JP2021055160A - Method for manufacturing molded article - Google Patents

Method for manufacturing molded article Download PDF

Info

Publication number
JP2021055160A
JP2021055160A JP2019180583A JP2019180583A JP2021055160A JP 2021055160 A JP2021055160 A JP 2021055160A JP 2019180583 A JP2019180583 A JP 2019180583A JP 2019180583 A JP2019180583 A JP 2019180583A JP 2021055160 A JP2021055160 A JP 2021055160A
Authority
JP
Japan
Prior art keywords
powder
powder material
particles
modeling
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019180583A
Other languages
Japanese (ja)
Other versions
JP7336944B2 (en
Inventor
純也 山田
Junya Yamada
純也 山田
博之 伊部
Hiroyuki Ibe
博之 伊部
伸映 加藤
Nobuaki Kato
伸映 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2019180583A priority Critical patent/JP7336944B2/en
Publication of JP2021055160A publication Critical patent/JP2021055160A/en
Application granted granted Critical
Publication of JP7336944B2 publication Critical patent/JP7336944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

To provide a method for manufacturing a molded article, by which a dense molded article in a three-dimensional shape with high hardness can be manufactured.SOLUTION: The method for manufacturing a molded article includes: a step of forming a molded article in a three-dimensional shape by use of a powder material for additive manufacturing, the powder material comprising tungsten carbide and cobalt, by irradiation with laser light or an electron beam; a step of heat-treating the molded article in a reduced pressure environment; and a step of subjecting the heat-treated molded article to a hot isotropic pressing process.SELECTED DRAWING: Figure 3

Description

本発明は、造形物の製造方法に関する。 The present invention relates to a method for producing a modeled object.

付加製造(Additive manufacturing)技術では、材料を付着することによって3次元形状の数値表現(典型的には3DCADデータ)をもとに物体を作製する。典型的には、粉末材料(Additive Manufacturing materials)を造形すべき造形物の断面に対応する形状の薄層として接合または焼結し、この薄層を順次積み重ねていくことで、目的の3次元形状を造形する。この付加製造においては、近年では、WC基などの超硬粉末材料を用い、成形型を必要とせずに超硬部材を直接造形する、積層造形技術の向上が求められている(例えば、特許文献1〜4参照)。 In additive manufacturing technology, an object is created based on a numerical representation of a three-dimensional shape (typically 3D CAD data) by adhering a material. Typically, powdered materials (Adaptive Manufacturing materials) are joined or sintered as thin layers having a shape corresponding to the cross section of the model to be modeled, and the thin layers are sequentially stacked to form a desired three-dimensional shape. To model. In this additional manufacturing, in recent years, there has been a demand for improvement of a laminated molding technique in which a cemented carbide powder material such as a WC group is used to directly mold a cemented carbide member without requiring a molding mold (for example, Patent Documents). See 1-4).

国際公開第2015/194678号International Publication No. 2015/194678 特開2017−113952号公報JP-A-2017-113952 特開2017−114716号公報Japanese Unexamined Patent Publication No. 2017-114716 特開2017−115194号公報JP-A-2017-115194

積層造形法において、緻密で硬度が高い造形物を製造する技術が望まれている。 In the additive manufacturing method, a technique for producing a dense and highly hard model is desired.

ここで、本発明者らは、レーザ光又は電子ビームを照射して3次元形状の造形物を製造する積層造形法について、積層造形用の粉末材料の成分及び造形プロセスと、造形物の物性との関係について検討を行った。その結果、積層造形用の粉末材料の成分及び造形プロセスを特定の条件に規定することで、緻密で硬度が高い造形物を製造することができる、ということを見出した。
本発明は、上記課題を鑑みてなされたものであり、緻密で硬度が高い3次元形状の造形物を製造することが可能な造形物の製造方法を提供することを目的とする。
Here, the present inventors describe the additive manufacturing method for producing a three-dimensional shaped object by irradiating a laser beam or an electron beam with the components and modeling process of a powder material for additive manufacturing, and the physical properties of the modeled object. We examined the relationship between. As a result, it has been found that by defining the components of the powder material for laminated modeling and the modeling process under specific conditions, it is possible to produce a dense and hard model.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a shaped object capable of producing a dense and highly hard three-dimensional shaped object.

本発明の一態様に係る造形物の製造方法は、タングステン炭化物及びコバルトを含む積層造形用の粉末材料を用いて、レーザ光又は電子ビームを照射して3次元形状の造形物を形成する工程と、前記造形物に減圧雰囲気中で熱処理を施す工程と、前記熱処理が施された前記造形物に熱間等方圧加圧加工を施す工程と、を含む。
本発明の一態様に係る造形物は、レーザ光又は電子ビームを照射して3次元形状の造形物を製造するために用いられる、積層造形用の粉末材料であって、タングステン炭化物と、コバルトと、チタン炭化物と、を含み、チタン炭化物の含有量は、1質量%以上20質量%以下である。
The method for producing a modeled object according to one aspect of the present invention includes a step of forming a three-dimensional shaped object by irradiating a laser beam or an electron beam with a powder material for laminated modeling containing tungsten carbide and cobalt. The steps include a step of heat-treating the modeled object in a reduced pressure atmosphere and a step of subjecting the heat-treated modeled object to hot isotropic pressure pressurization.
The modeled object according to one aspect of the present invention is a powder material for laminated modeling used for producing a three-dimensional shaped object by irradiating a laser beam or an electron beam, and comprises tungsten carbide and cobalt. , Titanium carbide, and the content of titanium carbide is 1% by mass or more and 20% by mass or less.

本発明によれば、緻密で硬度が高い3次元形状の造形物を造形することが可能な造形物の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for manufacturing a modeled object capable of modeling a three-dimensionally shaped object having a high density and high hardness.

図1は、本発明の実施形態に係る造形物の製造方法を実行するための、積層造形装置の構成例を示す概略図である。FIG. 1 is a schematic view showing a configuration example of a laminated modeling apparatus for executing the method for manufacturing a modeled object according to the embodiment of the present invention. 図2は、熱処理後の3次元造形物(比較例2)の断面を拡大して示すSEM画像である。FIG. 2 is an enlarged SEM image showing a cross section of the three-dimensional modeled object (Comparative Example 2) after the heat treatment. 図3は、HIP後の3次元造形物(実施例1)の断面を拡大して示すSEM画像である。FIG. 3 is an enlarged SEM image showing a cross section of the three-dimensional modeled object (Example 1) after HIP. 図4は、HIP後の3次元造形物(実施例2)の断面を拡大して示すSEM画像である。FIG. 4 is an enlarged SEM image showing a cross section of the three-dimensional modeled object (Example 2) after HIP.

<定義>
本明細書において、「粉末材料」とは、積層造形に用いる粉末状の材料を指す。粉末材料は、造形用材料と呼んでもよい。粉末材料は、典型的には、後述の2次粒子が集合して構成されるが、後述の1次粒子の混入が許容されることは言うまでもない。本明細書において、「1次粒子」とは、上記粉末材料を構成している形態的な構成要素のうち、外観から粒子状物として識別できる最小単位を意味する。特に、後述の2次粒子を構成する1粒子(1つの粒子状物)を指す。
<Definition>
As used herein, the term "powder material" refers to a powdered material used for laminated molding. The powder material may be referred to as a modeling material. The powder material is typically composed of a collection of secondary particles described below, but it goes without saying that mixing of the primary particles described below is allowed. In the present specification, the “primary particle” means the smallest unit that can be identified as a particulate matter from the appearance among the morphological components constituting the powder material. In particular, it refers to one particle (one particulate matter) that constitutes a secondary particle described later.

本明細書において、「2次粒子」とは、1次粒子が3次元的に結合され、一体となって一つの粒のように振る舞う粒子状物(粒子の形態をなしたもの)をいう。なお、ここでいう「結合」とは、直接的または間接的に、2つ以上の1次粒子が結びつくことを指し、例えば、化学反応による1次粒子同士の結合、単純吸着によって1次粒子同士が引き合う結合、静電気により引き合う効果を利用した1次粒子同士の結合、1次粒子の表面が溶融して一体化した結合等が含まれる。 As used herein, the term "secondary particle" refers to a particulate matter (in the form of a particle) in which primary particles are three-dimensionally bonded and behave as one particle as a unit. The term "bonding" as used herein means that two or more primary particles are directly or indirectly bound to each other. For example, primary particles are bonded to each other by a chemical reaction or simple adsorption to each other. Includes bonds that attract each other, bonds between primary particles that utilize the effect of attracting due to static electricity, and bonds where the surface of the primary particles is melted and integrated.

本明細書において、「原料粒子」とは、粉末材料を形成するための原料粉末を構成する粒子をいう。原料粒子を適切な方法で3次元的に結合させることで、2次粒子を製造することができる。また、このように製造された2次粒子を構成している粒子を1次粒子という。この1次粒子は、原料粒子とほぼ同一の形態であってもよいし、2つ以上の原料粒子が反応したり形態的に区別できない程度に一体化する等して原料粒子とは異なる形態であってもよい。また、1次粒子は、原料粒子と同一の組成であってもよいし、2種以上の原料粒子が反応するなどして原料粒子とは異なる組成となっていてもよい。 As used herein, the term "raw material particles" refers to particles constituting a raw material powder for forming a powder material. Secondary particles can be produced by three-dimensionally bonding the raw material particles by an appropriate method. Further, the particles constituting the secondary particles produced in this way are referred to as primary particles. The primary particles may have almost the same form as the raw material particles, or may have a form different from the raw material particles such that two or more raw material particles react or are integrated to the extent that they are morphologically indistinguishable. There may be. Further, the primary particles may have the same composition as the raw material particles, or may have a composition different from that of the raw material particles due to the reaction of two or more kinds of raw material particles.

