JP3363284B2 - Electrode for electric discharge machining and metal surface treatment method by electric discharge - Google Patents

Electrode for electric discharge machining and metal surface treatment method by electric discharge

Info

Publication number
JP3363284B2
JP3363284B2 JP08905095A JP8905095A JP3363284B2 JP 3363284 B2 JP3363284 B2 JP 3363284B2 JP 08905095 A JP08905095 A JP 08905095A JP 8905095 A JP8905095 A JP 8905095A JP 3363284 B2 JP3363284 B2 JP 3363284B2
Authority
JP
Japan
Prior art keywords
electrode
electric discharge
treated
sintered
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08905095A
Other languages
Japanese (ja)
Other versions
JPH08300227A (en
Inventor
長男 斎藤
尚武 毛利
克司 古谷
輝雄 石黒
敏郎 大泉
卓司 真柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Japan Science and Technology Corp filed Critical Mitsubishi Electric Corp
Priority to JP08905095A priority Critical patent/JP3363284B2/en
Publication of JPH08300227A publication Critical patent/JPH08300227A/en
Application granted granted Critical
Publication of JP3363284B2 publication Critical patent/JP3363284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、金型、工具、内燃機
関、ガスタービン等の耐蝕性・耐摩耗性を必要とする被
処理材へ放電処理を行なう放電加工用電極および放電に
よる金属表面処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining electrode for performing electric discharge treatment on a material to be treated such as a mold, a tool, an internal combustion engine, a gas turbine, etc., which requires corrosion resistance and wear resistance, and a metal surface by electric discharge. It relates to a processing method.

【0002】[0002]

【従来の技術】従来、例えば特開平5−148615号
公報に開示されているように、放電による表面処理によ
って10μm 以上の厚い被覆層を形成する場合、タング
ステン・カーバイド粉末とコバルト粉末等からなる圧粉
体電極を使用して1次加工(堆積加工)を行ない、次に
銅電極等の比較的電極消耗の少ない電極(以下非消耗性
電極と称する)に交換して2次加工(再溶融加工)を行
う、といった2つの工程から成る放電による金属表面処
理方法が知られている。
2. Description of the Related Art Conventionally, as disclosed in, for example, Japanese Patent Laid-Open No. 148615/1993, when a thick coating layer having a thickness of 10 μm or more is formed by surface treatment by electric discharge, a pressure of tungsten carbide powder and cobalt powder is used. Primary processing (deposition processing) is performed using a powder electrode, and then secondary processing (remelt processing) is performed by exchanging with an electrode with relatively little electrode wear such as a copper electrode (hereinafter referred to as non-consumable electrode). There is known a method for treating a metal surface by electric discharge, which comprises two steps such as

【0003】この方法は、高硬度で密着力の大きいファ
インセラミックス層を、数10μmの厚みに形成するに
は極めて優れた方法であるが、2次加工に於いて非消耗
性電極に取り換える必要がある。
This method is an extremely excellent method for forming a fine ceramics layer having a high hardness and a large adhesive force to a thickness of several tens of μm, but it is necessary to replace it with a non-consumable electrode in the secondary processing. is there.

【0004】この従来方法について更に説明する。即
ち、ファインセラミックス(WC、TiC、TaC、Z
rC、SiC、TiB2、ZrB2、TiN、ZrNな
ど)や、タングステンW、モリブデンMoなどのような
高融点の材料は、放電析出だけでは被加工材の内部まで
充分に拡散させることが困難な場合が多い。一例として
その内のタングステン・カーバイド(以下、WCと記
述)を放電析出させ、これにパルス放電加工処理を適用
した実験例について説明する。
The conventional method will be further described. That is, fine ceramics (WC, TiC, TaC, Z
High melting point materials such as rC, SiC, TiB2, ZrB2, TiN, ZrN), tungsten W, molybdenum Mo, etc. may be difficult to diffuse sufficiently into the work material only by electrical discharge deposition. Many. As an example, an experimental example will be described in which tungsten carbide (hereinafter, referred to as WC) is deposited by electric discharge, and pulse electric discharge machining is applied thereto.

【0005】まず、WC粉末(平均粒径3μm )を鉄粉
末(以下、Fe粉末と記述)(平均粒径9.8μm )と
1:1の割合で混合し、圧縮成形(圧縮圧力4t/平方
センチメートル)を施して圧粉体とし、これを銅の丸棒
に導電性接着剤にて接着し、圧粉体電極を形成する。次
いで、炭素鋼(S55C生材)を被処理材とし、放電電
気条件(パルスピーク値Ip、パルス時間τp、パルス
休止時間τrを変化させて、図13に示す通常の形彫放
電加工機にて実験を行った。
First, WC powder (average particle size 3 μm) is mixed with iron powder (hereinafter referred to as Fe powder) (average particle size 9.8 μm) at a ratio of 1: 1 and compression molding (compression pressure 4 t / square centimeter). ) Is applied to form a green compact, which is adhered to a copper round bar with a conductive adhesive to form a green compact electrode. Next, using carbon steel (S55C raw material) as the material to be treated, the electrical discharge conditions (pulse peak value Ip, pulse time τp, pulse dwell time τr were changed, and the ordinary die-sinking electric discharge machine shown in FIG. 13 was used. An experiment was conducted.

【0006】なお、図13において、1は電極、2は被
処理材、3は加工槽、4は加工液、5は電極1のサーボ
機構、6は電極1と被処理材2間に加工電圧を供給する
電源を示している。
In FIG. 13, 1 is an electrode, 2 is a material to be processed, 3 is a processing tank, 4 is a working liquid, 5 is a servo mechanism of the electrode 1, 6 is a processing voltage between the electrode 1 and the material 2 to be processed. It shows the power supply to supply.

【0007】その結果、デューティーファクターDが比
較的大きい加工条件では、放電によるアークが集中し、
圧粉体電極1が破壊されたが、デューティーファクター
Dが1.5%以下の条件で圧粉体電極1は崩れることな
く安定して消耗し、被処理材2の表面に付着した。その
ときの加工条件は、Ip=20A、τp=16μs、τ
r=1024μsである(これを1次加工と称す)。図
14はその制御回路で、8、9はトランジスタ、10、
11は各々のトランジスタ8、9に流れる電流を制限す
る抵抗、12はトランジスタ8、9のオン・オフ動作を
制御する制御回路である。また、図15は加工間隙にお
ける電圧波形V、電流波形Ipを示すパルス波形図であ
る。
As a result, under machining conditions where the duty factor D is relatively large, arcs due to discharge are concentrated,
The green compact electrode 1 was destroyed, but under the condition that the duty factor D was 1.5% or less, the green compact electrode 1 was not worn out and was stably consumed and adhered to the surface of the material 2 to be treated. The processing conditions at that time are Ip = 20 A, τp = 16 μs, τ
r = 1024 μs (this is called primary processing). FIG. 14 shows a control circuit for the control circuit.
Reference numeral 11 is a resistor that limits the current flowing through each of the transistors 8 and 9, and 12 is a control circuit that controls the on / off operation of the transistors 8 and 9. FIG. 15 is a pulse waveform diagram showing the voltage waveform V and the current waveform Ip in the machining gap.

