JP2005213558A - Electrode for electrical discharge surface treatment and manufacturing method therefor - Google Patents

Electrode for electrical discharge surface treatment and manufacturing method therefor Download PDF

Info

Publication number
JP2005213558A
JP2005213558A JP2004020627A JP2004020627A JP2005213558A JP 2005213558 A JP2005213558 A JP 2005213558A JP 2004020627 A JP2004020627 A JP 2004020627A JP 2004020627 A JP2004020627 A JP 2004020627A JP 2005213558 A JP2005213558 A JP 2005213558A
Authority
JP
Japan
Prior art keywords
electrode
surface treatment
powder
core
discharge surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020627A
Other languages
Japanese (ja)
Inventor
Masao Akiyoshi
雅夫 秋吉
Akihiro Goto
昭弘 後藤
Katsuhiro Matsuo
勝弘 松尾
Hiroyuki Ochiai
宏行 落合
Mitsutoshi Watanabe
光敏 渡辺
Takashi Furukawa
崇 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Mitsubishi Electric Corp
Original Assignee
IHI Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Mitsubishi Electric Corp filed Critical IHI Corp
Priority to JP2004020627A priority Critical patent/JP2005213558A/en
Publication of JP2005213558A publication Critical patent/JP2005213558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a green compact electrode for use in surface treatment, which is easily formed into optional shape and is easily handled. <P>SOLUTION: An electrical discharge surface treatment is carried out by generating pulse discharge between a green compact electrode prepared by compacting metal powder, metal compound powder or ceramic powder and a work, and depositing a coating comprising the electrode material or a substance produced by the reaction of the electrode material with discharge energy on the work surface. In the surface treatment, the electrode is prepared by depositing the electrode powder which results in the coating by the above surface treatment on an electrode core having rigidity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属粉末または金属の化合物の粉末、あるいは、セラミックスの粉末を圧縮成形した圧粉体、もしくは、該圧粉体を加熱処理した圧粉体を電極として、加工液中あるいは気中において電極とワークの間にパルス状の放電を発生させ、そのエネルギーにより、ワーク表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理に関するものである。   In the present invention, a metal powder, a metal compound powder, a green compact obtained by compression molding a ceramic powder, or a green compact obtained by heat-treating the green compact is used as an electrode in a working fluid or in the air. The present invention relates to a discharge surface treatment in which a pulsed discharge is generated between an electrode and a workpiece, and a film made of an electrode material or a substance obtained by reacting the electrode material with discharge energy is formed on the workpiece surface by the energy.

従来、被加工物の表面をコーティングして、耐食性、耐磨耗性を付与する技術としては、例えば特開平5−148615号公報に、WC粉末とCo粉末等からなる圧粉体電極を使用して1次加工(堆積加工)を行い、次に銅電極等の比較的電極消耗の少ない電極に交換して2次加工(再溶融加工)を行う放電表面処理方法が開示されている。
この技術は、高硬度で密着力の大きい数10μm程度の厚みの硬質被膜を鋼材に対して形成するには優れた方法であるが、2つの工程行わなければならず作業効率が悪いばかりか、超硬合金のような焼結材料の表面に強固な密着力を持った硬質被膜を形成することは困難である。
Conventionally, as a technique for coating the surface of a workpiece to impart corrosion resistance and wear resistance, for example, Japanese Patent Application Laid-Open No. 5-148615 uses a green compact electrode made of WC powder and Co powder. A discharge surface treatment method is disclosed in which primary processing (deposition processing) is performed, and then secondary processing (remelting processing) is performed by replacing the electrode with a relatively low electrode consumption such as a copper electrode.
This technique is an excellent method for forming a hard coating with a high hardness and a thickness of about several tens of μm on the steel material, but it has to be performed in two steps. It is difficult to form a hard film having strong adhesion on the surface of a sintered material such as a cemented carbide.

また、特開平9−192937号公報には、TiH粉末の圧粉体電極を用いて、超硬合金にも密着力が高い数μm〜数10μmの厚みの硬質被膜を形成する放電表面処理方法が開示されている。 Japanese Patent Application Laid-Open No. 9-192937 discloses a discharge surface treatment method in which a hard coating having a thickness of several μm to several tens of μm is formed on a cemented carbide by using a compact electrode of TiH 2 powder. Is disclosed.

その他、放電表面処理用電極の製造方法としては、国際公開WO00/29155号公報に、放電表面処理対象の金型の雌型に金属粉末、金属の化合物などの材料粉末を充填し、金型の雄型によって雌型内の材料粉末を加圧成形する電極の製造方法が開示されている。   In addition, as a method for producing an electrode for discharge surface treatment, International Publication WO 00/29155 discloses that a metal mold, a metal compound, or the like is filled in a female die of a discharge surface treatment target mold, An electrode manufacturing method is disclosed in which a material powder in a female mold is pressed by a male mold.

特開平5−148615号公報JP-A-5-148615 特開平9−192937号公報Japanese Patent Laid-Open No. 9-192937 国際公開WO00/29155号公報International Publication WO00 / 29155

