JP2015067879A - Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method - Google Patents

Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method Download PDF

Info

Publication number
JP2015067879A
JP2015067879A JP2013204066A JP2013204066A JP2015067879A JP 2015067879 A JP2015067879 A JP 2015067879A JP 2013204066 A JP2013204066 A JP 2013204066A JP 2013204066 A JP2013204066 A JP 2013204066A JP 2015067879 A JP2015067879 A JP 2015067879A
Authority
JP
Japan
Prior art keywords
surface treatment
discharge surface
electrode
molded body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013204066A
Other languages
Japanese (ja)
Inventor
幸浩 下田
Yukihiro Shimoda
幸浩 下田
渡辺 光敏
Mitsutoshi Watanabe
光敏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013204066A priority Critical patent/JP2015067879A/en
Publication of JP2015067879A publication Critical patent/JP2015067879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten time from manufacture of granulated powder 9 until sintering of a molding 39.SOLUTION: Cobalt alloy powder 5 containing scaly chromium which is pulverized by a jet mill is used as an electrode material, the cobalt alloy powder 5 containing scaly chromium is input into a cylindrical granulation container 7 whose axis 7s is inclined in a vertical direction VD, and the granulation container 7 is rotated about the axis 7s, by which dry granulation is performed to the cobalt alloy powder 5 containing scaly chromium to manufacture spherical granulated powder 9.

Description

本発明は、放電エネルギーを利用して金属ワークの被処理部に例えば耐摩耗性のある被膜を形成する際に用いられる放電表面処理用電極を製造するための製造方法等に関するものである。   The present invention relates to a manufacturing method for manufacturing a discharge surface treatment electrode used when, for example, a wear-resistant film is formed on a portion to be processed of a metal workpiece using discharge energy.

近年、放電表面処理用電極について種々の開発がなされており、通常、放電表面処理用電極は次のような方法(通常の製造方法)によって製造されている。   In recent years, various developments have been made on discharge surface treatment electrodes, and discharge surface treatment electrodes are usually produced by the following method (normal production method).

アトマイズ又はボールミル等によって生成された金属粉末を電極材料とし、金属粉末を造粒する。具体的には、イソプロピルアルコール等の溶液を貯留した攪拌容器内に金属粉末及びアクリル系ポリマー等のバインダを投入して、攪拌容器内を攪拌することにより、金属粉末、溶液、及びバインダ等を混合してなるスラリーを製作する。続いて、スプレードライヤーを用い、スプレードライヤーの乾燥容器内を高温の窒素ガス雰囲気に維持した状態で、スプレードライヤーのノズルから乾燥容器内にスラリーを噴霧することにより、スラリー中の溶液を乾燥させて、バインダを含む金属粉末の集合体からなる球状の造粒粉末を製作する。   Metal powder produced by atomization or ball mill or the like is used as an electrode material, and the metal powder is granulated. Specifically, a metal powder and a binder such as an acrylic polymer are put into a stirring vessel in which a solution such as isopropyl alcohol is stored, and the inside of the stirring vessel is stirred to mix the metal powder, the solution, the binder, and the like. A slurry is formed. Subsequently, by spraying the slurry into the drying container from the nozzle of the spray dryer while maintaining the inside of the drying container of the spray dryer in a high-temperature nitrogen gas atmosphere using a spray dryer, the solution in the slurry is dried. A spherical granulated powder made of an aggregate of metal powder containing a binder is manufactured.

造粒粉末を製作した後に、成形金型内に造粒粉末を充填して、冷間プレス装置を用いて、成形金型内の造粒粉末を圧縮成形することにより、造粒粉末からなる成形体を製作する。続いて、加熱処理炉内に成形体をセットして、加熱処理炉内を非酸化雰囲気に維持した状態で、成形体の温度(換言すれば、加熱処理炉内の温度)をバインダの飛散温度まで昇温させて一定時間保持することにより、成形体からバインダを脱脂する。更に、加熱処理炉内を非酸化雰囲気に維持した状態で、成形体の温度を金属粉末の焼結温度まで昇温させて一定時間保持することにより、成形体を焼成させて焼結させる。   After the granulated powder is manufactured, the granulated powder is filled in the molding die, and the granulated powder in the molding die is compression-molded by using a cold press device, thereby forming the granulated powder. Make a body. Subsequently, the molded body is set in the heat treatment furnace, and the temperature of the molded body (in other words, the temperature in the heat treatment furnace) is set to the scattering temperature of the binder while the heat treatment furnace is maintained in a non-oxidizing atmosphere. The binder is degreased from the molded body by raising the temperature up to and holding for a certain period of time. Furthermore, in a state where the inside of the heat treatment furnace is maintained in a non-oxidizing atmosphere, the temperature of the molded body is raised to the sintering temperature of the metal powder and is maintained for a certain time, whereby the molded body is fired and sintered.

以上により、焼結した成形体からなる放電表面処理用電極を製造することができる。   As described above, an electrode for discharge surface treatment made of a sintered compact can be produced.

なお、本発明に関連する先行技術として特許文献1に示すものがある。   In addition, there exists a thing shown to patent document 1 as a prior art relevant to this invention.

特開2006−249462号公報JP 2006-249462 A

ところで、通常の製造方法にあっては、金属粉末を造粒する際にバインダを用いているため、前述のように、成形体を焼結させる前に、加熱処理炉内に成形体をセットした状態で、成形体の温度をバインダの飛散温度まで昇温させて一定時間保持して、成形体からバインダを脱脂する必要がある。そのため、造粒粉末を製作してから成形体を焼結するまでの時間が長くなって、放電表面処理用電極の生産性(製造性)を十分に高めることが困難であるという問題がある。   By the way, in the normal manufacturing method, since the binder is used when granulating the metal powder, the molded body is set in the heat treatment furnace before sintering the molded body as described above. In this state, it is necessary to raise the temperature of the molded body to the scattering temperature of the binder and hold it for a certain time to degrease the binder from the molded body. For this reason, there is a problem that it takes a long time from the production of the granulated powder to the sintering of the compact, and it is difficult to sufficiently increase the productivity (manufacturability) of the discharge surface treatment electrode.

また、成形体からバインダを脱脂しているものの、焼結済みの成形体からなる放電表面処理用電極の内部にバインダの残渣が残り易く、バインダの残渣が残ると、放電表面処理用電極の密度が放電表面処理用電極の軸方向に沿って不均一になって、放電エネルギーを利用して金属ワークの被処理部に形成した被膜に品質(均一性)のバラツキが生じるという問題がある。   In addition, although the binder is degreased from the molded body, the binder residue tends to remain inside the discharge surface treatment electrode made of a sintered molded body, and if the binder residue remains, the density of the discharge surface treatment electrode However, it becomes non-uniform along the axial direction of the electrode for discharge surface treatment, and there is a problem that quality (uniformity) varies in the film formed on the treated portion of the metal workpiece using the discharge energy.