【0008】次に、前記の放電加工により得られた被処
理材2に次の要領でパルス放電加工を実施する。先ず、
タングステン・カーバイド粉末とコバルト粉末を混合
し、圧縮成形したWCーCo焼結体(超硬合金バイト材
料)を導電性接着剤にて銅丸棒に接着し電極を構成す
る。次いで、この電極を用いて、被処理材2の表面に付
着したWC、Fe堆積層の上からパルス放電加工を実施
する。加工条件は、被処理材2を加工し過ぎないよう
に、電極極性をマイナスとし、パルスピーク値Ip、パ
ルス時間τp、パルス休止時間τrを変化させて加工し
た。パルス時間τpが短く、パルスピーク値Ipが高
く、加工時間が長いとWCーFeの堆積物が消出する
が、パルス時間τpがやや長く、パルスピーク値Ipが
やや低い条件では、WCーFeの堆積物の飛散を少なく
することが出来る(これを2次加工と称す)。
Next, the material 2 to be processed obtained by the above-mentioned electric discharge machining is subjected to pulse electric discharge machining in the following manner. First,
A tungsten carbide powder and a cobalt powder are mixed, and a compression-molded WC-Co sintered body (cemented carbide tool material) is bonded to a copper round bar with a conductive adhesive to form an electrode. Next, using this electrode, pulse electric discharge machining is carried out from above the WC and Fe deposition layers attached to the surface of the material to be treated 2. The processing conditions were such that the material 2 to be processed was not processed too much, the electrode polarity was negative, and the pulse peak value Ip, the pulse time τp, and the pulse rest time τr were changed. When the pulse time τp is short, the pulse peak value Ip is high, and the processing time is long, the WC-Fe deposit disappears, but under the condition that the pulse time τp is slightly long and the pulse peak value Ip is slightly low, WC-Fe It is possible to reduce the scattering of the deposits (this is called secondary processing).

【0009】1次加工の放電析出のみでは、WC−Fe
の付着力は弱いが、これに2次加工のパルス放電加工を
行うとWCが被処理材に拡散していることが確認され
た。また、通常のWCーCo焼結体の硬度は(WC7
0,Co30)の場合でもビッカース硬度Hv850〜
950程度である。上記実験例ではWC50、Fe50
と高硬度のWCが少ないにもかかわらず、それよりも高
硬度の表面処理層の硬度(ビッカース硬度Hv1000
〜1400)(S55Cの焼入硬度はビッカース硬度H
v800強である)が得られた。また、上記実験例に於
いてビッカース硬度Hv1000以上を得られる厚みは
60μm 程度で、厚みが大きい。
[0009] WC-Fe is obtained only by the electrical discharge deposition of the primary processing.
However, it was confirmed that WC was diffused to the material to be treated when the pulse electric discharge machining of the secondary machining was performed on the WC. The hardness of a normal WC-Co sintered body is (WC7
0, Co30) Vickers hardness Hv850-
It is about 950. In the above experimental example, WC50, Fe50
And the hardness of the surface treatment layer having a hardness higher than that (Vickers hardness Hv1000
~ 1400) (The quenching hardness of S55C is Vickers hardness H
v800 +) was obtained. Further, in the above experimental example, the thickness that can obtain the Vickers hardness Hv of 1000 or more is about 60 μm, which is large.

【0010】[0010]

【発明が解決しようとする課題】従来の放電加工用電極
では、放電のデューティファクターDが大きい場合(パ
ルス時間τpに対するパルス休止時間τrの比)に圧粉
体電極が崩れる可能性があるという第1の問題点があっ
た。なお、圧粉体電極が加工中に崩れる理由は、圧縮付
着している組織が脆弱であることの他に、熱伝導率およ
び電気抵抗が見かけ上高くなり、放電電流によって放電
点付近が発熱し、放電集中が起こり、放電点付近が大き
く除去されること、及び電極の部分的な溶融再凝固(ア
ーク放電により起こる)のため、欠落を発生すると考え
られる。
In the conventional electric discharge machining electrode, there is a possibility that the powder compact electrode may collapse when the discharge duty factor D is large (the ratio of the pulse pause time τr to the pulse time τp). There was one problem. The reason why the powder compact electrode collapses during processing is that the tissue adhered by compression is fragile, the thermal conductivity and electrical resistance are apparently high, and the discharge current causes heat to be generated near the discharge point. It is considered that the discharge is concentrated, the area near the discharge point is largely removed, and the electrode is partially melted and re-solidified (caused by the arc discharge) to cause chipping.

【0011】また、従来の放電加工用電極では、圧粉体
電極のために電極の消耗が多く、再溶融焼結ではなく、
堆積加工になるという第2の問題点があった。
Further, in the conventional electric discharge machining electrode, the electrode is consumed a lot due to the powder compact electrode, so that it is not remelted and sintered.
There was a second problem that it was a deposition process.

【0012】また、従来の放電による金属表面処理方法
では、2次加工で非消耗性電極に取換える必要があり、
もし電極を取換えないで2次加工条件に切り換えると、
電極が破壊し加工の継続が困難になるという第3の問題
点があった。
Further, in the conventional metal surface treatment method by electric discharge, it is necessary to replace the non-consumable electrode by secondary processing,
If you switch to secondary processing conditions without replacing the electrodes,
There is a third problem that the electrode is broken and it becomes difficult to continue the processing.

【0013】ここで、デューティーファクターDの用語
と、その大小による現象を述べる。デューティーファク
ターDは、図3に示すように、 D=パルス時間τp/(パルス時間τp+パルス休止時
間τr)(%) 上記式に示すように、放電1サイクル(パルス時間τp
+パルス休止時間τr)に於けるパルス時間τpの割合
であり、このデューティーファクターDが大きい程、休
止時間割合は短く、加工能率は向上することになる。し
かしながら、デューティーファクターDが大きいと言う
ことは、単位時間当たりの電流の平均値が大きくなり、
従って電極材料の電気抵抗が高く、熱伝導率が低けれ
ば、放電点のみならずその近辺の温度も高くなる。温度
が高ければ絶縁回復も充分ではなく、そのため次々と発
生する放電も同一点に発生し集中的となる。いわゆるア
ーク放電(絶縁回復のない放電)となる。そのため特定
の放電発生点が崩れ、電極形状も不整なものとなる。圧
粉体電極はデューティファクターDを小さく(上記例で
は1.5%)取る必要ができてくる。
Here, the term of the duty factor D and the phenomenon depending on its magnitude will be described. The duty factor D is, as shown in FIG. 3, D = pulse time τp / (pulse time τp + pulse rest time τr) (%) As shown in the above equation, one discharge cycle (pulse time τp
+ Pulse rest time τr), and the larger the duty factor D, the shorter the rest time and the higher the machining efficiency. However, the fact that the duty factor D is large means that the average value of the current per unit time becomes large,
Therefore, if the electric resistance of the electrode material is high and the thermal conductivity is low, not only the discharge point but also the temperature in the vicinity thereof becomes high. If the temperature is high, insulation recovery will not be sufficient, and therefore, electric discharges that occur one after another will occur at the same point and will be concentrated. This is so-called arc discharge (discharge without insulation recovery). Therefore, the specific discharge generation point collapses and the electrode shape becomes irregular. The powder compact electrode needs to have a small duty factor D (1.5% in the above example).

【0014】この発明の目的は上記第1から第3の問題
点を解決するためになされたもので、圧粉体電極の崩れ
易さを解消するとともに、2次加工条件に於いても電極
を交換せずに、放電電気条件の変更のみで2次加工を可
能にする放電加工用電極および放電による金属表面処理
方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned first to third problems, and to solve the easiness of collapsing of the powder compact electrode and to make the electrode even in the secondary processing condition. It is an object of the present invention to provide an electrode for electric discharge machining that enables secondary machining without changing the electric conditions of the electric discharge, and a method for treating a metal surface by electric discharge without changing the electric conditions.