従来の圧粉体電極を用いた放電表面処理では、放電エネルギーにより容易に電極成分が溶融し被加工物表面に被膜を形成しやすいといった利点があるが、圧粉体電極は脆く壊れやすい。
従って、電極を被加工物の形状に合わせるための機械加工、あるいは、電極を装置に固定するためのねじ穴等の小さい部分の成形が極めて困難であった。
なお、電極の剛性を高めるために圧粉体電極を本焼結して金属電極にして使用することが考えられるが、本焼結後の電極では、除去加工となり被膜を堆積できなくなってしまう。
また、同様に圧粉体電極は脆く壊れやすいため、実用的な大きさの電極の成形が困難であった。
即ち、金型等の表面処理に用いる実用的な大きさに電極を成形するには、プレスの能力を飛躍的に大きくしなければならないと共に、粉体材料の圧縮成形時に圧力が材料の内部に均一に伝播しないため密度の不均一性が増大し、ひび割れの発生等の欠陥が生じる。
従って、被加工物に形成される硬質被膜にはばらつきが発生するため、品質を低下させる要因となっている。
さらに、電極製造に関しては、雌型に電極粉末を入れ雄型で加圧生成したとしても、電極が適度な大きさであれば、型面に沿って均一に放電表面処理を行うことはできる。
しかし、雄型が細い場合、加圧成形の際に雄型が変形し、所望の面を得られないという問題がある。
The conventional discharge surface treatment using a green compact electrode has the advantage that the electrode components are easily melted by the discharge energy and a film is easily formed on the surface of the workpiece, but the green compact electrode is brittle and easily broken.
Accordingly, it has been extremely difficult to perform machining for matching the electrode to the shape of the workpiece or molding a small portion such as a screw hole for fixing the electrode to the apparatus.
In order to increase the rigidity of the electrode, it is conceivable that the green compact electrode is used as a metal electrode by sintering it. However, the electrode after the main sintering is subjected to removal processing and cannot deposit a film.
Similarly, since the green compact electrode is fragile and easily broken, it is difficult to form a practical size electrode.
That is, in order to mold an electrode to a practical size used for surface treatment of a mold or the like, the press capability must be dramatically increased, and pressure is applied to the inside of the material during compression molding of the powder material. Non-uniform propagation increases density non-uniformity and causes defects such as cracking.
Therefore, since the hard coating formed on the workpiece has variations, it is a factor that deteriorates the quality.
Furthermore, regarding the electrode manufacturing, even if the electrode powder is put into a female mold and pressed by a male mold, the discharge surface treatment can be performed uniformly along the mold surface if the electrode is of an appropriate size.
However, when the male mold is thin, there is a problem that the male mold is deformed during pressure molding and a desired surface cannot be obtained.

つまり、従来の電極製造方法では、外径Φ1mm以下の丸棒電極や厚さ1mm以下の平板電極を製造したとき、プレスした電極を炉に入れるときや炉から取り出す際に壊れたり、電極を保持することができず、小さい電極や薄い電極は製造できないばかりか、製造できる電極の形状に制限があった。   In other words, in the conventional electrode manufacturing method, when a round bar electrode having an outer diameter of Φ1 mm or less or a flat plate electrode having a thickness of 1 mm or less is manufactured, the pressed electrode is broken when it is put into the furnace or removed from the furnace, or the electrode is held. In addition to being able to manufacture small and thin electrodes, there is a limit to the shape of the electrodes that can be manufactured.

本発明は、放電表面処理において、上述した課題を解決するためになされたものであり、あらゆる形状の電極を製造できる方法を提供するものである。   The present invention has been made to solve the above-described problems in the discharge surface treatment, and provides a method capable of manufacturing electrodes of any shape.

本発明にかかる放電表面処理用電極は、金属粉末または金属の化合物の粉末、あるいは、セラミックスの粉末を圧縮成形した圧粉体の電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギーにより、ワーク表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理において、剛性をもつ電極の芯を、上記表面処理にて被膜となる電極粉末を配置したものである。   The discharge surface treatment electrode according to the present invention generates a pulsed discharge between a metal powder, a metal compound powder, or a green compact electrode obtained by compression molding a ceramic powder, and the workpiece. In discharge surface treatment that forms a coating made of an electrode material or a material that reacts with the discharge energy of the electrode material on the workpiece surface by energy, the electrode powder that becomes the coating in the surface treatment is disposed on the core of the rigid electrode. Is.

本発明によれば、従来製造することができなかった圧粉体電極の形状も製作することができるため、小さい穴の内面や狭い溝の表面に被膜を形成できるようになり,形状の補修や表面積の拡大による熱交換効率の向上などの効果がある。   According to the present invention, since it is possible to manufacture a green compact electrode shape that could not be manufactured in the past, it becomes possible to form a coating on the inner surface of a small hole or the surface of a narrow groove. There are effects such as improvement of heat exchange efficiency by expanding the surface area.

実施の形態1.
まず、数μmの金属粉末を圧縮形成した圧粉体電極を用いた放電表面処理の原理を図1を用いて説明する。
なお、電極は金属の数μmの粉末を圧縮成形した後、加熱処理したものを用いる。
加工液中に電極とワークを配置し、電極を陰極、ワークを陽極とし、両者が接触しないよう主軸はサーボをとられた状態で放電を発生させる。
放電の熱により電極の一部は溶融・気化され、放電による爆風や静電気力によって電極の固まりが離脱し、ワークに堆積することで被膜が形成される。
Embodiment 1 FIG.
First, the principle of discharge surface treatment using a green compact electrode formed by compressing and forming a metal powder of several μm will be described with reference to FIG.
In addition, the electrode uses what heat-processed, after compression-molding the metal powder of several micrometers.
An electrode and a workpiece are arranged in the working fluid, the electrode is used as a cathode, the workpiece is used as an anode, and the main shaft generates a discharge in a servo-controlled state so that they do not come into contact with each other.
A part of the electrode is melted and vaporized by the heat of the discharge, and the electrode lump is released by the blast and electrostatic force generated by the discharge, and is deposited on the workpiece to form a film.