そこで、本発明は、前述の問題を解決することができる、新規な構成の放電表面処理用電極の製造方法等を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for manufacturing a discharge surface treatment electrode having a novel configuration, which can solve the above-described problems.

本発明の発明者は、前述の問題を解決するために、種々な手法によって金属粉末の造粒を試みた結果、造粒対象としてジェットミルによって粉砕された鱗片状のクロムを含むコバルト合金粉末を用いた場合において、軸心が鉛直方向に対して傾斜した筒状の造粒容器内にクロムを含むコバルト合金粉末を投入し、造粒容器をその軸心周りに回転させるだけで、バインダを用いなくても、クロムを含むコバルト合金粉末を乾式で造粒して、図7(a)(b)に示すようなクロムを含むコバルト合金粉末の集合体からなる球状の造粒粉末を製作できることが判明し、本発明を完成するに至った。これは、造粒容器内において鱗片状のクロムを含むコバルト合金粉末の絡み合い易いという性質が有効かつ効果的に発揮されたことによるものと考えられる。なお、図示は省略するが、ボールミル、ビーズミルによって粉砕された不定形状のクロムを含むコバルト合金粉末等、別の機械的粉砕法によって生成された不定形状の金属粉末を電極材料とした場合にも、球状の造粒粉末を製作できることが判明している。   In order to solve the above-mentioned problems, the inventors of the present invention tried to granulate metal powder by various methods, and as a result, cobalt alloy powder containing flaky chromium pulverized by a jet mill as a granulation target was obtained. When used, a binder is used simply by putting cobalt alloy powder containing chromium into a cylindrical granulation vessel whose axis is inclined with respect to the vertical direction, and rotating the granulation vessel around its axis. Even if it is not, it is possible to produce a spherical granulated powder comprising an aggregate of cobalt alloy powders containing chromium as shown in FIGS. 7 (a) and 7 (b) by dry granulating cobalt alloy powder containing chromium. As a result, the present invention has been completed. This is considered to be because the property that the cobalt alloy powder containing scaly chromium is easily entangled in the granulation container is effectively and effectively exhibited. Although illustration is omitted, even when an amorphous metal powder produced by another mechanical pulverization method such as a cobalt alloy powder containing irregular chrome pulverized by a ball mill or bead mill is used as an electrode material, It has been found that spherical granulated powder can be produced.

本発明の第1の特徴は、放電エネルギーを利用して金属ワークの被処理部に被膜を形成する際に用いられる放電表面処理用電極を製造するための製造方法であって、機械的粉砕法によって生成された不定形状の金属粉末を電極材料として用い、軸心が鉛直方向に対して傾斜した筒状の造粒容器内に前記金属粉末を投入し、前記造粒容器をその軸心周りに回転させたり、別の造粒容器内に前記金属粉末を投入し、前記別の造粒容器を振動又は揺動させたりすることにより、前記金属粉末を乾式で造粒(乾式造粒)して、前記金属粉末の集合体からなる球状の造粒粉末を製作する造粒工程と、前記造粒工程の終了後に、成形金型内に前記造粒粉末を充填して、前記成形金型内の前記造粒粉末を圧縮成形することにより、前記造粒粉末からなる成形体を製作する圧縮工程と、前記造粒工程の終了後に、前記成形体を焼成して焼結する焼成工程と、を具備したことを要旨とする。   A first feature of the present invention is a manufacturing method for manufacturing an electrode for discharge surface treatment used when forming a coating film on a processing target portion of a metal workpiece using discharge energy, and a mechanical pulverization method Is used as an electrode material, the metal powder is put into a cylindrical granulation container whose axis is inclined with respect to the vertical direction, and the granulation container is placed around the axis. The metal powder is dry-granulated (dry granulation) by rotating or putting the metal powder in another granulation container and vibrating or rocking the other granulation container. A granulating step for producing a spherical granulated powder composed of an aggregate of the metal powder, and after completion of the granulating step, the granulated powder is filled in the molding die, Forming the granulated powder by compression molding the granulated powder A compression step of fabricating, after completion of the granulation step, and subject matter that anda firing step of sintering and firing the shaped body.

ここで、「金属ワーク」とは、金属素材としての金属ワークだけでなく、ガスタービン部品等の金属部品を含む意である。また、「金属粉末」とは、例えばニッケル粉末、コバルト粉末等の純金属粉末、例えばクロムを含むコバルト合金粉末等の合金粉末、及びこれらの混合粉末を含む意である。   Here, the “metal workpiece” means not only a metal workpiece as a metal material but also a metal component such as a gas turbine component. The “metal powder” is meant to include pure metal powder such as nickel powder and cobalt powder, alloy powder such as cobalt alloy powder containing chromium, and mixed powder thereof.

第1の特徴によると、機械的粉砕法によって生成された不定形状の前記金属粉末を電極材料として用い、軸心が鉛直方向に対して傾斜した前記造粒容器内に前記金属粉末を投入し、前記造粒容器をその軸心周りに回転させているため、バインダを用いなくても、前記金属粉末を乾式で造粒(乾式造粒)して、球状の前記造粒粉末を製作することができる。また、前記造粒容器内に前記金属粉末を投入し、前記造粒容器をその軸心周りに回転させる代わりに、前記別の造粒容器内に前記金属粉末を投入し、前記別の造粒容器を振動又は揺動させる場合も、同様に、バインダを用いなくても、球状の前記造粒粉末を製作できるものと推定される。これにより、前記造粒粉末を製作した後に前記成形体からバインダを脱脂する工程を省くことができると共に、前記放電表面処理用電極の密度を前記放電表面処理用電極の軸方向に沿って略均一にすることができる。   According to the first feature, the metal powder having an indefinite shape generated by a mechanical pulverization method is used as an electrode material, and the metal powder is put into the granulation container whose axis is inclined with respect to the vertical direction. Since the granulation container is rotated around its axis, the metal powder can be dry granulated (dry granulation) without using a binder to produce the spherical granulated powder. it can. Further, the metal powder is put into the granulation container, and instead of rotating the granulation container around its axis, the metal powder is put into the another granulation container, and the another granulation is performed. Similarly, when the container is vibrated or swung, it is presumed that the spherical granulated powder can be produced without using a binder. This eliminates the step of degreasing the binder from the molded body after producing the granulated powder, and the density of the discharge surface treatment electrode is substantially uniform along the axial direction of the discharge surface treatment electrode. Can be.