本明細書において、「積層造形」とは、付加製造技術において粉末材料を用いる各種の造形方法を広く包含する。積層造形は、粉末積層造形と呼んでもよい。積層造形において粉末材料を結合させる方法としては、例えば、レーザ粉体肉盛り法(レーザメタルデポジション法;LMD)、選択的レーザ溶融法(セレク卜レーザメルティング法;SLM)、電子ビーム溶融法(エレク卜口ンビームメルティング法;EBM)等のビーム照射方式が挙げられる。
本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。
なお、本発明は、以下の実施形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
As used herein, the term "laminated modeling" broadly includes various modeling methods using powder materials in additional manufacturing techniques. Additive manufacturing may be referred to as powder additive manufacturing. Examples of the method for bonding the powder materials in the laminated molding include a laser powder overlay method (laser metal deposition method; LMD), a selective laser melting method (select laser melting method; SLM), and an electron beam melting method. A beam irradiation method such as (Electric beam melting method; EBM) can be mentioned.
In the present specification, "X to Y" indicating a range means "X or more and Y or less".
The present invention is not limited to the following embodiments. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.

<粉末材料>
(組成)
本発明の実施形態(以下、本実施形態という)に係る粉末材料は、原料粒子として、
(1)コバルト(Co)と、
(2)チタン炭化物(TiC)と、
(3)タングステン炭化物(WC)と、
を含む。
上記(1)〜(3)の各原料粒子は、焼結により結合されて造粒焼結粉を構成している。本実施形態に係る粉末材料は、上記(1)〜(3)の各原料粒子を1次粒子とし、造粒焼結粉が2次粒子の体をなしているとも理解することができる。なお、上記(1)〜(3)の各原料粒子は、概ね均一に混合、分散された状態で2次粒子を構成している。このような粉末材料において、上記(1)〜(3)の各原料粒子が1次粒子の形態で含まれることが許容(例えば、10質量%以下)されるのは言うまでもない。
<Powder material>
(composition)
The powder material according to the embodiment of the present invention (hereinafter referred to as the present embodiment) can be used as raw material particles.
(1) Cobalt (Co) and
(2) Titanium carbide (TiC) and
(3) Tungsten carbide (WC) and
including.
Each of the raw material particles (1) to (3) above is bonded by sintering to form a granulated sintered powder. It can also be understood that in the powder material according to the present embodiment, each of the raw material particles (1) to (3) above is used as primary particles, and the granulated sintered powder forms a body of secondary particles. The raw material particles (1) to (3) described above form secondary particles in a state of being substantially uniformly mixed and dispersed. Needless to say, in such a powder material, it is permissible (for example, 10% by mass or less) to include each of the raw material particles (1) to (3) in the form of primary particles.

本実施形態に係る粉末材料において、コバルトの含有量は、例えば5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。また、本実施形態に係る粉末材料において、コバルトの含有量は、例えば50質量%以下であることが好ましく、35質量%以下であることがより好ましく、25質量%以下であることがさらに好ましい。コバルトの含有量が上記の数値範囲内にあれば、レーザ光又は電子ビームを用いて積層造形を行う際にWCとCoとが結合して、WC−Co系の超硬合金を形成することができる。 In the powder material according to the present embodiment, the cobalt content is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. Further, in the powder material according to the present embodiment, the cobalt content is preferably, for example, 50% by mass or less, more preferably 35% by mass or less, and further preferably 25% by mass or less. If the cobalt content is within the above numerical range, WC and Co can be combined to form a WC-Co-based cemented carbide when laminating is performed using laser light or an electron beam. it can.

本実施形態に係る粉末材料において、チタン炭化物の含有量は、例えば1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。また、本実施形態に係る粉末材料において、チタン炭化物の含有量は、例えば30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。 In the powder material according to the present embodiment, the content of titanium carbide is, for example, preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Further, in the powder material according to the present embodiment, the content of titanium carbide is preferably, for example, 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less. ..

チタン炭化物の含有量が上記の数値範囲内にあれば、レーザ光又は電子ビームを用いて積層造形を行う際に、チタン炭化物からタングステン炭化物(WC)に炭素(C)が供給される。レーザ光又は電子ビームを用いた積層造形では、通常の粉末冶金と比べて、粉末材料が短時間のうちに高温に熱せられるため、タングステン炭化物(WC)のCが揮発しやすく、WCはCが不足した状態(すなわち、Wリッチな状態)になり易い。しかし、この揮発したCを補うように、チタン炭化物がタングステン炭化物にCを供給する。これにより、WC−Co系の超硬合金においてη相(脆弱相)の形成を抑制することができる。 When the content of titanium carbide is within the above numerical range, carbon (C) is supplied from titanium carbide to tungsten carbide (WC) when laminating molding is performed using laser light or an electron beam. In laminated molding using laser light or electron beam, the powder material is heated to a high temperature in a short time compared to ordinary powder metallurgy, so C of tungsten carbide (WC) is likely to volatilize, and C of WC is C. It tends to be in a shortage state (that is, a W-rich state). However, the titanium carbide supplies C to the tungsten carbide so as to supplement the volatilized C. As a result, the formation of the η phase (fragile phase) can be suppressed in the WC-Co based cemented carbide.

また、粉末材料に含まれるチタン炭化物は、タングステン炭化物と反応してタングステンチタン炭化物(WTiC)となる。造形後のWC−Co系の超硬合金にTiCは残存しない(または、残存してもその量は僅かである。)。WC−Co系の超硬合金は、WTiCを含むことによって、その硬度をさらに高くすることができる。 Further, the titanium carbide contained in the powder material reacts with the tungsten carbide to become tungsten titanium carbide (WTC). TiC does not remain in the WC-Co-based cemented carbide after molding (or even if it remains, the amount thereof is small). The hardness of the WC-Co-based cemented carbide can be further increased by containing WTIC.

本実施形態に係る粉末材料において、タングステン炭化物の含有量は、例えば75質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。また、本実施形態に係る粉末材料において、タングステン炭化物の含有量は、例えば94質量%以下であることがさらに好ましい。タングステン炭化物の含有量が上記の数値範囲内にあれば、レーザ光又は電子ビームを用いて積層造形を行う際にWCとCoとが結合して、WC−Co系の超硬合金を形成することができる。 In the powder material according to the present embodiment, the content of the tungsten carbide is, for example, preferably 75% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more. Further, in the powder material according to the present embodiment, the content of tungsten carbide is more preferably 94% by mass or less, for example. When the content of tungsten carbide is within the above numerical range, WC and Co are combined to form a WC-Co-based cemented carbide when laminating is performed using laser light or an electron beam. Can be done.

(造粒焼結粉)
本実施形態に係る粉末材料は、上記のとおり2次粒子の形態を有する造粒焼結粉の集合として構成されてもよい。「造粒焼結粉」とは、1次粒子が焼結され、一体となって一つの粒のように振る舞う粒子状物(粒子の体をなしたもの)をいう。「焼結」とは、1次粒子同士が直接的に結合した状態をいう。したがって、焼結は、固相焼結及び液相焼結のいずれであってもよい。また、本明細書でいう焼結は、いわゆる融着、溶融結合を含み得る。
(Granulated sintered powder)
The powder material according to the present embodiment may be configured as an aggregate of granulated sintered powder having the form of secondary particles as described above. The "granulated sintered powder" refers to a particulate matter (a body of particles) in which primary particles are sintered and behave like a single particle as a unit. "Sintering" refers to a state in which primary particles are directly bonded to each other. Therefore, the sintering may be either solid phase sintering or liquid phase sintering. Further, the sintering referred to in the present specification may include so-called fusion and melt bonding.

本実施形態に係る粉末材料は、例えば、顆粒粒子、コア粒子の周りに微粒子が結合されてなる微粒子被覆粒子等の形態を有する2次粒子(粒子集合体)において、個々の1次粒子が焼結により強固に一体化されることにより実現されてもよい。積層造形におけるエネルギー源としては、レーザ光、電子ビーム、アーク等が用いられる。レーザ光又は電子ビーム等が粉末材料に照射されると、高いエネルギーが解放されて粉末材料に衝撃が生じ得る。この衝撃により、単なる顆粒粒子は崩壊したり、1次粒子が飛散したりするおそれがある。この事態の発生を避けるため、顆粒粒子は焼結により個々の1次粒子が結合された、いわゆる造粒焼結粉として構成される。この造粒焼結粉は、エネルギー源としてより強度の高いレーザ光等を照射された場合であっても、粉末材料の崩壊及び飛散等が生じ難いために好ましい。このことは、造形物の造形精度及び品質を損なうことなく、造形速度の高速化に繋がり得る(例えば、レーザ走査速度を速め得る、あるいはレーザ走査速度を低減する必要がない)ために好ましい。 In the powder material according to the present embodiment, for example, in secondary particles (particle aggregates) having the form of granular particles, fine particle-coated particles formed by binding fine particles around core particles, and the like, individual primary particles are baked. It may be realized by being firmly integrated by the conclusion. A laser beam, an electron beam, an arc, or the like is used as an energy source in the laminated molding. When the powder material is irradiated with laser light, an electron beam, or the like, high energy is released and the powder material may be impacted. Due to this impact, the mere granular particles may collapse or the primary particles may scatter. In order to avoid the occurrence of this situation, the granule particles are configured as so-called granulated sintered powder in which individual primary particles are bonded by sintering. This granulated sintered powder is preferable because the powder material is unlikely to disintegrate or scatter even when irradiated with a laser beam having a higher intensity as an energy source. This is preferable because it can lead to an increase in the modeling speed without impairing the modeling accuracy and quality of the modeled object (for example, the laser scanning speed can be increased or the laser scanning speed does not need to be reduced).

