be formed on the workpiece. . If the amount of electrode material released is too small (FIG. 8 (b)), the workpiece is excessively melted, and the workpiece is removed more than the hard coating adheres.
  • the rectangular discharge current pulse waveform shows that in one discharge, the discharge of the electrode material and the discharge of the electrode material and the workpiece by one rectangular discharge current pulse. It is difficult to secure an appropriate supply amount of electrode material because of simultaneous melting of the electrodes, and it is difficult to remove the workpiece due to insufficient supply of electrode material and to melt the hard coating due to excessive supply of electrode material. There is a problem that occurs. Disclosure of the invention
  • the present invention has been made in order to solve the above-described problems, and can reduce surface treatment costs and form a dense hard film on a workpiece.
  • An object is to obtain a power supply device and a discharge surface treatment method.
  • the power supply device for electric discharge surface treatment is used for electric discharge surface treatment in which a discharge is generated between an electrode for electric discharge surface treatment and a workpiece and energy is used to form a hard coating on the surface of the workpiece.
  • the discharge current pulse is set to a first pulse width T 1 (first peak value I p 1), second pulse width T 2 (second peak value I p 2), ..., n-th pulse width Tn (peak value of ⁇ ⁇ ⁇ ⁇ ) ( ⁇ is an integer of 2 or more ),
  • the first pulse width ⁇ 1 and the first peak value I ⁇ 1 are set so as to be a current density between the electrodes within a predetermined range for suppressing emission of the electrode material.
  • the k-th pulse width T k and the k-th peak value I pk (2 ⁇ k ⁇ n, where k is an integer) are set in advance according to the desired processing conditions when the supply amount of the hard coating material due to the release of the electrode material is set. Control means for
  • the discharge surface treatment method according to the present invention is directed to a discharge surface treatment method for generating a discharge between a discharge surface treatment electrode and a workpiece, and forming a hard coating on the surface of the workpiece by energy thereof.
  • Discharge current pulse for generating a discharge between a discharge surface treatment electrode and a workpiece, and forming a hard coating on the surface of the workpiece by energy thereof.
  • first pulse width T 1 (first peak value I pi), second pulse width T 2 (second peak value I p 2), nth pulse width Tn (nth peak value I pn) (n is an integer of 2 or more), and the first pulse width T 1 and the first peak value I p 1 are defined as the distance between the electrodes within a predetermined range for suppressing the release of the electrode material.
  • the current density is set so that the k-th pulse width T k and the k-th peak value I pk (2 ⁇ k ⁇ n, k is an integer) are set so that the supply amount of the hard coating material by the release of the electrode material is A hard coating is formed on the surface of the workpiece by setting the value to a value set in advance in accordance with an intended processing condition.
  • the present invention is configured as described above, and has the following effects.
  • the power supply device for discharge surface treatment and the discharge surface treatment method according to the present invention can efficiently make the electrode material adhere to the workpiece surface, the surface treatment cost can be reduced.
  • FIG. 1 is a diagram showing a configuration of a power supply device for surface treatment for discharge according to an embodiment of the present invention, a voltage between electrodes, and a discharge current.
  • FIG. 2 is an explanatory diagram showing a state of forming a hard film on a workpiece by discharge surface treatment using the power supply device for discharge surface treatment according to the embodiment of the present invention.
  • FIG. 3 shows the electrode wear lengths when the discharge surface treatment was performed using the conventional power supply device for discharge surface treatment and when the discharge surface treatment was performed using the power supply device for discharge surface treatment according to the present invention. It is a figure which shows comparison of a height.
  • FIG. 4 is a configuration diagram showing an example of an apparatus used for discharge surface treatment.
  • FIG. 5 is a diagram showing a gap voltage and a discharge current pulse in a conventional power supply device for surface treatment for discharge.
  • FIG. 6 is an explanatory diagram of the adhesion of the electrode material to the workpiece.
  • FIG. 7 is a diagram showing changes in current density and diameter of a discharge arc column with the passage of time from the start of discharge.
  • FIG. 8 is a photograph of the surface of the workpiece when the discharge surface treatment was performed on the steel material by one discharge current pulse.
  • FIG. 1 shows a power supply device for electric discharge surface treatment according to an embodiment of the present invention.
  • FIG. 1 (a) is a configuration diagram
  • FIG. (B) shows the gap voltage and discharge current
  • (c) in FIG. 1 shows another example of the discharge current.
  • 1 is an electrode for electric discharge surface treatment
  • 2 is a workpiece
  • 3 is a machining tank
  • 4 is a machining fluid
  • 13 is a switching element group
  • 14 is an on / off of the switching element group 13.
  • Control means to control 15 is power supply, 16 is resistor group, T 1 is the first pulse width, T 2 is the second pulse width, Tr is the dwell time, I pl is the first peak value, and I p 2 is the second peak value.
  • the switching element group 13, the control means 14, the power supply 15, and the resistor group 16 correspond to a discharge surface treatment power supply device that determines a discharge current pulse waveform and the like in the discharge surface treatment.
  • the discharge surface treatment electrode 1 and the workpiece 2 are opposed to each other in the machining fluid 4, and a predetermined gap is maintained by a driving device (not shown).
  • the peak value of the discharge current is a function of the power supply voltage of the power supply 15 and the resistance value of the resistor group 16 connected in series with the on switching element of the switching element group 13.
