JPH06287770A - Method for treating surface of turbine moving blade - Google Patents

Method for treating surface of turbine moving blade

Info

Publication number
JPH06287770A
JPH06287770A JP7668393A JP7668393A JPH06287770A JP H06287770 A JPH06287770 A JP H06287770A JP 7668393 A JP7668393 A JP 7668393A JP 7668393 A JP7668393 A JP 7668393A JP H06287770 A JPH06287770 A JP H06287770A
Authority
JP
Japan
Prior art keywords
steam turbine
blade
titanium alloy
surface treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7668393A
Other languages
Japanese (ja)
Inventor
Kazuaki Ikeda
Masahiro Yamada
正博 山田
一昭 池田
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP7668393A priority Critical patent/JPH06287770A/en
Publication of JPH06287770A publication Critical patent/JPH06287770A/en
Application status is Granted legal-status Critical

Links

Abstract

PURPOSE: To obtain a method for treating the surface of a turbine moving blade capable of preventing erosion caused by droplets.
CONSTITUTION: As for a surface treating device for a steam turbine moving blade, the front edge part at the blade end of a steam turbine low pressure final step blade 1 is finished into a prescribed shape by machining, thereafter, the surface of a base material is melted by a high energy density source and the base material is dispersedly clad with ceramic powder 2 by welding. In this way, the reliability of the steam turbine member is improved.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は蒸気タービン動翼とその製造方法に係わり、特に水滴による浸食を防止するタービン動翼の表面処理方法に関する。 The present invention relates relates to a steam turbine blade and a manufacturing method thereof, particularly to a surface treatment method of the turbine blade to prevent erosion by water droplets.

【0002】 [0002]

【従来の技術】近年、蒸気タービンの高効率化に伴い、 In recent years, with an increase in efficiency of the steam turbine,
低圧最終段の動翼も長翼化の傾向にある。 The rotor blades of the low-pressure final stage is also a tendency of the blade length. 動翼材としてはこれまで12クロム鋼が使用されてきたが強度的には限界であり、長翼化を図るには12クロム鋼に代わり軽量で高強度のチタン合金が適用されつつある。 As to this up to 12 but chrome steel have been used strength rotor blade material is critical, there being a titanium alloy of high strength is applied in place lightweight 12 chromium steel to improve the blade length.

【0003】従来の12クロム鋼製動翼の浸食防止法としては、翼先端前縁部にCo基合金(ステライト)溶接するか、動翼先端部表面をガス炎で加熱し、水冷して硬度を上げるフレームハードニングを適用することにより行われていた。 [0003] The erosion process of the conventional 12 chrome steel blades, blade tip leading edge to the Co-based alloy (Stellite) or welding, the blade tip portion surface is heated by a gas flame, hardness and water-cooled It was done by applying the frame hardening raise.

【0004】蒸気タービンの動翼が長くなると翼先端部の周速が速くなり、水滴による浸食に対しては益々厳しい条件で使用されるようになる。 [0004] the peripheral speed of the blade tip portion when a rotor blade of the steam turbine becomes longer faster, so is used in increasingly harsh conditions for erosion by water droplets. また、前述したように長翼になると動翼が12クロム鋼では強度の面で信頼性に欠けるため、チタン合金が使用されつつある。 Moreover, there is due to lack of reliability in terms of strength in the becomes long blades moving blades 12 chromium steel as described above, while the titanium alloy is used.

【0005】 [0005]

【発明が解決しようとする課題】しかしながら、動翼をチタン合金としても強度の面では解決されるが、翼先端前縁部の浸食の問題は残る。 However [0007], but in terms of strength of the rotor blade as titanium alloy is solved, erosion problems at the blade tip leading edge remains. チタン合金製動翼の浸食防止法として、Co基合金を溶接する場合、溶接部には脆い金属間化合物が形成され、接合強度が著しく低下するため遠心力により飛散することが考えられる。 As erosion process of the blade made of a titanium alloy, when welding Co-based alloy, welds brittle intermetallic compounds are formed in the, it is conceivable to scattered by the centrifugal force since the bonding strength is remarkably lowered. このため、時効硬化性を持つβ型チタン合金板を溶接するか、 Or Accordingly, welding the β type titanium alloy plate having a age hardening property,
またはβ型チタン合金を肉盛溶接することが考えられるが、翼長が長くなると浸食に対しては厳しい条件となるため上記のβ型チタン合金の溶接よりもさらに優れた浸食防止材料の開発が望まれている。 Or it is conceivable to build-up welding a β-type titanium alloy, but the development of better erosion material than welding of the above β-type titanium alloy to become a severe condition for the erosion and the blade length is longer It is desired.