【0015】[0015]

【課題を解決するための手段】第1の発明に係る放電加
工用電極は、WC、TiC、TaC、ZrC、SiC、
VCなどの炭化物、TiB2、ZrB2などの硼化物、T
iN、ZrNなどの窒化物の単体もしくは2種以上の混
合物を圧縮成形し、焼結温度以下の温度で仮焼結して構
成したものである。
The electric discharge machining electrode according to the first invention is WC, TiC, TaC, ZrC, SiC,
Carbides such as VC, borides such as TiB2 and ZrB2, T
It is configured by compressing and molding a single substance of a nitride such as iN or ZrN or a mixture of two or more types, and pre-sintering at a temperature equal to or lower than the sintering temperature.

【0016】第2の発明に係る放電加工用電極は、T
i、V、Taなどの炭化の容易な材料の圧粉体を焼結温
度以下の温度で仮焼結して構成したものである。
The electric discharge machining electrode according to the second invention is T
It is formed by temporarily sintering a green compact made of a material such as i, V, or Ta that is easily carbonized at a temperature equal to or lower than the sintering temperature.

【0017】第3の発明に係る放電による金属表面処理
方法は、WC、TiC、TaC、ZrC、SiC、VC
などの炭化物、TiB2、ZrB2などの硼化物、Ti
N、ZrNなどの窒化物を、単体もしくは2種以上の混
合物に焼結助成を加えて圧縮成形し、その後、焼結温度
以下の温度で仮焼結し、これを放電加工の消耗電極とし
て被処理材に放電処理を行なうものである。
The metal surface treatment method by electric discharge according to the third aspect of the present invention is WC, TiC, TaC, ZrC, SiC, VC.
Carbides such as TiB2, boride such as ZrB2, Ti
Nitride such as N and ZrN is compression-molded by adding a sintering aid to a single substance or a mixture of two or more kinds, and then pre-sintered at a temperature equal to or lower than the sintering temperature and used as a consumable electrode for electric discharge machining. The treatment material is subjected to an electric discharge treatment.

【0018】第4の発明に係る放電による金属表面処理
方法は、Ti、V、Taなどの炭化の容易な材料の圧粉
体を焼結温度以下の温度で仮焼結し、その後、これを放
電加工の消耗電極として放電による熱分解により炭素を
生ずる加工液中に於いて被処理材に放電処理を行なうも
のである。
In the metal surface treatment method by electric discharge according to the fourth aspect of the present invention, a green compact made of a material such as Ti, V, or Ta which is easily carbonized is temporarily sintered at a temperature equal to or lower than the sintering temperature, and then this is sintered. As a consumable electrode for electric discharge machining, a material to be treated is subjected to electric discharge treatment in a machining fluid that produces carbon by thermal decomposition due to electric discharge.

【0019】第5の発明に係る放電による金属表面処理
方法は、被処理材への第1段階での放電処理に於いて電
極材料がよく堆積する条件を選び、上記被処理材への第
2段階での放電処理に於いて硬度を上昇する条件に電極
極性および放電電気条件を変更するものである。
In the method for treating a metal surface by electric discharge according to the fifth aspect of the present invention, the conditions for the electrode material to be deposited well in the first stage electric discharge treatment on the material to be treated are selected, and the second treatment on the material to be treated is selected. The electrode polarity and discharge electrical conditions are changed to conditions that increase hardness in the discharge treatment in stages.

【0020】[0020]

【作用】この発明によるWC、TiC、TaC、Zr
C、SiC、VCなどの炭化物、TiB2、ZrB2など
の硼化物、TiN、ZrNなどの窒化物の単体もしくは
2種以上の混合物を圧縮成形し、焼結温度以下の温度で
仮焼結して構成した放電加工用電極は、非消耗極性の放
電加工においても崩れることなく放電加工できる。
Function: WC, TiC, TaC, Zr according to the present invention
C, SiC, VC, etc. carbides, TiB2, ZrB2, etc. boride, TiN, ZrN, etc. nitrides alone or a mixture of two or more kinds are compression molded and pre-sintered at a temperature below the sintering temperature. The electric discharge machining electrode can be electric discharge machined without breaking even in electric discharge machining with a non-consumable polarity.

【0021】この発明によるTi、V、Taなどの炭化
の容易な材料の圧粉体を焼結温度以下の温度で仮焼結し
て構成した放電加工用電極は、非消耗極性の放電加工に
おいても崩れることなく放電加工できる。
The electrode for electric discharge machining, which is formed by pre-sintering a green compact made of a material such as Ti, V, Ta, etc., which is easily carbonized, at a temperature below the sintering temperature is used in the electric discharge machining of non-consumable polarity. EDM can be performed without breaking.

【0022】この発明によるWC、TiC、TaC、Z
rC、SiC、VCなどの炭化物、TiB2、ZrB2な
どの硼化物、TiN、ZrNなどの窒化物を、単体もし
くは2種以上の混合物に焼結助成を加えて圧縮成形し、
その後、焼結温度以下の温度で仮焼結し、これを放電加
工の消耗電極として被処理材に放電処理を行なう金属表
面処理方法は、極性の変換や広範囲の放電電気条件に対
しても電極が崩れることなく放電加工できる。
WC, TiC, TaC, Z according to the present invention
Carbides such as rC, SiC, and VC, borides such as TiB2 and ZrB2, and nitrides such as TiN and ZrN are compression molded by adding a sintering aid to a single substance or a mixture of two or more types,
After that, the metal surface treatment method, in which the material to be treated is subjected to electrical discharge treatment as a consumable electrode for electrical discharge machining by pre-sintering at a temperature equal to or lower than the sintering temperature, is used for electrode conversion even under a wide range of electrical discharge conditions such as polarity conversion. EDM can be performed without breaking.

【0023】この発明によるTi、V、Taなどの炭化
の容易な材料の圧粉体を焼結温度以下の温度で仮焼結
し、その後、これを放電加工の消耗電極として放電によ
る熱分解により炭素を生ずる加工液中に於いて被処理材
に放電処理を行なう金属表面処理方法は、極性の変換や
広範囲の放電電気条件に対しても電極が崩れることなく
放電加工できる。
The green compact made of a material such as Ti, V, Ta, etc., which is easily carbonized, is pre-sintered at a temperature below the sintering temperature, and then is used as a consumable electrode for electric discharge machining by thermal decomposition by electric discharge. The metal surface treatment method in which a material to be treated is subjected to electric discharge treatment in a machining liquid that produces carbon can perform electric discharge machining without changing the polarity or breaking the electrode even under a wide range of electric discharge conditions.

【0024】この発明による被処理材への第1段階での
放電処理に於いて電極材料がよく堆積する条件を選び、
上記被処理材への第2段階での放電処理に於いて硬度を
上昇する条件に電極極性および放電電気条件を変更する
金属表面処理方法は、電極が崩れることがなく、堆積、
再溶融、彫り込みの加工処理が出来る。
In the discharge treatment in the first stage on the material to be treated according to the present invention, the conditions under which the electrode material is often deposited are selected,
The metal surface treatment method in which the electrode polarity and the discharge electrical condition are changed to the condition that the hardness is increased in the second stage electric discharge treatment on the material to be treated is such that the electrode is not broken and the deposition is performed.
Remelting and engraving processing can be performed.