(顆粒強度)
造粒焼結粉における顆粒粒子の強度(以下、顆粒強度)は、1MPaを超えるように規定することができる。これにより、造形のためのエネルギーにより造粒焼結粉が崩壊したり、飛散したりするのを好適に抑制することができる。その結果、造形エリアへの材料粉末の供給が安定するため、ムラの無い高品質な造形物を造形できるために好ましい。造粒焼結粉の顆粒強度は、1kg/mm以上であることが好ましく、5kg/mm以上であることがより好ましく、10kg/mm以上(例えば、20kg/mm以上)であることがさらに好ましい。しかしながら、顆粒強度が強すぎると、粉末材料を十分に溶融させるのが困難となるために好ましくない。また、顆粒強度が強すぎる造粒焼結粉は、概ね造粒されていない単一粒子と類似した構成となるまで焼結が進行し、球状化した粒子とその性状が似たものとなってしまう。この観点から、顆粒強度は1000kg/mm未満とする。顆粒強度は500kg/mm以下であることが好ましく、250kg/mm以下であることがより好ましく、100kg/mm以下(例えば、80kg/mm以下)であることがさらに好ましい。
(Granule strength)
The strength of the granule particles in the granulated sintered powder (hereinafter referred to as “granule strength”) can be specified to exceed 1 MPa. As a result, it is possible to suitably suppress the granulated sintered powder from collapsing or scattering due to the energy for modeling. As a result, the supply of the material powder to the modeling area is stable, which is preferable because a high-quality modeled object without unevenness can be modeled. The granule strength of the granulated sintered powder is preferably 1 kg / mm 2 or more, more preferably 5 kg / mm 2 or more, and 10 kg / mm 2 or more (for example, 20 kg / mm 2 or more). Is even more preferable. However, if the granule strength is too strong, it becomes difficult to sufficiently melt the powder material, which is not preferable. In addition, the granulated sintered powder having too strong granule strength is sintered until it has a structure similar to that of a single particle that has not been granulated, and has similar properties to the spheroidized particles. It ends up. From this point of view, the granule strength is set to less than 1000 kg / mm 2. The granule strength is preferably 500 kg / mm 2 or less, more preferably 250 kg / mm 2 or less, and even more preferably 100 kg / mm 2 or less (for example, 80 kg / mm 2 or less).

本実施形態に係る粉末材料(例えば、造粒焼結粉)において、上記(1)〜(3)の各原料粒子(典型的には1次粒子である)は互いに3次元的に結合されて造粒焼結粉を構成している。この構造によって、粉末材料はエネルギー源(熱源)からエネルギーを受け取りやすく、溶解しやすいという利点がある。その結果、例えば鋳型を使用して製造する焼結体(バルク体)に近い、緻密性の高い高硬度な造形物を得ることができる。 In the powder material (for example, granulated sintered powder) according to the present embodiment, the raw material particles (typically primary particles) of the above (1) to (3) are three-dimensionally bonded to each other. Consists of granulated sintered powder. Due to this structure, the powder material has an advantage that it easily receives energy from an energy source (heat source) and easily dissolves. As a result, it is possible to obtain a highly dense and hard model that is close to a sintered body (bulk body) manufactured by using a mold, for example.

特に、本実施形態に係る粉末材料は、タングステン炭化物だけではなく、タングステン炭化物よりも融点の低いコバルトを含んでいる。また粉末材料を構成する複数の1次粒子は3次元的に結合されている。これにより、粉末材料においてはコバルトの溶融が先行し、コバルトの融液がタングステン炭化物の表面に濡れ広がることができる。あるいは、タングステン炭化物が溶融してなるマトリックス内に、タングステン炭化物を分散状態で取り込むことができる。これにより、タングステン炭化物の溶融を促進させられて、緻密な造形物を得ることができる。あるいは、コバルトの相中にタングステン炭化物の相が分散された形態の緻密な造形物を得ることができる。 In particular, the powder material according to the present embodiment contains not only tungsten carbide but also cobalt having a melting point lower than that of tungsten carbide. Further, a plurality of primary particles constituting the powder material are three-dimensionally bonded. As a result, in the powder material, the cobalt melts first, and the cobalt melt can wet and spread on the surface of the tungsten carbide. Alternatively, the tungsten carbide can be incorporated in a dispersed state in the matrix formed by melting the tungsten carbide. As a result, the melting of the tungsten carbide is promoted, and a dense molded product can be obtained. Alternatively, it is possible to obtain a densely shaped product in which the tungsten carbide phase is dispersed in the cobalt phase.

(平均粒子径)
本実施形態に係る粉末材料(例えば、造粒焼結粉)の平均粒子径は、特に制限されず、使用する積層造形装置の規格に適した大きさとすることができる。例えば、粉末材料の平均粒子径は、積層造形における粉末材料の供給に適した大きさであり得る。粉末材料の平均粒子径の上限は、より大きいものとする場合には、例えば、200μm超過であってもよいが、典型的には200μm以下である。粉末材料の平均粒子径の上限は、好ましくは150μm以下、より好ましくは100μm以下、さらに好ましくは40μm以下である。粉末材料は、平均粒子径が小さくなるにつれて、例えば造形エリアにおいて粉末材料の充填率が向上し得る。その結果、造形される3次元造形物の緻密性を好適に増すことができる。また、造形される3次元造形物の表面粗さ(Ra)を小さくできるとともに、寸法精度を向上させるという効果を得ることもできる。
(Average particle size)
The average particle size of the powder material (for example, granulated sintered powder) according to the present embodiment is not particularly limited, and can be a size suitable for the specifications of the laminated modeling apparatus to be used. For example, the average particle size of the powder material can be a size suitable for supplying the powder material in the laminated molding. If the upper limit of the average particle size of the powder material is larger, for example, it may exceed 200 μm, but is typically 200 μm or less. The upper limit of the average particle size of the powder material is preferably 150 μm or less, more preferably 100 μm or less, still more preferably 40 μm or less. As the average particle size of the powder material becomes smaller, the filling rate of the powder material can be improved, for example, in the modeling area. As a result, the precision of the three-dimensional model to be modeled can be suitably increased. In addition, the surface roughness (Ra) of the three-dimensional model to be modeled can be reduced, and the effect of improving the dimensional accuracy can be obtained.

また、粉末材料の平均粒子径の下限は、粉末材料の流動性に影響を与えない範囲であれば特に制限されない。しかしながら、粉末材料を形成する際のハンドリングや粉末材料の流動性を考慮した場合には、平均粒子径の下限を1μm以上とすることができ、5μm以上が好ましく、10μm以上がより好ましい。粉末材料の平均粒子径が大きくなるにつれて、粉末材料の流動性が向上する。その結果、造形装置への粉末材料の供給を良好に実施することができ、作製される3次元造形物の仕上がりが良好となるために好ましい。 Further, the lower limit of the average particle size of the powder material is not particularly limited as long as it does not affect the fluidity of the powder material. However, when the handling when forming the powder material and the fluidity of the powder material are taken into consideration, the lower limit of the average particle size can be set to 1 μm or more, preferably 5 μm or more, and more preferably 10 μm or more. As the average particle size of the powder material increases, the fluidity of the powder material improves. As a result, the powder material can be satisfactorily supplied to the modeling apparatus, and the finished three-dimensional modeled product to be produced is finished, which is preferable.

<製造方法>
(粉末材料の製造方法)
本実施形態における粉末材料は、上記(1)〜(3)の各原料粒子を含む限り、その製造方法は特に制限されない。例えば、好適な例として、以下に、造粒焼結法により粉末材料を製造する場合について説明する。しかしながら、ここに開示される粉末材料の製造方法は、これに限定されるものではない。
<Manufacturing method>
(Manufacturing method of powder material)
As long as the powder material in the present embodiment contains the raw material particles (1) to (3) above, the production method thereof is not particularly limited. For example, as a preferable example, a case where a powder material is produced by a granulation sintering method will be described below. However, the method for producing a powder material disclosed herein is not limited to this.

造粒焼結法は、上記(1)〜(3)の各原料粒子を含む粉末を2次粒子の形態に造粒したのち焼成することで、個々の原料粒子を焼結する手法である。造粒に際しては、公知の各種の造粒法を適宜利用することができる。例えば、造粒法として、乾式造粒あるいは湿式造粒等の造粒方法を利用することができる。具体的には、例えば、転動造粒法、流動層造粒法、撹枠造粒法、破砕造粒法、溶融造粒法、噴霧造粒法、マイクロエマルション造粒法等が挙げられる。なかでも好適な造粒方法として、噴霧造粒法が挙げられる。 The granulation sintering method is a method of sintering individual raw material particles by granulating a powder containing each of the raw material particles (1) to (3) in the form of secondary particles and then firing the powder. In granulation, various known granulation methods can be appropriately used. For example, as a granulation method, a granulation method such as dry granulation or wet granulation can be used. Specific examples thereof include a rolling granulation method, a fluidized bed granulation method, a stirring frame granulation method, a crushing granulation method, a melt granulation method, a spray granulation method, and a microemulsion granulation method. Among them, a spray granulation method is mentioned as a preferable granulation method.