【0006】本発明は上記事情に鑑みてなされたもので、種々検討した結果、チタン合金製動翼の浸食防止法として、動翼に硬質皮膜を形成するのが最適であることがわかった。 [0006] The present invention has been made in view of the above circumstances, a result of various studies, the erosion process of the blade made of a titanium alloy, to form a hard film blades were found to be optimal. しかしこの硬質皮膜の形成方法が問題であり、拡散浸透法やCVD法等では皮膜を形成するためには高温にする必要がある。 However a method of forming the hard film is a problem, the cementation method or a CVD method or the like to form a film needs to be a high temperature. 従って、動翼材の材質変化や変形が生じるとともに、皮膜厚さも10μm以下と薄いため浸食を防止するほど耐久性を要していない。 Therefore, the material changes and deformation of the blade material, not take enough durability to prevent erosion for coating thickness even 10μm or less and a thin.

【0007】一方、比較的低温で皮膜を形成できる方法としてPVD法があるが、この方法で処理した場合には皮膜と動翼基材との密着性が弱く、割れや剥離の生ずる恐れがある。 On the other hand, there is a PVD method as a method capable of forming a relatively low temperature coating, but when treated in this way weak adhesion between the coating and the moving blade base material, there is a risk of causing cracks or separation . 本発明の目的は、水滴による浸食を防止することのできるタービン動翼の表面処理方法を提供することにある。 An object of the present invention is to provide a turbine blade surface treatment method capable of preventing erosion by water droplets.

【0008】 [0008]

【課題を解決するための手段】本発明の蒸気タービン動翼の表面処理装置は、チタン合金からなる蒸気タービン低圧最終段翼の翼先端前縁部を機械加工により所定の形状に仕上げた後、高エネルギー密度源により機材表面を溶融させ、セラミックス粉末を基材中に分散肉盛り溶接させたことを特徴とする。 Surface treatment apparatus of the steam turbine blade of the SUMMARY OF THE INVENTION The present invention is, after finishing into a predetermined shape by machining the blade tip leading edge of a steam turbine low pressure final stage blade made of a titanium alloy, to melt the gear surface by high energy density sources, characterized in that a ceramic powder is dispersed overlay clad in the substrate.

【0009】また、チタン合金からなる蒸気タービン低圧最終段翼の翼先端前縁部にセラミックス分散β型チタン合金を溶接または銀ろうで翼先端前縁部に接合したことを特徴とする。 Further, characterized by being joined to the blade tip leading edge of the ceramic dispersion β type titanium alloy welding or silver brazing the blade tip leading edge of a steam turbine low pressure final stage blade made of a titanium alloy. そして、セラミックス粉末としてはW And, as the ceramic powder W
2 C,Cr 32 ,NbC,VC等の炭化物を適用し、 2 C, Cr 3 C 2, NbC, carbides VC, etc. applied,
そのセラミックス粉末の粒径は30〜200 μmとする。 The particle size of the ceramic powder is set to 30 to 200 [mu] m.

【0010】 [0010]

【作用】本発明のタービン動翼は、その翼先端前縁部の耐浸食性を向上させることを目的として各種表面処理技術の室温における摩耗特性、水滴による浸食試験を実施しなされたものである。 [Action] turbine blade of the present invention, wear properties, is made in implementing the erosion test by water droplets at room temperature of various surface treatment technology for the purpose of improving the erosion resistance of the blade tip leading edge .

【0011】今回、蒸気タービンの低圧最終段翼に見立てたTi−6Al−4V合金表面をプラズマアークにより溶融させ、その溶融部位にVC,Cr 32 ,NbC [0011] This time, Ti-6Al-4V alloy surface likened to the low pressure final stage blade of a steam turbine is melted by the plasma arc, VC in the molten portion, Cr 3 C 2, NbC
等の炭化物系セラミックス粉末を送給することにより優れた耐水滴浸食性を示すとともに耐摩耗性が得られることが見出された。 Abrasion resistance with indicating excellent water droplet erosion resistance by feeding the carbide ceramics powder etc. have been found to give. つまり、これらのセラミックス粉末を用いた肉盛溶接を行うことにより硬さがHv400 〜700 In other words, the hardness by performing overlay welding using these ceramic powders is Hv 400 to 700
と従来のCo基合金よりも約1.5 倍高くなるとともに、 When together becomes about 1.5 times higher than the conventional Co-base alloy,
添加したセラミックスが基材と融合して析出形態を変えたために効果的に特性が得られたものである。 The added ceramic is one that effectively characteristics were obtained for changing the precipitated form fused with the substrate.