本発明の第2の特徴は、放電エネルギーを利用して金属ワークの被処理部に被膜を形成するための放電表面処理方法であって、第1の特徴からなる放電表面処理用電極の製造方法によって製造された放電表面処理用電極を用い、前記放電表面処理用電極と前記金属ワークの被処理部との間にパルス状の放電を発生させて、その放電エネルギーにより前記金属ワークの被処理部を局所的に溶融させつつ、前記放電表面処理用電極の電極材料又は該電極材料の反応物質を前記金属ワークの被処理部に溶着させて、前記被膜を形成することを要旨とする。   A second feature of the present invention is a discharge surface treatment method for forming a film on a portion to be treated of a metal workpiece using discharge energy, and a method for manufacturing a discharge surface treatment electrode according to the first feature. The discharge surface treatment electrode manufactured by the method is used, and a pulsed discharge is generated between the discharge surface treatment electrode and the metal workpiece to be treated, and the metal workpiece is treated by the discharge energy. The gist is that the electrode material of the electrode for discharge surface treatment or a reaction material of the electrode material is welded to the portion to be treated of the metal workpiece to form the coating film while locally melting.

本発明によれば、前記造粒粉末を製作した後に前記成形体からバインダを脱脂する工程を省くことができるため、前記造粒粉末を製作してから前記成形体を焼結するまでの時間を大幅に短縮して、前記放電表面処理用電極の生産性(製造性)を十分に高めることができる。   According to the present invention, since the step of degreasing the binder from the molded body after the granulated powder is manufactured can be omitted, the time until the molded body is sintered after the granulated powder is manufactured is reduced. It is possible to significantly shorten the productivity (manufacturability) of the discharge surface treatment electrode.

また、前記放電表面処理用電極の密度を前記放電表面処理用電極の軸方向に沿って略均一にすることができるため、放電エネルギーを利用して金属ワークの被処理部に形成した前記被膜の品質(均一性)のバラツキを無くして、前記被膜の品質を安定させることができる。   In addition, since the density of the discharge surface treatment electrode can be made substantially uniform along the axial direction of the discharge surface treatment electrode, the coating formed on the portion to be treated of the metal workpiece using discharge energy. Variations in quality (uniformity) can be eliminated and the quality of the coating film can be stabilized.

図1は、第1実施形態に係る放電表面処理用電極の製造方法における造粒工程を説明する模式図である。Drawing 1 is a mimetic diagram explaining the granulation process in the manufacturing method of the electrode for discharge surface treatment concerning a 1st embodiment. 図2は、第1実施形態に係る放電表面処理用電極の製造方法における分級工程を説明する模式図である。FIG. 2 is a schematic diagram for explaining a classification step in the method for manufacturing the electrode for discharge surface treatment according to the first embodiment. 図3(a)は、成形金型内に造粒粉末を充填した状態を示す図、図3(b)は、第1実施形態に係る放電表面処理用電極の製造方法における圧縮焼成工程及び第4実施形態に係る放電表面処理用電極の製造方法における圧縮工程を説明する模式図である。FIG. 3A is a diagram showing a state in which the granulated powder is filled in the molding die, and FIG. 3B is a diagram showing a compression firing step and a first step in the method for manufacturing an electrode for discharge surface treatment according to the first embodiment. It is a schematic diagram explaining the compression process in the manufacturing method of the electrode for discharge surface treatment which concerns on 4th Embodiment. 図4(a)は、第2実施形態に係る放電表面処理用電極の製造方法における圧縮工程を説明する模式図、図4(b)は、第2実施形態に係る放電表面処理用電極の製造方法における焼成工程を説明する模式図である。FIG. 4A is a schematic diagram for explaining a compression step in the method for manufacturing a discharge surface treatment electrode according to the second embodiment, and FIG. 4B is a process for manufacturing the discharge surface treatment electrode according to the second embodiment. It is a schematic diagram explaining the baking process in a method. 図5は、第3実施形態及び第4実施形態に係る放電表面処理用電極の製造方法におけるCIP工程を説明する模式図である。FIG. 5 is a schematic diagram for explaining a CIP process in the method for manufacturing an electrode for discharge surface treatment according to the third embodiment and the fourth embodiment. 図6は、第5実施形態に係る放電表面処理方法を説明する模式図である。FIG. 6 is a schematic diagram for explaining a discharge surface treatment method according to the fifth embodiment. 図7(a)、造粒容器内の造粒粉末を示す写真図、図7(b)は、図7(a)の部分拡大写真図である。FIG. 7A is a photograph showing the granulated powder in the granulation container, and FIG. 7B is a partially enlarged photograph of FIG. 7A.

(第1実施形態)
第1実施形態に係る放電表面処理用電極の製造方法について図1から図3(a)(b)及び図6を参照して説明する。
(First embodiment)
A method for manufacturing the electrode for discharge surface treatment according to the first embodiment will be described with reference to FIGS. 1 to 3A, 3B, and 6. FIG.

本発明の第1実施形態に係る放電表面処理用電極の製造方法は、図6に示すような放電表面処理用電極1を製造するための方法であって、造粒工程と、分級工程と、圧縮焼成工程(圧縮工程と焼成工程を合わせた工程)とを具備している。そして、本発明の第1実施形態に係る放電表面処理用電極の製造方法における各工程の具体的内容は、次のようになる。なお、放電表面処理用電極1は、放電エネルギーを利用して金属ワークWの被処理部Waに例えば耐摩耗性のある被膜3を形成する際に用いられるものである。   The method for manufacturing a discharge surface treatment electrode according to the first embodiment of the present invention is a method for manufacturing the discharge surface treatment electrode 1 as shown in FIG. 6, and includes a granulation step, a classification step, A compression firing process (a process combining the compression process and the firing process). And the specific content of each process in the manufacturing method of the electrode for discharge surface treatment which concerns on 1st Embodiment of this invention is as follows. The discharge surface treatment electrode 1 is used when, for example, the coating 3 having wear resistance is formed on the treated portion Wa of the metal workpiece W by using discharge energy.

造粒工程
図1に示すように、ジェットミルによって粉砕されかつ平均粒径が5μm以下の鱗片状のクロムを含むコバルト合金粉末5を電極材料として用いる。そして、軸心7sが鉛直方向VDに対して傾斜した筒状の造粒容器7内に鱗片状(不定形状の一例)のクロムを含むコバルト合金粉末5を投入し、造粒容器7をその軸心7s周りに回転させる。これにより、クロムを含むコバルト合金粉末5を乾式で造粒(乾式造粒)して、クロムを含むコバルト合金粉末5の集合体からなる球状の造粒粉末9を製作することができる。なお、造粒容器7内に鱗片状のクロムを含むコバルト合金粉末5を投入し、造粒容器7をその軸心7s周りに回転させる代わりに、筒状の別の造粒容器(図示省略)内に鱗片状のクロムを含むコバルト合金粉末5を投入し、別の造粒容器を振動又は揺動させても構わない。
Granulation step As shown in FIG. 1, cobalt alloy powder 5 containing flaky chromium pulverized by a jet mill and having an average particle size of 5 μm or less is used as an electrode material. Then, the cobalt alloy powder 5 containing scaly (an example of indefinite shape) chromium is put into a cylindrical granulation vessel 7 whose axis 7s is inclined with respect to the vertical direction VD, and the granulation vessel 7 is placed on its axis. Rotate around the heart 7s. Thereby, the cobalt alloy powder 5 containing chromium is granulated dry (dry granulation), and the spherical granulated powder 9 which consists of the aggregate | assembly of the cobalt alloy powder 5 containing chromium can be manufactured. Instead of putting the cobalt alloy powder 5 containing scaly chrome into the granulation vessel 7 and rotating the granulation vessel 7 about its axis 7s, another cylindrical granulation vessel (not shown) The cobalt alloy powder 5 containing scale-like chromium may be put in and another granulation container may be vibrated or swung.

