JP2011225959A - Method for strengthening surface layer of light metal or alloy thereof - Google Patents

Method for strengthening surface layer of light metal or alloy thereof Download PDF

Info

Publication number
JP2011225959A
JP2011225959A JP2010099449A JP2010099449A JP2011225959A JP 2011225959 A JP2011225959 A JP 2011225959A JP 2010099449 A JP2010099449 A JP 2010099449A JP 2010099449 A JP2010099449 A JP 2010099449A JP 2011225959 A JP2011225959 A JP 2011225959A
Authority
JP
Japan
Prior art keywords
base material
layer
alloy
particles
light metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099449A
Other languages
Japanese (ja)
Inventor
Kenichiro Togoshi
健一郎 戸越
Yoshitaka Watanabe
義孝 渡邊
Isao Kitanaka
功 北中
Masaki Taniguchi
正樹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2010099449A priority Critical patent/JP2011225959A/en
Publication of JP2011225959A publication Critical patent/JP2011225959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To strengthen the surface layer of light metal such as aluminum or magnesium or an alloy thereof so that the strengthening layer is in no danger of peeling off from a base material and a member surface which is homogeneous and has the same quality as the base material can be obtained.SOLUTION: Strengthening particles 6 of WC which are harder and have a higher specific gravity than a base material M of an aluminum alloy and which does not form an alloy with a metal element of the base material M are settled in the molten base material M with gravity to be deposited in the lower part of the molten part, then a floating layer 10 is formed which is made of the molten base material M floated on the upper side of the deposited layer 9 of the strengthening particles 6. The surface of the solidified floating layer 10 is then smoothed. Thus, the deposited layer 9 of the strengthening particles 6 formed in the base material M does not peel off, and a member surface which is homogeneous and has the same quality as the base material M can be obtained by the floating layer 10 of the base material M formed on the surface.

Description

本発明は、軽金属またはその合金の表面層強化方法に関する。   The present invention relates to a method for strengthening a surface layer of a light metal or an alloy thereof.

アルミニウムやマグネシウムの軽金属とその合金は、鉄鋼材料よりも比重が小さいことから、軽量化を要求される自動車用等の部品に多く使用されるようになっている。また、アルミニウムやマグネシウムの軽金属とその合金は熱伝導率も高いので、放熱冷却等のための熱伝導性を必要とする各種機械用等の部品にも使用されている。   Aluminum and magnesium light metals and their alloys have a smaller specific gravity than steel materials, and are therefore widely used in parts for automobiles and the like that require weight reduction. In addition, since light metals such as aluminum and magnesium and their alloys have high thermal conductivity, they are also used in parts for various machines that require thermal conductivity for heat radiation cooling and the like.

しかしながら、これらの軽金属やその合金は、鉄鋼材料に比べて強度や耐摩耗性が劣るので、大きな曲げ荷重や局部面圧等が負荷されると表面層に割れや凹み変形が生じやすい問題や、摩耗に対する耐久寿命が短い問題がある。このような軽金属や合金の表面層を強化する手段としては、母材の表面に、肉盛等によって硬化層を形成する方法が提案されている(例えば、特許文献1〜5参照)。なお、耐摩耗性を高める手段としては、PVD(Physical Vapor Deposition)法、CVD(Chemical Vapor Deposition)法、めっき法、窒化法等によって、表面に硬質皮膜を形成する方法が知られている(例えば、特許文献6参照)。   However, since these light metals and their alloys are inferior in strength and wear resistance compared to steel materials, problems such as cracking and dent deformation are likely to occur in the surface layer when a large bending load or local surface pressure is applied, There is a problem that the durability life against wear is short. As means for strengthening the surface layer of such a light metal or alloy, a method of forming a hardened layer on the surface of the base material by overlaying or the like has been proposed (for example, see Patent Documents 1 to 5). As a means for improving wear resistance, a method of forming a hard film on the surface by a PVD (Physical Vapor Deposition) method, a CVD (Chemical Vapor Deposition) method, a plating method, a nitriding method or the like is known (for example, And Patent Document 6).

特許文献1に記載されたものは、アルミニウム合金材料の表面に、シリコンを含有する肉盛材料を供給しながら、レーザビーム等の高密度エネルギを照射して、硬質の肉盛金属層を形成している。この肉盛材料には、Ni、Cr等の硬質金属、WC、TiC、MoC等の硬質セラミック、Ni−Cr系合金、Co−Cr−W系合金等の硬質合金を混合してもよいとしている。   In Patent Document 1, a hard built-up metal layer is formed by irradiating the surface of an aluminum alloy material with high-density energy such as a laser beam while supplying a build-up material containing silicon. ing. The build-up material may be mixed with hard metals such as Ni and Cr, hard ceramics such as WC, TiC, and MoC, and hard alloys such as Ni—Cr alloy and Co—Cr—W alloy. .

特許文献2、3に記載されたものは、アルミニウムまたはアルミニウム合金材料の表面に、熱源として交流プラズマアークを用い、肉盛材料として、それぞれCuを含有するアルミニウム合金粉末、または金属と微細な硬質セラミックを用いて、Al−Cu合金の硬化肉盛層、または硬質セラミックを分散させた硬化肉盛層を形成している。   Patent Documents 2 and 3 describe that an aluminum plasma powder is used on the surface of aluminum or an aluminum alloy material, an AC plasma arc is used as a heat source, and Cu is contained as a build-up material, or a metal and a fine hard ceramic. Is used to form a hardened layer of Al-Cu alloy or a hardened layer in which hard ceramic is dispersed.