【0025】[0025]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。先ず、電極の作成について説明する。従来のよう
な圧粉成形のみの電極では、2次加工条件において電極
が崩れることがあるので、本実施例ではタングステン・
カーバイド粉末とコバルト粉末(WCーCoの粉末)を
混合し、圧縮成形した後、仮焼結した。それぞれの条件
は表1に示す通りである。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. First, the production of electrodes will be described. In the case of the conventional electrode formed only by powder compacting, the electrode may collapse under the secondary processing conditions.
Carbide powder and cobalt powder (WC-Co powder) were mixed, compression molded, and then pre-sintered. The respective conditions are as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】次に、被処理材をSKー3とし、表面は研
削面、電極は上記表1に示した仮焼結の圧粉体電極を使
用し、放電加工による表面処理を行う。電流値Ipは5
〜25A、パルス時間τpは4〜1024μs、休止時
間τrは1024μsと一定とした。
Next, the material to be treated is SK-3, the surface is a ground surface, and the electrode is the pre-sintered green compact electrode shown in Table 1 above, and surface treatment is performed by electric discharge machining. Current value Ip is 5
˜25 A, the pulse time τp was 4 to 1024 μs, and the rest time τr was 1024 μs.

【0028】図1は電極をマイナスとプラスにそれぞれ
切換えた場合のパルスピーク値とパルス休止時間および
加工状態を示すもので、電極がマイナスであれば、被処
理材に対して堆積する領域がある。この図1中、横列は
パルスピーク値IP、縦列はパルス時間τP を示し、
「彫込」とあるのは、堆積せずに被処理材を加工してし
まうことである。このような彫込領域は放電電気条件を
選ぶこと、および焼結温度を下げることによって除去す
ることができる。電極がプラスであれば、電極がマイナ
スで堆積したものを再溶融加工を行うことができる。彫
込領域は上記と同様、放電電気条件を選ぶか、焼結温度
を下げれば除去できる。また、電極がマイナスで加工し
た時の表面層の硬度よりも、プラスで加工した場合の方
が硬度が上昇する。
FIG. 1 shows the pulse peak value, the pulse dwell time, and the processing state when the electrode is switched between negative and positive, respectively. If the electrode is negative, there is a region to be deposited on the material to be treated. . In FIG. 1, the horizontal line represents the pulse peak value IP, the vertical line represents the pulse time τP,
"Engraving" means processing the material to be processed without depositing it. Such engraved areas can be removed by choosing discharge electrical conditions and lowering the sintering temperature. If the electrode is positive, the negative electrode deposited can be remelted. As in the above case, the engraved region can be removed by selecting discharge electrical conditions or by lowering the sintering temperature. Further, the hardness is increased when the electrode is processed by plus, as compared with the hardness of the surface layer when the electrode is processed by minus.

【0029】この理由は、電極がプラスであれば、被処
理材がマイナスとなり、図2のアーク柱の挙動と放電痕
形成に対する想定モデル図に示すように、被処理材の放
電痕電流密度が高くなり、高い焼結温度で再加熱したよ
うな結果になるためと考えられる。なお、図2の13は
電極1をマイナス極性とした場合の電極の消耗部分を示
している。この表面処理層の断面硬度分布を示すのが図
3である。
The reason for this is that if the electrode is positive, the material to be treated will be negative, and as shown in the assumed model diagram for the behavior of the arc column and the formation of discharge traces in FIG. It is considered that this is because the temperature becomes higher and the result is as if reheating was performed at a high sintering temperature. Note that reference numeral 13 in FIG. 2 shows a consumed portion of the electrode when the electrode 1 has a negative polarity. FIG. 3 shows the cross-sectional hardness distribution of this surface-treated layer.

【0030】なお、図4〜図7は表面処理を行った被処
理材の断面を示すもので、図4は加工時間30分の表面
処理断面、図5は電極の極性をマイナス、プラスに切換
えて放電加工した処理層断面、図6は異形形状の被処理
材の処理層断面、図7は溶接部の処理層の断面をそれぞ
れ示したものである。
4 to 7 show cross sections of the surface-treated material, FIG. 4 shows the cross section of the surface treatment for 30 minutes, and FIG. 5 shows the polarity of the electrode switched between negative and positive. 6 shows a cross section of the treatment layer subjected to electric discharge machining, FIG. 6 shows a cross section of the treatment layer of the workpiece having a deformed shape, and FIG. 7 shows a cross section of the treatment layer at the welded portion.

【0031】以上の実施例に示されるように、仮焼結し
たWCーCo電極は、次のような特性を示すことが明ら
かである。仮焼結しても、電極をマイナス極性とすれ
ば、被処理材に対し堆積する領域がある。プラス極性と
すれば、堆積はしないが、一旦堆積したものを再溶融し
硬度を上昇させることができる。
As shown in the above examples, it is apparent that the calcinated WC-Co electrode exhibits the following characteristics. Even if it is pre-sintered, if the electrode has a negative polarity, there is a region to be deposited on the material to be processed. If the polarity is positive, it is possible to increase the hardness by remelting the once-deposited material, although the material is not deposited.

【0032】プラス、マイナスに極性を変更しても電極
は崩れることがなく、極性転換を繰り返しても、あるい
は高速度に頻繁に繰り返しても崩れることなく、放電を
継続できることが判明した。
It has been found that the electrode does not collapse even if the polarity is changed to plus or minus, and the discharge can be continued without breaking even if the polarity change is repeated or repeated frequently at high speed.

【0033】また、デューティファクターを高くとって
も、崩れたり放電が集中し易いということはなくなり、
加工効率を上げることができる。
Further, even if the duty factor is set high, it is not easy to collapse or concentrate the discharge,
The processing efficiency can be improved.

【0034】別の実験からも、圧粉体の如く単に接触し
ているだけのものと異なり、仮焼結により粉体内の結合
が強くなり、電気抵抗は小さくなり、熱伝導率も高くな
っていることは明らかである。勿論、完全に焼結(高温
処理)したものよりは、電気抵抗は高く、熱伝導率は低
いことは当然である。
From another experiment, it is also found that, unlike the one which is simply in contact like a green compact, the bonding in the powder is strengthened by the pre-sintering, the electric resistance is reduced, and the thermal conductivity is also increased. It is clear that Of course, it is natural that the electric resistance is higher and the thermal conductivity is lower than that of the completely sintered (high temperature treated).

【0035】上記実施例について更に説明すれば、圧粉
体を通常の焼結合金やファインセラミックスの焼結のよ
うに、焼結温度まで加熱すれば、強固な焼結体ができあ
がるが、それでは電極が非消耗性となり、被処理材に堆
積を起こし得なくなる。そのため本発明者が選んだ手段
は、 (1)焼結温度よりも低い温度で焼結すること。 (2)消耗性と非消耗性の相反する特性の賦与は、電極極
性の変換およびその時の放電電気条件の変更であり、図
2に示す放電発生のアークモデルの想定(発明者の仮
設)より着想したものである。
To further explain the above-mentioned embodiment, when the green compact is heated to the sintering temperature as in the case of the sintering of ordinary sintered alloys or fine ceramics, a strong sintered body is formed. Becomes non-consumable, and deposition on the material to be treated cannot occur. Therefore, the means selected by the present inventor is (1) sintering at a temperature lower than the sintering temperature. (2) The contradictory characteristics of consumable and non-consumable are the conversion of the electrode polarity and the change of the discharge electrical condition at that time, which is based on the assumption of the arc model of discharge generation shown in FIG. It is an idea.