噴霧造粒法によると、例えば、以下の手順で造形用材料を製造することができる。すなわち、まず、上記(1)〜(3)の各原料粒子を所定の質量比で配合した粉末(以下、配合粉末ともいう)を用意する。必要に応じてその表面を保護剤等により安定化させる。そして、安定化された配合粉末を、例えばバインダと、必要に応じて含まれる有機材料等からなるスペーサー粒子等とともに適切な溶媒に分散させて噴霧液を用意する。原料粒子の溶媒への分散には、例えば、ホモジナイザー、翼式撹拌機等の混合機、分散機等を用いて実施することができる。これにより、上記(1)〜(3)の各原料粒子は噴霧造粒機を用いて気流中に噴霧し、乾燥させる。これにより、上記(1)〜(3)の各原料粒子がバインダにより3次元的に結合された状態の2次粒子を得ることができる。 According to the spray granulation method, for example, a modeling material can be produced by the following procedure. That is, first, a powder (hereinafter, also referred to as a compounded powder) in which each of the raw material particles (1) to (3) is blended in a predetermined mass ratio is prepared. If necessary, stabilize the surface with a protective agent or the like. Then, the stabilized compounded powder is dispersed in an appropriate solvent together with, for example, a binder and spacer particles made of an organic material or the like contained as necessary to prepare a spray liquid. Dispersion of the raw material particles in the solvent can be carried out using, for example, a homogenizer, a mixer such as a blade stirrer, a disperser, or the like. As a result, each of the raw material particles (1) to (3) described above is sprayed into an air stream using a spray granulator and dried. As a result, it is possible to obtain secondary particles in which the raw material particles (1) to (3) are three-dimensionally bonded by a binder.

次いで、造粒された2次粒子を焼成することで、2次粒子中に含まれる上記(1)〜(3)の各原料粒子を焼結させる。これにより、原料粒子同士を強固に結合(焼結)させることができる。この造粒焼結法では、例えば、上記の造粒法に作製された造粒粒子に対し、焼結処理を施す。このとき、造粒された原料粒子は互いの接点で焼結されて、造粒形状を概ね維持して焼結される。焼結に際してバインダは消失する。スペーサー粒子を用いる系では、焼成によりこのスペーサー粒子も消失する。これにより、1次粒子が焼結された2次粒子の形態の粒子からなる粉末材料を得ることができる。この粉末材料において、1次粒子は、原料粒子とほぼ同等の寸法及び形状を有していてもよいし、原料粒子が焼成により成長、結合されていてもよい。 Next, by firing the granulated secondary particles, the raw material particles (1) to (3) contained in the secondary particles are sintered. As a result, the raw material particles can be firmly bonded (sintered) to each other. In this granulation sintering method, for example, the granulated particles produced by the above granulation method are subjected to a sintering treatment. At this time, the granulated raw material particles are sintered at the contact points with each other, and the granulated raw material particles are sintered while maintaining the granulated shape. The binder disappears during sintering. In a system using spacer particles, the spacer particles also disappear by firing. Thereby, a powder material composed of particles in the form of secondary particles in which the primary particles are sintered can be obtained. In this powder material, the primary particles may have substantially the same dimensions and shape as the raw material particles, or the raw material particles may be grown and bonded by firing.

上記の製造工程において、造粒粒子の状態では、原料粒子とバインダとが均一な混合状態にあり、原料粒子はバインダにより結着されて混合粒子を構成している。スペーサー粒子を使用する系では、原料粒子とスペーサー粒子とが均一な混合状態で、バインダにより結着されて混合粒子を構成している。そして、この混合粒子が焼成されることで、バインダ(及びスペーサー粒子)が消失する(燃えぬける)とともに、原料粒子が焼結されることで、1次粒子が結合された形態の2次粒子が形成される。 In the above manufacturing process, in the state of the granulated particles, the raw material particles and the binder are in a uniform mixed state, and the raw material particles are bound by the binder to form the mixed particles. In a system using spacer particles, the raw material particles and the spacer particles are bound together by a binder in a uniform mixed state to form mixed particles. Then, when the mixed particles are fired, the binder (and spacer particles) disappear (burn out), and the raw material particles are sintered, so that the secondary particles in the form in which the primary particles are bonded are formed. It is formed.

なお、焼結に際し、原料粒子はその組成や大きさによっては一部が液相となって他の粒子との結合に寄与し得る。そのため、出発材料の原料粒子よりも1次粒子の平均粒子径は大きくなる場合がある。これら、2次粒子及び1次粒子の平均粒子径の大きさ及び割合は、所望の2次粒子の形態に応じて適宜設計することができる。 At the time of sintering, depending on the composition and size of the raw material particles, a part of the raw material particles may become a liquid phase and contribute to bonding with other particles. Therefore, the average particle size of the primary particles may be larger than that of the raw material particles of the starting material. The size and ratio of the average particle diameters of these secondary particles and primary particles can be appropriately designed according to the desired morphology of the secondary particles.

上記の製造工程において、調整される噴霧液の原料粒子の濃度は、10〜40質量%であることが好ましい。添加されるバインダとしては、例えばカルポキシメチルセルロース、ポリビニルピ口リドン、ポリビニルピ口リドン等が挙げられる。添加するバインダは、原料粒子の質量に対して0.05〜10質量%の割合で調整されることが好ましい。焼成される環境は、特に制限はされないが、大気中、真空中もしくは不活性ガス雰囲気中であってもよく、600℃以上1600℃以下の温度で焼結されることが好ましい。特に、有機材料等からなるスペーサー粒子、バインダ等を用いる場合は、造粒粒子中の有機材料を除去する目的で酸素が存在する雰囲気中で焼結されてもよい。必要に応じて、製造された2次粒子を、解砕及び分級してもよい。 In the above manufacturing process, the concentration of the raw material particles of the spray liquid to be adjusted is preferably 10 to 40% by mass. Examples of the binder to be added include carpoxymethylcellulose, polyvinylpimouth lidone, polyvinylpimouth lidone and the like. The binder to be added is preferably adjusted at a ratio of 0.05 to 10% by mass with respect to the mass of the raw material particles. The environment for firing is not particularly limited, but may be in the air, vacuum, or an inert gas atmosphere, and sintering is preferably performed at a temperature of 600 ° C. or higher and 1600 ° C. or lower. In particular, when spacer particles made of an organic material or the like, a binder or the like are used, sintering may be performed in an atmosphere in which oxygen is present for the purpose of removing the organic material in the granulated particles. If necessary, the produced secondary particles may be crushed and classified.

(3次元造形物の製造方法)
以上のようにして得られた粉末材料は、各種の積層造形(例えば、LMD、SLM、EBM等)に適用することができる。3次元造形物の製造方法の一例として、セレク卜レーザメルティング法(SLM)を採用した場合を例に、粉末積層造形について説明する。ここに開示される3次元造形物の製造方法は、以下の工程を含む。
(A)積層造形装置の積層エリアに粉末材料(例えば、造粒焼結粉)を供給する工程
(B)当該供給された粉末材料を、積層エリアに均一に薄く堆積するようにワイパ等で平坦化して薄層を形成する工程
(C)形成された粉末材料の薄層に、粉末材料を接合及び焼結等する手段を与えて(例えば、レーザ光を照射して)粉末材料を固化する工程
(D)固化した粉末材料の上に、新たな粉末材料を供給し、上記工程(A)以後、工程( B)〜(D)を繰り返すことで積層し、3次元造形物を得る工程
(E)得られた3次元造形物に減圧雰囲気中で熱処理を施す工程
(F)減圧雰囲気中で熱処理が施された3次元造形物に熱間等方圧加圧加工(HIP:Hot Isostatic Presssing)を施す工程
なお、工程(D)の「固化」は、粉末材料を構成する2次粒子同士を、溶融・凝固により直接的に結合させて、形状を所定の断面形状に固定化することを含む。
(Manufacturing method of 3D model)
The powder material obtained as described above can be applied to various laminated moldings (for example, LMD, SLM, EBM, etc.). As an example of a method for manufacturing a three-dimensional model, powder layered manufacturing will be described by taking the case where the select laser melting method (SLM) is adopted as an example. The method for manufacturing a three-dimensional model disclosed herein includes the following steps.
(A) Step of supplying powder material (for example, granulated sintered powder) to the laminated area of the laminated molding apparatus (B) Flattening the supplied powder material with a wiper or the like so as to be uniformly and thinly deposited on the laminated area. Step of forming a thin layer by forming (C) A step of solidifying the powder material by giving a means for joining and sintering the powder material to the formed thin layer of the powder material (for example, irradiating a laser beam). (D) A step (E) of supplying a new powder material on the solidified powder material and laminating the steps (B) to (D) after the above step (A) to obtain a three-dimensional model. ) Step of heat-treating the obtained three-dimensional model in a reduced pressure atmosphere (F) Hot isotropic pressing (HIP: Hot Isostatic Pressing) is performed on the three-dimensional model that has been heat-treated in a reduced pressure atmosphere. Step to be applied The "solidification" in the step (D) includes directly bonding the secondary particles constituting the powder material by melting and solidifying to fix the shape into a predetermined cross-sectional shape.