特許文献4に記載されたものは、アルミニウム系材料の表面に、Cu系自溶性合金を肉盛し、その上にCo系、Ni系、Fe系超合金等の耐熱性、耐摩耗性、耐食性に優れた肉盛合金を2層肉盛している。また、特許文献5に記載されたものは、アルミニウムまたはアルミニウム合金材料の表面に、溶融によってFeまたはCrを含有する硬質の合金層を形成するとともに、この合金層の表面にイオン窒化処理を施している。   In Patent Document 4, a Cu-based self-fluxing alloy is built up on the surface of an aluminum-based material, and heat resistance, wear resistance, corrosion resistance such as Co-based, Ni-based, and Fe-based superalloys are further formed thereon. Two layers of overlaying alloys excellent in In addition, what is described in Patent Document 5 forms a hard alloy layer containing Fe or Cr by melting on the surface of aluminum or an aluminum alloy material, and performs ion nitriding treatment on the surface of the alloy layer. Yes.

特開昭63−235087号公報JP 63-235087 A 特開平3−226394号公報JP-A-3-226394 特開平5−309477号公報JP-A-5-309477 特公平5−5585号公報Japanese Patent Publication No. 5-5585 特開平6−81113号公報JP-A-6-81113 特開2000−256822号公報JP 2000-256822 A

特許文献1〜4に記載された、肉盛によって母材の表面に硬質層を形成する表面層強化方法や、特許文献5に記載された、溶融によって母材の表面に硬質層を形成する表面層強化方法は、肉盛材料の合金や、肉盛材料と溶融した母材との合金で硬質層を形成しているので、合金で形成された硬質層と母材との間に境界が形成され、硬質層が剥離しやすい問題がある。   The surface layer reinforcing method described in Patent Documents 1 to 4 for forming a hard layer on the surface of the base material by overlaying, or the surface described in Patent Document 5 for forming the hard layer on the surface of the base material by melting. In the layer strengthening method, a hard layer is formed by an alloy of the overlaying material or an alloy of the overlaying material and the molten base material, so that a boundary is formed between the hard layer and the base material formed of the alloy. There is a problem that the hard layer is easily peeled off.

また、表面が母材と異質な合金の硬質層で覆われるので、軽金属やその合金の母材が有する優れた熱伝導性等の特性が損なわれる問題もある。さらに、硬質層に硬質セラミック等を分散させる場合は、表面が不均質なものとなるので、耐摩耗性や耐食性等を高めるための皮膜を形成する表面処理を行う際に、均一な表面処理ができない問題もある。   Further, since the surface is covered with a hard layer of an alloy different from the base material, there is a problem that characteristics such as excellent thermal conductivity of the light metal or the base material of the alloy are impaired. Furthermore, when hard ceramic or the like is dispersed in the hard layer, the surface becomes inhomogeneous, and therefore, when performing a surface treatment for forming a film for improving wear resistance, corrosion resistance, etc., a uniform surface treatment is performed. Some problems are not possible.

そこで、本発明の課題は、強化層が母材から剥離する心配がなく、かつ、均質で母材と同質の部品表面が得られるように、アルミニウムやマグネシウムの軽金属とその合金の表面層を強化することである。   Therefore, the object of the present invention is to reinforce the surface layer of light metal such as aluminum or magnesium and its alloy so that the surface of the part can be obtained in a homogeneous and homogeneous material without worrying that the reinforcing layer will peel off from the base material. It is to be.

上記の課題を解決するために、本発明に係る軽金属またはその合金の表面層強化方法は、アルミニウムもしくはマグネシウムの軽金属またはその合金で形成された母材の表面を、熱源によって所定の深さまで溶融して、この母材の表面の溶融部に、母材よりも硬質で比重が大きく、母材に溶融しない金属粒子、セラミック粒子およびサーメット粒子のいずれか1種または2種以上からなる強化粒子を供給し、この供給した強化粒子を重力によって溶融した母材中に沈降させて、前記溶融部の下部に堆積させ、この強化粒子を堆積させた堆積層の上側に、前記溶融した母材の軽金属またはその合金を浮揚させた浮揚層を形成して、この母材の浮揚層を凝固させたのち、その表面を平滑化する方法を採用した。   In order to solve the above problems, the surface layer strengthening method of a light metal or an alloy thereof according to the present invention melts the surface of a base material formed of a light metal of aluminum or magnesium or an alloy thereof to a predetermined depth by a heat source. Then, reinforcing particles made of one or more of metal particles, ceramic particles, and cermet particles that are harder and have a higher specific gravity than the base material and do not melt in the base material are supplied to the melting portion of the surface of the base material. Then, the supplied reinforcing particles are allowed to settle in the base material melted by gravity, and are deposited on the lower part of the melting portion, and above the deposited layer on which the reinforcing particles are deposited, the light metal of the molten base material or A method was adopted in which a levitation layer formed by levitation of the alloy was formed, the levitation layer of the base material was solidified, and then the surface was smoothed.

すなわち、母材よりも硬質で比重が大きく、母材に溶融しない金属粒子、セラミック粒子およびサーメット粒子のいずれか1種または2種以上からなる強化粒子を、重力によって溶融した母材中に沈降させて溶融部の下部に堆積させ、この強化粒子の堆積層の上側に、溶融した母材を浮揚させた浮揚層を形成して、凝固させた浮揚層の表面を平滑化することにより、堆積層の強化粒子の隙間で母材と一体に連なり、母材と境界を形成しない浮揚層によって、強化層としての堆積層が剥離しないようにするとともに、均質で母材と同質の部品表面が得られるようにした。また、堆積層の上側に浮揚した浮揚層は、堆積層の隙間で母材と一体に連なるので、母材の優れた熱伝導性を確保することもできる。   That is, reinforced particles composed of one or more of metal particles, ceramic particles and cermet particles which are harder and have a higher specific gravity than the base material and do not melt into the base material are allowed to settle in the base material melted by gravity. The deposited layer is deposited on the lower part of the molten part by forming a floated layer on which the molten base material is levitated above the deposited layer of the reinforcing particles and smoothing the surface of the solidified floated layer. The levitating layer that is integrated with the base material in the gap between the reinforcing particles and does not form a boundary with the base material prevents the buildup layer as a reinforcing layer from peeling off, and provides a homogeneous and homogeneous surface of the part. I did it. In addition, since the levitating layer levitated above the deposited layer is continuous with the base material through the gap between the deposited layers, it is possible to ensure excellent thermal conductivity of the base material.