  • the discharge surface treatment electrode 1 and the workpiece 2 are connected to each other. After a predetermined time has elapsed, discharge occurs (first peak value I p 1).
  • the switching element that has been turned on is turned off by the control means 14, and a resistor having a small resistance value in the resistor group 16 is turned off.
  • the discharge current is increased by turning on the switching elements of the switching element group 13 connected in series (second peak value Ip2).
  • the control means 14 turns off all the switching elements of the switching element group 13.
  • the switching elements of the switching element group 13 are selectively turned on again by the control means 14.
  • the discharge surface treatment is performed by repeating the above operations. As described above, the control of the peak value of the discharge current can be performed by the control means 14 selectively turning on and off the switching elements of the switching element group 13.
  • the discharge current pulse may be stepwise as shown in FIG. 1 (b),
  • the shape may be a slope as shown in (c) of FIG.
  • the discharge current and the slope can be increased by a method such as introducing an inductance in series with the power supply circuit of the power supply device for discharge surface treatment.
  • FIG. 2 is an explanatory view showing a state in which a hard film is formed on a workpiece by discharge surface treatment using a power supply device for discharge surface treatment according to an embodiment of the present invention.
  • 2 is a workpiece
  • 10 is a discharge arc column
  • 17 is a hard coating formed on the workpiece 2 by the method according to the present invention.
  • (A) in FIG. 2 corresponds to the first part of the first pulse width T1 in (b) or (c) in FIG. 1
  • (b) in FIG. 2 corresponds to ( b) or (c) corresponds to the last part of the first pulse width T1
  • (c) in FIG. 2 corresponds to the second pulse width T2 in (b) or (c) in FIG. It corresponds to the part.
  • the first pulse width T 1 and the first peak value I p 1 are set so as to have a current density within a predetermined range for suppressing the release of the electrode material.
  • (A) in FIG. 2) In the section of the first pulse width T1, the diameter of the discharge arc column 10 is made sufficiently large ((b) in FIG. 2).
  • the supply amount of the hard coating material due to the discharge of the electrode material is previously determined at the second pulse width T2 according to the intended processing conditions.
  • the switching means 13 and the like are controlled by the control means 14 so that the set value is obtained, and the discharge current is increased to a predetermined second peak value Ip2.
  • the hard film 17 is formed efficiently (FIG. 2 (c)).
  • the first pulse width T1 and the first peak value Ip1, which are the current density between the electrodes within a predetermined range that suppresses the release of the electrode material, and the supply amount of the hard coating material to the workpiece are determined.
  • the set values of the second pulse width T2 and the second peak value Ip2, which are the desired amount, are determined in advance by experiments, and the required processing speed, surface properties of the hard coating, electrode consumption, etc. It can be set according to the processing conditions. Wear.
  • the pulse width of the discharge current and the parameters of the peak value of T 2 are changed
  • work Data such as the surface properties of the hard coating formed on the object and the productivity of the surface treatment work are collected in advance by experiments, and using these data, the expected processing speed, the surface properties of the hard coating, and electrode consumption
  • FIG. 3 shows the electrode wear lengths when the discharge surface treatment was performed using the conventional power supply device for discharge surface treatment and when the discharge surface treatment was performed using the power supply device for discharge surface treatment according to the present invention.
  • the comparison was made under the condition that the thickness of the hard coating formed on the workpiece was the same.
  • the discharge current pulse from the conventional discharge surface treatment power supply device is a rectangular wave having a peak value IP of 8 A and a pulse width T of 8 s.
  • the discharge current pulse from the discharge surface treatment power supply device according to the present invention is as follows.
  • the first pulse width T1 is 8 s
  • the first peak value Ip1 is 2 A
  • the second pulse width T2 is 8 s
  • the second peak value Ip2 is 8 A.
  • the electrode wear length is about 500 m for the conventional discharge current pulse and about 200 m for the discharge current pulse according to the present invention. It can be seen that electrode wear can be greatly reduced.
  • the electrode material can be efficiently attached to the surface of the workpiece, thereby reducing the surface treatment cost. Can be. Also, electrode materials Since a proper supply amount of the material can be secured, a dense hard film can be formed on the workpiece.
  • the peak value of the discharge current may be three steps or more in two steps. Further, in each section of the pulse width, the current value of the discharge current pulse is not constant or slope-shaped, and may be a predetermined time function.
  • the power supply device for discharge surface treatment and the discharge surface treatment method according to the present invention are suitable for use in a surface treatment-related industry in which a hard film is formed on the surface of a workpiece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A first pulse width T1 and a first peak value Ip1 are determined so that the current density between an electrode (1) and a work (2) is in such a predetermined range that the release of an electrode material is controlled. During the first pulse width T1, after the diameter of the discharge arc column (10) reaches a sufficient value, the discharge current is increased to a second peak value Ip2 so that a predetermined amount of hard coating material is supplied by the release of the electrode material according to predetermined processing conditions during a second pulse width T2. Then a discharge is caused between the electrodes to efficiently form a hard coating (17) on the work (2). Thus the surface treatment cost is lowered and a dense hard coating (17) is formed on a work (2).