レーザメタルデポジション法(LMD)とは、構造物の所望の部位に粉末材料を提供して、そこにレーザ光を照射することで粉末材料を溶融−凝固させ、当該部位に肉盛りを行う技術である。この技術を利用することで、例えば、構造物に摩耗等の物理的な劣化が発生した場合に、当該劣化部位に粉末材料として当該構造物を構成する材料または補強材料等を供給し、その粉末材料を溶融−凝固させることで劣化部位等に肉盛りを行うことができる。 The laser metal deposition method (LMD) is a technique in which a powder material is provided to a desired part of a structure, and the powder material is melted and solidified by irradiating the desired part with a laser beam to build up the part. Is. By using this technology, for example, when physical deterioration such as wear occurs in a structure, a material or a reinforcing material constituting the structure is supplied as a powder material to the deteriorated part, and the powder thereof. By melting and solidifying the material, it is possible to build up the deteriorated part and the like.

セレク卜レーザメルティング法(SLM)とは、設計図から作成したスライスデータに基づき、粉末材料を堆積させた粉末層にレーザ光を走査させ、粉末層を所望形状に溶融・凝固する操作を、1断面(1スライスデータ)ごとに繰り返して積層させることで3次元的な構造体を造形する技術である。また、エレク卜口ンビームメルティング法(EBM)とは、3D CADデータから作成したスライスデータを基に、電子ビーム用いて上記粉末層を選択的に溶融・凝固させ、積層することで3次元的な構造体を造形する技術である。いずれの技術においても、構造体の原料である粉末材料を所定の造形位置に供給する工程を含む。 The SELECT laser melting method (SLM) is an operation in which a laser beam is scanned through a powder layer on which a powder material is deposited based on slice data created from a design drawing, and the powder layer is melted and solidified into a desired shape. This is a technique for forming a three-dimensional structure by repeatedly laminating each cross section (1 slice data). In addition, the electric beam melting method (EBM) is three-dimensional by selectively melting and solidifying the powder layer using an electron beam based on slice data created from 3D CAD data and laminating them. It is a technology to create a simple structure. Each technique includes a step of supplying a powder material, which is a raw material of a structure, to a predetermined modeling position.

図1は、本発明の実施形態に係る造形物の製造方法を実行するための、積層造形装置100の構成例を示す概略図である。図1に示すように、積層造形装置100は、積層造形が行われる空間である造形エリア10と、粉末材料を貯留しておくストック12と、造形エリア10への粉末材料の供給を補助するワイパ11と、粉末材料を固化するための固化手段(レーザ発振器等のエネルギー供給手段)13と、を備える。 FIG. 1 is a schematic view showing a configuration example of a laminated modeling apparatus 100 for executing a method for manufacturing a modeled object according to an embodiment of the present invention. As shown in FIG. 1, the laminated modeling apparatus 100 includes a modeling area 10 which is a space where laminated modeling is performed, a stock 12 for storing powder material, and a wiper which assists the supply of powder material to the modeling area 10. 11 and solidification means (energy supply means such as a laser oscillator) 13 for solidifying the powder material are provided.

造形エリア10は、外周が囲まれた造形空間内を造形面より下方に有し、この造形空間内に昇降可能な昇降テーブル14を備える。昇降テーブル14は、所定厚みΔt1ずつ下方に移動することができ、昇降テーブル14上に目的の造形物を造形してゆく。ストック12は、造形エリア10の傍に配置され、例えば、外周が囲まれた貯留空間内に、シリンダー等によって昇降可能な底板(昇降テーブル)を備える。ストック12は、底板を上昇させることで、所定量の粉末材料を造形面に供給(押し出し)する。 The modeling area 10 has a modeling space surrounded by an outer circumference below the modeling surface, and is provided with an elevating table 14 that can be raised and lowered in the modeling space. The elevating table 14 can be moved downward by a predetermined thickness Δt1, and a target model is formed on the elevating table 14. The stock 12 is arranged near the modeling area 10, and is provided with, for example, a bottom plate (elevating table) that can be raised and lowered by a cylinder or the like in a storage space surrounded by an outer circumference. The stock 12 supplies (extrudes) a predetermined amount of powder material to the molding surface by raising the bottom plate.

積層造形装置100は、上記工程(A)〜(D)を実行することができる。例えば、積層造形装置100は、昇降テーブル14を造形面より所定厚みΔt1だけ下げた状態で造形エリア10へ粉末材料20を供給することで、所定厚みΔt1の粉末材料20の層を用意する。
次に、積層造形装置100は、造形面にワイパ11を走査させることで、ストック12から押し出された粉末材料を造形エリア10上に供給するとともに、粉末材料の上面を平坦化して、均質な粉末材料20の層を形成する。
次に、積層造形装置100は、形成された第1層目の粉末材料20の層に対し、第1層目のスライスデータに対応した固化領域にのみ、固化手段13を介してエネルギーを与えることで、粉末材料を所望の断面形状に溶融または焼結させ、第1層目の粉末固化層21を形成する。
The laminated modeling apparatus 100 can execute the above steps (A) to (D). For example, the laminated modeling apparatus 100 prepares a layer of the powder material 20 having a predetermined thickness Δt1 by supplying the powder material 20 to the modeling area 10 in a state where the elevating table 14 is lowered by a predetermined thickness Δt1 from the modeling surface.
Next, the laminated modeling apparatus 100 supplies the powder material extruded from the stock 12 onto the modeling area 10 by scanning the wiper 11 on the modeling surface, and flattens the upper surface of the powder material to make a homogeneous powder. Form a layer of material 20.
Next, the laminated molding apparatus 100 applies energy to the formed first layer of the powder material 20 only in the solidified region corresponding to the slice data of the first layer via the solidifying means 13. The powder material is melted or sintered into a desired cross-sectional shape to form the first powder solidified layer 21.

次に、積層造形装置100は、昇降テーブル14を所定厚みΔt1だけ下げて再度粉末材料を供給し、ワイパ11でならすことで第2層目の粉末材料20を形成する。そして、積層造形装置100は、第2層目の粉末材料20のスライスデータに対応した固化領域にのみ、固化手段13を介して熱源を与えて粉末材料を固化させて第2層目の粉末固化層21を形成する。このとき、第2層目の粉末固化層21と、下層である第1層目の粉末固化層21とが一体化されて、第2層目までの積層体を形成する。 Next, the laminated modeling apparatus 100 lowers the elevating table 14 by a predetermined thickness Δt1, supplies the powder material again, and smoothes it with the wiper 11 to form the second layer powder material 20. Then, the laminated molding apparatus 100 gives a heat source through the solidifying means 13 only to the solidified region corresponding to the slice data of the powder material 20 of the second layer to solidify the powder material and solidify the powder of the second layer. The layer 21 is formed. At this time, the powder solidified layer 21 of the second layer and the powder solidified layer 21 of the first layer, which is the lower layer, are integrated to form a laminated body up to the second layer.

引き続き、積層造形装置100は、昇降テーブル14を所定厚みΔt1だけ下降させて新たな粉末材料20の層を形成し、固化手段13を介して熱源を与えて所要箇所に粉末固化層21を形成する。積層造形装置100は、この工程を繰り返すことで、目的とする3次元造形物を製造することができる。
なお、粉末材料を固化するための手段としては、レーザ光又は電子ビームにより熱を与えて、粉末材料を溶融固化(焼結を含む)する方法が選択される。例えば、例えば、炭酸ガスレーザやYAGレーザを好適に用いることができる。
Subsequently, the laminated modeling apparatus 100 lowers the elevating table 14 by a predetermined thickness Δt1 to form a new layer of the powder material 20, and gives a heat source via the solidifying means 13 to form the powder solidified layer 21 at a required location. .. By repeating this step, the laminated modeling apparatus 100 can manufacture a target three-dimensional modeled object.
As a means for solidifying the powder material, a method of melt-solidifying (including sintering) the powder material by applying heat with a laser beam or an electron beam is selected. For example, a carbon dioxide laser or a YAG laser can be preferably used.

本実施形態に係る3次元造形物の製造方法では、上記(D)の工程後、上記(E)の工程へ進む。上記(E)の工程では、造形された3次元造形物に熱処理を施す。上記(E)の熱処理の温度は、例えば1200℃以上1500℃以下である。上記(E)の熱処理の圧力は、例えば1Pa以上100Pa以下である。上記(E)の熱処理によって、3次元造形物は焼結され、緻密化される。 In the method for manufacturing a three-dimensional model according to the present embodiment, after the step (D), the process proceeds to the step (E). In the step (E) above, the modeled three-dimensional model is heat-treated. The temperature of the heat treatment in (E) is, for example, 1200 ° C. or higher and 1500 ° C. or lower. The heat treatment pressure of the above (E) is, for example, 1 Pa or more and 100 Pa or less. By the heat treatment of (E) above, the three-dimensional model is sintered and densified.

次に、上記(F)の工程へ進む。上記(F)の熱間等方圧加圧加工(HIP)とは、高温、高圧にて対象物を加圧加工する技術である。本実施形態において、対象物は、上記(E)の熱処理を経た後の3次元造形物である。例えば、熱処理後の3次元造形物は、室温に近い温度まで空冷された後、HIPが施される。 Next, the process proceeds to the above step (F). The hot isotropic pressure pressurization (HIP) of the above (F) is a technique for pressurizing an object at high temperature and high pressure. In the present embodiment, the object is a three-dimensional model after undergoing the heat treatment of (E) above. For example, the three-dimensional model after heat treatment is air-cooled to a temperature close to room temperature and then subjected to HIP.