前記母材よりも硬質で比重が大きく、母材に溶融しない金属粒子としては、W、Ta、Nb、Re等を挙げることができ、セラミック粒子としては、TiC、TaC、NbC、ZrC、MoC、WC、WC、Cr等の炭化物、TiB、ZrB、HfB、VB、TaB、NbB、CrB、MoB、WB等の硼化物、ZrO、TiO、TaO等の酸化物を挙げることができる。また、サーメット粒子としては、これらの各種セラミック粒子をNi、Co、Cr、W、Ta、Re等の金属で結合したものを挙げることができる。さらに、これらのセラミック粒子やサーメットの粒子の表面の一部または全部に、Cr、Ni、Ni−P等をめっきしたものも強化粒子として使用することができる。 Examples of the metal particles that are harder and larger in specific gravity than the base material and do not melt into the base material include W, Ta, Nb, Re, and the like, and the ceramic particles include TiC, TaC, NbC, ZrC, MoC, Carbides such as WC, W 2 C, Cr 3 C 2 , borides such as TiB 2 , ZrB 2 , HfB 2 , VB 2 , TaB 2 , NbB 2 , CrB 2 , MoB 2 , WB, ZrO 2 , TiO 2 , An oxide such as TaO 2 can be used. Moreover, as cermet particle | grains, what combined these various ceramic particles with metals, such as Ni, Co, Cr, W, Ta, Re, can be mentioned. Furthermore, those in which Cr, Ni, Ni-P or the like is plated on part or all of the surface of these ceramic particles or cermet particles can also be used as reinforcing particles.

また、前記浮揚層の表面を平滑化する手段としては、旋盤、フライス盤等による研削加工や放電加工を挙げることができ、さらに、バフ研磨、ベルト研磨、ラップ研磨、化学研磨、電解研磨等によって研磨することもできる。   Examples of means for smoothing the surface of the floating layer include grinding and electric discharge machining using a lathe, a milling machine, etc., and polishing by buffing, belt polishing, lapping, chemical polishing, electrolytic polishing, and the like. You can also

前記所定の深さまで溶融する溶融部の単位面積当たりの体積を、この単位面積当たりの溶融部に供給される前記強化粒子の総体積の1/4以上、好ましくは1/2以上とすることにより、強化粒子の堆積層の上側に、母材の浮揚層を確実に形成することができる。溶融した母材は堆積層の強化粒子の隙間も充填するので、浮揚層の厚みは堆積層の厚みより薄くなり、溶融部の単位面積当たりの体積が供給される強化粒子の総体積の1/4未満では、溶融した母材が強化粒子の隙間に充填されるのみで、浮揚層が形成されない恐れがあるからである。   By setting the volume per unit area of the melted portion that melts to the predetermined depth to be 1/4 or more, preferably 1/2 or more of the total volume of the reinforcing particles supplied to the melted portion per unit area. The floating layer of the base material can be reliably formed on the upper side of the reinforcing particle deposition layer. Since the molten base material also fills the gaps between the reinforcing particles in the deposited layer, the thickness of the floating layer is smaller than the thickness of the deposited layer, and the volume per unit area of the molten part is 1 / of the total volume of the reinforcing particles supplied. If it is less than 4, the molten base material is only filled in the gaps between the reinforcing particles, and the floating layer may not be formed.

前記強化粒子の粒径を10〜300μmとすることにより、強化粒子を溶融部へ安定して供給することができ、好ましくは40〜150μmとすることにより、より均一に堆積層中に分散させることができる。   By making the particle size of the reinforcing particles 10 to 300 μm, the reinforcing particles can be stably supplied to the melting part, and preferably 40 to 150 μm so that the particles are more uniformly dispersed in the deposited layer. Can do.

前記強化粒子の堆積層の厚みを、0.3mm以上、好ましくは0.5mm以上とすることにより、表面層を十分な深さまで強化することができる。   By setting the thickness of the deposition layer of the reinforcing particles to 0.3 mm or more, preferably 0.5 mm or more, the surface layer can be strengthened to a sufficient depth.

前記母材の表面を溶融する熱源を、プラズマ、レーザビームまたは電子ビームのいずれかの高密度エネルギを前記母材の表面に照射するものとすることにより、溶融部を所定の単位面積当たりの体積で精度よく溶融することができる。   The heat source that melts the surface of the base material is irradiated with high-density energy of any one of plasma, laser beam, and electron beam on the surface of the base material, so that the melted portion has a predetermined volume per unit area. Can be melted accurately.

前記平滑化した母材の浮揚層の表面に、溶射法、溶接法、めっき法、PVD法、CVD法、DLC(Diamond Like Carbon)法、窒化法、陽極酸化法、テフロンライニング法または化学緻密化法のいずれか1種または2種以上の表面処理によって硬質皮膜を形成することにより、耐摩耗性、耐焼付き性、耐食性等の特性を高めることができる。これらの硬質皮膜を形成する際には、事前にサンドブラストやショットブラスト等によって、平滑化した浮揚層の表面の粗度を調整してもよい。   Thermal spraying, welding, plating, PVD, CVD, DLC (Diamond Like Carbon) method, nitriding method, anodizing method, Teflon lining method, or chemical densification By forming a hard film by any one or two or more surface treatments of the method, it is possible to enhance characteristics such as wear resistance, seizure resistance, and corrosion resistance. When forming these hard coatings, the roughness of the surface of the smoothed floating layer may be adjusted in advance by sandblasting, shot blasting, or the like.