ここで、鱗片状のクロムを含むコバルト合金粉末5の中に、アトマイズ法、還元法、又はカルボニル法によって生成されかつ平均粒径が5μm以下の球状のクロムを含むコバルト合金粉末11が混入されていても構わなく、この場合、クロムを含むコバルト合金粉末5,11全体(電極材料全体)に対する球状のクロムを含むコバルト合金粉末11の割合を10重量%以下に設定する必要がある。電極材料全体に対する球状のクロムを含むコバルト合金粉末11の割合が10重量%を超えると、造粒容器7内において鱗片状のクロムを含むコバルト合金粉末5の絡み合い易いという性質を有効かつ効果的に発揮させることが困難になるからである。また、鱗片状のクロムを含むコバルト合金粉末5に代えて、ボールミル、ビーズミルによって粉砕された不定形状のクロムを含むコバルト合金粉末(図示省略)を電極材料として用いても構わない。   Here, in the cobalt alloy powder 5 containing scaly chromium, cobalt alloy powder 11 containing spherical chromium produced by an atomizing method, a reduction method, or a carbonyl method and having an average particle diameter of 5 μm or less is mixed. In this case, the ratio of the cobalt alloy powder 11 containing spherical chromium to the entire cobalt alloy powders 5 and 11 containing chromium (the whole electrode material) needs to be set to 10% by weight or less. When the ratio of the cobalt alloy powder 11 containing spherical chromium to the whole electrode material exceeds 10% by weight, the property that the cobalt alloy powder 5 containing scaly chromium is easily entangled in the granulation vessel 7 effectively and effectively. It is because it becomes difficult to make it show. Further, in place of the cobalt alloy powder 5 containing scaly chromium, cobalt alloy powder (not shown) containing irregular-shaped chromium pulverized by a ball mill or bead mill may be used as an electrode material.

分級工程
前記造粒工程の終了後に、図2に示すように、振動式ふるい装置13のふるい容器15内に造粒粉末9を投入して、ふるい容器15を振動させる。これにより、ふるい容器15内に配設した一対のふるい網17,19によって造粒粉末9を分級して、目標の粒径範囲内(本発明の実施形態にあっては、平均粒径100〜200μm)の造粒粉末9を回収することができる。
Classification Step After completion of the granulation step, as shown in FIG. 2, the granulated powder 9 is put into the sieve container 15 of the vibrating sieve device 13 to vibrate the sieve container 15. Thereby, the granulated powder 9 is classified by a pair of sieve nets 17 and 19 disposed in the sieve container 15, and within a target particle size range (in the embodiment of the present invention, an average particle size of 100 to 200 μm) of granulated powder 9 can be recovered.

圧縮焼成工程
前記分級工程の終了後に、図3(a)に示すように、グラファイトにより構成された成形金型21を用い、成形金型21内に造粒粉末9を充填する。ここで、成形金型21は、ダイ孔23hを有したダイ23と、ダイ23のダイ孔23h内の上部に上下方向へ移動可能に設けられた上パンチ25と、ダイ23のダイ孔23h内の下部に上下方向へ移動可能に設けられた下パンチ27とを備えている。
Compression and firing step After the classification step, as shown in FIG. 3A, a granulated powder 9 is filled into the molding die 21 using a molding die 21 made of graphite. Here, the molding die 21 includes a die 23 having a die hole 23h, an upper punch 25 provided in an upper portion of the die hole 23h of the die 23 so as to be movable in the vertical direction, and a die hole 23h of the die 23. The lower punch 27 is provided at the lower part of the lower punch 27 so as to be movable in the vertical direction.

次に、図3(b)に示すように、ホットプレス装置(熱間プレス装置)29の加熱処理炉31内における上ラム33と下ラム35との間に成形金型21をセットする。そして、加熱処理炉31内を非酸化雰囲気に維持した状態で、上ラム33を下ラム35に対して相対的に下方向へ移動させながら、電源37を用いた通電加熱方式による加熱によって成形金型21内の温度を電極材料の焼結温度(焼成温度)まで昇温させて一定時間保持する。これにより、成形金型21内の造粒粉末9を圧縮成形して造粒粉末9からなる成形体39を製作しながら、成形体39を焼成して焼結することができる。   Next, as shown in FIG. 3B, the molding die 21 is set between the upper ram 33 and the lower ram 35 in the heat treatment furnace 31 of the hot press device (hot press device) 29. Then, in a state where the inside of the heat treatment furnace 31 is maintained in a non-oxidizing atmosphere, the upper ram 33 is moved downward relative to the lower ram 35, and the molding metal is heated by the electric heating method using the power source 37. The temperature in the mold 21 is raised to the sintering temperature (firing temperature) of the electrode material and held for a certain time. As a result, the compact 39 can be fired and sintered while the granulated powder 9 in the molding die 21 is compression-molded to produce the compact 39 made of the granulated powder 9.

ここで、電源37を用いた通電加熱方式による加熱に代えて、抵抗体(図示省略)を用いた抵抗加熱方式による加熱又はコイル(図示省略)を用いた誘電加熱方式による加熱等によって成形金型21内の温度を電極材料の焼結温度まで昇温させて一定時間保持しても構わない。なお、非酸化雰囲気とは、真空雰囲気、窒素ガス等の不活性ガス雰囲気、水素ガス雰囲気、COガス雰囲気等を含む意であって、電極材料の焼結温度とは、例えば、0.5〜0.8Tm℃(Tm:電極材料の融点)のことである。   Here, instead of heating by the energization heating method using the power source 37, the molding die is heated by the resistance heating method using a resistor (not shown) or the heating by the dielectric heating method using a coil (not shown). The temperature in 21 may be raised to the sintering temperature of the electrode material and held for a certain period of time. Note that the non-oxidizing atmosphere includes a vacuum atmosphere, an inert gas atmosphere such as nitrogen gas, a hydrogen gas atmosphere, a CO gas atmosphere, and the like, and the sintering temperature of the electrode material is, for example, 0.5 to 0.8 Tm ° C. (Tm: melting point of electrode material).