HIPの加熱温度は、例えば1200℃以上1400℃以下であり、好ましくは1300℃以上、1400℃以下である。HIPの加圧圧力は、上記(E)の熱処理の圧力よりも十分に高い値であり、例えば50MPa以上180MPa以下である。HIPの処理時間は、例えば1時間以上5時間以下である。HIPは、例えばアルゴン(Ar)等の不活性ガス雰囲気中に3次元造形物を配置した状態で行われる。 The heating temperature of the HIP is, for example, 1200 ° C. or higher and 1400 ° C. or lower, preferably 1300 ° C. or higher and 1400 ° C. or lower. The pressurizing pressure of the HIP is a value sufficiently higher than the pressure of the heat treatment of the above (E), and is, for example, 50 MPa or more and 180 MPa or less. The processing time of HIP is, for example, 1 hour or more and 5 hours or less. The HIP is performed in a state where the three-dimensional model is placed in an atmosphere of an inert gas such as argon (Ar).

上記(E)の熱処理後の3次元造形物では、WC−Co系の超硬合金にマイクロポアが残り、強度が低下する傾向がある。本実施形態では、上記(E)の熱処理後にHIPを行うことによって、マイクロポアを低減する。これにより、3次元造形物はさらに緻密化されて、強度が高められる。 In the three-dimensional model after the heat treatment of (E), micropores remain in the WC-Co-based cemented carbide, and the strength tends to decrease. In the present embodiment, the micropores are reduced by performing HIP after the heat treatment of (E) above. As a result, the three-dimensional model is further refined and its strength is increased.

<実施形態の効果>
以上説明したように、本発明の実施形態に係る造形物の製造方法は、タングステン炭化物及びコバルトを含む積層造形用の粉末材料を用いて、レーザ光又は電子ビームを照射して3次元形状の造形物を形成する工程と、造形物に減圧雰囲気中で熱処理を施す工程と、熱処理が施された造形物に熱間等方圧加圧加工を施す工程と、を含む。これによれば、熱処理によって焼結、緻密化された3次元造形物は、HIPによってマイクロポアが低減され、さらに緻密化される。これにより、緻密で硬度が高い3次元形状の造形物を製造することができる。なお、減圧雰囲気とは、大気圧よりも低い圧力であり、例えば、真空又は、真空に近い圧力を意味する。
<Effect of embodiment>
As described above, the method for manufacturing a modeled object according to the embodiment of the present invention uses a powder material for laminated modeling containing tungsten carbide and cobalt, and irradiates a laser beam or an electron beam to form a three-dimensional shape. It includes a step of forming an object, a step of heat-treating the shaped object in a reduced pressure atmosphere, and a step of subjecting the heat-treated shaped object to hot isotropic pressure processing. According to this, the micropores of the three-dimensional model that has been sintered and densified by heat treatment are reduced by HIP, and the three-dimensional model is further densified. As a result, it is possible to manufacture a three-dimensionally shaped object that is dense and has high hardness. The reduced pressure atmosphere is a pressure lower than the atmospheric pressure, and means, for example, a vacuum or a pressure close to a vacuum.

本発明の実施形態に係る粉末材料は、レーザ光又は電子ビームを照射して3次元形状の造形物を製造するために用いられる、積層造形用の粉末材料であって、タングステン炭化物と、コバルトと、チタン炭化物と、を含み、チタン炭化物の含有量は、1質量%以上20質量%以下である。これによれば、レーザ光又は電子ビームを用いて積層造形を行う際に、チタン炭化物(TiC)は、タングステン炭化物(WC)と反応してタングステンチタン炭化物(WTiC)となる。WTiCはWC−Co系の超硬合金の組成の一部となるため、より硬度が高いWC−Co系の超硬合金を得ることができる。また、レーザ光又は電子ビームを用いて積層造形を行う際に、チタン炭化物からタングステン炭化物に炭素(C)が供給される。これにより、η相(脆弱相)の形成が抑制された、WC−Co系の超硬合金を得ることができる。 The powder material according to the embodiment of the present invention is a powder material for laminated molding used for producing a three-dimensional shaped product by irradiating a laser beam or an electron beam, and comprises tungsten carbide and cobalt. , Titanium carbide, and the content of titanium carbide is 1% by mass or more and 20% by mass or less. According to this, the titanium carbide (TiC) reacts with the tungsten carbide (WC) to become the tungsten titanium carbide (WTC) when the laminated molding is performed using the laser light or the electron beam. Since WTIC is a part of the composition of the WC-Co-based cemented carbide, a WC-Co-based cemented carbide having higher hardness can be obtained. Further, carbon (C) is supplied from the titanium carbide to the tungsten carbide when laminating modeling is performed using a laser beam or an electron beam. As a result, a WC-Co-based cemented carbide in which the formation of the η phase (fragile phase) is suppressed can be obtained.

なお、本実施形態において、粉末材料は、チタン炭化物を含まなくてもよい。本実施形態に係る造形物の製造方法は、粉末材料にチタン炭化物が含まれていない場合でも、上記(E)の熱処理の後に上記(F)のHIPを行うことで、緻密で硬度が高い3次元形状の造形物を製造することができる。 In this embodiment, the powder material does not have to contain titanium carbide. In the method for producing a modeled object according to the present embodiment, even when the powder material does not contain titanium carbide, the HIP of the above (F) is performed after the heat treatment of the above (E) to obtain a dense and high hardness. It is possible to manufacture a three-dimensional shaped object.

本発明を、以下の実施例及び比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
<実施例1>
(粉末材料の製造方法)
原料粉末として、平均粒子径が0.76μmのタングステン炭化物(WC)粉末と、平均粒子径が1.30μmのコバルト(Co)粉末と、平均粒子径が0.6μmのチタン炭化物(TiC)粉末とを用意した。
用意した各原料粉末を後述の表1に示す割合で配合し、配合粉末(1次粒子の形態)を得た。得られた配合粉末を湿式混合後、スプレードライヤーにより造粒した。得られた造粒粉末を焼結し、造粒焼結粉(2次粒子の形態)を作成した。得られた造粒焼結粉を目開き25μmの篩で分級した。得られた分級後の各顆粒の平均粒子径、嵩密度、顆粒強度をそれぞれ測定した。分級後の各顆粒の平均粒子径、嵩密度、顆粒強度、化学成分を表1に示す。
The present invention will be described in more detail with reference to the following examples and comparative examples. However, the technical scope of the present invention is not limited to the following examples.
<Example 1>
(Manufacturing method of powder material)
As raw material powders, tungsten carbide (WC) powder having an average particle size of 0.76 μm, cobalt (Co) powder having an average particle size of 1.30 μm, and titanium carbide (TiC) powder having an average particle size of 0.6 μm. Prepared.
Each of the prepared raw material powders was blended in the ratio shown in Table 1 described later to obtain a blended powder (in the form of primary particles). The obtained compounded powder was wet-mixed and then granulated by a spray dryer. The obtained granulated powder was sintered to prepare a granulated sintered powder (in the form of secondary particles). The obtained granulated sintered powder was classified with a sieve having an opening of 25 μm. The average particle size, bulk density, and granule strength of each of the obtained granules after classification were measured. Table 1 shows the average particle size, bulk density, granule strength, and chemical composition of each granule after classification.

Figure 2021055160
Figure 2021055160

1次粒子の「平均粒子径」には、レーザ回折・散乱法に基づく粒度分布測定装置により測定された体積基準の粒度分布における積算値50%での粒子径(50%体積平均粒子径;D50)を採用した。なお平均粒子径が1μm未満の粉末(炭化タングステン粉末)について、比表面積から算出される球形粒子の直径(球相当径)として算出される値を採用した。1次粒子の平均粒子径(Dave)は、原料粉末の比表面積をSm、密度をρとしたとき、式:Dave=6/(ρSm)、に基づき求めることができる。比表面積は、例えば、比表面積測定装置(マイクロメリティックス社製、FlowSorbII 2300)を用い、連続流動法により測定されたN等のガス吸着量から、BET法により算出した値とすることができる。この比表面積測定は、JIS Z8830:2013(ISO9277:2010)に規定される「ガス吸着による粉体(固体)の比表面積測定方法」に準じて測定することができる。 The "average particle size" of the primary particles is the particle size at an integrated value of 50% in the volume-based particle size distribution measured by a particle size distribution measuring device based on the laser diffraction / scattering method (50% volume average particle size; D50). )It was adopted. For powder having an average particle diameter of less than 1 μm (tungsten carbide powder), a value calculated as the diameter of spherical particles (corresponding diameter to a sphere) calculated from the specific surface area was adopted. The average particle size (Dave) of the primary particles can be obtained based on the formula: Dave = 6 / (ρSm) when the specific surface area of the raw material powder is Sm and the density is ρ. The specific surface area, for example, a specific surface area measuring apparatus (Micromeritics Inc., FlowSorbII 2300) using, from the gas adsorption amount of N 2 or the like which is measured by the continuous flow method, be a value calculated by the BET method it can. This specific surface area measurement can be performed according to the "method for measuring the specific surface area of powder (solid) by gas adsorption" specified in JIS Z8830: 2013 (ISO9277: 2010).