前記溶射法としては、大気プラズマ溶射法、減圧プラズマ溶射法、水安定化プラズマ溶射法、加圧プラズマ溶射法、レーザ溶射法、レーザプラズマ溶射法、コールドスプレー、高速フレーム溶射法、粉末式フレーム溶射法、溶線式フレーム溶射法、溶棒式フレーム溶射法、アーク溶射法等を挙げることができる。なお、化学緻密化法は、酸化クロムによって化学的に緻密化されたSiO−CrOからなる組成を有する皮膜を形成する方法である。 Examples of the thermal spraying method include atmospheric plasma spraying method, low pressure plasma spraying method, water stabilization plasma spraying method, pressurized plasma spraying method, laser spraying method, laser plasma spraying method, cold spray, high-speed flame spraying method, powder flame spraying method. Method, hot wire type flame spraying method, hot rod type flame spraying method, arc spraying method and the like. The chemical densification method is a method of forming a film having a composition made of SiO 2 —CrO 3 chemically densified with chromium oxide.

本発明に係る軽金属またはその合金の表面層強化方法は、母材よりも硬質で比重が大きく、母材に溶融しない金属粒子、セラミック粒子およびサーメット粒子のいずれか1種または2種以上からなる強化粒子を、重力によって溶融した母材中に沈降させて溶融部の下部に堆積させ、この強化粒子の堆積層の上側に、溶融した母材を浮揚させた浮揚層を形成して、凝固させた浮揚層の表面を平滑化するようにしたので、堆積層の強化粒子の隙間で母材と一体に連なり、母材と境界を形成しない浮揚層によって、強化層としての堆積層の剥離を防止できるとともに、均質で母材と同質の部品表面を得ることができ、耐摩耗性や耐食性等を高めるための皮膜を形成する表面処理を均一に行うことができる。また、堆積層の上側に浮揚した浮揚層は、堆積層の隙間で母材と一体に連なるので、母材の優れた熱伝導性を確保することもできる。   The method for strengthening a surface layer of a light metal or an alloy thereof according to the present invention is a strengthening composed of any one or more of metal particles, ceramic particles and cermet particles which are harder and have a higher specific gravity than a base material and do not melt in the base material. The particles were settled in the base material melted by gravity and deposited on the lower part of the melted portion, and a floating layer was formed on the upper side of the layer of the strengthened particles to float the melted base material and solidified. Since the surface of the buoyant layer is smoothed, the buoyant layer that is integrated with the base material in the gap between the reinforcing particles of the deposited layer and does not form a boundary with the base material can prevent the peeling of the deposited layer as the reinforcing layer. At the same time, it is possible to obtain a surface of a part that is homogeneous and has the same quality as the base material, and can uniformly perform a surface treatment for forming a film for improving wear resistance, corrosion resistance, and the like. In addition, since the levitating layer levitated above the deposited layer is continuous with the base material through the gap between the deposited layers, it is possible to ensure excellent thermal conductivity of the base material.

本発明に係る表面層強化方法に採用したPTA法を示す概念図The conceptual diagram which shows PTA method employ | adopted for the surface layer reinforcement | strengthening method which concerns on this invention (a)は図1のPTA法で強化した母材の表面層を示す電子顕微鏡写真、(b)は(a)の堆積層の一部を拡大した電子顕微鏡写真(A) is an electron micrograph showing the surface layer of the base material reinforced by the PTA method of FIG. 1, and (b) is an electron micrograph in which a part of the deposited layer of (a) is enlarged. (a)は図2(a)の浮揚層の表面を平滑化した状態を示す電子顕微鏡写真、(b)は(a)の平滑化した浮揚層の表面に硬質皮膜を形成した状態を示す電子顕微鏡写真(A) is an electron micrograph showing a state in which the surface of the floating layer in FIG. 2 (a) is smoothed, and (b) is an electron in which a hard film is formed on the surface of the smoothed floating layer in (a). Photomicrograph 実施例の摩耗試験方法を示す概念図Conceptual diagram showing the wear test method of the example

以下に、本発明の実施形態を説明する。図1は、本発明に係る軽金属の合金としてのアルミニウム合金(A7075)の母材Mの表面層強化方法に採用したPTA(Plasma Transferred Arc)法を示す。このPTA法は、アルゴンガス1が流れる水冷ノズル2の中にタングステン電極3を配置し、タングステン電極3と水冷ノズル2間にアークを飛ばしてアルゴンガス1をプラズマ化させ、このプラズマ化したプラズマアーク4を高密度エネルギとして母材Mの表面に照射し、プラズマアーク4で溶融される母材Mの溶融部5に、母材Mよりも硬質で比重の大きい強化粒子6をキャリアガス7で供給するものであり、プラズマアーク4の周囲は、シールドガス8によってシールドされるようになっている。   Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a PTA (Plasma Transferred Arc) method employed in a method for strengthening a surface layer of a base material M of an aluminum alloy (A7075) as a light metal alloy according to the present invention. In this PTA method, a tungsten electrode 3 is arranged in a water-cooled nozzle 2 through which an argon gas 1 flows, and an arc is blown between the tungsten electrode 3 and the water-cooled nozzle 2 to turn the argon gas 1 into a plasma. 4 is irradiated onto the surface of the base material M as high-density energy, and the reinforcing particles 6 that are harder than the base material M and have a higher specific gravity are supplied by the carrier gas 7 to the melting portion 5 of the base material M that is melted by the plasma arc 4. The periphery of the plasma arc 4 is shielded by the shielding gas 8.