【0036】ここで上記(1)の事項について説明する。
図8には焼結の一般的傾向を示し、横軸に焼結時間、縦
軸に相対密度を示している。高温で焼結すれば理論相対
密度に近づくが、それよりも低い温度で焼結すれば、低
い相対密度、即ち、強度等も低くなる。図9はアルミナ
セラミックスの焼結温度と見かけの密度とを示し、横軸
に焼結時間、縦軸に見かけの密度を示している。160
0℃以上で焼結すれば、理論密度に著しく近づく。この
発明に於いては、理論密度の50%〜90%程度が使用
される範囲となり、完全焼結よりは充分胞弱で圧粉体の
ままよりは、充分に強くなり、電気抵抗も小さく、熱伝
導率も大となる。
The above item (1) will be described below.
FIG. 8 shows the general tendency of sintering, the horizontal axis shows the sintering time, and the vertical axis shows the relative density. Sintering at a high temperature approaches the theoretical relative density, but sintering at a lower temperature lowers the low relative density, that is, strength. FIG. 9 shows the sintering temperature and the apparent density of the alumina ceramics, the horizontal axis shows the sintering time, and the vertical axis shows the apparent density. 160
If sintered at 0 ° C. or higher, the density will be extremely close to the theoretical density. In the present invention, about 50% to 90% of the theoretical density is in the range of use, which is sufficiently weaker than complete sintering and sufficiently stronger than that of a green compact, and has a low electric resistance. The thermal conductivity is also high.

【0037】次に、上記(2)の事項について説明する。
1次加工は電極が多く消耗する条件で行い、2次加工は
電極消耗の小さくなる条件で行うのであるが、図2のア
ーク柱の挙動と放電痕形成に対する想定モデル図に示す
ように、極性を選ぶことにより電極の消耗を制御し得
る。すなわち電極がマイナスの場合には、一発の放電に
よるアーク柱が図の如くマイナス側が細く、プラス側が
太くなる。放電電流は一定であるからマイナス側の放電
痕電流密度が著しく高くなり、マイナス側の消耗が増大
する。
Next, the above item (2) will be described.
The primary machining is performed under the condition that many electrodes are consumed, and the secondary machining is performed under the condition that the electrode is consumed less. As shown in the model model of the behavior of the arc column and the discharge mark formation in FIG. It is possible to control the consumption of the electrode by selecting That is, when the electrode is negative, the arc column due to one discharge is thin on the negative side and thick on the positive side as shown in the figure. Since the discharge current is constant, the discharge trace current density on the minus side becomes extremely high, and the consumption on the minus side increases.

【0038】逆にプラス側は相対的に放電痕電流密度が
低くなるので、消耗は少なくなる。従って、電極を著し
く消耗させたい場合には、極性をマイナスにすると共
に、いっそう放電痕の電流密度を大にするためには、放
電電流値を大きくとればよい。
On the contrary, since the discharge trace current density is relatively low on the positive side, the consumption is reduced. Therefore, when it is desired to significantly consume the electrodes, the discharge current value may be increased in order to make the polarity negative and further increase the current density of the discharge traces.

【0039】また、電極を非消耗性にするには、電極極
性をプラスとし、放電痕の電流値を下げればよい。電流
パルス時間τpが長いほど、一発の放電痕の電流密度が
低くなるので、非消耗にするには、電流パルス時間τp
を長く、プラス極性とし、消耗形にするには、電流パル
ス時間τpを短く、マイナス極性にすればよいことにな
る。
To make the electrodes non-consumable, the polarity of the electrodes should be positive and the current value of the discharge trace should be reduced. The longer the current pulse time τp, the lower the current density of one discharge mark.
Is long and has a positive polarity, and the current pulse time τp is short and has a negative polarity in order to make it a consumable type.

【0040】実施例2.以上の特性に基づいて次のよう
な新たな実施例を生み出すことができる。即ち、1分間
に数10回の頻度で、電極の極性をマイナス、プラスに
繰り返す。この加工法によって加工面の硬度がより上昇
する。また厚い表面層を作ることができる。あるいは、
仕上げ面粗さが微細であり且つ厚い被覆層を形成するこ
とができる。
Example 2. Based on the above characteristics, the following new embodiments can be created. That is, the polarity of the electrode is repeated negative and positive at a frequency of several tens of times per minute. This processing method further increases the hardness of the processed surface. Also thick surface layers can be made. Alternatively,
It is possible to form a thick coating layer having a fine finished surface roughness.

【0041】仮焼結電極を目的形状に機械加工や超音波
加工で加工をした後、これを加工電極としてキャビティ
ーを作る(形状を彫り込む)。この時の極性は消耗の少
ないプラス極性の電極が形状加工の形状精度を向上す
る。次に電極の極性をマイナスとして堆積加工を行う
(1次加工)。その次に電極の極性をプラスとして再溶
融加工を行う。このようにすれば、従来の銅電極やグラ
ファイト電極を使用しなくともキャビティの形状加工を
行い、その後に表面硬化を行うことができる。
After machining the provisional sintered electrode into a target shape by machining or ultrasonic processing, a cavity is formed (the shape is engraved) using this as a processing electrode. At this time, the polarity of the plus-polarity electrode, which is less consumed, improves the shape accuracy of the shape processing. Next, deposition processing is performed with the polarity of the electrode being negative (primary processing). Next, re-melting processing is performed with the polarity of the electrode being positive. In this way, the shape of the cavity can be processed without using the conventional copper electrode or graphite electrode, and then the surface can be hardened.

【0042】被処理材料を鋼材のように融点が1500
℃程度よりも高い材料、例えば超硬質合金のようなもの
の表面に、TiCとTiあるいはVまたはTa等の炭化
の容易な材料を仮焼結した電極で、電極極性を転換しな
がら加工すれば、鋼材に対しては彫り込む領域でも堆積
および再溶融焼結が可能となる。
The material to be treated has a melting point of 1500, like steel.
If a material having a temperature higher than about ℃, for example, a material such as a super-hard alloy, is pre-sintered with an easily carbonizable material such as TiC and Ti or V or Ta, while processing the electrode polarity while changing it, For steel, deposition and remelting and sintering are possible even in the engraved area.

【0043】図10に示すように、仮焼結電極をホイー
ル状(円板状)にして回転を与えると同時に、注油しな
がら放電表面処理を行えば、加工液の循環を良くしなが
ら加工できる。また、仮焼結電極の消耗する量を円板全
体に分散することができるために、切削工具や部品加工
の硬化に有用である。即ち、グラインダーで切削工具や
部品加工を行うことが有用であるのと同義である。
As shown in FIG. 10, if the provisional sintered electrode is formed into a wheel shape (disk shape) and is rotated, and at the same time the discharge surface treatment is performed while lubricating, machining can be performed while improving the circulation of the machining liquid. . In addition, the amount of wear of the pre-sintered electrode can be dispersed over the entire disk, which is useful for hardening cutting tools and parts. That is, it is synonymous that it is useful to process a cutting tool or a part with a grinder.