Description

明 細 書 放電表面処理用電源装置及び放電表面処理方法 技術分野  Description Power supply device for discharge surface treatment and discharge surface treatment method
この発明は、 放電表面処理用電極と被加工物との極間に放電を発生さ せ、 そのエネルギにより、 被加工物表面に電極材料からなる硬質被膜又 は電極材料が放電エネルギにより反応した物質からなる硬質被膜を形成 する放電表面処理に用いる、 放電表面処理用電源装置及び放電表面処理 方法の改良に関するものである。 背景技術  According to the present invention, a discharge is generated between an electrode for discharge surface treatment and a workpiece, and a hard coating made of the electrode material or a substance in which the electrode material reacts with the discharge energy by the energy of the discharge. TECHNICAL FIELD The present invention relates to a power supply device for electric discharge surface treatment and an electric discharge surface treatment method used for electric discharge surface treatment for forming a hard coating made of the following. Background art
従来、 被加工物表面に硬質被膜を形成して、 耐食性、 耐磨耗性を付与 する技術としては、 例えば、 日本国特開平 5— 1 4 8 6 1 5号公報に開 示された放電表面処理方法がある。 この技術は、 W C (炭化タンダステ ン) 粉末と C o (コバルト) 粉末を混合して圧縮成形してなる放電表面 処理用電極である圧粉体電極を使用して 1次加工 (堆積加工) を行い、 次に銅電極等の比較的電極消耗の少ない電極に交換して 2次加工 (再溶 融加工) を行う、 2つの工程からなる金属材料の放電表面処理方法であ る。 この方法は、 鋼材に対しては強固な密着力を持った硬質被膜を形成 できるが、 超硬合金のような焼結材料に対しては強固な密着力を持った 硬質被膜を形成することは困難である。  Conventionally, techniques for forming a hard coating on the surface of a workpiece to impart corrosion resistance and wear resistance include, for example, a discharge surface disclosed in Japanese Patent Application Laid-Open No. 5-148615. There is a processing method. In this technology, primary processing (deposition processing) is performed using a green compact electrode, which is a discharge surface treatment electrode formed by mixing WC (tandustane carbide) powder and Co (cobalt) powder and compression molding. This is a method for treating the discharge surface of a metal material, which consists of two steps: performing a secondary process (remelting process) by replacing the electrode with a relatively low electrode consumption such as a copper electrode. This method can form a hard coating with strong adhesion to steel, but cannot form a hard coating with strong adhesion to sintered materials such as cemented carbide. Have difficulty.
しかし、 我々の研究によると、 T i (チタン) 等の硬質炭化物を形成 する材料を放電表面処理用電極として、 被加工物である金属材料との間 に放電を発生させると、 再溶融の過程なしに強固な硬質被膜を被加工物 である金属表面に形成できることがわかっている。 これは、 放電により 消耗した電極材料と加工液の構成成分である C (炭素) が反応して T i C (炭化チタン) が生成することによるものである。 また、 T i H 2 (水 素化チタン) 等の金属水素化物からなる放電表面処理用電極である圧粉 体電極により、 被加工物である金属材料との間に放電を発生させると、 T i等の材料を使用する場合よりも、 迅速にかつ密着性が高い硬質被膜 を形成できることがわかっている。 さらに、 T i H 2等の水素化物に他 の金属やセラミックスを混合した放電表面処理用電極である圧粉体電極 により、 被加工物である金属材料との間に放電を発生させると、 硬度、 耐磨耗性等様々な性質をもつた硬質被膜を素早く形成することができる ことがわっている。 However, according to our research, when a material that forms a hard carbide such as Ti (titanium) is used as an electrode for discharge surface treatment and a discharge is generated between the workpiece and a metal material, the process of remelting occurs. It has been found that a strong hard coating can be formed on the metal surface, which is the workpiece, without the need. This is due to the discharge This is because the exhausted electrode material reacts with C (carbon), which is a component of the working fluid, to produce TiC (titanium carbide). In addition, when a discharge is generated between a metal material as a workpiece and a compact powder electrode as a discharge surface treatment electrode made of a metal hydride such as TiH 2 (titanium hydride), T It has been found that a hard coating can be formed more quickly and with higher adhesion than when a material such as i is used. Moreover, the green compact electrode is an electrode for electrical-discharge surface treatment with a mixture of other metals or ceramics hydride such as T i H 2, when a discharge is generated between the metal material as a workpiece, the hardness It is important that hard coatings having various properties such as abrasion resistance can be quickly formed.
このような方法については、 例えば、 日本国特開平 9 — 1 9 2 9 3 7 号公報に開示されており、 第 4図はこのような放電表面処理に用いる装 置の例を示す構成図である。 図において、 1は T i H 2粉末を圧縮成形 してなる放電表面処理用電極である圧粉体電極、 2は被加工物、 3は加 ェ槽、 4は加工液、 5は圧粉体電極 1と被加工物 2に印加する電圧及び 電流のスィツチングを行うスィツチング素子、 6はスィツチング素子 5 のオン ·オフを制御する制御手段、 7は電源、 8は抵抗器、 9は形成さ れた硬質被膜である。 このような構成により、 圧粉体電極 1 と被加工物 2との間に放電を発生させ、 その放電エネルギにより、 鉄鋼、 超硬合金 等からなる被加工物 2の表面に硬質被膜 9を形成することができる。 ス イッチング素子 5、 制御回路 6、 電源 7及び抵抗器 8力 放電表面処理 における放電電流パルス波形等を決定する放電表面処理用電源装置に相 当している。  Such a method is disclosed, for example, in Japanese Patent Application Laid-Open No. 9-192937, and FIG. 4 is a block diagram showing an example of an apparatus used for such a discharge surface treatment. is there. In the figure, 1 is a green compact electrode which is an electrode for discharge surface treatment formed by compression molding of TiH2 powder, 2 is a workpiece, 3 is a heating tank, 4 is a working fluid, and 5 is a green compact. A switching element for switching the voltage and current applied to the electrode 1 and the workpiece 2; 6, a control means for controlling on / off of the switching element 5; 7, a power source; 8, a resistor; It is a hard coating. With this configuration, a discharge is generated between the green compact electrode 1 and the workpiece 2, and the discharge energy forms a hard coating 9 on the surface of the workpiece 2 made of steel, cemented carbide, or the like. can do. Switching element 5, control circuit 6, power supply 7, and resistor 8 This is equivalent to a discharge surface treatment power supply device that determines the discharge current pulse waveform in discharge surface treatment.
このような従来の放電表面処理用電源装置は、 矩形波状の放電電流パ ルスを基本としており、 第 5図に示すように、 放電電流のピーク値 I p 及びパルス幅 Tを変更することにより、 被加工物に形成される硬質被膜 の膜厚等を調整するものである。 Such a conventional discharge surface treatment power supply device is basically based on a rectangular discharge current pulse, and as shown in FIG. 5, by changing the discharge current peak value I p and the pulse width T, Hard coating formed on workpiece Is to adjust the film thickness or the like.