【0012】 [0012]

【実施例】以下、本発明の一実施例を説明する。 EXAMPLES Hereinafter, a description will be given of an embodiment of the present invention. 本発明に関わる耐浸食合金は以下のように製造される。 Erosion alloy according to the present invention is manufactured as follows. 高エネルギー密度源のプラズマアークを用い、肉盛溶接を行うTi−6Al−4V合金の外表面を溶融し、溶融した部位に炭化物系のセラミックスを単独で添加する。 Using a plasma arc with high energy density source to melt the outer surface of the Ti-6Al-4V alloy performing overlay welding, adding a ceramic carbide alone sites melted. この時の肉盛溶接条件としては電流:120 〜180 A、電圧:20 In this case the overlay welding The conditions current: 120 to 180 A, Voltage: 20
〜45V、セラミックス粉末供給速度は5〜15g/min で不活性ガスで送給する。 ~45V, ceramic powder feed rate is fed with inert gas at 5 to 15 g / min. 電流、電圧、粉末供給速度の変化はセラミックス粒子の粒径変化にともなうものである。 Current, voltage, changes in the powder feed rate are those due to change in particle diameter of the ceramic particles.

【0013】また、肉盛溶接量を厚くして耐浸食合金板として製造することもできる ここで、このセラミックス分散肉盛溶接材を作製する上で、炭化物系セラミックスの選定、粒径等の限定理由を以下に示す。 Further, here it can also be produced as erosion alloy plate by thickening the overlay welding amount, in manufacturing the ceramic dispersion overlay welding material, the selection of carbide ceramics, limiting the particle diameter and the like the reason is shown below. (1)セラミックス材料 セラミックス材料として炭化物系を選定したのはチタン合金基材に対して、Nb,V,Crはβ安定化元素として作用し、熱間加工性に悪影響を与えず、熱処理による強化が可能となる。 (1) with respect to the titanium alloy substrate was selected carbide system as a ceramic material a ceramic material, Nb, V, Cr acts as a β-stabilizing element, without adversely affecting the hot workability, enhanced by heat treatment it is possible. また、各炭化物のCが基材のTiと高硬度のTiCを形成し、肉盛溶接層内に粒状炭化物として均一に分散する。 Further, C forms a TiC Ti and high hardness of the base material of the carbide, uniformly dispersed as a particulate carbide overlay welding layer. (2)セラミックスの粒径 セラミックスの粒径は30〜200 μmとする。 (2) the particle size of the particle size of the ceramics of ceramics and 30~200 μm. これは、プラズマアーク等の高密度エネルギー源で粉末を完全に溶融することのできる粒径であり、これより大きいと未溶融粒子として残存し、基材との融合されないために肉盛溶接層にTiCの形成量が少なく浸食に対する特性が不十分となる。 This is a particle size which can be completely melt the powder in a high density energy source of the plasma arc, etc., which larger and remain as unmelted particles, the overlay welding layer to not fused to the base material characteristics for forming small amount erosion of TiC becomes insufficient. また粒径が小さいと粉末作製のコストが高くなり好ましくない。 The undesirably high cost of the powder produced and the particle diameter is small. (3)粒子供給速度、肉盛速度 炭化物セラミックスの供給速度として最適速度はセラミックス添加量にもよるが、粉末供給速度を3〜18g/mi (3) the particle feed rate, the optimum rate of feed rate of the deposition rate carbide ceramics depending on the ceramic additive amount, the powder feed rate 3~18g / mi
n とした場合、肉盛速度は350 〜600mm /minが好ましい。 If you have n, the build-up rate is preferably 350 ~600mm / min. これは、肉盛溶接層内に均一にセラミックスを溶融、再析出させるに適した条件であるとともにチタン合金基材への熱影響を最小限に抑えることができる条件でもある。 This melt uniformly ceramics overlay welding layer is also a condition with a condition suitable for re precipitate thermal influence on the titanium alloy substrate can be minimized. (4)セラミックス添加量 各炭化物セラミックスの添加量としては、50wt%以下が好ましい。 (4) The amount of the ceramic additive amount each carbide ceramics is preferably not more than 50 wt%. これは、セラミックス添加量と硬さの関係を調べた時に最大硬さが得られるとともに、ミクロ組織的にセラミックスが完全溶融できる添加量である。 This, together with the maximum hardness is obtained when examining the relationship of the ceramic additive amount and hardness, is added the amount of the microstructural ceramics can be completely melted.