この実施形態では、図1に示したPTA法によって、前記強化粒子6を粒径が40〜150μmのWC(比重:15.0〜16.0)のセラミック粒子として、A7075(比重:2.8)の母材Mの表面層を強化した。母材Mの溶融部5の単位面積当たりの体積は、この単位面積当たりに供給される強化粒子6の総体積の体積と略等しくした。さらに、後述する堆積層9の上側に形成された母材Mの表面の凝固した浮揚層10を、研削加工によって平滑化した。   In this embodiment, the reinforcing particles 6 are formed as ceramic particles of WC (specific gravity: 15.0 to 16.0) having a particle size of 40 to 150 μm by the PTA method shown in FIG. 1, and A7075 (specific gravity: 2.8). The surface layer of the base material M) was strengthened. The volume per unit area of the melting part 5 of the base material M was made substantially equal to the volume of the total volume of the reinforcing particles 6 supplied per unit area. Furthermore, the solidified floating layer 10 on the surface of the base material M formed on the upper side of the deposition layer 9 described later was smoothed by grinding.

図2(a)は、前記PTA法によって強化した状態の母材Mの表面層の断面を示す電子顕微鏡写真である。この写真から分かるように、母材M中には、比重が大きい強化粒子6が重力によって沈降した堆積層9が形成され、その上側に浮揚した母材Mによって浮揚層10が形成されている。強化粒子6の堆積層9の厚みは約1.5mm、浮揚層10の厚みは約1mmと、堆積層9の厚みよりも薄くなっている。これは、単位面積当たりの溶融部5の体積と強化粒子6の総体積が略等しいものの、溶融した母材Mの一部が、堆積した強化粒子6間の隙間にも充填されるからである。なお、浮揚層10の表面には、強化粒子6がわずかに存在するが、これは、浮揚層10が表面から凝固を開始するため、表面の凝固開始後に供給された強化粒子6が沈降せずに残ったものである。   FIG. 2A is an electron micrograph showing a cross section of the surface layer of the base material M in a state strengthened by the PTA method. As can be seen from this photograph, in the base material M, a deposition layer 9 in which reinforcing particles 6 having a large specific gravity are settled by gravity is formed, and a floating layer 10 is formed by the base material M levitated above. The thickness of the deposition layer 9 of the reinforcing particles 6 is about 1.5 mm, and the thickness of the floating layer 10 is about 1 mm, which is thinner than the thickness of the deposition layer 9. This is because although the volume of the melted part 5 per unit area and the total volume of the reinforcing particles 6 are substantially equal, a part of the molten base material M is also filled into the gaps between the deposited reinforcing particles 6. . In addition, although the reinforcing particles 6 are slightly present on the surface of the floating layer 10, the reinforcing particles 6 supplied after the start of solidification of the surface do not settle because the floating layer 10 starts to solidify from the surface. Is what remains.

図2(b)は、図2(a)の堆積層9の一部を拡大した電子顕微鏡写真である。前記堆積層9の強化粒子6間の隙間には溶融した母材Mが充填され、この堆積層9の隙間に充填された母材Mによって、浮揚層10の母材Mは堆積層9の下側の母材Mと一体に連なっている。したがって、母材Mが充填された強化粒子6の堆積層9が剥離することはなく、A7075の母材Mの優れた熱伝導性も確保することができる。   FIG. 2B is an electron micrograph in which a part of the deposited layer 9 in FIG. 2A is enlarged. The gap between the reinforcing particles 6 of the deposition layer 9 is filled with the molten base material M, and the base material M filled in the gap of the deposition layer 9 causes the base material M of the levitation layer 10 to be below the deposition layer 9. It is continuous with the base material M on the side. Therefore, the deposited layer 9 of the reinforcing particles 6 filled with the base material M is not peeled off, and the excellent thermal conductivity of the base material M of A7075 can be ensured.

図3(a)は、前記浮揚層10を平滑化した状態を示す。この実施形態では、PTA法で形成された浮揚層10を、略1/3の厚みとするように研削で減厚している。この研削による平滑化によって、前記浮揚層10の表面に残っていた強化粒子6も除去されている。この浮揚層10の減厚量は、後の表面処理の種類や部品の用途によって適宜選定することができる。図3(b)は、平滑化した浮揚層10の表面に、さらにピアノ線を溶射材料とした溶射法による表面処理を施し、硬質皮膜11を形成した状態を示す。   FIG. 3A shows a state in which the floating layer 10 is smoothed. In this embodiment, the levitation layer 10 formed by the PTA method is thinned by grinding so as to have a thickness of approximately 1/3. By this smoothing by grinding, the reinforcing particles 6 remaining on the surface of the floating layer 10 are also removed. The amount of thickness reduction of the buoyant layer 10 can be selected as appropriate depending on the type of subsequent surface treatment and the use of the part. FIG. 3B shows a state in which the surface of the smoothed floating layer 10 is further subjected to a surface treatment by a thermal spraying method using a piano wire as a thermal spray material to form a hard coating 11.

実施例として、図3(a)に示したように、強化粒子をWCのセラミック粒子としてPTA法で表面層を強化し、表面の浮揚層を平滑化した平板サンプル(実施例1)と、図3(b)に示したように、さらに、浮揚層を平滑化した表面にピアノ線を溶射材料として溶射法で硬質皮膜を形成した平板サンプル(実施例2)を用意した。また、比較例として、何も処理を施さないA7075のままの平板サンプル(比較例1)と、その表面にピアノ線を溶射材料として溶射法で硬質皮膜を形成した平板サンプル(比較例2)も用意した。これらの実施例と比較例の各平板サンプルについて、表面層強度試験、摩耗試験および熱伝導性試験を行った。   As an example, as shown in FIG. 3A, a flat plate sample (Example 1) in which the surface layer is reinforced by the PTA method using the reinforcing particles as WC ceramic particles and the surface floating layer is smoothed, As shown in 3 (b), a flat plate sample (Example 2) was prepared in which a hard film was formed by a thermal spraying method using piano wire as a thermal spray material on the surface where the floating layer was smoothed. Moreover, as a comparative example, there is also a flat plate sample (Comparative Example 1) that is not treated with A7075, and a flat plate sample (Comparative Example 2) in which a hard coating is formed on the surface by a thermal spraying method using a piano wire as a thermal spraying material. Prepared. A surface layer strength test, a wear test, and a thermal conductivity test were performed on the flat plate samples of these examples and comparative examples.