【0044】図10において、20は被処理材、21は
回転ホイール、22は加工液、23は電源、24は電極
21を回転させる絶縁スピンドル、25はブラッシュ、
26は回転ベルトを示している。なお、図11はホイー
ル21の断面図で、27はホイール21に装着された電
極を示している。
In FIG. 10, 20 is a material to be treated, 21 is a rotating wheel, 22 is a working fluid, 23 is a power source, 24 is an insulating spindle for rotating the electrode 21, 25 is a brush,
Reference numeral 26 denotes a rotating belt. Note that FIG. 11 is a cross-sectional view of the wheel 21, and 27 indicates an electrode mounted on the wheel 21.

【0045】なお、仮焼結電極で切削工具の再研磨と、
表面硬化を行う場合には、ダイヤモンド研削ホイールと
一体化した構造をとることもできる。即ち、ダイヤモン
ドホイールの外周部は再研削に使用し、内周部に仮焼結
電極を貼付ける構造をとる。
Re-polishing of the cutting tool with the provisional sintered electrode,
When the surface is hardened, a structure integrated with a diamond grinding wheel can be adopted. That is, the outer peripheral portion of the diamond wheel is used for re-grinding, and the provisional sintered electrode is attached to the inner peripheral portion.

【0046】図12はその断面図を示し、図12におい
て、30はホイール、31はホイール30に装着された
ダイヤモンド、32は仮焼結電極を示している。
FIG. 12 is a sectional view thereof, and in FIG. 12, 30 is a wheel, 31 is a diamond attached to the wheel 30, and 32 is a pre-sintered electrode.

【0047】[0047]

【発明の効果】以上説明したように、第1の発明による
放電加工用電極は、WC、TiC、TaC、ZrC、S
iC、VCなどの炭化物、TiB2、ZrB2などの硼化
物、TiN、ZrNなどの窒化物の単体もしくは2種以
上の混合物を圧縮成形し、その後、焼結温度以下の温度
で仮焼結して構成したので、極性の変換や広範囲の放電
電気条件に対しても電極が崩れることがない。
As described above, the electric discharge machining electrode according to the first invention is composed of WC, TiC, TaC, ZrC and S.
It consists of carbide such as iC and VC, boride such as TiB2 and ZrB2, nitride such as TiN and ZrN, or a mixture of two or more kinds, and then pre-sintering at a temperature below the sintering temperature. Therefore, the electrodes do not collapse even when the polarity is changed or a wide range of electrical discharge conditions are met.

【0048】また、第2の発明による放電加工用電極
は、Ti、V、Taなどの炭化の容易な材料の圧粉体を
焼結温度以下の温度で仮焼結して構成したので、極性の
変換や広範囲の放電電気条件に対しても電極が崩れるこ
とがない。
Further, since the electric discharge machining electrode according to the second aspect of the present invention is formed by temporarily sintering a green compact made of a material such as Ti, V, or Ta which is easily carbonized at a temperature equal to or lower than the sintering temperature, The electrode does not collapse even under the conversion of electricity and a wide range of electrical discharge conditions.

【0049】また、第3の発明による放電による金属表
面処理方法は、WC、TiC、TaC、ZrC、Si
C、VCなどの炭化物、TiB2、ZrB2などの硼化
物、TiN、ZrNなどの窒化物を、単体もしくは2種
以上の混合物に焼結助成を加えて圧縮成形し、その後、
焼結温度以下の温度で仮焼結し、これを放電加工の消耗
電極として被処理材に放電処理を行なうことにより、上
記被処理材表面に被覆層を形成したので、極性の変換や
広範囲の放電電気条件に対しても電極が崩れることがな
く、電極を継続的に使用すると電極表面が焼結され硬度
は増化する。
The metal surface treatment method by electric discharge according to the third aspect of the invention is WC, TiC, TaC, ZrC, Si.
A carbide such as C or VC, a boride such as TiB2 or ZrB2, or a nitride such as TiN or ZrN is compression-molded by adding a sintering aid to a single substance or a mixture of two or more types, and then,
Since the coating layer is formed on the surface of the material to be treated by performing the electric discharge treatment on the material to be treated by using the consumable electrode for the electric discharge machining as a consumable electrode for electric discharge machining, the coating layer is formed on the surface of the material to be changed in polarity or in a wide range. The electrode does not collapse even under electrical discharge conditions, and if the electrode is continuously used, the surface of the electrode is sintered and the hardness increases.

【0050】また、第4の発明による放電による金属表
面処理方法は、Ti、V、Taなどの炭化の容易な材料
の圧粉体を焼結温度以下の温度で仮焼結し、その後、こ
れを放電加工の消耗電極として放電による熱分解により
炭素を生ずる加工液中に於いて被処理材に放電処理を行
なうので、極性の変換や広範囲の放電電気条件に対して
も堆積、再溶融等の作用を充分行なった上で、電極が崩
れることがなく、電極を継続的に使用すると電極表面が
焼結され硬度は増化する。
In the metal surface treatment method by electric discharge according to the fourth aspect of the present invention, a green compact made of a material such as Ti, V, or Ta which is easily carbonized is pre-sintered at a temperature lower than the sintering temperature, and then Is used as a consumable electrode for electrical discharge machining, and the material to be treated is subjected to electrical discharge in a machining fluid that produces carbon by thermal decomposition due to electrical discharge. After sufficient action, the electrode does not collapse, and if the electrode is continuously used, the surface of the electrode is sintered and the hardness is increased.

【0051】また、第5の発明による放電による金属表
面処理方法は、被処理材への第1段階での放電処理に於
いて電極材料がよく堆積する条件を選び、上記被処理材
への第2段階での放電処理に於いて硬度を上昇する条件
に電極極性および放電電気条件を変更するので、電極が
崩れることがなく、堆積、再溶融、彫り込みの加工処理
が出来る。
Further, in the method for treating a metal surface by electric discharge according to the fifth aspect of the present invention, the conditions for the electrode material to be deposited well in the first stage electric discharge treatment on the material to be treated are selected, and In the two-stage electric discharge treatment, the electrode polarity and the electric discharge condition are changed so as to increase the hardness, so that the electrode can be maintained and the deposition, remelting, and engraving processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例による電極をマイナスとプ
ラスにそれぞれ切換えた場合のパルスピーク値とパルス
休止時間および加工状態を示す図である。
FIG. 1 is a diagram showing a pulse peak value, a pulse quiescent time, and a processing state when an electrode according to an embodiment of the present invention is switched between a negative electrode and a positive electrode.

【図2】 この発明の実施例を説明するアーク柱の挙動
と放電痕形成に対する想定モデルを示す図である。
FIG. 2 is a diagram showing a behavior of an arc column and an assumed model for forming discharge traces, which explains an embodiment of the present invention.

【図3】 この発明の実施例により得られる表面処理層
の断面硬度分布を示す図である。
FIG. 3 is a diagram showing a cross-sectional hardness distribution of a surface treatment layer obtained according to an example of the present invention.

【図4】 この発明の実施例により得られる加工時間3
0分の被処理材の表面処理断面写真である。
FIG. 4 Processing time 3 obtained by the embodiment of the present invention
It is a surface treatment sectional photograph of a to-be-processed material for 0 minutes.

【図5】 この発明の実施例により得られる電極の極性
をマイナス、プラスに切換えて放電加工した被処理材の
処理層断面写真である。
FIG. 5 is a photograph of a cross section of a treatment layer of a material to be treated which has been subjected to electric discharge machining by changing the polarity of the electrode obtained by the embodiment of the present invention to negative or positive.

【図6】 この発明の実施例により得られる異形形状の
被処理材の処理層断面写真である。
FIG. 6 is a cross-sectional photograph of a treatment layer of a material to be treated having an irregular shape obtained according to an example of the present invention.