ここで使用される圧粉体電極は、図2で示される電極製造過程を経て製造される。
市場に流通している金属粉末は、粉砕、乾燥、ふるい工程を経て、所望の粒径の金属粉末となる。
そして、平均粒径数μmの酸化しにくい金属やセラミックスの球形粉末に、プレスの際に電極内部へのプレスの圧力の伝わりを良くするためにパラフィン等のワックスを重量比1%から10%程度混入する。
なお、パラフィン等のワックスと混合すると粉末は液体が粉末の周りを液体が覆い、その分子間力や静電気力の作用により凝集し大きな塊を形成してしまうため、凝集した塊をバラバラにすべくふるいにかける必要がる。
ふるいを通過した粉末を圧縮プレスで成形し、その後、真空炉または窒素や不活性ガス雰囲気の炉で加熱して、導電性を持つ圧粉体電極を製造する。
The green compact electrode used here is manufactured through an electrode manufacturing process shown in FIG.
The metal powder on the market is converted into a metal powder having a desired particle size through pulverization, drying and sieving processes.
In addition, a wax such as paraffin is added to the spherical powder of metal or ceramics with an average particle size of several μm to improve the transmission of the pressure of the press to the inside of the electrode during pressing. mixing.
In addition, when mixed with wax such as paraffin, the powder covers the surroundings of the powder, and the liquid is agglomerated by the action of intermolecular force or electrostatic force to form a large lump. Need to be sifted.
The powder that has passed through the sieve is molded with a compression press, and then heated in a vacuum furnace or a furnace in an atmosphere of nitrogen or an inert gas to produce a conductive green compact electrode.

図2の工程により圧粉体電極は製造されるのであるが、上述したように図2の工程により製造される電極には所望の形状に成形することが困難である。
そこで、本実施の形態では、図3で示される電極製造プロセスを実施する。
なお、その製造過程におけるプレスの様子を図4に示す。
図において、1は粒径1μm程度のCo(コバルト)粉末、2は金型の上のパンチ、3は金型の下のパンチ、4は金型のダイ、5はパラフィンとCo粉末1の混合体を高圧(300MPa程度)でプレス成形したCo丸棒である。
ここで、Co粉末1には、パラフィンを重量比で3%混合した。
その後、凝集したものを分解するため、パラフィンと混合した粉末をメッシュサイズ0.05mmのふるいにかけた。
そして、パラフィンとCo粉末1の混合体を金型に適量入れ、その中にCoの丸棒5を埋め込む。
その後、丸棒が金型壁面に接触しないように、Co粉末1をCo丸棒5を覆うように入れ、パンチにより圧力をかけてプレスする。
所定のプレス圧を粉末にかけることで、粉末は固まり圧粉体となる。
ここで付加する圧力は、Coの丸棒5を製造するときよりも低い90MPa程度である。
なお、プレスの際に粉末内部へのプレスの圧力の伝わりを良くするために粉末にパラフィンなどのワックスを重量比1%から10%程度混入すると成形性を改善することができるが、電極内のワックス残量が多くなるほど電気伝導率が悪くなるため、ワックスを混入した際には後の工程でワックスを除去することが望ましい。
The green compact electrode is manufactured by the process of FIG. 2, but as described above, it is difficult to form the electrode manufactured by the process of FIG. 2 into a desired shape.
Therefore, in the present embodiment, the electrode manufacturing process shown in FIG. 3 is performed.
In addition, the state of the press in the manufacturing process is shown in FIG.
In the figure, 1 is a Co (cobalt) powder having a particle size of about 1 μm, 2 is a punch above the mold, 3 is a punch below the mold, 4 is a mold die, and 5 is a mixture of paraffin and Co powder 1 This is a Co round bar obtained by press-molding the body at a high pressure (about 300 MPa).
Here, the Co powder 1 was mixed with 3% by weight of paraffin.
Thereafter, in order to decompose the agglomerated material, the powder mixed with paraffin was passed through a sieve having a mesh size of 0.05 mm.
Then, an appropriate amount of a mixture of paraffin and Co powder 1 is put into a mold, and a Co round bar 5 is embedded therein.
Thereafter, the Co powder 1 is placed so as to cover the Co round bar 5 so that the round bar does not come into contact with the mold wall surface, and is pressed by applying pressure with a punch.
By applying a predetermined pressing pressure to the powder, the powder becomes a solid and becomes a green compact.
The pressure applied here is about 90 MPa, which is lower than when the Co round bar 5 is manufactured.
In addition, in order to improve the transmission of the pressure of the press to the inside of the powder at the time of pressing, when the wax such as paraffin is mixed in the powder by about 1% to 10% by weight, the moldability can be improved. As the remaining amount of wax increases, the electrical conductivity deteriorates. Therefore, when the wax is mixed, it is desirable to remove the wax in a later step.

その後、圧縮成形された圧粉体は、圧縮により所定の硬さが得られていればそのまま放電表面処理用の電極として使用することができるが、加熱することで強度を増すことができる。
Coの場合、300℃で一時間保持し、電極の強度を増加させる。
この際、大きなブレス圧力で成形されているCo丸棒5は、粉末と粉末の結合が強くなり、剛性が大きくなる。
また、Co丸棒5の周囲にあるCo粉末1は、放電により引き離され、被膜となれる程度の強度となる。
また、圧縮成形の際にワックスを混入した場合には、電極を加熱してワックスを除去する必要があるため、真空炉で30分間、200℃で保持する。
加熱により、融点に達したワックスは、電極から表面にしみ出てくる。
その後300℃に加熱すると、しみ出したワックスは沸点に到達し気化する。
なお、炉内には100℃程度に維持された部分があり、そこで気化したワックスはトラップされ液体に戻る。
このような工程で電極からワックスは除去される。
After that, the compression-molded green compact can be used as it is as an electrode for discharge surface treatment as long as a predetermined hardness is obtained by compression, but the strength can be increased by heating.
In the case of Co, the electrode is held at 300 ° C. for 1 hour to increase the strength of the electrode.
At this time, the Co round bar 5 molded with a large breath pressure has a strong bond between the powder and the rigidity.
In addition, the Co powder 1 around the Co round bar 5 has a strength enough to be separated by discharge and become a film.
Further, when wax is mixed during compression molding, it is necessary to remove the wax by heating the electrode, and therefore, the temperature is maintained at 200 ° C. for 30 minutes in a vacuum furnace.
When heated, the wax that has reached the melting point oozes from the electrode to the surface.
Thereafter, when heated to 300 ° C., the exuded wax reaches the boiling point and vaporizes.
In addition, there exists a part maintained at about 100 degreeC in the furnace, and the wax which vaporized there is trapped and returns to a liquid.
In such a process, the wax is removed from the electrode.