以上により、焼結した成形体39からなる放電表面処理用電極1を製造することができる。   As described above, the discharge surface treatment electrode 1 made of the sintered compact 39 can be manufactured.

続いて、第1実施形態の作用及び効果について説明する。   Then, the effect | action and effect of 1st Embodiment are demonstrated.

ジェットミルによって粉砕された鱗片状のクロムを含むコバルト合金粉末5を電極材料として用い、軸心7sが鉛直方向VDに対して傾斜した造粒容器7内に鱗片状のクロムを含むコバルト合金粉末5(球状のクロムを含むコバルト合金粉末11が混入された鱗片状のクロムを含むコバルト合金粉末5を含む)を投入して、造粒容器7をその軸心7s周りに回転させているため、バインダを用いなくても、クロムを含むコバルト合金粉末5を乾式で造粒(乾式造粒)して、球状のクロムを含むコバルト合金粉末5の造粒粉末9を製作することができる。また、造粒容器7内に鱗片状のクロムを含むコバルト合金粉末5を投入し、造粒容器7をその軸心7s周りに回転させる代わりに、別の造粒容器内に鱗片状のクロムを含むコバルト合金粉末5を投入し、別の造粒容器を振動又は揺動させた場合も、同様に、バインダを用いなくても、球状のクロムを含むコバルト合金粉末5の造粒粉末9を製作できるものと推定される。これにより、造粒粉末9を製作した後に成形体39からバインダを脱脂する工程を省くことができると共に、放電表面処理用電極1の密度を放電表面処理用電極1の軸方向に沿って略均一にすることができる。   Cobalt alloy powder 5 containing flaky chromium pulverized by a jet mill is used as an electrode material, and cobalt alloy powder 5 containing flaky chromium in granulation container 7 whose axis 7s is inclined with respect to vertical direction VD. (Including the cobalt alloy powder 5 containing scaly chrome mixed with the cobalt alloy powder 11 containing spherical chromium) and the granulation container 7 is rotated around its axis 7 s. Even if it does not use, the cobalt alloy powder 5 containing chromium can be granulated dry (dry granulation), and the granulated powder 9 of the cobalt alloy powder 5 containing spherical chromium can be manufactured. Also, instead of putting the cobalt alloy powder 5 containing scaly chrome into the granulation vessel 7 and rotating the granulation vessel 7 around its axis 7s, the scaly chrome is put into another granulation vessel. In the case where the cobalt alloy powder 5 is added and another granulation vessel is vibrated or swung, the granulated powder 9 of the cobalt alloy powder 5 containing spherical chromium is similarly manufactured without using a binder. Presumed to be possible. This eliminates the step of degreasing the binder from the compact 39 after the granulated powder 9 is manufactured, and the density of the discharge surface treatment electrode 1 is substantially uniform along the axial direction of the discharge surface treatment electrode 1. Can be.

従って、第1実施形態によれば、造粒粉末9を製作した後に成形体39からバインダを脱脂する工程を省くことができるため、造粒粉末9を製作してから成形体39を焼結するまでの時間を大幅に短縮して、放電表面処理用電極1の生産性(製造性)を十分に高めることができる。   Therefore, according to the first embodiment, since the step of degreasing the binder from the molded body 39 after the granulated powder 9 is manufactured can be omitted, the molded body 39 is sintered after the granulated powder 9 is manufactured. Can be significantly shortened, and the productivity (manufacturability) of the discharge surface treatment electrode 1 can be sufficiently increased.

また、放電表面処理用電極1の密度を放電表面処理用電極1の軸方向に沿って略均一にすることができるため、放電エネルギーを利用して金属ワークWの被処理部Waに形成した被膜3の品質(均一性)のバラツキを無くして、被膜3の品質を安定させることができる。   Further, since the density of the discharge surface treatment electrode 1 can be made substantially uniform along the axial direction of the discharge surface treatment electrode 1, the coating film formed on the portion Wa to be processed of the metal workpiece W using the discharge energy The quality (uniformity) of 3 can be eliminated, and the quality of the coating 3 can be stabilized.

(第2実施形態)
第2実施形態に係る放電表面処理用電極の製造方法の構成の中で、第1実施形態に係る放電表面処理用電極の製造方法と異なる点についてのみ図4(a)(b)を参照して説明する。
(Second Embodiment)
In the configuration of the method for manufacturing the electrode for discharge surface treatment according to the second embodiment, only the points different from the method for manufacturing the electrode for discharge surface treatment according to the first embodiment will be described with reference to FIGS. I will explain.

第2実施形態に係る放電表面処理用電極の製造方法は、第1実施形態に係る放電表面処理用電極の製造方法における圧縮焼成工程に代えて、圧縮工程と焼成工程とを具備している。そして、第2実施形態に係る放電表面処理用電極の製造方法における圧縮工程と焼成工程の具体的な内容は、次のようになる。   The method for manufacturing an electrode for discharge surface treatment according to the second embodiment includes a compression step and a baking step instead of the compression baking step in the method for manufacturing the electrode for discharge surface treatment according to the first embodiment. And the concrete content of the compression process and baking process in the manufacturing method of the electrode for electrical discharge surface treatment which concerns on 2nd Embodiment is as follows.

圧縮工程
図4(a)に示すように、成形金型21内に造粒粉末9を充填した状態で、冷間プレス装置41における上ラム43と下ラム45との間に成形金型21をセットする。そして、上ラム43を下ラム45に対して相対的に下方向へ移動させて、成形金型21内の造粒粉末9を圧縮成形する。これにより、造粒粉末9からなる成形体39を製作することができる。
Compression Process As shown in FIG. 4A, the molding die 21 is placed between the upper ram 43 and the lower ram 45 in the cold press device 41 in a state where the granulated powder 9 is filled in the molding die 21. set. Then, the upper ram 43 is moved downward relative to the lower ram 45, and the granulated powder 9 in the molding die 21 is compression-molded. Thereby, the molded object 39 which consists of the granulated powder 9 is producible.

なお、第2実施形態においては、成形金型21はグラファイトにより構成される必要はない。   In the second embodiment, the molding die 21 need not be made of graphite.

焼成工程
前記圧縮工程の終了後に、図4(b)に示すように、成形金型21(図4(a)参照)から取り出した成形体39を加熱処理炉47内の所定位置にセットする。そして、加熱処理炉47内を非酸化雰囲気に維持した状態で、加熱処理炉47のヒータ49によって非酸化雰囲気の温度(加熱処理炉47内の温度)の温度を電極材料の焼結温度まで昇温させて一定時間保持する。これにより、成形体39を焼成して焼結することができる。
Firing Step After the compression step is finished, as shown in FIG. 4 (b), the molded body 39 taken out from the molding die 21 (see FIG. 4 (a)) is set at a predetermined position in the heat treatment furnace 47. Then, with the inside of the heat treatment furnace 47 maintained in a non-oxidizing atmosphere, the temperature of the non-oxidizing atmosphere (temperature in the heat treatment furnace 47) is raised to the sintering temperature of the electrode material by the heater 49 of the heat treatment furnace 47. Allow to warm and hold for a period of time. Thereby, the molded object 39 can be baked and sintered.