第 6図は、 電極材料の被加工物への付着についての説明図であり、 第 7図は、 放電開始からの時間経過による電流密度及び放電アーク柱の径 の変化を示す図である。 第 6図において、 1は放電表面処理用電極、 2 は被加工物、 1 0は放電アーク柱、 1 1は急加熱され気化爆発し放出さ れた電極成分、 1 2は被加工物 2に付着した電極成分である。 放電が発 生した直後においては、 第 6図の ( a ) 及び第 7図に示すように、 放電 アーク柱 1 0の径は小さく、 電流密度が極めて高い。 また、 放電表面処 理用電極は、 除去加工を行う通常の放電加工用電極と異なり、 表面処理 作業の生産性向上のため熱伝導及び機械的強度を故意に低下させている ; 従って、 第 6図の (a ) に示すように、 電流密度が高い状態では放電表 面処理用電極 1の放電アーク柱 1 0付近の部分が急加熱され、 放電表面 処理用電極 1の一部を気化爆発により周囲 (加工液中) に飛散させるこ とになる。 ここで、 急加熱され気化爆発し放出された電極成分 1 1は加 ェ液により急冷され、 被加工物 2の硬質被膜とはならない。 一方、 電流 密度が適切な状態では、 第 6図の (b ) に示すように、 放電アーク柱 1 0の径が広がっているため、 放電表面処理用電極 1の広い範囲が加熱さ れ、 被加工物 2に付着した電極成分 1 2の量が多くなる。 FIG. 6 is an explanatory diagram of the adhesion of the electrode material to the workpiece, and FIG. 7 is a diagram showing changes in the current density and the diameter of the discharge arc column with the passage of time from the start of discharge. In Fig. 6, 1 is an electrode for electrical discharge surface treatment, 2 is a workpiece, 10 is a discharge arc column, 11 is an electrode component that is rapidly heated, vaporized, exploded and released, and 12 is a workpiece 2 This is the electrode component attached. Immediately after discharge has occurred, the diameter of the discharge arc column 10 is small and the current density is extremely high, as shown in (a) of FIG. 6 and FIG. Also, the electrode for electric discharge surface treatment is different from the normal electrode for electric discharge machining that performs removal machining, in which the heat conduction and the mechanical strength are deliberately reduced to improve the productivity of the surface treatment work ; As shown in (a) of the figure, when the current density is high, the portion near the discharge arc column 10 of the discharge surface treatment electrode 1 is rapidly heated, and a part of the discharge surface treatment electrode 1 is vaporized and exploded. It will be scattered around (in the machining fluid). Here, the rapidly heated, vaporized, exploded, and released electrode component 11 is rapidly cooled by the heating solution, and does not become a hard coating of the workpiece 2. On the other hand, when the current density is appropriate, as shown in FIG. 6 (b), since the diameter of the discharge arc column 10 is widened, a wide area of the discharge surface treatment electrode 1 is heated and covered. The amount of the electrode component 12 attached to the workpiece 2 increases.
このように、 従来の放電表面処理用電源装置による矩形波状の放電電 流パルス波形 (例えば第 5図) では、 表面処理の生産性向上のために放 電電流パルスのピーク値 I Pを上げても、 特に放電直後において、 電極 材料が被加工物側へ付着する割合が小さい。 従って、 電極材料が被加工 物へ付着する割合は重量比で 1 0 %から 5 0 %程度であり、 電極材料の 無駄が多いために表面処理コストが上昇するという問題点がある。  Thus, in the case of a rectangular discharge current pulse waveform (for example, Fig. 5) from a conventional power supply for discharge surface treatment, even if the peak value IP of the discharge current pulse is increased in order to improve the productivity of surface treatment. In particular, immediately after the discharge, the ratio of the electrode material adhering to the workpiece is small. Therefore, the ratio of the electrode material adhering to the workpiece is about 10% to 50% by weight, and there is a problem that the surface treatment cost is increased due to the large waste of the electrode material.
放電表面処理方法は、 電極材料が放電の熱により放出され、 その一部 が被加工物表面に硬質被膜となって溶融付着するというものである。 従 つて、 放電エネルギには、 電極材料を放出するという働きと、 放出され た材料と被加工物を溶融させるという働きがある。 第 8図は、 被加工物 である鋼材に 1発の放電電流パルスにより放電表面処理を行った場合の 被加工物表面の写真であり、 第 8図の ( a ) は電極材料の放出量が多す ぎる場合、 第 8図の (b ) は電極材料の放出量が少なすぎる場合を示し ている。 電極材料の放出量が多すぎる場合 (第 8図の (a ) ) には、 放 電工ネルギにより放出された電極材料の溶融が不足し、 被加工物に緻密 な硬質被膜を形成することができない。 また、 電極材料の放出量が少な すぎる場合 (第 8図の (b ) ) には、 被加工物が過度に溶融され、 硬質 被膜の付着以上に被加工物を除去加工してしまう。 従来の放電表面処理 用電源装置による矩形波状の放電電流パルス波形 (例えば第 5図) では、 1発の放電において、 1つの矩形波状の放電電流パルスにより電極材料 の放出並びに電極材料及び被加工物の溶融を同時に行うため、 電極材料 の適切な供給量を確保することが困難であり、 電極材料の供給不足によ る被加工物の除去加工及び電極材料の供給過多による硬質被膜の溶融不 足が生じるという問題点があった。 発明の開示 In the discharge surface treatment method, the electrode material is released by the heat of the discharge, and a part of the material is melted and adhered to the surface of the workpiece as a hard film. Obedience The discharge energy has a function of releasing the electrode material and a function of melting the released material and the workpiece. Fig. 8 is a photograph of the surface of the workpiece when the discharge surface treatment was performed by a single discharge current pulse on the steel material as the workpiece. Fig. 8 (a) shows the amount of release of the electrode material. If too much, FIG. 8 (b) shows the case where the amount of the released electrode material is too small. If the release amount of the electrode material is too large ((a) in Fig. 8), the electrode material released by the discharger energy will not melt sufficiently, and a dense hard film cannot be formed on the workpiece. . If the amount of electrode material released is too small (FIG. 8 (b)), the workpiece is excessively melted, and the workpiece is removed more than the hard coating adheres. In a conventional discharge surface treatment power supply unit, the rectangular discharge current pulse waveform (for example, Fig. 5) shows that in one discharge, the discharge of the electrode material and the discharge of the electrode material and the workpiece by one rectangular discharge current pulse. It is difficult to secure an appropriate supply amount of electrode material because of simultaneous melting of the electrodes, and it is difficult to remove the workpiece due to insufficient supply of electrode material and to melt the hard coating due to excessive supply of electrode material. There is a problem that occurs. Disclosure of the invention
この発明は、 前記のような課題を解決するためになされたものであり、 表面処理コストを低減することができると共に被加工物に緻密な硬質被 膜を形成することができる、 放電表面処理用電源装置及び放電表面処理 方法を得ることを目的とする。  The present invention has been made in order to solve the above-described problems, and can reduce surface treatment costs and form a dense hard film on a workpiece. An object is to obtain a power supply device and a discharge surface treatment method.