次に、平均粒径1μmCo粉末1とCo棒5からなる電極11を用いて、細い穴の内面に放電表面処理を行う様子を図5に示す。
電極11及びワーク12は、加工液13中に配置され、放電表面処理用電源14に基づき電極側面と穴側面の間に放電を発生させ、細い穴の内面に放電表面処理することが可能となる。
Next, FIG. 5 shows a state in which a discharge surface treatment is performed on the inner surface of a narrow hole by using an electrode 11 composed of Co powder 1 having an average particle diameter of 1 μm and a Co rod 5.
The electrode 11 and the workpiece 12 are disposed in the machining liquid 13, and discharge can be generated between the electrode side surface and the hole side surface based on the discharge surface treatment power source 14, and the discharge surface treatment can be performed on the inner surface of the narrow hole. .

従来の放電表面処理用電極の製造方法では、外径Φ2mmの電極を製造できなかったため、細穴の内壁や入口に被膜を処理できなかった。
しかしながら、本実施の形態によれば、寸法Φ2mm×50mmの金型に、平均粒径1μmのCo粉末1を底面から30mm程度入れ、そこにΦ1mm×40mmのCo棒5を差し込み、さらに平均粒径1μmのCo粉末1を加え、プレス圧2MPaで圧縮成形し、その電極を真空炉で加熱し製作することができる。
なお、本実施の形態により製作された電極の取り扱いは、金属棒と同程度に容易である。
つまり、本実施の形態によりΦ2mm程度の細い電極の製造が可能となった。
In the conventional method for producing an electrode for discharge surface treatment, an electrode having an outer diameter of Φ2 mm could not be produced, so that the coating could not be treated on the inner wall or entrance of the fine hole.
However, according to the present embodiment, a Co powder 1 having an average particle diameter of 1 μm is placed about 30 mm from the bottom into a mold having a size of Φ2 mm × 50 mm, and a Co rod 5 having a diameter of Φ1 mm × 40 mm is inserted therein, and the average particle diameter is further increased. Co powder 1 of 1 μm is added, compression molding is performed at a press pressure of 2 MPa, and the electrode is heated in a vacuum furnace to be manufactured.
In addition, the handling of the electrode manufactured by this Embodiment is as easy as a metal bar.
That is, according to this embodiment, a thin electrode having a diameter of about 2 mm can be manufactured.

以上のように製作された電極を用いて、実際にΦ2.5mm×100mmの穴の内壁に被膜処理をした。
使用した放電のパルス条件は、電極側をマイナス、ワーク側をプラスの極性、ピーク電流値をie=5〜20A、放電持続時間(放電パルス幅)te=4〜100μs程度である。
なお、加工中は、電極を回転させ、更に揺動させた。
いずれの条件でも円筒内壁に0.05mm程度の被膜を堆積できた。
本発明により、穴径や穴先端が何らかの影響で摩耗した場合、元の寸法に補修することができる。
Using the electrodes manufactured as described above, the inner wall of a hole of Φ2.5 mm × 100 mm was actually coated.
The discharge pulse conditions used were negative on the electrode side, positive polarity on the work side, peak current value ie = 5 to 20 A, and discharge duration (discharge pulse width) te = about 4 to 100 μs.
During processing, the electrode was rotated and further swung.
Under either condition, a film of about 0.05 mm could be deposited on the inner wall of the cylinder.
According to the present invention, when the hole diameter or the hole tip is worn by some influence, it can be repaired to the original dimension.

本実施の形態ではCoについて説明したが、丸棒の材質としてNiやAgでもよい。
CoやNiやAgは、酸化しにくい材質であるため、表面に形成されている酸化膜が薄い。
そのため、プレスにより表面の酸化膜が簡単に破壊され、粉末と粉末の結合が強くなり,プレスのみで高剛性の丸棒を製造することができる。
更に、低い温度で強度が著しく向上するため、丸棒周囲の粉末の強度を上げるための加熱温度で、金属の棒に近い強度を持たせることができる。
例えば,TiC(炭化チタン)の被膜を形成するため、Coの芯材をTiCの粉末で覆い、1000℃程度で加熱する必要がある。なお、1000℃でTiCは被膜となるのに最適な硬さとなり、Coの芯材は、ほぼ金属の棒に近い強度となる。
Although Co has been described in the present embodiment, Ni or Ag may be used as the material of the round bar.
Since Co, Ni, and Ag are materials that are difficult to oxidize, the oxide film formed on the surface is thin.
Therefore, the oxide film on the surface is easily broken by pressing, and the bonding between the powders becomes strong, and a high-rigidity round bar can be manufactured only by pressing.
Furthermore, since the strength is remarkably improved at a low temperature, it is possible to give a strength close to that of a metal rod at a heating temperature for increasing the strength of the powder around the round bar.
For example, in order to form a TiC (titanium carbide) film, it is necessary to cover the Co core with TiC powder and to heat at about 1000 ° C. At 1000 ° C., TiC has an optimum hardness for forming a coating, and the Co core material has a strength almost similar to that of a metal rod.

芯材に金属の棒を用いても高強度の細い電極を製造できるが、プレスした場合、その棒を覆う粉末と金属棒との接合強度が低くなる。
粉末と圧粉体の丸棒では、接触する表面積が大きいため、大きな接合強度となる。
Even if a metal rod is used as the core material, a high-strength thin electrode can be manufactured. However, when pressed, the bonding strength between the powder covering the rod and the metal rod is lowered.
In the round bar of powder and green compact, since the surface area which contacts is large, it becomes big joint strength.