前記表面層強度試験は、ブリネル硬さ試験法(JIS Z2243)に準じた方法で行い、直径10mmの超硬合金球圧子を1000kgfの試験荷重で平板サンプルの表面に押圧して、試験荷重(kgf)を圧痕の表面積(mm)で割ったブリネル硬さで評価した。表1に、表面強度試験の結果を示す。この試験結果より、PTA法で表面層を強化した実施例1は、何も処理を施さない比較例1よりも、表面層を強化するとともに硬質皮膜を形成した実施例2は、硬質皮膜のみを形成した比較例2よりも、それぞれ大幅にブリネル硬さの値が大きくなっており、本発明に係る表面層強化方法が著しい表面層強化効果を有することが分かる。 The surface layer strength test is performed by a method according to the Brinell hardness test method (JIS Z2243). A cemented carbide ball indenter having a diameter of 10 mm is pressed against the surface of a flat plate sample with a test load of 1000 kgf, and the test load (kgf ) By Brinell hardness divided by the surface area (mm 2 ) of the indentation. Table 1 shows the results of the surface strength test. From this test result, Example 1 in which the surface layer was reinforced by the PTA method is stronger than that in Comparative Example 1 in which no treatment is performed. The value of Brinell hardness is significantly larger than that of Comparative Example 2 formed, and it can be seen that the surface layer strengthening method according to the present invention has a remarkable surface layer strengthening effect.

前記摩耗試験は、スガ式摩耗試験機を使用し、JIS H8615に準拠した摩耗試験を実施した。この摩耗試験は、図4に示すように、取り付け台21に押さえ板22で固定した平板サンプル23の表面に、研磨紙24を外周に装着した摩耗輪25を所定の押し付け荷重Pで押し付けて、取り付け台21と平板サンプル23を所定のストロークSで往復運動させ、平板サンプル23の1往復毎に摩耗輪25を0.9°ずつ回転して研磨紙24を新しい研磨面で平板サンプル23に当接するものである。研磨紙24にはJIS R6252に規定されたCC320を使用し、押し付け荷重Pは3kgf、ストロークSは30mmとした。各往復(Double Stroke)毎に平板サンプル23の重量変化を電子天秤で測定し、この重量変化から算出される平板サンプル23の摩耗量が1mgとなるのに要した往復回数(DS/mg)で耐摩耗性を評価した。   The wear test was conducted using a Suga type wear tester and a wear test in accordance with JIS H8615. As shown in FIG. 4, the wear test is performed by pressing a wear wheel 25 with abrasive paper 24 on the outer periphery with a predetermined pressing load P against the surface of a flat plate sample 23 fixed to a mounting base 21 with a press plate 22. The mounting base 21 and the flat plate sample 23 are reciprocated at a predetermined stroke S, and the wear ring 25 is rotated by 0.9 ° for each reciprocation of the flat plate sample 23 so that the abrasive paper 24 is brought into contact with the flat sample 23 with a new polishing surface. It touches. As the polishing paper 24, CC320 defined in JIS R6252 was used, the pressing load P was 3 kgf, and the stroke S was 30 mm. The weight change of the flat sample 23 is measured with an electronic balance every double stroke, and the number of reciprocations (DS / mg) required for the wear amount of the flat sample 23 calculated from this weight change to be 1 mg. Abrasion resistance was evaluated.

表1に、前記摩耗試験の結果を併せて示す。摩耗試験は、表面層を強化するとともに硬質皮膜を形成した実施例2と、何も処理を施さない比較例1の平板サンプルについて行った。比較例1は、1mg摩耗するまでの往復回数が8DS/mgと少なく、耐摩耗性が劣っている。これに対して、実施例2は、1mg摩耗するまでの往復回数が23DS/mgと大幅に増加し、優れた耐摩耗性を有している。この試験結果より、平滑化した浮揚層の表面に、さらに硬質皮膜を形成することにより、耐摩耗性も向上できることが分かる。   Table 1 also shows the results of the wear test. The abrasion test was performed on the flat plate sample of Example 2 in which the surface layer was reinforced and a hard film was formed, and Comparative Example 1 in which no treatment was performed. In Comparative Example 1, the number of reciprocations until wear of 1 mg is as small as 8 DS / mg, and the wear resistance is inferior. On the other hand, in Example 2, the number of reciprocations until 1 mg was worn significantly increased to 23 DS / mg, and it had excellent wear resistance. From this test result, it is understood that the wear resistance can also be improved by forming a hard film on the smoothed floating layer surface.