この発明に係る放電表面処理用電源装置は、 放電表面処理用電極と被 加工物との極間に放電を発生させ、 そのエネルギにより、 前記被加工物 表面に硬質被膜を形成する放電表面処理に用いる放電表面処理用電源装 置において、 放電電流パルスを、 第 1のパルス幅 T 1 (第 1のピーク値 I p 1 ) 、 第 2のパルス幅 T 2 (第 2のピーク値 I p 2 ) 、 ···、 第 nの パルス幅 Tn (第 ηのピーク値 Ι ρ η) (ηは 2以上の整数) の区間に 分割し、 第 1のパルス幅 Τ 1及び第 1のピーク値 I ρ 1を電極材料の放 出を抑制する所定の範囲内の前記極間の電流密度になるように設定し、 第 kのパルス幅 T k及び第 kのピーク値 I p k (2≤k≤n, kは整数) を前記電極材料の放出による硬質被膜材料の供給量が所期の加工条件に 応じて予め設定した値となるように設定する制御手段を備えるものであ る。 The power supply device for electric discharge surface treatment according to the present invention is used for electric discharge surface treatment in which a discharge is generated between an electrode for electric discharge surface treatment and a workpiece and energy is used to form a hard coating on the surface of the workpiece. In the power supply device for discharge surface treatment used, the discharge current pulse is set to a first pulse width T 1 (first peak value I p 1), second pulse width T 2 (second peak value I p 2), ..., n-th pulse width Tn (peak value of η Ι ρ η) (η is an integer of 2 or more ), And the first pulse width Τ1 and the first peak value Iρ1 are set so as to be a current density between the electrodes within a predetermined range for suppressing emission of the electrode material, The k-th pulse width T k and the k-th peak value I pk (2≤k≤n, where k is an integer) are set in advance according to the desired processing conditions when the supply amount of the hard coating material due to the release of the electrode material is set. Control means for setting the values so as to be set.
この発明に係る放電表面処理方法は、 放電表面処理用電極と被加工物 との極間に放電を発生させ、 そのエネルギにより、 前記被加工物表面に 硬質被膜を形成する放電表面処理方法において、 放電電流パルスを、 第 The discharge surface treatment method according to the present invention is directed to a discharge surface treatment method for generating a discharge between a discharge surface treatment electrode and a workpiece, and forming a hard coating on the surface of the workpiece by energy thereof. Discharge current pulse
1のパルス幅 T 1 (第 1のピーク値 I p i ) 、 第 2のパルス幅 T 2 (第 2のピーク値 I p 2) 、 ···、 第 nのパルス幅 Tn (第 nのピーク値 I p n) (nは 2以上の整数) の区間に分割し、 第 1のパルス幅 T 1及び第 1のピーク値 I p 1を電極材料の放出を抑制する所定の範囲内の前記極 間の電流密度になるように設定し、 第 kのパルス幅 T k及び第 kのピー ク値 I p k (2≤k≤n, kは整数) を前記電極材料の放出による硬質 被膜材料の供給量が所期の加工条件に応じて予め設定した値となるよう に設定して、 前記被加工物表面に硬質被膜を形成するものである。 1 pulse width T 1 (first peak value I pi), second pulse width T 2 (second peak value I p 2), nth pulse width Tn (nth peak value I pn) (n is an integer of 2 or more), and the first pulse width T 1 and the first peak value I p 1 are defined as the distance between the electrodes within a predetermined range for suppressing the release of the electrode material. The current density is set so that the k-th pulse width T k and the k-th peak value I pk (2≤k≤n, k is an integer) are set so that the supply amount of the hard coating material by the release of the electrode material is A hard coating is formed on the surface of the workpiece by setting the value to a value set in advance in accordance with an intended processing condition.
この発明は、 以上のように構成されているので、 以下に示すような効 果を奏する。  The present invention is configured as described above, and has the following effects.
この発明に係る放電表面処理用電源装置及び放電表面処理方法は、 被 加工物表面に電極材料を効率的に付着させることができるため、 表面処 理コストを低減することができる。  ADVANTAGE OF THE INVENTION Since the power supply device for discharge surface treatment and the discharge surface treatment method according to the present invention can efficiently make the electrode material adhere to the workpiece surface, the surface treatment cost can be reduced.
また、 電極材料の適切な供給量を確保することができるため、 被加工 物に緻密な硬質被膜を形成することができる。 図面の簡単な説明 In addition, since an appropriate supply amount of the electrode material can be secured, a dense hard film can be formed on the workpiece. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態に係る放電表面処理用電源装置の構 成並びに極間電圧及び放電電流を示す図である。  FIG. 1 is a diagram showing a configuration of a power supply device for surface treatment for discharge according to an embodiment of the present invention, a voltage between electrodes, and a discharge current.
第 2図は、 この発明の実施の形態に係る放電表面処理用電源装置を用 いた放電表面処理による被加工物への硬質被膜形成の様子を示す説明図 である。  FIG. 2 is an explanatory diagram showing a state of forming a hard film on a workpiece by discharge surface treatment using the power supply device for discharge surface treatment according to the embodiment of the present invention.
第 3図は、 従来の放電表面処理用電源装置を用いて放電表面処理を行 つた場合とこの発明に係る放電表面処理用電源装置を用いて放電表面処 理を行った場合との電極消耗長さの比較を示す図である。  FIG. 3 shows the electrode wear lengths when the discharge surface treatment was performed using the conventional power supply device for discharge surface treatment and when the discharge surface treatment was performed using the power supply device for discharge surface treatment according to the present invention. It is a figure which shows comparison of a height.
第 4図は、 放電表面処理に用いる装置の例を示す構成図である。 第 5図は、 従来の放電表面処理用電源装置における極間電圧及び放電 電流パルスを示す図である。  FIG. 4 is a configuration diagram showing an example of an apparatus used for discharge surface treatment. FIG. 5 is a diagram showing a gap voltage and a discharge current pulse in a conventional power supply device for surface treatment for discharge.
第 6図は、 電極材料の被加工物への付着についての説明図である。 第 7図は、 放電開始からの時間経過による電流密度及び放電アーク柱 の径の変化を示す図である。  FIG. 6 is an explanatory diagram of the adhesion of the electrode material to the workpiece. FIG. 7 is a diagram showing changes in current density and diameter of a discharge arc column with the passage of time from the start of discharge.