また、芯材にCoやNiの粉末を用い、被膜となる粉末にその金属または合金粉末、或いはセラミックス粉末を用いてもよい。
被膜への不純物の混入を嫌う場合、本実施の形態の如く芯となる棒と被膜となる粉末との材質を統一すればよい。
Further, Co or Ni powder may be used for the core material, and the metal or alloy powder or ceramic powder may be used for the powder to be the coating.
When the contamination of the coating is disliked, the material of the core rod and the coating powder may be unified as in this embodiment.

実施の形態2.
実施の形態1では、細い電極について説明したが、大きい電極も従来の放電表面処理用電極の製造方法では製作できない。
放電表面処理で使用される電極は粒子の集合体で、それぞれの粒子は点接触で接合された状態で形状をとどめており、完全に溶けていない。そのため、電極の強度は非常に小さく、電極が大きくなると、自重により電極が壊れてしまうからである。
Embodiment 2. FIG.
Although the thin electrode has been described in the first embodiment, a large electrode cannot be manufactured by the conventional method for manufacturing a discharge surface treatment electrode.
The electrode used in the discharge surface treatment is an aggregate of particles, and each particle remains in the shape of being joined by point contact and is not completely dissolved. Therefore, the strength of the electrode is very small, and when the electrode becomes large, the electrode is broken by its own weight.

本実施の形態の放電表面処理用電極製造の外観を図6に示す。
粒径1μmのCo粉末1に、実施の形態1と同様にパラフィンを重量比3%混合し、凝集したものを分解するためにメッシュサイズ0.05mmのふるいにかけた後、金型に適量入れ、その中にCoの突部を持つ底付丸棒6を埋め込む。
丸棒6は、粉末1の圧粉体であるが、高圧を負荷させて成形されている。
パンチにより所定の圧力をかけてプレスすることで、粉末1は固まり圧粉体となる。
FIG. 6 shows the appearance of manufacturing the electrode for discharge surface treatment according to the present embodiment.
In the same manner as in the first embodiment, 3% by weight of paraffin is mixed with Co powder 1 having a particle size of 1 μm, and after agglomeration, the mixture is passed through a sieve having a mesh size of 0.05 mm. A bottomed round bar 6 having a Co protrusion is embedded therein.
The round bar 6 is a green compact of the powder 1, but is molded by applying a high pressure.
By pressing with a predetermined pressure by a punch, the powder 1 is solidified into a green compact.

実施の形態1と同様に、プレスの際に粉末内部へのプレスの圧力の伝わりを良くするために粉末にパラフィンなどのワックスを重量比1%から10%程度混入すると成形性を改善することができるが、電極内のワックス残量が多くなるほど電気伝導率が悪くなるため、ワックスを混入した際には後の工程でワックスを除去することが望ましい。
圧縮成形された圧粉体は、圧縮により所定の硬さが得られていればそのまま放電表面処理用の電極として使用することができるが、加熱することで強度を増すことができる。
また、圧縮成形の際にワックスを混入した場合には、電極を加熱してワックスを除去する必要があるため、真空炉で300℃に加熱し電極を成形した。
この際、大きなブレス圧力で成形されているCoの丸棒6は、粉末と粉末の結合が強くなり、剛性が大きくなる。
また、Coの丸棒6の周囲にあるCo粉末1は、放電により引き離され、被膜となれる程度の強度となる。
As in the first embodiment, in order to improve the transmission of the pressure of the press into the powder during pressing, wax such as paraffin is mixed in the powder at a weight ratio of about 1% to 10% to improve the moldability. However, as the remaining amount of wax in the electrode increases, the electrical conductivity deteriorates. Therefore, when the wax is mixed, it is desirable to remove the wax in a later step.
The compression-molded green compact can be used as it is as an electrode for discharge surface treatment as long as a predetermined hardness is obtained by compression, but the strength can be increased by heating.
Further, when wax was mixed during compression molding, it was necessary to remove the wax by heating the electrode, so the electrode was molded by heating to 300 ° C. in a vacuum furnace.
At this time, the Co round bar 6 molded with a large breath pressure has a strong bond between the powder and the rigidity.
Further, the Co powder 1 around the Co round bar 6 is separated by electric discharge and has a strength enough to form a film.

従来の放電表面処理用電極の製造方法では、200mm×200mm×200mmの電極を製造できなかった。
しかしながら、本実施の形態によれば、寸法200mm×200mm×200mmの金型に平均粒径1μmのCo粉末1を入れ、そこに180mm×180mm×150mm(上部は200mm×200mm×30mm)のCo棒6を差し込み、プレス圧2MPaで圧縮成形し、その電極を真空炉に入れ、300℃で約1時間保持して電極を製作した。
なお、本実施の形態により製作された電極の取り扱いは、金属の固まりと同程度に容易である。
つまり、本実施の形態により200mm×200mm×200mm電極の製造が可能となった。
In the conventional method for manufacturing an electrode for discharge surface treatment, an electrode of 200 mm × 200 mm × 200 mm could not be manufactured.
However, according to the present embodiment, Co powder 1 having an average particle diameter of 1 μm is put into a mold having dimensions of 200 mm × 200 mm × 200 mm, and a Co rod of 180 mm × 180 mm × 150 mm (the upper part is 200 mm × 200 mm × 30 mm) 6 was inserted and compression molded at a press pressure of 2 MPa. The electrode was placed in a vacuum furnace and held at 300 ° C. for about 1 hour to produce an electrode.
It should be noted that handling of the electrode manufactured according to the present embodiment is as easy as metal lump.
In other words, the present embodiment made it possible to manufacture 200 mm × 200 mm × 200 mm electrodes.