そして、第2実施形態においても、前述の第1実施形態と同様の作用及び効果を奏するものである。   And also in 2nd Embodiment, there exists an effect | action and effect similar to the above-mentioned 1st Embodiment.

(第3実施形態)
第3実施形態に係る放電表面処理用電極の製造方法の構成の中で、第2実施形態に係る放電表面処理用電極の製造方法と異なる点についてのみ図5を参照して説明する。
(Third embodiment)
In the configuration of the method for manufacturing the discharge surface treatment electrode according to the third embodiment, only differences from the method for manufacturing the discharge surface treatment electrode according to the second embodiment will be described with reference to FIG.

第3実施形態に係る放電表面処理用電極の製造方法は、第2実施形態に係る放電表面処理用電極の製造方法における各工程(造粒工程、分級工程、圧縮工程、焼成工程)の他に、CIP工程を具備している。そして、第3実施形態に係る放電表面処理用電極の製造方法におけるCIP工程の具体的な内容は、次のようになる。   The method for manufacturing the electrode for discharge surface treatment according to the third embodiment is in addition to each step (granulation step, classification step, compression step, firing step) in the method for manufacturing the electrode for discharge surface treatment according to the second embodiment. , CIP process. And the specific content of the CIP process in the manufacturing method of the electrode for electrical discharge surface treatment which concerns on 3rd Embodiment is as follows.

CIP工程
前記圧縮工程の終了後であって前記焼成工程の開始前に、図5に示すように、成形金型21(図4(a)参照)から取り出した成形体39にゴム型51に封入する。そして、ゴム型51を圧力容器53内の作動液(加圧液)Sに浸漬させて、圧力容器53内の作動液Sの静水圧(等方圧)の作用によって成形体39を均等に加圧することにより、成形体39にCIP処理を施すことができる。
CIP Process After the compression process is completed and before the firing process is started, as shown in FIG. 5, the molded body 39 taken out from the molding die 21 (see FIG. 4A) is sealed in the rubber mold 51. To do. Then, the rubber mold 51 is immersed in the hydraulic fluid (pressurized fluid) S in the pressure vessel 53, and the compact 39 is uniformly applied by the action of the hydrostatic pressure (isotropic pressure) of the hydraulic fluid S in the pressure vessel 53. By pressing, the molded body 39 can be subjected to CIP processing.

そして、第3実施形態によれば、第1実施形態と同様の作用及び効果を奏する他に、前記焼成工程の前に、成形体39にCIP処理を施しているため、放電表面処理用電極1(図6参照)の密度を放電表面処理用電極1の軸方向に沿ってより略均一にすることができ、放電エネルギーを利用して金属ワークWの被処理部Wa(図6参照)に形成した被膜3(図6参照)の品質をより安定させることができる。   And according to 3rd Embodiment, since there exists an effect | action and effect similar to 1st Embodiment, since the CIP process was performed to the molded object 39 before the said baking process, the electrode 1 for discharge surface treatments The density of (see FIG. 6) can be made substantially more uniform along the axial direction of the discharge surface treatment electrode 1, and the discharge energy is used to form the processed portion Wa (see FIG. 6) of the metal workpiece W. The quality of the coated film 3 (see FIG. 6) can be further stabilized.

(第4実施形態)
第4実施形態に係る放電表面処理用電極の製造方法の構成の中で、第3実施形態に係る放電表面処理用電極の製造方法と異なる点についてのみ図3(b)を参照して説明する。
(Fourth embodiment)
In the configuration of the method for manufacturing the discharge surface treatment electrode according to the fourth embodiment, only differences from the method for manufacturing the discharge surface treatment electrode according to the third embodiment will be described with reference to FIG. .

第4実施形態に係る放電表面処理用電極の製造方法における圧縮工程は、冷間プレス装置(図4(a)参照)の代わりに、図3(b)に示すように、ホットプレス装置29を用い、ホットプレス装置29の加熱処理炉31内における上ラム33と下ラム35との間にグラファイトにより構成された成形金型21をセットする。そして、加熱処理炉31内を非酸化雰囲気に維持した状態で、上ラム33を下ラム35に対して相対的に下方向へ移動させながら、電源37を用いた通電加熱方式による加熱によって成形金型21内の温度を電極材料の仮焼成温度(仮焼結温度)まで昇温させて一定時間保持する。これにより、成形金型21内の造粒粉末9を圧縮成形して成形体39を製作しながら、成形体39を仮焼成することができる。   As shown in FIG. 3B, the compression step in the method for manufacturing the discharge surface treatment electrode according to the fourth embodiment uses a hot press device 29 as shown in FIG. 3B instead of the cold press device (see FIG. 4A). Used, the molding die 21 made of graphite is set between the upper ram 33 and the lower ram 35 in the heat treatment furnace 31 of the hot press apparatus 29. Then, in a state where the inside of the heat treatment furnace 31 is maintained in a non-oxidizing atmosphere, the upper ram 33 is moved downward relative to the lower ram 35, and the molding metal is heated by the electric heating method using the power source 37. The temperature in the mold 21 is raised to the temporary firing temperature (preliminary sintering temperature) of the electrode material and held for a certain time. Thereby, the compact 39 can be temporarily fired while the granulated powder 9 in the molding die 21 is compression-molded to produce the compact 39.

ここで、電源37を用いた通電加熱方式による加熱に代えて、抵抗体(図示省略)を用いた抵抗加熱方式による加熱又はコイル(図示省略)を用いた誘電加熱方式による加熱等によって成形金型21内の温度を電極材料の仮焼成温度まで昇温させても構わない。なお、電極材料の仮焼成温度とは、例えば、0.3〜0.45Tm℃(Tm:電極材料の融点)のことである。   Here, instead of heating by the energization heating method using the power source 37, the molding die is heated by the resistance heating method using a resistor (not shown) or the heating by the dielectric heating method using a coil (not shown). The temperature in 21 may be raised to the temporary firing temperature of the electrode material. In addition, the temporary firing temperature of the electrode material is, for example, 0.3 to 0.45 Tm ° C. (Tm: melting point of the electrode material).

そして、第4実施形態においても、前述の第3実施形態と同様の作用及び効果を奏するものである。   And also in 4th Embodiment, there exists an effect | action and effect similar to the above-mentioned 3rd Embodiment.