第 8図は、 1発の放電電流パルスにより鋼材に放電表面処理を行った 場合の被加工物表面の写真である。 発明を実施するための最良の形態 - 第 1図は、 この発明の実施の形態に係る放電表面処理用電源装置を示 したものであり、 第 1図の (a ) は構成図、 第 1図の (b ) は極間電圧 及び放電電流、 第 1図の (c ) は放電電流の別の例を示している。 第 1 図において、 1は放電表面処理用電極、 2は被加工物、 3は加工槽、 4 は加工液、 1 3はスイッチング素子群、 1 4はスイッチング素子群 1 3 のオン · オフ等を制御する制御手段、 1 5は電源、 1 6は抵抗器群、 T 1は第 1のパルス幅、 T 2は第 2のパルス幅、 T rは休止時間、 I p l は第 1のピーク値、 I p 2は第 2のピーク値である。 スイッチング素子 群 1 3、 制御手段 1 4、 電源 1 5及び抵抗器群 1 6が、 放電表面処理に おける放電電流パルス波形等を決定する放電表面処理用電源装置に相当 している。 FIG. 8 is a photograph of the surface of the workpiece when the discharge surface treatment was performed on the steel material by one discharge current pulse. BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows a power supply device for electric discharge surface treatment according to an embodiment of the present invention. FIG. 1 (a) is a configuration diagram, FIG. (B) shows the gap voltage and discharge current, and (c) in FIG. 1 shows another example of the discharge current. In FIG. 1, 1 is an electrode for electric discharge surface treatment, 2 is a workpiece, 3 is a machining tank, 4 is a machining fluid, 13 is a switching element group, and 14 is an on / off of the switching element group 13. Control means to control, 15 is power supply, 16 is resistor group, T 1 is the first pulse width, T 2 is the second pulse width, Tr is the dwell time, I pl is the first peak value, and I p 2 is the second peak value. The switching element group 13, the control means 14, the power supply 15, and the resistor group 16 correspond to a discharge surface treatment power supply device that determines a discharge current pulse waveform and the like in the discharge surface treatment.
次に、 動作について説明する。 放電表面処理用電極 1 と被加工物 2を 加工液 4中において対向させ、 図示しない駆動装置により所定の間隙を 保つ。 放電電流のピーク値は、 電源 1 5の電源電圧及び抵抗器群 1 6の 中でスィツチング素子群 1 3のオンしているスィツチング素子に直列に 連結されたものの抵抗値の関数となる。 制御手段 1 4により抵抗器群 1 6の中の抵抗値の大きい抵抗に直列に連結されたスィツチング素子群 1 3のスィツチング素子をオンすることにより、 放電表面処理用電極 1 と 被加工物 2との間に電圧が印加され、 所定時間が経過した後、 放電が発 生する (第 1のピーク値 I p 1 ) 。 放電の発生を検出し、 第 1のパルス 幅 T 1が経過した後に、 制御手段 1 4により、 前記のオンにしたスイツ チング素子をオフにし、 抵抗器群 1 6の中の抵抗値の小さい抵抗に直列 に連結されたスィツチング素子群 1 3のスィツチング素子をオンするこ とにより放電電流を増加させる (第 2のピーク値 I p 2 ) 。 その後第 2 のパルス幅 T 2が経過した後、 制御手段 1 4によりスイッチング素子群 1 3のスイッチング素子を全てオフする。 さらに、 休止時間 T rが経過 した後、 再び制御手段 1 4によりスィツチング素子群 1 3のスィッチン グ素子を選択的にオンする。 以上の動作を繰り返すことにより、 放電表 面処理を行うものである。 このように、 放電電流のピーク値の制御は、 制御手段 1 4により、 スィツチング素子群 1 3のスィツチング素子を選 択的にオン · オフすることにより行うことができる。  Next, the operation will be described. The discharge surface treatment electrode 1 and the workpiece 2 are opposed to each other in the machining fluid 4, and a predetermined gap is maintained by a driving device (not shown). The peak value of the discharge current is a function of the power supply voltage of the power supply 15 and the resistance value of the resistor group 16 connected in series with the on switching element of the switching element group 13. By turning on the switching elements of the switching element group 13 connected in series to the resistors having a large resistance value in the resistor group 16 by the control means 14, the discharge surface treatment electrode 1 and the workpiece 2 are connected to each other. After a predetermined time has elapsed, discharge occurs (first peak value I p 1). After the occurrence of discharge is detected and the first pulse width T1 has elapsed, the switching element that has been turned on is turned off by the control means 14, and a resistor having a small resistance value in the resistor group 16 is turned off. The discharge current is increased by turning on the switching elements of the switching element group 13 connected in series (second peak value Ip2). Thereafter, after the second pulse width T 2 has elapsed, the control means 14 turns off all the switching elements of the switching element group 13. Further, after the elapse of the rest time Tr, the switching elements of the switching element group 13 are selectively turned on again by the control means 14. The discharge surface treatment is performed by repeating the above operations. As described above, the control of the peak value of the discharge current can be performed by the control means 14 selectively turning on and off the switching elements of the switching element group 13.
放電電流パルスは第 1図の (b ) のように階段状であってもよいし、 第 1図の (c ) のようにスロープ状であってもよい。 放電電流, スロープ状の増加は、 放電表面処理用電源装置の電源回路に直列にィン ダク夕ンスを揷入する方法等により行うことができる。 The discharge current pulse may be stepwise as shown in FIG. 1 (b), The shape may be a slope as shown in (c) of FIG. The discharge current and the slope can be increased by a method such as introducing an inductance in series with the power supply circuit of the power supply device for discharge surface treatment.
第 2図は、 この発明の実施の形態に係る放電表面処理用電源装置を用 いた放電表面処理による被加工物への硬質被膜形成の様子を示す説明図 であり、 図において、 1は電極、 2は被加工物、 1 0は放電アーク柱、 1 7はこの発明に係る方法により被加工物 2に形成された硬質被膜であ る。 また、 第 2図の (a) は第 1図の (b) 又は (c ) の第 1のパルス 幅 T 1の最初の部分に相当し、 第 2図の (b) は第 1図の (b) 又は( c ) の第 1のパルス幅 T 1の最後の部分に相当し、 第 2図の ( c ) は第 1図 の (b) 又は (c ) の第 2のパルス幅 T 2の部分に相当するものである。 第 1図の (b) 又は (c) において、 第 1のパルス幅 T 1及び第 1の ピーク値 I p 1を電極材料の放出を抑制する所定の範囲内の電流密度に なるように設定し (第 2図の ( a) ) 、 第 1のパルス幅 T 1の区間にお いて、 放電アーク柱 1 0の径を十分に大きくさせる (第 2図の (b) ) 。 次に、 このように放電アーク柱 1 0の径が大きくなつた状態で、 第 2の パルス幅 T 2において、 電極材料の放出による硬質被膜材料の供給量が 所期の加工条件に応じて予め設定した値となるように、 制御手段 1 4に よりスイッチング素子群 1 3等を制御し、 放電電流を所定の第 2のピー ク値 I p 2まで大きくすることにより、 被加工物 2に対して効率的に硬 質被膜 1 7の形成を行う (第 2図の (c ) ) 。  FIG. 2 is an explanatory view showing a state in which a hard film is formed on a workpiece by discharge surface treatment using a power supply device for discharge surface treatment according to an embodiment of the present invention. 2 is a workpiece, 10 is a discharge arc column, and 17 is a hard coating formed on the workpiece 2 by the method according to the present invention. (A) in FIG. 2 corresponds to the first part of the first pulse width T1 in (b) or (c) in FIG. 1, and (b) in FIG. 2 corresponds to ( b) or (c) corresponds to the last part of the first pulse width T1, and (c) in FIG. 2 corresponds to the second pulse width T2 in (b) or (c) in FIG. It corresponds to the part. In (b) or (c) of FIG. 1, the first pulse width T 1 and the first peak value I p 1 are set so as to have a current density within a predetermined range for suppressing the release of the electrode material. ((A) in FIG. 2) In the section of the first pulse width T1, the diameter of the discharge arc column 10 is made sufficiently large ((b) in FIG. 2). Next, in the state where the diameter of the discharge arc column 10 is increased, the supply amount of the hard coating material due to the discharge of the electrode material is previously determined at the second pulse width T2 according to the intended processing conditions. The switching means 13 and the like are controlled by the control means 14 so that the set value is obtained, and the discharge current is increased to a predetermined second peak value Ip2. Thus, the hard film 17 is formed efficiently (FIG. 2 (c)).