前記熱伝導性試験は、直径10mm、厚さ2mmの円盤状平板サンプルを用い、レーザフラッシュ法により、室温における表裏面間の熱伝導率を測定した。表1に、熱伝導性試験の結果を併せて示す。熱伝導性試験は、表面層を強化した実施例1と、何も処理を施さない比較例1の平板サンプルについて行った。比較例1の熱伝導率が130W/(m・K)であるのに対して、実施例1の熱伝導率は100W/(m・K)であり、WCの強化粒子の堆積層を形成したことによる熱伝導率の低下は比較的少ないことが分かる。これは、浮揚層の母材Mが堆積層の隙間で下側の母材Mと一体に連なるためと考えられる。   In the thermal conductivity test, a disk-shaped flat sample having a diameter of 10 mm and a thickness of 2 mm was used, and the thermal conductivity between the front and back surfaces at room temperature was measured by a laser flash method. Table 1 also shows the results of the thermal conductivity test. The thermal conductivity test was performed on the flat plate sample of Example 1 in which the surface layer was reinforced and Comparative Example 1 in which no treatment was performed. The thermal conductivity of Comparative Example 1 is 130 W / (m · K), whereas the thermal conductivity of Example 1 is 100 W / (m · K), and a deposited layer of WC reinforcing particles was formed. It can be seen that the decrease in thermal conductivity due to this is relatively small. This is presumably because the base material M of the levitation layer is integrally connected to the lower base material M in the gap between the deposited layers.

上述した実施形態では、母材をアルミニウム合金とし、PTA法によるプラズマアークを熱源として母材を溶融したが、母材はアルミニウム、マグネシウム、チタン、マグネシウム合金またはチタン合金とすることもでき、母材を溶融する熱源は、レーザビーム、電子ビーム等の他の高密度エネルギとすることもできる。   In the above-described embodiment, the base material is an aluminum alloy, and the base material is melted by using a plasma arc by the PTA method as a heat source. However, the base material may be aluminum, magnesium, titanium, a magnesium alloy, or a titanium alloy. The heat source for melting can be other high-density energy such as a laser beam or an electron beam.

また、上述した実施形態では、強化粒子をWCのセラミック粒子としたが、強化粒子は母材よりも硬質で比重が大きく、母材の金属元素と合金を形成しないものであればよく、他のセラミック粒子、金属粒子、サーメット粒子とすることもでき、これらの粒子を2種以上混合したものとすることもできる。   In the above-described embodiment, the reinforcing particles are WC ceramic particles. However, the reinforcing particles may be any particles as long as they are harder and have a higher specific gravity than the base material and do not form an alloy with the metal element of the base material. Ceramic particles, metal particles, and cermet particles may be used, and two or more of these particles may be mixed.

M 母材
1 アルゴンガス
2 水冷ノズル
3 タングステン電極
4 プラズマアーク
5 溶融部
6 強化粒子
7 キャリアガス
8 シールドガス
9 堆積層
10 浮揚層
11 硬質皮膜
21 取り付け台
22 押さえ板
23 平板サンプル
24 研磨紙
25 摩耗輪
M Base material 1 Argon gas 2 Water-cooled nozzle 3 Tungsten electrode 4 Plasma arc 5 Melting part 6 Reinforced particle 7 Carrier gas 8 Shielding gas 9 Deposited layer 10 Floating layer 11 Hard coating 21 Mounting base 22 Press plate 23 Flat plate sample 24 Polishing paper 25 Wear ring

Claims (6)

アルミニウムもしくはマグネシウムの軽金属またはその合金で形成された母材の表面を、熱源によって所定の深さまで溶融して、この母材の表面の溶融部に、母材よりも硬質で比重が大きく、母材に溶融しない金属粒子、セラミック粒子およびサーメット粒子のいずれか1種または2種以上からなる強化粒子を供給し、この供給した強化粒子を重力によって溶融した母材中に沈降させて、前記溶融部の下部に堆積させ、この強化粒子を堆積させた堆積層の上側に、前記溶融した母材の軽金属またはその合金を浮揚させた浮揚層を形成して、この母材の浮揚層を凝固させたのち、その表面を平滑化するようにした軽金属またはその合金の表面層強化方法。   The surface of the base material formed of a light metal of aluminum or magnesium or an alloy thereof is melted to a predetermined depth by a heat source, and the base metal is harder and has a higher specific gravity than the base material in the molten portion of the surface of the base material. The reinforcing particles made of any one or more of metal particles, ceramic particles and cermet particles which are not melted are supplied, and the supplied strengthened particles are settled in a base material melted by gravity, After forming the levitation layer on which the molten light metal or its alloy is levitated on the upper side of the deposition layer on which the reinforcing particles are deposited, the levitation layer of the base material is solidified. A method for strengthening a surface layer of a light metal or an alloy thereof that smoothes the surface. 前記所定の深さまで溶融する溶融部の単位面積当たりの体積を、この単位面積当たりの溶融部に供給される前記強化粒子の総体積の1/4以上とした請求項1に記載の軽金属またはその合金の表面層強化方法。   2. The light metal according to claim 1, wherein the volume per unit area of the melted portion that melts to the predetermined depth is 1/4 or more of the total volume of the reinforcing particles supplied to the melted portion per unit area. Alloy surface layer strengthening method. 前記強化粒子の粒径を10〜300μmとした請求項1または2に記載の軽金属またはその合金の表面層強化方法。   The method for reinforcing a surface layer of a light metal or an alloy thereof according to claim 1 or 2, wherein the particle size of the reinforcing particles is 10 to 300 µm. 前記強化粒子の堆積層の厚みを0.3mm以上とした請求項1乃至3のいずれかに記載の軽金属またはその合金の表面層強化方法。   The method for strengthening a surface layer of a light metal or an alloy thereof according to any one of claims 1 to 3, wherein the thickness of the deposited layer of the reinforcing particles is 0.3 mm or more. 前記母材の表面を溶融する熱源を、プラズマ、レーザビームまたは電子ビームのいずれかの高密度エネルギを前記母材の表面に照射するものとした請求項1乃至4のいずれかに記載の軽金属またはその合金の表面層強化方法。   The light metal according to any one of claims 1 to 4, wherein a heat source for melting the surface of the base material is irradiated with high-density energy of any one of plasma, laser beam, and electron beam on the surface of the base material. A method for strengthening the surface layer of the alloy. 前記平滑化した母材の浮揚層の表面に、溶射法、溶接法、めっき法、PVD法、CVD法、DLC法、窒化法、陽極酸化法、テフロンライニング法または化学緻密化法のいずれか1種または2種以上の表面処理によって硬質皮膜を形成した請求項1乃至5のいずれかに記載の軽金属またはその合金の表面層強化方法。   Any one of a spraying method, a welding method, a plating method, a PVD method, a CVD method, a DLC method, a nitriding method, an anodizing method, a Teflon lining method, or a chemical densification method is applied to the surface of the smoothed base material floating layer. The method for reinforcing a surface layer of a light metal or an alloy thereof according to any one of claims 1 to 5, wherein a hard film is formed by seed treatment or two or more surface treatments.
JP2010099449A 2010-04-23 2010-04-23 Method for strengthening surface layer of light metal or alloy thereof Pending JP2011225959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099449A JP2011225959A (en) 2010-04-23 2010-04-23 Method for strengthening surface layer of light metal or alloy thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099449A JP2011225959A (en) 2010-04-23 2010-04-23 Method for strengthening surface layer of light metal or alloy thereof