【図7】 この発明の実施例により得られる溶接部の処
理層の断面写真である。
FIG. 7 is a photograph of a cross section of a treatment layer of a welded portion obtained according to an example of the present invention.

【図8】 一定温度で焼結した焼結体の密度変化と焼結
温度との間の一般的関係を示す図である。
FIG. 8 is a diagram showing a general relationship between a change in density of a sintered body sintered at a constant temperature and a sintering temperature.

【図9】 アルミナセラミックスの焼結温度と見かけの
密度との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the sintering temperature and the apparent density of alumina ceramics.

【図10】 この発明の他の実施例を説明する構成図で
ある。
FIG. 10 is a configuration diagram illustrating another embodiment of the present invention.

【図11】 図10に示すホイールの断面図である。11 is a cross-sectional view of the wheel shown in FIG.

【図12】 この発明の更に他の実施例を説明するダイ
ヤモンドホイールの断面図である。
FIG. 12 is a sectional view of a diamond wheel illustrating still another embodiment of the present invention.

【図13】 放電加工装置の一般的構成図である。FIG. 13 is a general configuration diagram of an electric discharge machine.

【図14】 放電加工装置の制御回路を示す一般的構成
図である。
FIG. 14 is a general configuration diagram showing a control circuit of an electric discharge machine.

【図15】 加工間隙におけるパルス電圧波形、パルス
電流波形を示す図である。
FIG. 15 is a diagram showing a pulse voltage waveform and a pulse current waveform in a machining gap.

【符号の説明】[Explanation of symbols]

1 電極、2 被処理材、3 加工槽、4 加工液、5
サーボ機構 6 電源、8 トランジスタ、 9 トランジスタ、
10 抵抗 11 抵抗、12 制御回路、 15 電極消耗部分、
20 被処理材 21 回転ホイール、22 加工液、23 電源、24
絶縁スピンドル 25 ブラッシュ、26 回転ベルト、27 電極、3
0 ホイール 31 ダイヤモンド、32 仮焼結電極
1 electrode, 2 processed material, 3 processing tank, 4 processing liquid, 5
Servo mechanism 6 power supply, 8 transistors, 9 transistors,
10 resistance 11 resistance, 12 control circuit, 15 electrode consumption part,
20 processed material 21 rotating wheel, 22 working fluid, 23 power supply, 24
Insulation spindle 25 Brush, 26 rotating belt, 27 electrodes, 3
0 Wheel 31 Diamond, 32 Temporary sintered electrode

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 591135853 毛利 尚武 東京都中野区中央一丁目50番3−101号 (74)上記1名の代理人 100102439 弁理士 宮田 金雄 (72)発明者 斎藤 長男 愛知県春日井市岩成台九丁目12番地の12 (72)発明者 毛利 尚武 名古屋市天白区八事石坂661ー51 (72)発明者 古谷 克司 名古屋市天白区天白町島田黒石3837ー3 ー23 (72)発明者 石黒 輝雄 愛知県春日井市気噴町671 (72)発明者 大泉 敏郎 名古屋市東区矢田南五丁目1番14号 三 菱電機株式会社 名古屋製作所内 (72)発明者 真柄 卓司 名古屋市東区矢田南五丁目1番14号 三 菱電機株式会社 名古屋製作所内 (56)参考文献 特開 昭62−52182(JP,A) 特開 昭64−5731(JP,A) 特開 昭63−170263(JP,A) 特開 平5−148615(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23H 1/04 B23H 9/00 C25D 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (73) Patent holder 591135853 Naotake Mori 1-50-3, Chuo 1-chome, Nakano-ku, Tokyo (74) One agent above 100102439 Patent attorney Kaneo Miyata (72) Inventor Nagao Saito 12 (72) Inventor 9-12 Iwanaridai, Kasugai City, Aichi Prefecture (72) Inventor Naotake Mori 661-51 (72) Yakashi Ishizaka, Tenshiro-ku, Nagoya City Katsushi Furuya 3837-3-23 Shimada Kuroishi, Tenshiro-cho, Tenshiro-ku, Nagoya City (72) ) Inventor Teruo Ishiguro 671 Kefu Town, Kasugai City, Aichi Prefecture (72) Inventor Toshiro Oizumi 5-14 Yada Minami 5-chome, Higashi-ku, Nagoya-shi Sanryo Electric Co., Ltd.Nagoya Works (72) Inventor Maji Takushi, Yada-minami, Higashi-ku, Nagoya-shi 5 chome 1-14 Sanryo Electric Co., Ltd. Nagoya Works (56) Reference JP 62-52182 (JP, A) JP 64-5731 (JP, A) JP 63-1702 63 (JP, A) JP-A-5-148615 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B23H 1/04 B23H 9/00 C25D 11/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 WC、TiC、TaC、ZrC、Si
C、VCなどの炭化物、TiB2、ZrB2 などの硼化
物、TiN、ZrN などの窒化物の単体もしくは2種
以上の混合物を圧縮成形し、焼結温度以下の温度で仮焼
結して構成したことを特徴とする放電加工用電極。
1. WC, TiC, TaC, ZrC, Si
C, VC, etc. Carbides, TiB2, ZrB2, etc. boride, TiN, ZrN, etc. nitrides alone or a mixture of two or more kinds are compression-molded and pre-sintered at a temperature below the sintering temperature. An electric discharge machining electrode characterized by.
【請求項2】 Ti、V、Taなどの炭化の容易な材料
の圧粉体を焼結温度以下の温度で仮焼結して構成したこ
とを特徴とする放電加工用電極。
2. An electrode for electric discharge machining, comprising a green compact made of a material such as Ti, V, or Ta which is easily carbonized, pre-sintered at a temperature equal to or lower than a sintering temperature.
【請求項3】 WC、TiC、TaC、ZrC、Si
C、VCなどの炭化物、TiB2、ZrB2などの硼化
物、TiN、ZrNなどの窒化物の単体もしくは2種以
上の混合物を圧縮成形し、その後、焼結温度以下の温度
で仮焼結し、これを放電加工の消耗電極として被処理材
に放電処理を行なうことにより、上記被処理材表面に被
覆層を形成することを特徴とする放電による金属表面処
理方法。
3. WC, TiC, TaC, ZrC, Si
C, VC, etc. carbides, TiB2, ZrB2, etc. boride, TiN, ZrN, etc. nitrides alone or a mixture of two or more of them are compression-molded, and then pre-sintered at a temperature below the sintering temperature. Is used as a consumable electrode for electric discharge machining, and a coating layer is formed on the surface of the material to be treated by performing an electric discharge treatment on the material to be treated.
【請求項4】 Ti、V、Taなどの炭化の容易な材料
の圧粉体を焼結温度以下の温度で仮焼結し、その後、こ
れを放電加工の消耗電極として放電による熱分解により
炭素を生ずる加工液中に於いて被処理材に放電処理を行
なうことを特徴とする放電による金属表面処理方法。
4. A powder compact made of a material such as Ti, V, and Ta that is easily carbonized is pre-sintered at a temperature equal to or lower than a sintering temperature, and then is used as a consumable electrode for electric discharge machining to cause carbon decomposition by electric discharge. A method for treating a metal surface by electric discharge, which comprises subjecting a material to be treated to an electric discharge in a working fluid that causes a lump.
【請求項5】 被処理材への第1段階での放電処理に於
いて電極材料が堆積する条件を選び、上記被処理材への
第2段階での放電処理に於いて硬度を上昇する条件に電
極極性および放電電気条件を変更することを特徴とする
請求項3または請求項4記載の放電による金属表面処理
方法。
5. A condition for increasing hardness in the second-stage electric discharge treatment on the material to be treated by selecting a condition for depositing an electrode material in the first-stage electric discharge treatment on the material to be treated. 5. The method of treating a metal surface by electric discharge according to claim 3 or 4, wherein the electrode polarity and the electric discharge condition are changed.
JP08905095A 1995-04-14 1995-04-14 Electrode for electric discharge machining and metal surface treatment method by electric discharge Expired - Lifetime JP3363284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08905095A JP3363284B2 (en) 1995-04-14 1995-04-14 Electrode for electric discharge machining and metal surface treatment method by electric discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08905095A JP3363284B2 (en) 1995-04-14 1995-04-14 Electrode for electric discharge machining and metal surface treatment method by electric discharge