電極材料の放出を抑制する所定の範囲内の極間の電流密度となる第 1 のパルス幅 T 1及び第 1のピーク値 I p 1及び被加工物への硬質被膜材 料の供給量が所期の量となる第 2のパルス幅 T 2及び第 2のピーク値 I p 2の設定値については、 予め実験により求めておき、 所期の加工速度、 硬質被膜の面性状及び電極消耗等の加工条件に応じて設定することがで きる。 例えば、 放電表面処理用電極の材料及びその構成成分比並びに硬 さ等の電極のパラメ一夕、 被加工物の材料等のパラメ一夕、 第 1のパル ス幅 T 1、 第 2のパルス幅 T 2、 第 1のピーク値 I p 1及び第 2のピー ク値 I P 2の放電電流のパルス幅及びピーク値のパラメ一夕を変化させ た場合の放電表面処理用電極の消耗量、 被加工物に形成される硬質被膜 の面性状及び表面処理作業の生産性等のデータを予め実験により収集し ておき、 これらのデータを用いて、 所期の加工速度、 硬質被膜の面性状 及び電極消耗等の加工条件に応じて、 電極材料の放出を抑制する所定の 範囲内の極間の電流密度となる第 1のパルス幅 T 1及び第 1のピーク値 I 1及び被加工物への硬質被膜材料の供給量が所期の量となる第 2の パルス幅 T 2及び第 2のピーク値 I p 2を設定すればよい。 The first pulse width T1 and the first peak value Ip1, which are the current density between the electrodes within a predetermined range that suppresses the release of the electrode material, and the supply amount of the hard coating material to the workpiece are determined. The set values of the second pulse width T2 and the second peak value Ip2, which are the desired amount, are determined in advance by experiments, and the required processing speed, surface properties of the hard coating, electrode consumption, etc. It can be set according to the processing conditions. Wear. For example, the material of the electrode for discharge surface treatment and its constituent component ratio, the parameter of the electrode such as hardness, the parameter of the material of the workpiece, etc., the first pulse width T1, the second pulse width When the pulse width of the discharge current and the parameters of the peak value of T 2, the first peak value I p 1 and the second peak value IP 2 are changed, the amount of consumption of the electrode for discharge surface treatment, work Data such as the surface properties of the hard coating formed on the object and the productivity of the surface treatment work are collected in advance by experiments, and using these data, the expected processing speed, the surface properties of the hard coating, and electrode consumption The first pulse width T1 and the first peak value I1, which are the current density between the electrodes within a predetermined range that suppresses the release of the electrode material, according to the processing conditions such as Set the second pulse width T 2 and the second peak value I p 2 so that the material supply amount is the expected amount. It is sufficient.
第 3図は、 従来の放電表面処理用電源装置を用いて放電表面処理を行 つた場合とこの発明に係る放電表面処理用電源装置を用いて放電表面処 理を行った場合との電極消耗長さの比較を、 被加工物に形成される硬質 被膜厚さを同一にする条件で行ったものである。 この場合における従来 の放電表面処理用電源装置による放電電流パルスは、 ピーク値 I Pが 8 A、 パルス幅 Tが 8 sの矩形波、 この発明に係る放電表面処理用電源 装置による放電電流パルスは、 第 1のパルス幅 T 1が 8 s、 第 1のピ ーク値 I p 1が 2 A、 第 2のパルス幅 T 2が 8 s、 第 2のピーク値 I p 2が 8 Aである。 第 3図において、 電極消耗長さは、 従来の放電電流 パルスでは約 5 0 0 m、 この発明に係る放電電流パルスでは約 2 0 0 mであり、 この発明に係る放電表面処理用電源装置の方が電極消耗を 大幅に低減できることがわかる。  FIG. 3 shows the electrode wear lengths when the discharge surface treatment was performed using the conventional power supply device for discharge surface treatment and when the discharge surface treatment was performed using the power supply device for discharge surface treatment according to the present invention. The comparison was made under the condition that the thickness of the hard coating formed on the workpiece was the same. In this case, the discharge current pulse from the conventional discharge surface treatment power supply device is a rectangular wave having a peak value IP of 8 A and a pulse width T of 8 s.The discharge current pulse from the discharge surface treatment power supply device according to the present invention is as follows. The first pulse width T1 is 8 s, the first peak value Ip1 is 2 A, the second pulse width T2 is 8 s, and the second peak value Ip2 is 8 A. In FIG. 3, the electrode wear length is about 500 m for the conventional discharge current pulse and about 200 m for the discharge current pulse according to the present invention. It can be seen that electrode wear can be greatly reduced.
以上のように、 この発明に係る放電表面処理用電源装置を用いた放電 表面処理によれば、 被加工物表面に電極材料を効率的に付着させること ができるため、 表面処理コストを低減することができる。 また、 電極材 料の適切な供給量を確保することができるため、 被加工物に緻密な硬質 被膜を形成することができる。 As described above, according to the discharge surface treatment using the power supply device for discharge surface treatment according to the present invention, the electrode material can be efficiently attached to the surface of the workpiece, thereby reducing the surface treatment cost. Can be. Also, electrode materials Since a proper supply amount of the material can be secured, a dense hard film can be formed on the workpiece.
以上の説明においては、 放電電流のピーク値を 2段階の階段状とした 力 3段階以上としてもよい。 また、 パルス幅の各区間において、 放電 電流パルスの電流値は一定又はスロープ状でなく、 所定の時間関数であ つてもよい。 産業上の利用可能性  In the above description, the peak value of the discharge current may be three steps or more in two steps. Further, in each section of the pulse width, the current value of the discharge current pulse is not constant or slope-shaped, and may be a predetermined time function. Industrial applicability
以上のように、 この発明に係る放電表面処理用電源装置及び放電表面 処理方法は、 被加工物表面に硬質被膜を形成する表面処理関連産業に用 いられるのに適している。  INDUSTRIAL APPLICABILITY As described above, the power supply device for discharge surface treatment and the discharge surface treatment method according to the present invention are suitable for use in a surface treatment-related industry in which a hard film is formed on the surface of a workpiece.