2次粒子の「平均粒子径」には、レーザ回折・散乱法に基づく粒度分布測定装置により測定された体積基準の粒度分布における積算値50%での粒子径(50%体積平均粒子径;D50)を採用した。
嵩密度には、JIS Z2504:2012に規定される金属粉−見掛密度測定方法に準じて測定される値を採用した。具体的には、直径2.5mmのオリフィスから自然に流れ出す粉末により、所定の容量の容器を自然充填の状態で満たしたときの、当該粉末の質量を測定することで、嵩密度を算出した。嵩密度の測定に、金属粉用のJISカサ比重測定器(筒井理化学器械株式会社製)を用いて測定した値を採用した。
The "average particle size" of the secondary particles is the particle size at an integrated value of 50% in the volume-based particle size distribution measured by a particle size distribution measuring device based on the laser diffraction / scattering method (50% volume average particle size; D50). )It was adopted.
For the bulk density, a value measured according to the metal powder-apparent density measuring method specified in JIS Z2504: 2012 was adopted. Specifically, the bulk density was calculated by measuring the mass of the powder when a container having a predetermined capacity was filled in a naturally filled state with the powder that naturally flows out from an orifice having a diameter of 2.5 mm. For the measurement of bulk density, the value measured using a JIS bulk specific gravity measuring instrument for metal powder (manufactured by Tsutsui Rikagaku Kikai Co., Ltd.) was adopted.

顆粒強度には、電磁力負荷方式の圧縮試験機を用いて測定される、顆粒粒子の破壊強度の値を採用した。具体的には、粉末材料を構成する任意の10個以上の造粒焼結粉について、微小圧縮試験装置(株式会社島津製作所製、MCT−500)を用いて測定した破壊強度の算術平均値を、顆粒強度として採用した。なお、造粒焼結粉について、圧縮試験にて得られた臨界荷重をL[N]、平均粒子径をd[mm]としたとき、造粒焼結粉の破壊強度σ[MPa]は、式:σ=2.8×L/π/d2、で算出される。 For the granule strength, the value of the breaking strength of the granule particles measured using an electromagnetic force loading type compression tester was adopted. Specifically, the arithmetic average value of the fracture strength measured using a microcompression test device (manufactured by Shimadzu Corporation, MCT-500) for any 10 or more granulated sintered powders constituting the powder material. , Adopted as granule strength. Regarding the granulated sintered powder, when the critical load obtained in the compression test is L [N] and the average particle size is d [mm], the fracture strength σ [MPa] of the granulated sintered powder is Formula: Calculated by σ = 2.8 × L / π / d2.

(3次元造形物の造形方法)
上記粉末材料を使用して、積層造形装置(製品名:ProX DMP200、3DSystem社製)により、平らに敷いた粉末材料にレーザ光を照射し、一層ずつ溶融させ、この工程を繰り返すことで3次元造形物を製造した。この際、出力300W、走査速度300mm/s、ピッチ幅0.1mm、積層厚さ30μmとした。造形後に、3次元造形物の相対密度(%)と、ロックウェル硬度(HRA)と、抗折力(MPa)とを測定した。この測定値を、比較例1とした。なお、相対密度とは、最も密な状態ともっと疎な状態との間のどの状態にあるかを示す指標である。抗折力とは、曲げに対する強度を示す物性値である。抗折力は、曲げ強さと呼んでもよい。
(How to model a three-dimensional model)
Using the above powder material, a laminated modeling device (product name: ProX DMP200, manufactured by 3D System) irradiates the powder material laid flat with laser light, melts it layer by layer, and repeats this process to create three dimensions. Manufactured a model. At this time, the output was 300 W, the scanning speed was 300 mm / s, the pitch width was 0.1 mm, and the stacking thickness was 30 μm. After modeling, the relative density (%), Rockwell hardness (HRA), and anti-folding force (MPa) of the three-dimensional model were measured. This measured value was designated as Comparative Example 1. The relative density is an index indicating which state is between the densest state and the sparser state. The bending force is a physical property value indicating the strength against bending. The bending force may be called bending strength.

次に、3次元造形物に熱処理を施した。熱処理の条件は、減圧雰囲気中(10Pa)で、加熱温度が1500℃、加熱時間が2時間(連続)、である。熱処理後に、3次元造形物の相対密度(%)と、ロックウェル硬度(HRA)と、抗折力(MPa)とを測定した。この測定値を、比較例2とした。
次に、熱処理後の3次元造形物に、熱間等方圧加圧加工(HIP)を施した。HIPの条件は、アルゴン(Ar)ガスの加圧雰囲気下(100MPa)で、加熱温度が1380℃、加熱時間が4時間(連続)、である。HIP後に、3次元造形物の相対密度(%)と、ロックウェル硬度(HRA)と、抗折力(MPa)とを測定した。この測定値を、実施例1の評価結果とした。
(評価)
表2に、実施例1及び比較例1、2の評価結果を示す。
Next, the three-dimensional model was heat-treated. The conditions of the heat treatment are a reduced pressure atmosphere (10 Pa), a heating temperature of 1500 ° C., and a heating time of 2 hours (continuous). After the heat treatment, the relative density (%) of the three-dimensional model, the Rockwell hardness (HRA), and the bending force (MPa) were measured. This measured value was designated as Comparative Example 2.
Next, the three-dimensional model after the heat treatment was subjected to hot isotropic pressure pressurization (HIP). The conditions of HIP are an argon (Ar) gas pressurized atmosphere (100 MPa), a heating temperature of 1380 ° C., and a heating time of 4 hours (continuous). After HIP, the relative density (%) of the three-dimensional model, the Rockwell hardness (HRA), and the bending force (MPa) were measured. This measured value was used as the evaluation result of Example 1.
(Evaluation)
Table 2 shows the evaluation results of Example 1 and Comparative Examples 1 and 2.

Figure 2021055160
Figure 2021055160

表2に示すように、造形後の3次元造形物に熱処理を施すと、ロックウェル硬度は低くなることが確認された。また、熱処理後の3次元造形物にHIPを施すと、ロックウェル硬度が高くなることが確認された。HIP後の3次元造形物(実施例1)は、造形後及び熱処理よりも、ロックウェル硬度が高いことが確認された。
図2は、熱処理後の3次元造形物(比較例2)の断面を拡大して示すSEM(Scanning Electron Microscope;走査電子顕微鏡)画像である。図3は、HIP後の3次元造形物(実施例1)の断面を拡大して示すSEM画像である。
As shown in Table 2, it was confirmed that the Rockwell hardness was lowered when the three-dimensional modeled object after modeling was heat-treated. Further, it was confirmed that when HIP was applied to the three-dimensional model after the heat treatment, the Rockwell hardness was increased. It was confirmed that the three-dimensional modeled product after HIP (Example 1) had higher Rockwell hardness than that after modeling and heat treatment.
FIG. 2 is a SEM (Scanning Electron Microscope) image showing an enlarged cross section of a three-dimensional model (Comparative Example 2) after heat treatment. FIG. 3 is an enlarged SEM image showing a cross section of the three-dimensional modeled object (Example 1) after HIP.

図2及び図3において、白い部分はタングステン炭化物(WC)であり、黒い部分はコバルト(Co)である。グレーの部分は、タングステンチタン炭化物(WTiC)である。図2及び図3を比較して分かるように、熱処理後の3次元造形物ではタングステン炭化物が繊維状に存在しているのに対して、HIP後の3次元造形物ではタングステン炭化物は粒状に存在している。HIP後の3次元造形物では、タングステンチタン炭化物が均一に分布しており、全体の硬度が高くなっている。 In FIGS. 2 and 3, the white part is tungsten carbide (WC) and the black part is cobalt (Co). The gray part is tungsten titanium carbide (WTC). As can be seen by comparing FIGS. 2 and 3, the tungsten carbide is present in a fibrous form in the three-dimensional model after heat treatment, whereas the tungsten carbide is present in granular form in the three-dimensional model after HIP. doing. In the three-dimensional model after HIP, tungsten titanium carbide is uniformly distributed and the overall hardness is high.

<実施例2>
(粉末材料の製造方法)
原料粉末として、平均粒子径が0.76μmのタングステン炭化物(WC)粉末と、平均粒子径が6.72μmのコバルト(Co)粉末とを用意した。実施例2において、実施例1との違いは、粉末材料にチタン炭化物(TiC)が含まれない点のみである。用意した各原料粉末を、コバルトが17質量%、タングステン炭化物が83質量%の割合で配合し、配合粉末(1次粒子の形態)を得た。
これ以降の工程は、実施例1と同じである。すなわち、得られた配合粉末を湿式混合後、スプレードライヤーにより造粒した。得られた造粒粉末を焼結し、造粒焼結粉(2次粒子の形態)を作成した。得られた造粒焼結粉を目開き25μmの篩で分級した。
<Example 2>
(Manufacturing method of powder material)
As raw material powders, a tungsten carbide (WC) powder having an average particle size of 0.76 μm and a cobalt (Co) powder having an average particle size of 6.72 μm were prepared. In Example 2, the only difference from Example 1 is that the powder material does not contain titanium carbide (TiC). Each of the prepared raw material powders was blended in a proportion of 17% by mass of cobalt and 83% by mass of tungsten carbide to obtain a blended powder (in the form of primary particles).
Subsequent steps are the same as in Example 1. That is, the obtained compounded powder was wet-mixed and then granulated by a spray dryer. The obtained granulated powder was sintered to prepare a granulated sintered powder (in the form of secondary particles). The obtained granulated sintered powder was classified with a sieve having an opening of 25 μm.