その電極を用いて実際に加工しても、205mm×205mm×200mmの内面に0.05mm程度の被膜を形成することができ、従来大面積の表面加工を行う場合には、小さい電極により繰り返し行わなければならなかった処理が、工具交換等を最小で行えることにより被膜形成の作業効率が向上する。
また、大きな電極を成形できるようになったため、3次元形状を持ったワークを処理することが可能となり、その他、多数の面を同時に処理できる等の効果を得られる。
Even if the electrode is actually processed, a film of about 0.05 mm can be formed on the inner surface of 205 mm × 205 mm × 200 mm. Conventionally, when surface processing of a large area is performed, it is repeatedly performed with a small electrode. Since the processing that had to be performed can be performed with minimum tool change and the like, the work efficiency of film formation is improved.
In addition, since a large electrode can be formed, it is possible to process a workpiece having a three-dimensional shape, and it is possible to obtain an effect that a large number of surfaces can be processed simultaneously.

実施の形態3.
次に、本実施の形態3における放電表面処理用電極製造のためのプロセスを図7を用いて説明する。
上述した実施の形態では、圧粉体電極の芯としてCo圧粉体を用いる場合について説明したが、比較的薄い膜状の電極を製造するために本実施の形態では、芯にABS製の網7を用いたものである。
具体的には、粒径1μmのCo粉末1に上述した実施の形態と同様にパラフィンを混合した後、凝集したものを分解すべくメッシュサイズ0.05mmのふるいにかけ、金型に適量入れ、その中に、網7を埋め込む。
その後、更にCo粉末1の混合体を加え、パンチにより所定の圧力をかけてプレスすることで粉末は固まり圧粉体となる。
プレスの際にワックスを入れると共に、その後の工程でワックスを除去することは、上述した実施の形態と同様である。
圧縮成形された圧粉体は、圧縮により所定の硬さが得られていればそのまま放電表面処理用の電極として使用することができるが、加熱することで強度を増すことができる。
また、圧縮成形の際にワックスを混入した場合には、電極を加熱してワックスを除去する必要があるため、真空炉で300℃に加熱し電極を成形した。
Embodiment 3 FIG.
Next, the process for manufacturing the electrode for discharge surface treatment in Embodiment 3 will be described with reference to FIG.
In the above-described embodiment, the case where Co green compact is used as the core of the green compact electrode has been described. However, in order to manufacture a relatively thin film-like electrode, in this embodiment, an ABS network is used as the core. 7 is used.
Specifically, after the paraffin is mixed into the Co powder 1 having a particle diameter of 1 μm in the same manner as in the above-described embodiment, it is passed through a sieve having a mesh size of 0.05 mm in order to decompose the agglomerated material, and an appropriate amount is put into a mold. The net 7 is embedded inside.
Thereafter, a mixture of Co powder 1 is further added, and pressing is performed by applying a predetermined pressure by a punch, whereby the powder is solidified and becomes a green compact.
It is the same as in the above-described embodiment that wax is added during pressing and the wax is removed in the subsequent steps.
The compression-molded green compact can be used as it is as an electrode for discharge surface treatment as long as a predetermined hardness is obtained by compression, but the strength can be increased by heating.
Further, when wax was mixed during compression molding, it was necessary to remove the wax by heating the electrode, so the electrode was molded by heating to 300 ° C. in a vacuum furnace.

従来の放電表面処理用電極の製造方法では、100mm×100mm×5mmの電極を製造できなかった。
しかしながら、寸法100mm×100mm×5mmの金型に平均粒径1μmのCo粉末1とパラフィンの混合体を入れ、そこに90mm×90mm×2mmのABS製網7を差し込み、さらに平均粒径1μmのCo粉末1の混合体を加え、プレス圧2MPaで圧縮成形し、その電極を真空炉に入れ、300℃で約1時間保持して電極を製作した。
なお、本実施の形態により製作された電極の取り扱いは、金属の固まりと同程度に容易である。
つまり、本実施の形態により100mm×100×5mmの電極の製造が可能となった。
In the conventional manufacturing method of the electrode for discharge surface treatment, an electrode of 100 mm × 100 mm × 5 mm could not be manufactured.
However, a mixture of Co powder 1 and paraffin having an average particle diameter of 1 μm is placed in a mold having dimensions of 100 mm × 100 mm × 5 mm, an ABS net 7 of 90 mm × 90 mm × 2 mm is inserted therein, and Co having an average particle diameter of 1 μm is further inserted. The powder 1 mixture was added, compression-molded at a press pressure of 2 MPa, the electrode was placed in a vacuum furnace, and held at 300 ° C. for about 1 hour to produce an electrode.
It should be noted that handling of the electrode manufactured according to the present embodiment is as easy as metal lump.
In other words, this embodiment made it possible to manufacture an electrode of 100 mm × 100 × 5 mm.

その電極を用いて実際に加工しても、105mm×105mm×10mmの狭い隙間の溝内面に0.05mm程度の被膜を形成でき、従来処理できなかった箇所に被膜を形成できるようになった。
熱交換機のスリットなどに本実施の形態で得られた電極を用いて処理すれば、被膜の表面粗さのため、表面積を大きくでき、熱交換の効率を上げることができる。
Even if the electrode is actually processed, a film of about 0.05 mm can be formed on the inner surface of the groove having a narrow gap of 105 mm × 105 mm × 10 mm, and a film can be formed at a place where the conventional treatment could not be performed.
If the electrode obtained in this embodiment is used for a slit of a heat exchanger or the like, the surface area can be increased due to the surface roughness of the coating, and the efficiency of heat exchange can be increased.