Publications (2)

Publication Number Publication Date
JPH08300227A JPH08300227A (en) 1996-11-19
JP3363284B2 true JP3363284B2 (en) 2003-01-08

Family

ID=13960059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08905095A Expired - Lifetime JP3363284B2 (en) 1995-04-14 1995-04-14 Electrode for electric discharge machining and metal surface treatment method by electric discharge

Country Status (1)

Country Link
JP (1) JP3363284B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044780A1 (en) * 1998-03-04 1999-09-10 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for manufacturing bearing cap
DE19882915T1 (en) 1998-03-16 2001-04-26 Mitsubishi Electric Corp Treatment method by means of electrical discharge and device and electrode for performing the method
JP3227454B2 (en) 1998-05-13 2001-11-12 三菱電機株式会社 Electrode for discharge surface treatment, method for producing the same, and discharge surface treatment method and apparatus
JP2000042839A (en) * 1998-07-31 2000-02-15 Mitsubishi Electric Corp Drawing/extrusion die and surface treatment method for drawing/extrusion die
WO2000006332A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die and surface treating method for die
JP2000042838A (en) * 1998-07-31 2000-02-15 Mitsubishi Electric Corp Press working die and surface treatment method of press working die
WO2000029160A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Linear guide rail and method for treating surface of linear guide rail
CH693666A5 (en) * 1998-11-13 2003-12-15 Mitsubishi Electric Corp Discharge surface treating method comprises generating a pulsating discharge between an object to be surface treated and a discharge electrode containing a material exhibiting solid lubricating action, e.g. molybdenum, in e.g. water
CH693665A5 (en) 1998-11-13 2003-12-15 Mitsubishi Electric Corp Discharge surface treating method comprises generating a pulsating discharge between an object to be surface treated and a discharge electrode containing a corrosion resistant material, e.g. chromium, in a working fluid
WO2000029156A1 (en) 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating method and discharge electrode for discharge surface treatment
WO2000029155A1 (en) * 1998-11-13 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Method for treating surface of die by discharge, method for producing electrode for die discharge surface treatment, and electrode for die discharge surface treatment
JP5547864B2 (en) * 1999-02-24 2014-07-16 三菱電機株式会社 Discharge surface treatment method and apparatus
KR100415753B1 (en) * 1999-03-18 2004-01-24 미쓰비시덴키 가부시키가이샤 Method and apparatus for electrodischarging machining
WO2001023640A1 (en) 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2001023641A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
DE10085159B4 (en) 2000-05-19 2008-09-11 Mitsubishi Denki K.K. Control device for a three-dimensional laser processing machine
JP4137886B2 (en) 2002-07-30 2008-08-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
RU2320775C2 (en) 2002-09-24 2008-03-27 Исикавадзима-Харима Хэви Индастриз Ко., Лтд. Method for depositing of coating onto sliding surface of fire-resistant member, fire-resistant member, and electrode for electric discharge treatment of surface
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
JP4554516B2 (en) 2003-05-29 2010-09-29 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
JP4523546B2 (en) 2003-06-04 2010-08-11 三菱電機株式会社 Discharge surface treatment method and discharge surface treatment apparatus
KR100753274B1 (en) 2003-06-04 2007-08-29 미쓰비시덴키 가부시키가이샤 Electrode for discharge surface treatment, and method for manufacturing
KR100753275B1 (en) 2003-06-05 2007-08-29 미쓰비시덴키 가부시키가이샤 Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
CN100516300C (en) 2003-06-10 2009-07-22 三菱电机株式会社 Electrode for electrical discharge coating and its evaluation method, and method of electrical discharge coating
SG155059A1 (en) 2003-06-11 2009-09-30 Ishikawajima Harima Heavy Ind Repair method for machine component, production method of restored machine component, production method of machine component, gas turbine engine, electric spark machine, repair method for turbine component and production method for restored turbine compo
WO2004111303A1 (en) 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Metal product producing method, metal product, metal component connecting method, and connection structure
RU2319789C2 (en) 2003-06-11 2008-03-20 Мицубиси Денки Кабусики Кайся Method for treating surface with use of electric discharge
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
JP4505235B2 (en) * 2004-02-05 2010-07-21 株式会社Ihi Method for producing fluid ejection structure and method for producing cooling air ejection structure
CA2600080C (en) 2005-03-09 2012-01-03 Ihi Corporation Surface treatment method and repair method
EP2248928A4 (en) 2008-01-30 2012-03-07 Ihi Corp Discharge surface treatment method and coating block for discharge surface treatment
US20140263194A1 (en) * 2013-03-15 2014-09-18 Lincoln Global, Inc. Cored non-arc consumable for joining or overlaying and systems and methods for using cored non-arc consumables

Also Published As

Publication number Publication date
JPH08300227A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
JP3363284B2 (en) Electrode for electric discharge machining and metal surface treatment method by electric discharge
Wong et al. Near-mirror-finish phenomenon in EDM using powder-mixed dielectric
Lin et al. Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM
Kumar et al. Surface modification by electrical discharge machining: A review
Singh et al. Review to EDM by using water and powder-mixed dielectric fluid
Tsai et al. EDM performance of Cr/Cu-based composite electrodes
Beravala et al. Experimental investigations to evaluate the effect of magnetic field on the performance of air and argon gas assisted EDM processes
US5434380A (en) Surface layer forming apparatus using electric discharge machining
CA2528893A1 (en) Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
Lee et al. Some characteristics of electrical discharge machining of conductive ceramics
Pragadish et al. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design
Dewan et al. Powder mixed electric discharge machining–A review
Gugulothu et al. Electric discharge machining: A promising choice for surface modification of metallic implants
Banker et al. Review to performance improvement of die sinking EDM using powder mixed dielectric fluid
Kumar et al. Comparison of material transfer in electrical discharge machining of AISI H13 die steel
Kumar et al. Surface modification during electrical discharge machining process–a review
JP4575924B2 (en) Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
Dutta et al. Hybrid electric discharge machining processes for hard materials: a review
US20080118664A1 (en) Discharge Surface-Treatment Method and Discharge Surface-Treatment Apparatus
Chak Electro chemical discharge machining: process capabilities
Hocheng et al. Electropolishing and electrobrightening of holes using different feeding electrodes
Laxminarayana et al. Study of surface morphology on micro machined surfaces of AISI 316 by Die Sinker EDM
JP4451155B2 (en) EDM method
Nair et al. Advancements in abrasive electrical discharge grinding (AEDG): a review
Setti Electric Discharge Grinding (EDG)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

EXPY Cancellation because of completion of term