(3次元造形物の造形方法)
上記粉末材料を使用して、積層造形装置により、平らに敷いた粉末材料にレーザ光を照射し、一層ずつ溶融させ、この工程を繰り返すことで3次元造形物を製造した。この際、出力300W、走査速度300mm/s、ピッチ幅0.1mm、積層厚さ30μmとした。造形後に、3次元造形物の相対密度(%)と、ロックウェル硬度(HRA)と、抗折力(MPa)とを測定した。この測定値を、比較例3とした。
次に、3次元造形物に熱処理を施した。熱処理の条件は、減圧雰囲気中(10Pa)で、加熱温度が1500℃、加熱時間が2時間(連続)、である。熱処理後に、3次元造形物の相対密度(%)と、ロックウェル硬度(HRA)と、抗折力(MPa)とを測定した。この測定値を、比較例4とした。
(How to model a three-dimensional model)
Using the above powder material, the powder material laid flat was irradiated with laser light by a laminated molding apparatus to be melted layer by layer, and this process was repeated to manufacture a three-dimensional modeled product. At this time, the output was 300 W, the scanning speed was 300 mm / s, the pitch width was 0.1 mm, and the stacking thickness was 30 μm. After modeling, the relative density (%), Rockwell hardness (HRA), and anti-folding force (MPa) of the three-dimensional model were measured. This measured value was designated as Comparative Example 3.
Next, the three-dimensional model was heat-treated. The conditions of the heat treatment are a reduced pressure atmosphere (10 Pa), a heating temperature of 1500 ° C., and a heating time of 2 hours (continuous). After the heat treatment, the relative density (%) of the three-dimensional model, the Rockwell hardness (HRA), and the bending force (MPa) were measured. This measured value was designated as Comparative Example 4.

次に、熱処理後の3次元造形物に、熱間等方圧加圧加工(HIP)を施した。HIPの条件は、アルゴン(Ar)ガスの加圧雰囲気中(100MPa)で、加熱温度が1380℃、加熱時間が4時間(連続)、である。HIP後に、3次元造形物の相対密度(%)と、ロックウェル硬度(HRA)と、抗折力(MPa)とを測定した。この測定値を実施例2の評価結果とした。
(評価)
表3に、実施例2及び比較例3、4の評価結果を示す。
Next, the three-dimensional model after the heat treatment was subjected to hot isotropic pressure pressurization (HIP). The conditions of HIP are that the heating temperature is 1380 ° C. and the heating time is 4 hours (continuous) in a pressurized atmosphere of argon (Ar) gas (100 MPa). After HIP, the relative density (%) of the three-dimensional model, the Rockwell hardness (HRA), and the bending force (MPa) were measured. This measured value was used as the evaluation result of Example 2.
(Evaluation)
Table 3 shows the evaluation results of Example 2 and Comparative Examples 3 and 4.

Figure 2021055160
Figure 2021055160

表3に示すように、原料粉末にタングステン炭化物(WC)粉末と、コバルト(Co)粉末とが含まれ、チタン炭化物(TiC)が含まれない場合でも、熱処理後の3次元造形物にHIPを施すと、ロックウェル硬度が高くなることが確認された。HIP後の3次元造形物(実施例2)は、造形後及び熱処理よりも、ロックウェル硬度が高いことが確認された。
図4は、HIP後の3次元造形物(実施例2)の断面を拡大して示すSEM画像である。図4において、白い部分はタングステン炭化物(WC)であり、黒い部分はコバルト(Co)である。実施例2では、タングステン炭化物が多く、かつ均一に分布しており、全体の硬度が高くなっている。
As shown in Table 3, even when the raw material powder contains tungsten carbide (WC) powder and cobalt (Co) powder and does not contain titanium carbide (TiC), HIP is applied to the three-dimensional model after heat treatment. It was confirmed that when applied, the Rockwell hardness increased. It was confirmed that the three-dimensional modeled product after HIP (Example 2) had higher Rockwell hardness than that after modeling and heat treatment.
FIG. 4 is an enlarged SEM image showing a cross section of the three-dimensional modeled object (Example 2) after HIP. In FIG. 4, the white part is tungsten carbide (WC) and the black part is cobalt (Co). In Example 2, the amount of tungsten carbide is large and uniformly distributed, and the overall hardness is high.

10 造形エリア
11 ワイパ
12 ストック
13 固化手段
14 昇降テーブル
20 粉末材料
21 粉末固化層
10 Modeling area 11 Wiper 12 Stock 13 Solidification means 14 Lifting table 20 Powder material 21 Powder solidification layer

Claims (6)

タングステン炭化物及びコバルトを含む積層造形用の粉末材料を用いて、レーザ光又は電子ビームを照射して3次元形状の造形物を形成する工程と、
前記造形物に減圧雰囲気中で熱処理を施す工程と、
前記熱処理が施された前記造形物に熱間等方圧加圧加工を施す工程とを含む、造形物の製造方法。
A process of forming a three-dimensional model by irradiating a laser beam or an electron beam with a powder material for laminated modeling containing tungsten carbide and cobalt.
A step of heat-treating the modeled object in a reduced pressure atmosphere,
A method for producing a modeled object, which comprises a step of subjecting the heat-treated object to hot isotropic pressure processing.
前記粉末材料はチタン炭化物を含む、請求項1に記載の造形物の製造方法。 The method for producing a model according to claim 1, wherein the powder material contains titanium carbide. 前記粉末材料中の前記チタン炭化物の含有量は、1質量%以上20質量%以下である、請求項2に記載の造形物の製造方法。 The method for producing a modeled product according to claim 2, wherein the content of the titanium carbide in the powder material is 1% by mass or more and 20% by mass or less. 前記熱間等方圧加圧加工の加熱温度は1200℃以上1400℃以下である、請求項1から3のいずれか1項に記載の造形物の製造方法。 The method for producing a modeled object according to any one of claims 1 to 3, wherein the heating temperature of the hot isotropic pressure processing is 1200 ° C. or higher and 1400 ° C. or lower. 前記熱間等方圧加圧加工の加圧圧力は、50MPa以上180MPa以下である、請求項1から4のいずれか1項に記載の造形物の製造方法。 The method for producing a modeled object according to any one of claims 1 to 4, wherein the pressurizing pressure of the hot isotropic pressurization process is 50 MPa or more and 180 MPa or less. 前記熱間等方圧加圧加工の処理時間は、1時間以上5時間以下である、請求項1から5のいずれか1項に記載の造形物の製造方法。 The method for producing a modeled object according to any one of claims 1 to 5, wherein the processing time of the hot isotropic pressure processing is 1 hour or more and 5 hours or less.
JP2019180583A 2019-09-30 2019-09-30 Molded object manufacturing method Active JP7336944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180583A JP7336944B2 (en) 2019-09-30 2019-09-30 Molded object manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180583A JP7336944B2 (en) 2019-09-30 2019-09-30 Molded object manufacturing method

Publications (2)

Publication Number Publication Date
JP2021055160A true JP2021055160A (en) 2021-04-08
JP7336944B2 JP7336944B2 (en) 2023-09-01

Family

ID=75272327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180583A Active JP7336944B2 (en) 2019-09-30 2019-09-30 Molded object manufacturing method

Country Status (1)

Country Link
JP (1) JP7336944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210134A1 (en) * 2021-03-31 2022-10-06 株式会社フジミインコーポレーテッド Powder material for layer-by-layer shaping and method for manufacturing shaped product using powder material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256862A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP2018083959A (en) * 2016-11-21 2018-05-31 冨士ダイス株式会社 Method for producing powder metallurgy sintered compact by lamination molding method
WO2018152448A1 (en) * 2017-02-20 2018-08-23 Kennametal Inc. Cemented carbide powders for additive manufacturing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256862A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP2018083959A (en) * 2016-11-21 2018-05-31 冨士ダイス株式会社 Method for producing powder metallurgy sintered compact by lamination molding method
WO2018152448A1 (en) * 2017-02-20 2018-08-23 Kennametal Inc. Cemented carbide powders for additive manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210134A1 (en) * 2021-03-31 2022-10-06 株式会社フジミインコーポレーテッド Powder material for layer-by-layer shaping and method for manufacturing shaped product using powder material

Also Published As

Publication number Publication date
JP7336944B2 (en) 2023-09-01

Similar Documents

Publication Publication Date Title
US10710157B2 (en) Additive manufacturing material for powder rapid prototyping manufacturing
US20220266511A1 (en) Additive manufacturing material for powder rapid prototyping manufacturing
JP6633677B2 (en) Powder material used for powder additive manufacturing and powder additive manufacturing method using the same
US10711332B2 (en) Additive manufacturing material for powder rapid prototyping manufacturing
JP6303016B2 (en) Manufacturing method of layered objects
Salehi et al. Inkjet based 3D additive manufacturing of metals
WO2020100756A1 (en) Powder material for use in powder laminate molding, powder laminate molding method using same, and molded article
JP7336944B2 (en) Molded object manufacturing method
JP7401242B2 (en) powder material
JP7117226B2 (en) Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
WO2022210134A1 (en) Powder material for layer-by-layer shaping and method for manufacturing shaped product using powder material
JP2020012149A (en) Method for manufacturing three-dimensional molded article and three-dimensional molding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7336944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150