なお、本実施の形態において、電極の芯として、ABS製の網を用いた場合について説明したが、平板でも同様の効果を持つ。
ただし、粉末と平板の接合強度が小さいため、網のほうがよい。
また、その材質はABSや金属に限らず、ガラスや高温で変形しないプラスチックや樹脂でもよい。
本実施の形態のように低融点の材質を網に用いた場合、放電の熱により、網が蒸発する。
高融点の材質を網に使用した場合、放電の熱でも溶融しない。
もし溶融しなければ、その面が放電面となるが、網材質に導電性の無いため、放電できなくなったり、電極とワークが衝突したりする。
しかし、低融点のものは蒸発してなくなるため、処理中に芯が現れても被膜に悪影響を与えない。
低融点の金属であるZnを使用すれば、上記のような問題は気にせずともよい。
また、融点の高くかつ硬いものを用いると、電極から材料を供給できないため、堆積していた被膜が除去されてしまうことである。
ABSやプラスチックは、溶けて炭素を析出するが、加工液は油で元々炭素リッチの環境で処理しているため、被膜を汚すことはない。
In this embodiment, the case where an ABS net is used as the core of the electrode has been described, but a flat plate has the same effect.
However, a mesh is better because the bonding strength between the powder and the flat plate is small.
The material is not limited to ABS or metal, but may be glass or plastic or resin that does not deform at high temperatures.
When a material having a low melting point is used for the mesh as in this embodiment, the mesh is evaporated by the heat of discharge.
If a high melting point material is used for the mesh, it will not melt even with the heat of discharge.
If it does not melt, the surface becomes the discharge surface, but since the mesh material is not conductive, the discharge cannot be performed or the electrode collides with the workpiece.
However, since those having a low melting point are not evaporated, even if a core appears during processing, the coating is not adversely affected.
If Zn, which is a metal with a low melting point, is used, there is no need to worry about the above problems.
Further, when a hard material having a high melting point is used, the material cannot be supplied from the electrode, and thus the deposited film is removed.
ABS and plastic melt and precipitate carbon, but since the processing fluid is originally treated with oil in a carbon-rich environment, the coating is not soiled.

放電表面処理の現象を示す図である。It is a figure which shows the phenomenon of a discharge surface treatment. 圧粉体電極一般の電極製造プロセスのフローチャートである。It is a flowchart of a general electrode manufacturing process of a green compact electrode. 本実施の形態における電極製造プロセスのフローチャートである。It is a flowchart of the electrode manufacturing process in this Embodiment. 電極製造過程におけるプレスの様子を示す図である。It is a figure which shows the mode of the press in an electrode manufacturing process. 本実施の形態の電極を用いて加工を行う現象図である。It is a phenomenon figure which processes using the electrode of this Embodiment. 電極製造過程におけるプレスの様子を示す図である。It is a figure which shows the mode of the press in an electrode manufacturing process. 電極製造過程におけるプレスの様子を示す図である。It is a figure which shows the mode of the press in an electrode manufacturing process.

符号の説明Explanation of symbols

1 Co粉末、2 上パンチ、3 下パンチ、4 金型、5 丸棒、6 底付丸棒、7 網。   1 Co powder, 2 top punch, 3 bottom punch, 4 molds, 5 round bar, 6 round bar with bottom, 7 mesh.

Claims (18)