Publications (1)

Publication Number Publication Date
JP2011225959A true JP2011225959A (en) 2011-11-10

Family

ID=45041663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099449A Pending JP2011225959A (en) 2010-04-23 2010-04-23 Method for strengthening surface layer of light metal or alloy thereof

Country Status (1)

Country Link
JP (1) JP2011225959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130143A (en) * 2012-12-28 2014-07-10 Global Nuclear Fuel Americas Llc Method and apparatus for fret resistant fuel rod for light water reactor (lwr) nuclear fuel bundle
CN111286693A (en) * 2020-03-26 2020-06-16 天津大学 Microporous anode for cluster plasma spray gun and cluster plasma spraying method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120280A (en) * 1990-09-07 1992-04-21 Komatsu Ltd Production of surface-hardened aluminum material
JPH0681113A (en) * 1991-09-09 1994-03-22 Nippon Denshi Kogyo Kk Surface hardening method for aluminum material or aluminum alloy material
JP2003106265A (en) * 2001-09-27 2003-04-09 Aisin Aw Co Ltd Aluminum oil pump and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120280A (en) * 1990-09-07 1992-04-21 Komatsu Ltd Production of surface-hardened aluminum material
JPH0681113A (en) * 1991-09-09 1994-03-22 Nippon Denshi Kogyo Kk Surface hardening method for aluminum material or aluminum alloy material
JP2003106265A (en) * 2001-09-27 2003-04-09 Aisin Aw Co Ltd Aluminum oil pump and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130143A (en) * 2012-12-28 2014-07-10 Global Nuclear Fuel Americas Llc Method and apparatus for fret resistant fuel rod for light water reactor (lwr) nuclear fuel bundle
US9646722B2 (en) 2012-12-28 2017-05-09 Global Nuclear Fuel—Americas, LLC Method and apparatus for a fret resistant fuel rod for a light water reactor (LWR) nuclear fuel bundle
CN111286693A (en) * 2020-03-26 2020-06-16 天津大学 Microporous anode for cluster plasma spray gun and cluster plasma spraying method

Similar Documents

Publication Publication Date Title
Sahoo et al. Microstructure and mechanical properties of TiC-Ni coating on AISI304 steel produced by TIG cladding process
US10260585B2 (en) Brake disc and manufacturing method thereof
JPS6124100B2 (en)
Zikin et al. Characterisation of TiC–NiMo reinforced Ni-based hardfacing
US20100279146A1 (en) Refractory metal tool for friction stir welding comprising a shoulder made of tungsten, molybdenum, tantalum, niobium or hafnium alloy and a coated or treated surface
Sahoo et al. Microstructure and tribological behaviour of TiC-Ni-CaF2 composite coating produced by TIG cladding process
CN113122841B (en) Corrosion-resistant and wear-resistant coating with gradient composite structure and preparation method thereof
JPH05148615A (en) Treatment for surface of metallic material
JPH09192937A (en) Surface treating method by submerged electric discharge
US11635117B2 (en) Process for producing a protective coating on a brake side of a brake disk main element and process for producing a brake disk
Zikin et al. Plasma transferred arc (PTA) hardfacing of recycled hardmetal reinforced nickel-matrix surface composites
CN110846651A (en) Ceramic-reinforced cobalt-based cladding material, coating and preparation method thereof
JP2011225960A (en) Method for strengthening surface layer of light metal or alloy thereof
Mukanov et al. Surface modification of titanium VT6 alloy obtained by additive technologies using reactive electrospark treatment
Chaudhary et al. Friction stir powder additive manufacturing of Al 6061/FeCoNi and Al 6061/Ni metal matrix composites: Reinforcement distribution, microstructure, residual stresses, and mechanical properties
Penyashki et al. Structural and tribological properties of wear resistant coatings obtained by electrospark deposition
JP3204637B2 (en) Manufacturing method of self-fluxing alloy spray-coated member
Benarji et al. Effect of WC composition on the microstructure and surface properties of laser directed energy deposited SS 316-WC composites
JP2011225959A (en) Method for strengthening surface layer of light metal or alloy thereof
JPS6117912B2 (en)
Feldshtein et al. Tribologic behavior and surface integrity of NAB bronze coatings reinforced with WC and Cr3C2 carbides using ytterbium fiber laser
JP2008144281A (en) Multifunctional composite coating for protection based on lightweight alloy
JP2005305449A (en) Tool for hot working
JP6242616B2 (en) Resistance welding electrode
Ditsche et al. Agglomerated tungsten carbide: A new approach for tool surface reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624