(第5実施形態)
第5実施形態に係る放電表面処理方法について図6を参照して説明する。
(Fifth embodiment)
A discharge surface treatment method according to the fifth embodiment will be described with reference to FIG.

図6に示すように、第5実施形態に係る放電表面処理方法は、放電エネルギーを利用して金属ワークWの被処理部Waに耐摩耗性のある被膜3を形成するための方法であって、第5実施形態に係る放電表面処理方法の具体的な内容は、次のようになる。   As shown in FIG. 6, the discharge surface treatment method according to the fifth embodiment is a method for forming a wear-resistant film 3 on the portion Wa of the metal workpiece W using discharge energy. The specific contents of the discharge surface treatment method according to the fifth embodiment are as follows.

第1実施形態から第4実施形態のうちのいずれかの実施形態に係る放電表面処理用電極1を用い、加工槽55に貯留された加工油L中において、放電表面処理用電極1と金属ワークWの被処理部Waとの間にパルス状の放電を発生させる。これにより、その放電エネルギーにより金属ワークWの被処理部Waを局所的に溶融させつつ、放電表面処理用電極1の電極材料又はその反応物質を金属ワークWの被処理部Waに溶着させて、耐摩耗性のある被膜3を形成することができる。   Using the discharge surface treatment electrode 1 according to any one of the first to fourth embodiments, the discharge surface treatment electrode 1 and the metal workpiece in the processing oil L stored in the machining tank 55. A pulse-like discharge is generated between the portion W to be processed Wa. Thereby, while locally melting the portion Wa to be processed of the metal workpiece W by the discharge energy, the electrode material of the discharge surface treatment electrode 1 or its reactant is welded to the portion to be processed Wa of the metal workpiece W, A wear-resistant coating 3 can be formed.

そして、第5実施形態に係る放電表面処理方法によれば、第1実施形態から第4実施形態のうちのいずれかの実施形態に係る放電表面処理用電極1を用いているため、放電エネルギーを利用して金属ワークWの被処理部Waに形成した被膜3の品質(均一性)のバラツキを無くして、被膜3の品質を安定させることができる。   According to the discharge surface treatment method according to the fifth embodiment, since the discharge surface treatment electrode 1 according to any one of the first to fourth embodiments is used, the discharge energy is reduced. It is possible to stabilize the quality of the coating 3 by eliminating variations in the quality (uniformity) of the coating 3 formed on the treated portion Wa of the metal workpiece W.

なお、本発明は、前述の実施形態の説明に限られるものではなく、適宜の変更を行うことにより、種々の態様で実施可能である。また、本発明に包含される権利範囲は、これらの実施形態に限定されないものである。   In addition, this invention is not restricted to description of the above-mentioned embodiment, It can implement in a various aspect by making an appropriate change. Further, the scope of rights encompassed by the present invention is not limited to these embodiments.

L:加工油、S:作動液、W:金属ワーク、Wa:被処理部、1:放電表面処理用電極、3:被膜、5:鱗片状のクロムを含むコバルト合金粉末、7:造粒容器、7s:造粒容器の軸心、9:造粒粉末、11:球状のクロムを含むコバルト合金粉末、13:振動ふるい装置、15:ふるい容器、17:ふるい網、19:ふるい網、21:成形金型、23:ダイ、23h:ダイ孔、25:上パンチ、27:下パンチ、29:ホットプレス装置、31:加熱処理炉、33:上ラム、35:下ラム、37:電源、39:成形体、41:冷間プレス装置、43:上ラム、45:下ラム、47:加熱処理炉、49:ヒータ、51:ゴム型、53:圧力容器、55:加工槽   L: Processing oil, S: Hydraulic fluid, W: Metal workpiece, Wa: Processed part, 1: Electrode for discharge surface treatment, 3: Coating, 5: Cobalt alloy powder containing scaly chromium, 7: Granulation container 7s: Axis of granulation container, 9: Granulated powder, 11: Cobalt alloy powder containing spherical chromium, 13: Vibrating sieve device, 15: Sieve container, 17: Sieve net, 19: Sieve net, 21: Mold: 23: Die, 23h: Die hole, 25: Upper punch, 27: Lower punch, 29: Hot press apparatus, 31: Heat treatment furnace, 33: Upper ram, 35: Lower ram, 37: Power supply, 39 : Molded body, 41: Cold press device, 43: Upper ram, 45: Lower ram, 47: Heat treatment furnace, 49: Heater, 51: Rubber mold, 53: Pressure vessel, 55: Processing tank

Claims (6)