Claims

請 求 の 範 囲 The scope of the claims
1. 放電表面処理用電極と被加工物との極間に放電を発生させ、 その エネルギにより、 前記被加工物表面に硬質被膜を形成する放電表面処理 に用いる放電表面処理用電源装置において、 1. In a power supply device for electric discharge surface treatment used for electric discharge surface treatment for generating a discharge between the electrode for electric discharge surface treatment and a workpiece and using the energy to form a hard film on the surface of the workpiece,
放電電流パルスを、 第 1のパルス幅 T 1 (第 1のピーク値 I p i ) 、 第 2のパルス幅 T 2 (第 2のピーク値 I p 2) 、 ···、 第 nのパルス幅丁 n (第 nのピーク値 I p n) (nは 2以上の整数) の区間に分割し、 第 1のパルス幅 T 1及び第 1のピーク値 I p 1を電極材料の放出を抑 制する所定の範囲内の前記極間の電流密度になるように設定し、 第 kの パルス幅 T k及び第 kのピーク値 I p k ( 2≤ k≤ n > kは整数) を前 記電極材料の放出による硬質被膜材料の供給量が所期の加工条件に応じ て予め設定した値となるように設定する制御手段を備えることを特徴と する放電表面処理用電源装置。  The discharge current pulse is divided into a first pulse width T 1 (first peak value I pi), a second pulse width T 2 (second peak value I p 2),. n (n is an integer greater than or equal to 2), and the first pulse width T 1 and the first peak value I p 1 are determined to suppress the release of the electrode material. And the k-th pulse width T k and the k-th peak value I pk (2≤k≤n> k is an integer) within the range of A power supply device for electric discharge treatment, characterized by comprising control means for setting the supply amount of the hard coating material to a value set in advance according to the intended processing conditions.
2. 放電表面処理用電極と被加工物との極間に放電を発生させ、 その エネルギにより、 前記被加工物表面に硬質被膜を形成する放電表面処理 方法において、  2. A discharge surface treatment method in which a discharge is generated between an electrode for discharge surface treatment and a workpiece and energy is used to form a hard coating on the surface of the workpiece.
放電電流パルスを、 第 1のパルス幅 T 1 (第 1のピーク値 I p i ) 、 第 2のパルス幅 T 2 (第 2のピーク値 I p 2) 、 ·■·、 第 nのパルス幅 T n (第 nのピーク値 I p n) (nは 2以上の整数) の区間に分割し、 第 1のパルス幅 T 1及び第 1のピーク値 I p 1を電極材料の放出を抑 制する所定の範囲内の前記極間の電流密度になるように設定し、 第 kの パルス幅 T k及び第 kのピーク値 I p k ( 2≤ k≤ n , kは整数) を前 記電極材料の放出による硬質被膜材料の供給量が所期の加工条件に応じ て予め設定した値となるように設定して、 前記被加工物表面に硬質被膜 を形成することを特徴とする放電表面処理方法。  The discharge current pulse is divided into a first pulse width T 1 (first peak value I pi), a second pulse width T 2 (second peak value I p 2), an n-th pulse width T n (n is an integer greater than or equal to 2), and the first pulse width T 1 and the first peak value I p 1 are determined to suppress the release of the electrode material. And the k-th pulse width T k and the k-th peak value I pk (2≤k≤n, where k is an integer) are set to be within the range of A discharge surface treatment method comprising: setting a supply amount of a hard coating material according to a predetermined value according to an intended processing condition; and forming a hard coating on the surface of the workpiece.
PCT/JP2000/000303 2000-01-24 2000-01-24 Power supply for discharge surface treatment and discharge surface treatment method WO2001055481A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2000/000303 WO2001055481A1 (en) 2000-01-24 2000-01-24 Power supply for discharge surface treatment and discharge surface treatment method
CH01772/01A CH695567A5 (en) 2000-01-24 2000-01-24 Electric power supply for electrical discharge machining surface (Funkenerosionsbwarbeitung) and a method for surface electrical discharge machining.
CN00805400.2A CN1210128C (en) 2000-01-24 2000-01-24 Power supply for discharge surface treatment and discharge surface treatment method
DE10084316T DE10084316B4 (en) 2000-01-24 2000-01-24 Method of electro-discharge surface treatment
TW089101612A TW483948B (en) 2000-01-24 2000-01-31 Power supply device for discharge surface treating and a surface treating method with electric discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000303 WO2001055481A1 (en) 2000-01-24 2000-01-24 Power supply for discharge surface treatment and discharge surface treatment method

Publications (1)

Publication Number Publication Date
WO2001055481A1 true WO2001055481A1 (en) 2001-08-02

Family

ID=11735599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000303 WO2001055481A1 (en) 2000-01-24 2000-01-24 Power supply for discharge surface treatment and discharge surface treatment method

Country Status (5)

Country Link
CN (1) CN1210128C (en)
CH (1) CH695567A5 (en)
DE (1) DE10084316B4 (en)
TW (1) TW483948B (en)
WO (1) WO2001055481A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108990A1 (en) * 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
WO2005068845A1 (en) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
JP2005213554A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Discharge surface treatment method and discharge surface treatment apparatus
JP2011102562A (en) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp Method of repairing mechanical component
US9359682B2 (en) 2009-07-28 2016-06-07 Mitsubishi Electric Corporation Erosion resistant machine component, method for forming surface layer of machine component, and method for manufacturing steam turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770761A (en) * 1993-08-31 1995-03-14 Res Dev Corp Of Japan Surface treating method of aluminum and alloy thereof by discharge in liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770761A (en) * 1993-08-31 1995-03-14 Res Dev Corp Of Japan Surface treating method of aluminum and alloy thereof by discharge in liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108990A1 (en) * 2003-06-05 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JPWO2004108990A1 (en) * 2003-06-05 2006-07-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment electrode manufacturing method and evaluation method, discharge surface treatment apparatus, and discharge surface treatment method
JP4563318B2 (en) * 2003-06-05 2010-10-13 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
WO2005068845A1 (en) * 2004-01-14 2005-07-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
US7824159B2 (en) 2004-01-14 2010-11-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Compressor, titanium-made rotor blade, jet engine and titanium-made rotor blade producing method
JP2005213554A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Discharge surface treatment method and discharge surface treatment apparatus
US9359682B2 (en) 2009-07-28 2016-06-07 Mitsubishi Electric Corporation Erosion resistant machine component, method for forming surface layer of machine component, and method for manufacturing steam turbine
JP2011102562A (en) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp Method of repairing mechanical component

Also Published As

Publication number Publication date
CN1344333A (en) 2002-04-10
CN1210128C (en) 2005-07-13
CH695567A5 (en) 2006-06-30
DE10084316B4 (en) 2005-12-22
DE10084316T1 (en) 2002-04-11
TW483948B (en) 2002-04-21

Similar Documents

Publication Publication Date Title
JP3363284B2 (en) Electrode for electric discharge machining and metal surface treatment method by electric discharge
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
JP5121933B2 (en) Discharge surface treatment method
JP3376174B2 (en) Surface treatment method and apparatus by electric discharge machining
Lee et al. Some characteristics of electrical discharge machining of conductive ceramics
RU2319789C2 (en) Method for treating surface with use of electric discharge
WO2001023641A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
JP3931656B2 (en) Discharge surface treatment power supply device and discharge surface treatment method
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2001055481A1 (en) Power supply for discharge surface treatment and discharge surface treatment method
US20080118664A1 (en) Discharge Surface-Treatment Method and Discharge Surface-Treatment Apparatus
JP2001138141A (en) Method for surface coating treatment using submerged discharge and consumable electrode used therefor
JP5547864B2 (en) Discharge surface treatment method and apparatus
JP4895477B2 (en) Discharge surface treatment method and discharge surface treatment apparatus.
WO2008010263A1 (en) Process for producing electrode for discharge surface treatment and method of discharge surface treatment
US20240316678A1 (en) Welded assembly and method of welding using electro-spark discharge
WO2000067941A1 (en) Method and apparatus for surface treatment by electrodischarging, and discharge electrode
JP2005213561A (en) Discharge surface treatment method and discharge surface treatment apparatus
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD
JPH08243843A (en) Powder mixed electric discharge machining fluid and electric discharge machining method using powder mixed machining fluid
Ranjan Surface modification by electro-discharge coating (EDC) with TiC-Cu P/M electrode tool
JP2004060013A (en) Electrode for discharge surface-treatment and discharge surface-treatment method
JP3852580B2 (en) Discharge surface treatment electrode and method for producing the same
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment
WO2001036709A1 (en) Method and device for electric discharge surface treatment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00805400.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2001 554506

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CH CN DE JP US

WWE Wipo information: entry into national phase

Ref document number: 09937220

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10084316

Country of ref document: DE

Date of ref document: 20020411

WWE Wipo information: entry into national phase

Ref document number: 10084316

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607