【0014】次に、第1表は、本発明に対する実施例の硬さおよびキャビテーションエロージョン試験機による浸食特性を示したものである。 [0014] Next, Table 1 shows the erosion characteristics of hardness and cavitation erosion test machine embodiment for the present invention. 実施例のセラミックス分散肉盛溶接材はNbC,Cr 32 ,VC粉末をTi− The ceramic dispersion overlay welding material of Example NbC, Cr 3 C 2, VC powder Ti-
6Al−4V合金上に電流:150 A、電圧:30V、粒子供給速度:9g/min 、肉盛速度:300mm /min で肉盛溶接し、硬度測定とエロージョン試験を実施した。 6Al-4V alloy on to the current: 0.99 A, Voltage: 30 V, the particle feed rate: 9 g / min, overlaying rate: by deposit welding at 300 mm / min, were performed hardness measurement and erosion test. 比較例1はCo基合金のステライトで硬さはいずれも同等またはそれ以上であり、エロージョン減量も比較例1よりも少なく優れた耐浸食性を有していることがわかる。 Comparative Example 1 hardness in Stellite Co-based alloy is at equal to or higher than both, it can be seen that a less good erosion resistance than Comparative Example 1 even erosion weight loss.

【0015】 [0015]

【表1】 [Table 1]

【0016】第2表は、これら添加したセラミックス粒子を肉盛溶接した場合の形態変化を示したもので肉盛層内にTiCが析出していることがわかる。 [0016] Table 2, it can be seen that TiC in the buildup layer of these added ceramic particles shows the morphological changes in the case where the overlay welding is precipitated. これはCr 3 This is Cr 3
2を例にとると Taking the C 2 as an example

【0017】 [0017]

【数1】Ti+1/2Cr 32 =TiC+3/2Cr と変化し、TiCが微細析出するとともに、Crはチタン合金のβ相形成元素として作用するものである。 [Number 1] varies with Ti + 1 / 2Cr 3 C 2 = TiC + 3 / 2Cr, with TiC is fine precipitation, Cr is to act as a β-phase forming elements titanium alloy.

【0018】 [0018]

【表2】 [Table 2]

【0019】 [0019]

【発明の効果】以上述べたように、本発明による耐食、 As described above, according to the present invention, corrosion-resistant in accordance with the present invention,
耐浸食表面処理方法によると、蒸気タービン長翼として仕様されるチタン合金動翼の翼先端前縁部の水滴による浸食を防止する方法として優れており、蒸気タービン部材の信頼性向上とともに電力の安定供給に対して優れた硬化を有している。 According to the erosion surface treatment method is excellent as a method for preventing erosion by water droplets at the blade tip leading edge of the titanium alloy blades are specifications as steam turbine long blade, a stable power of the reliability improvement of the steam turbine member It has excellent curing the supply.

【0020】本発明になるセラミックス分散肉盛溶接材は耐浸食表面処理方法として蒸気タービン部材を例にとって説明したが、チタンおよびチタン合金を適用する他の一般産業機械、自動車部品、ジェットエンジンのダストエロージョンを受けるファンブレード等の部材にも適用することができる。 The ceramic dispersion overlay welding material according to the present invention has been described as an example a steam turbine member as erosion surface treatment method, other general industrial machinery to apply the titanium and titanium alloy, automotive parts, jet engine dust it can be applied to members of a fan blade or the like to undergo erosion.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による蒸気タービン動翼の翼先端前縁部の概略図 Schematic view of the blade tip leading edge of the steam turbine blade according to the invention; FIG