放電エネルギーを利用して金属ワークの被処理部に被膜を形成する際に用いられる放電表面処理用電極を製造するための製造方法であって、
機械的粉砕法によって生成された不定形状の金属粉末を電極材料として用い、軸心が鉛直方向に対して傾斜した筒状の造粒容器内に前記金属粉末を投入し、前記造粒容器をその軸心周りに回転させたり、別の造粒容器内に前記金属粉末を投入し、前記別の造粒容器を振動又は揺動させたりすることにより、前記金属粉末を乾式で造粒して、前記金属粉末の集合体からなる球状の造粒粉末を製作する造粒工程と、
前記造粒工程の終了後に、成形金型内に前記造粒粉末を充填して、前記成形金型内の前記造粒粉末を圧縮成形することにより、前記造粒粉末からなる成形体を製作する圧縮工程と、
前記造粒工程の終了後に、前記成形体を焼成して焼結する焼成工程と、を具備したことを特徴とする放電表面処理用電極の製造方法。
It is a manufacturing method for manufacturing an electrode for discharge surface treatment used when forming a film on a processed part of a metal workpiece using discharge energy,
Using an irregularly shaped metal powder produced by a mechanical pulverization method as an electrode material, the metal powder is put into a cylindrical granulation container whose axis is inclined with respect to the vertical direction. Rotating around the axis, or putting the metal powder in another granulation container, vibrating or rocking the other granulation container, granulate the metal powder dry, A granulating step for producing a spherical granulated powder comprising an aggregate of the metal powders;
After completion of the granulation step, the granulated powder is filled in the molding die, and the granulated powder in the molding die is compression-molded to produce a molded body made of the granulated powder. A compression process;
A method for producing an electrode for discharge surface treatment, comprising: a firing step of firing and sintering the compact after the granulation step.
前記圧縮工程と前記焼成工程は、前記成形金型内の前記造粒粉末を圧縮成形して前記成形体を製作しながら、前記成形体を焼成して焼結することにより、1つの工程で行うようになっていることを特徴とする請求項1に記載の放電表面処理用電極の製造方法。   The compression step and the firing step are performed in one step by firing and sintering the molded body while producing the molded body by compression molding the granulated powder in the molding die. The manufacturing method of the electrode for discharge surface treatment of Claim 1 characterized by the above-mentioned. 前記圧縮工程の終了後であって前記焼成工程の開始前に、前記成形体をゴム型内に封入し、圧力容器内の作動液の静水圧の作用によって前記成形体を均等に加圧することにより、前記成形体にCIP処理を施すCIP工程と、を具備したことを特徴とする請求項1に記載の放電表面処理用電極の製造方法。   After the compression process is completed and before the firing process is started, the molded body is sealed in a rubber mold, and the molded body is uniformly pressurized by the action of the hydrostatic pressure of the hydraulic fluid in the pressure vessel. The method for producing an electrode for discharge surface treatment according to claim 1, further comprising: a CIP step of performing a CIP treatment on the molded body. 前記圧縮工程は、前記成形金型内に前記造粒粉末を充填して、前記成形金型内の前記造粒粉末を圧縮成形して前記成形体を製作しながら、前記成形体を仮焼成するようになっており、
前記圧縮工程の終了後であって前記焼成工程の開始前に、前記成形体をゴム型内に封入し、圧力容器内の作動液の静水圧の作用によって前記成形体を均等に加圧することにより、前記成形体にCIP処理を施すCIP工程と、を具備したことを特徴とする請求項1に記載の放電表面処理用電極の製造方法。
In the compression step, the granulated powder is filled in the molding die, the granulated powder in the molding die is compression-molded to produce the molded body, and the molded body is temporarily fired. And
After the compression process is completed and before the firing process is started, the molded body is sealed in a rubber mold, and the molded body is uniformly pressurized by the action of the hydrostatic pressure of the hydraulic fluid in the pressure vessel. The method for producing an electrode for discharge surface treatment according to claim 1, further comprising: a CIP step of performing a CIP treatment on the molded body.
前記造粒工程の終了後であって前記圧縮工程の開始前に、前記造粒粉末を分級して、目標の粒径範囲内の造粒粉末を回収する分級工程と、を具備したことを特徴とする請求項1から請求項4のうちのいずれかの請求項に記載の放電表面処理用電極の製造方法。   A classification step of classifying the granulated powder after the completion of the granulation step and before the compression step, and collecting the granulated powder within a target particle size range. The method for producing an electrode for discharge surface treatment according to any one of claims 1 to 4. 放電エネルギーを利用して金属ワークの被処理部に被膜を形成するための放電表面処理方法であって、
請求項1から請求項4のうちのいずれか1項に記載の放電表面処理用電極の製造方法によって製造された放電表面処理用電極を用い、前記放電表面処理用電極と前記金属ワークの被処理部との間にパルス状の放電を発生させて、その放電エネルギーにより前記金属ワークの被処理部を局所的に溶融させつつ、前記放電表面処理用電極の電極材料又は該電極材料の反応物質を前記金属ワークの被処理部に溶着させて、前記被膜を形成することを特徴とする放電表面処理方法。
A discharge surface treatment method for forming a film on a treated part of a metal workpiece using discharge energy,
A discharge surface treatment electrode manufactured by the method for manufacturing a discharge surface treatment electrode according to any one of claims 1 to 4, wherein the discharge surface treatment electrode and the metal workpiece are treated. A pulsed discharge is generated between the electrode material and the portion to be processed of the metal workpiece is locally melted by the discharge energy, while the electrode material of the electrode for discharge surface treatment or the reactant of the electrode material is A discharge surface treatment method, wherein the coating is formed by welding to a portion to be treated of the metal workpiece.
JP2013204066A 2013-09-30 2013-09-30 Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method Pending JP2015067879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204066A JP2015067879A (en) 2013-09-30 2013-09-30 Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204066A JP2015067879A (en) 2013-09-30 2013-09-30 Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method

Publications (1)

Publication Number Publication Date
JP2015067879A true JP2015067879A (en) 2015-04-13

Family

ID=52834880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204066A Pending JP2015067879A (en) 2013-09-30 2013-09-30 Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method

Country Status (1)

Country Link
JP (1) JP2015067879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105917A1 (en) * 2021-12-06 2023-06-15 株式会社Ihi Electrode for electrical discharge surface treatment and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229540A (en) * 1989-03-02 1990-09-12 Nkk Corp Control device for disk pelletizer
JP2005213558A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for electrical discharge surface treatment and manufacturing method therefor
JP2006249462A (en) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Method for producing electrode, and electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229540A (en) * 1989-03-02 1990-09-12 Nkk Corp Control device for disk pelletizer
JP2005213558A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for electrical discharge surface treatment and manufacturing method therefor
JP2006249462A (en) * 2005-03-08 2006-09-21 Ishikawajima Harima Heavy Ind Co Ltd Method for producing electrode, and electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105917A1 (en) * 2021-12-06 2023-06-15 株式会社Ihi Electrode for electrical discharge surface treatment and method for producing same

Similar Documents

Publication Publication Date Title
CN104690271B (en) A kind of power injection molding of inexpensive hydrogenation dehydrogenation titanium powder
KR101108818B1 (en) Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment
JP6303016B2 (en) Manufacturing method of layered objects
CN105174251A (en) Preparation method of isostatic pressing formed graphite of ultra-thin structure
CN113500205B (en) 3D printing method of bimetallic material
CN106475567A (en) The manufacture method of chrome molybdenum target blankss
JP2015067879A (en) Manufacturing method of electrode for discharge surface treatment, and discharge surface treatment method
CN111633306B (en) Nickel-titanium shape memory alloy part and manufacturing method thereof
WO2011136246A1 (en) Electrode to be used in discharge surface treatment, and process for production thereof
JP7026993B2 (en) Manufacturing method of magnet powder and magnet powder
WO2017150340A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
CN104451222B (en) A kind of preparation method of nanograined W-Cu composite block material
RU2490094C2 (en) Electrode for surface processing by discharge and method of its fabrication
Rodkevich et al. Sintering of 316L stainless steel bimodal powder produced by electrical explosion of wires
JP2009155702A (en) Method for manufacturing titanium powder sintered compact
JP2015140461A (en) Electrode for discharge surface treatment and method for manufacturing the same
TW201039945A (en) Intermediate for producing sintered metallic components, a process for producing the intermediate and the production of the components
JP2021055160A (en) Method for manufacturing molded article
WO2023105917A1 (en) Electrode for electrical discharge surface treatment and method for producing same
RU2717768C1 (en) Method for additive molding of articles from powder materials
RU2417137C2 (en) Method of fabricating electrode for surface electric-discharge processing and electrode for surface electric-discharge processing
KR101730851B1 (en) Nano-micro mixed powder for controlling sintering behavior and manufacturing method for the same
JPS63227730A (en) Manufacture of high-density amorphous compact
CN104190934B (en) A kind of preparation method of laser fast shaping niobium tungsten alloy jet pipe
JP2005213558A (en) Electrode for electrical discharge surface treatment and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107