金属粉末または金属の化合物の粉末、あるいは、セラミックスの粉末を圧縮成形した圧粉体の電極と、ワークとの間にパルス状の放電を発生させ、そのエネルギーにより、ワーク表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理において、
剛性をもつ電極の芯を、上記表面処理にて被膜となる電極粉末を配置したことを特徴とする放電表面処理用電極。
A pulsed discharge is generated between the electrode of a green powder, a powder of a metal powder or a metal compound, or a green compact obtained by compression molding a ceramic powder, and the work is used to generate an electrode material or electrode material on the work surface. In the discharge surface treatment to form a film made of a substance reacted by the discharge energy,
An electrode for discharge surface treatment, characterized in that an electrode powder that becomes a film by the surface treatment is disposed on a rigid electrode core.
電極の芯は、表面処理にて被膜となる電極粉末と同じ材質を用いることを特徴とする請求項1に記載の放電方面処理用電極。 The electrode for discharge direction treatment according to claim 1, wherein the electrode core is made of the same material as the electrode powder that becomes a film in the surface treatment. 電極の芯に、AgやNiやCoなどの酸化しにくい材質を用いることを特徴とする請求項1または2に記載の放電方面処理用電極。 3. The discharge surface treatment electrode according to claim 1 or 2, wherein a material that is not easily oxidized, such as Ag, Ni, or Co, is used for the core of the electrode. 電極の芯は、圧粉体電極内部に埋め込むことを特徴とする請求項1〜3の何れかに記載の放電表面処理用電極。 The electrode for discharge surface treatment according to any one of claims 1 to 3, wherein the core of the electrode is embedded in the green compact electrode. 電極の芯は、網構造とすることを特徴とする請求項4に記載の放電表面処理用電極。 The electrode for discharge surface treatment according to claim 4, wherein the core of the electrode has a net structure. 電極の芯は、圧粉体電極内部に埋め込む突部を持つ底付形状とすることを特徴とする請求項1〜3の何れかに記載の放電表面処理用電極。 The electrode for discharge surface treatment according to any one of claims 1 to 3, wherein the electrode core has a bottomed shape having a protrusion embedded in the green compact electrode. 電極の芯は、剛性をもちかつ低融点の素材からなることを特徴とする請求項1〜6のいずれかに記載の放電表面処理用電極。 The electrode for discharge surface treatment according to any one of claims 1 to 6, wherein the core of the electrode is made of a material having rigidity and a low melting point. 剛性をもちかつ低融点のものとして、ZnまたはABSやアクリルなどの樹脂類を用いることを特徴とする請求項7に記載の放電方面処理用電極。 8. The discharge surface treatment electrode according to claim 7, wherein a resin having a rigidity and a low melting point is made of a resin such as Zn, ABS, or acrylic. 剛性を持ちかつ低融点のものの形状が、網状またはポーラス状であることを特徴とする請求項7に記載の放電表面処理用電極。 The electrode for discharge surface treatment according to claim 7, wherein the shape of the material having rigidity and low melting point is a net shape or a porous shape. 金属粉末または金属の化合物の粉末、あるいは、セラミックスの粉末を所望形状の金型に入れる工程と、
剛性を持つ電極の芯を上記電極材料の粉末内に配置する工程と、
上記金型内に電極材料の粉末及び電極の芯が配置された状態で、所定の圧力をかけ、圧粉体電極をプレス成形する工程と、
を備えた放電表面処理用電極の製造方法。
Putting metal powder or metal compound powder, or ceramic powder into a mold having a desired shape;
Placing a rigid electrode core in the electrode material powder; and
In a state where the powder of the electrode material and the electrode core are arranged in the mold, a predetermined pressure is applied, and the green compact electrode is press-molded,
The manufacturing method of the electrode for discharge surface treatment provided with this.
電極の芯は、表面処理にて被膜となる電極粉末と同じ材質を用いることを特徴とする請求項10に記載の放電方面処理用電極の製造方法。 11. The method for producing an electrode for discharge direction treatment according to claim 10, wherein the electrode core is made of the same material as the electrode powder that becomes a film in the surface treatment. 電極の芯に、AgやNiやCoなどの酸化しにくい材質を用いることを特徴とする請求項10または11に記載の放電方面処理用電極の製造方法。 The method for manufacturing an electrode for discharge direction treatment according to claim 10 or 11, wherein a material that is not easily oxidized, such as Ag, Ni, or Co, is used for the core of the electrode. 電極の芯は、圧粉体電極内部に埋め込むことを特徴とする請求項10〜12の何れかに記載の放電表面処理用電極の製造方法。 13. The method for producing an electrode for discharge surface treatment according to claim 10, wherein the core of the electrode is embedded in the green compact electrode. 電極の芯は、網構造とすることを特徴とする請求項13に記載の放電表面処理用電極の製造方法。 14. The method for manufacturing an electrode for discharge surface treatment according to claim 13, wherein the core of the electrode has a net structure. 電極の芯は、圧粉体電極内部に埋め込む突部を持つ底付形状とすることを特徴とする請求項10〜12の何れかに記載の放電表面処理用電極の製造方法。 The method for producing an electrode for discharge surface treatment according to any one of claims 10 to 12, wherein the electrode core has a bottomed shape having a protrusion embedded in the green compact electrode. 電極の芯は、剛性をもちかつ低融点の素材からなることを特徴とする請求項10〜15のいずれかに記載の放電表面処理用電極の製造方法。 The method for manufacturing an electrode for discharge surface treatment according to any one of claims 10 to 15, wherein the core of the electrode is made of a material having rigidity and a low melting point. 剛性をもちかつ低融点のものとして、ZnまたはABSやアクリルなどの樹脂類を用いることを特徴とする請求項16に記載の放電方面処理用電極の製造方法。 The method for producing an electrode for discharge direction treatment according to claim 16, wherein a resin having a rigidity and a low melting point is used, such as a resin such as Zn, ABS, or acrylic. 剛性を持ちかつ低融点のものの形状が、網状またはポーラス状であることを特徴とする請求項16に記載の放電表面処理用電極の製造方法。 The method for producing an electrode for discharge surface treatment according to claim 16, wherein the shape of the material having rigidity and low melting point is a net shape or a porous shape.
JP2004020627A 2004-01-29 2004-01-29 Electrode for electrical discharge surface treatment and manufacturing method therefor Pending JP2005213558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020627A JP2005213558A (en) 2004-01-29 2004-01-29 Electrode for electrical discharge surface treatment and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020627A JP2005213558A (en) 2004-01-29 2004-01-29 Electrode for electrical discharge surface treatment and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005213558A true JP2005213558A (en) 2005-08-11

Family

ID=34904491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020627A Pending JP2005213558A (en) 2004-01-29 2004-01-29 Electrode for electrical discharge surface treatment and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005213558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067879A (en) * 2013-09-30 2015-04-13 株式会社Ihi Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067879A (en) * 2013-09-30 2015-04-13 株式会社Ihi Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method

Similar Documents

Publication Publication Date Title
JP3227454B2 (en) Electrode for discharge surface treatment, method for producing the same, and discharge surface treatment method and apparatus
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
JP3446694B2 (en) Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object
CN110257679B (en) Preparation method of molybdenum-based alloy coating
US20090274923A1 (en) Tools Having Compacted Powder Metal Work Surfaces, And Method
KR100753275B1 (en) Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JP2006322034A (en) Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method
KR20060031620A (en) Method of electrical discharge coating
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
CN113500205B (en) 3D printing method of bimetallic material
JP7490852B2 (en) Chamber
JPH10280082A (en) Composite alloy member, and its production
JP2005213558A (en) Electrode for electrical discharge surface treatment and manufacturing method therefor
RU2490094C2 (en) Electrode for surface processing by discharge and method of its fabrication
WO1999058282A1 (en) Electrode of green compact for discharge surface treatment, method of producing the same, method of discharge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
JP2006206964A (en) Electrode for discharging surface treatment and discharging surface treatment method
JP4580250B2 (en) Method for manufacturing discharge surface treatment electrode, electrode and discharge surface treatment method
WO2008010263A1 (en) Process for producing electrode for discharge surface treatment and method of discharge surface treatment
JP4119461B2 (en) Manufacturing method of electrode for discharge surface treatment
JP2005213557A (en) Electrical discharge surface treatment method and electrode for electrical discharge surface treatment, and method for manufacturing electrode
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP4320523B2 (en) ELECTRODE FOR DISCHARGE SURFACE TREATMENT, ITS MANUFACTURING METHOD, AND DISCHARGE SURFACE TREATMENT METHOD
JP2005023416A (en) Manufacturing method of metal-ceramic sintered laminate
JP2005213559A (en) Electrode for electrical discharge surface treatment and electrical discharge surface treatment method