【符号の説明】 DESCRIPTION OF SYMBOLS

1…Ti合金製タービン動翼 2…浸食部位 1 ... Ti alloy turbine blades 2 ... erosion site

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 チタン合金からなる蒸気タービン低圧最終段翼の翼先端前縁部を機械加工により所定の形状に仕上げた後、高エネルギー密度源により基材表面を溶融させ、セラミックス粉末を基材中に分散肉盛り溶接させたことを特徴とする蒸気タービン動翼の表面処理方法。 1. A was finished into a predetermined shape by machining the blade tip leading edge of a steam turbine low pressure final stage blade made of titanium alloy, to melt the surface of the substrate by a high energy density sources, base ceramic powder the steam turbine blade of the surface treatment method characterized by dispersed overlay clad in.
  2. 【請求項2】 チタン合金からなる蒸気タービン低圧最終段翼の翼先端前縁部にセラミックス分散β型チタン合金を溶接または銀ろうで翼先端前縁部に接合したことを特徴とする蒸気タービン動翼の表面処理方法。 2. A steam turbine rotor, characterized in that joined to the blade tip leading edge of the ceramic dispersion β type titanium alloy welding or silver brazing the blade tip leading edge of a steam turbine low pressure final stage blade made of a titanium alloy surface treatment method of the wing.
  3. 【請求項3】 前記セラミックス粉末としてはW 2 C, The method according to claim 3, wherein said ceramic powder W 2 C,
    Cr 32 ,NbC,VC等の炭化物を適用したことを特徴とする請求項1又は請求項2に記載の蒸気タービン動翼の表面処理方法。 Cr 3 C 2, NbC, the surface treatment method of the steam turbine blade according to claim 1 or claim 2, characterized in that the application of the carbide VC, and the like.
  4. 【請求項4】 前記セラミックス粉末の粒径は30〜200 Wherein the particle size of the ceramic powder is 30 to 200
    μmとしたことを特徴とする請求項1乃至請求項3に記載の蒸気タービン動翼の表面処理方法。 The surface treatment method of the steam turbine blade according to claims 1 to 3, characterized in that the [mu] m.
JP7668393A 1993-04-02 1993-04-02 Method for treating surface of turbine moving blade Granted JPH06287770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7668393A JPH06287770A (en) 1993-04-02 1993-04-02 Method for treating surface of turbine moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7668393A JPH06287770A (en) 1993-04-02 1993-04-02 Method for treating surface of turbine moving blade

Publications (1)

Publication Number Publication Date
JPH06287770A true JPH06287770A (en) 1994-10-11

Family

ID=13612243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7668393A Granted JPH06287770A (en) 1993-04-02 1993-04-02 Method for treating surface of turbine moving blade

Country Status (1)

Country Link
JP (1) JPH06287770A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870831A (en) * 1988-02-09 1989-10-03 Kabushiki Kaisha Toshiba Multi-type air conditioner system with oil level control for parallel operated compressor therein
CN104384692A (en) * 2014-04-30 2015-03-04 西门子公司 Method for cladding part of steam turbine
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion
KR20170122235A (en) 2015-04-17 2017-11-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Manufacturing Method of Steam Turbine Rotor and Steam Turbine Rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870831A (en) * 1988-02-09 1989-10-03 Kabushiki Kaisha Toshiba Multi-type air conditioner system with oil level control for parallel operated compressor therein
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion
CN104384692A (en) * 2014-04-30 2015-03-04 西门子公司 Method for cladding part of steam turbine
KR20170122235A (en) 2015-04-17 2017-11-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Manufacturing Method of Steam Turbine Rotor and Steam Turbine Rotor
CN107429570A (en) * 2015-04-17 2017-12-01 三菱日立电力系统株式会社 The manufacture method of steam turbine blade and steam turbine blade
EP3284909A4 (en) * 2015-04-17 2018-11-14 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine rotor blade and method for manufacturing steam turbine rotor blade
US10378366B2 (en) 2015-04-17 2019-08-13 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine rotor blade and method for manufacturing steam turbine rotor blade

Similar Documents

Publication Publication Date Title
ES2357806T3 (en) Hard powder with tenaz coating and sintered items of the same.
US4730093A (en) Method and apparatus for repairing metal in an article
EP0674020B1 (en) A multiple layer erosion resistant coating and a method for its production
Ezugwu et al. Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools
EP0273854B1 (en) Abrasive material, especially for turbine blade tips
CA2527432C (en) Diamond hard coating of ferrous substrates
US20040124231A1 (en) Method for coating a substrate
D'Oliveira et al. Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding
Ezugwu Key improvements in the machining of difficult-to-cut aerospace superalloys
EP1347076B1 (en) PVD-Coated cutting tool insert
Sharman et al. Tool life when high speed ball nose end milling Inconel 718™
JP2006124830A (en) Erosion and wear resistant protective structure for turbine component
Miguel et al. Tribological study of NiCrBSi coating obtained by different processes
US6444259B1 (en) Thermal barrier coating applied with cold spray technique
JP2004150432A (en) Method of repairing stationary shroud of gas turbine engine using plasma transferred arc welding
Sexton et al. Laser cladding of aerospace materials
EP2076352B1 (en) Refractory metal tooling for friction stir welding comprising a shoulder made of tantalum, niobium or hafnium alloy and a coated or treated surface
EP0960954B1 (en) Powder of chromium carbide and nickel chromium
JP4301402B2 (en) How to repair a gas turbine engine stationary shroud using laser cladding
KR100204201B1 (en) Powder for use in thermal spraying
Ezugwu et al. The machinability of nickel-based alloys: a review
EP0176942A1 (en) Method for repairing metal in an article
FI75109B (en) Metallskaerverktyg with flerskiktsbelaeggning.
CA2275515C (en) Method of treating metal components
US5141574A (en) Process of forming dispersions in titanium alloys by melting and precipitation