JP3446694B2 - Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object - Google Patents

Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object

Info

Publication number
JP3446694B2
JP3446694B2 JP33517899A JP33517899A JP3446694B2 JP 3446694 B2 JP3446694 B2 JP 3446694B2 JP 33517899 A JP33517899 A JP 33517899A JP 33517899 A JP33517899 A JP 33517899A JP 3446694 B2 JP3446694 B2 JP 3446694B2
Authority
JP
Japan
Prior art keywords
powder material
powder
shaped object
producing
dimensional shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33517899A
Other languages
Japanese (ja)
Other versions
JP2001152204A (en
Inventor
勲 不破
昇 草野
精造 待田
諭 阿部
正孝 武南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP33517899A priority Critical patent/JP3446694B2/en
Publication of JP2001152204A publication Critical patent/JP2001152204A/en
Application granted granted Critical
Publication of JP3446694B2 publication Critical patent/JP3446694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、三次元形状造形物
の製造技術に関し、詳しくは、光ビームを利用して粉末
材料を層状に連続的に硬化させて三次元形状造形物を製
造する技術において、造形に用いる金属を主体とする粉
末材料と、このような粉末材料を用いて造形物を製造す
る方法と、このような方法で製造された造形物とを対象
にしている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a three-dimensional shaped object, and more specifically, a technique for manufacturing a three-dimensional shaped object by continuously curing a powder material in layers using a light beam. In the above, the object is a powder material mainly composed of a metal used for modeling, a method of manufacturing a molded article using such a powder material, and a molded article manufactured by such a method.

【0002】[0002]

【従来の技術】金属粉末材料に光ビーム(指向性エネル
ギービーム、例えばレーザ)を照射して硬化層を形成
し、この硬化層を積み重ねて三次元形状を有する造形物
を製造する技術が知られている。通常、このような方法
で得られる造形物は、造形密度(焼結密度)が70%程
度であり、造形物の表面には隙間(空孔)が非常に多く
存在している。
2. Description of the Related Art There is known a technique of irradiating a metal powder material with a light beam (directional energy beam, for example, a laser) to form a hardened layer, and stacking the hardened layer to manufacture a three-dimensional shaped object. ing. Usually, the molded product obtained by such a method has a molded density (sintered density) of about 70%, and there are many gaps (holes) on the surface of the molded product.

【0003】成形金型のように、表面特性が重要で、例
えば表面粗さRy =1μm程度が要求される用途には、
前記方法で得られた造形物をそのまま使用することは出
来ない。造形物の表面に存在する隙間を埋めたり、隙間
を埋めた後の表面を仕上げたりすることが必要になる。
特開平10−88201号公報(先行技術1)には、粉
体の堆積層を圧粉したり粉体の堆積層にレーザ光を照射
したあと全体を圧縮したりして中間成形体を造形し、こ
の中間成形体をさらに焼結して、緻密な造形物を得る技
術が示されている。
For applications such as molding dies, where surface characteristics are important and, for example, surface roughness Ry = 1 μm is required,
The shaped article obtained by the above method cannot be used as it is. It is necessary to fill the gaps existing on the surface of the modeled object or finish the surface after filling the gaps.
Japanese Unexamined Patent Application Publication No. 10-88201 (Prior Art 1) forms an intermediate compact by compacting a powder deposit layer or irradiating the powder deposit layer with laser light and then compressing the whole. , A technique of further sintering this intermediate compact to obtain a dense shaped article is disclosed.

【0004】特開平8−39275号公報(先行技術
2)には、単一の高密度エネルギー線では溶融不可能な
金属の混合粉体に、複数の高密度エネルギー線を同時に
照射して溶融させることで造形物を得る技術が示されて
いる。特表平10−506151号公報(先行技術2)
には、銅合金を主成分として鉄族金属なども含む混合粉
末をレーザ光の照射によって焼結させて造形物を製造す
る際に、鉄族金属化合物を含むガス雰囲気中で焼結を行
わせることで、混合粉末からなる焼結材料の孔を鉄族金
属化合物に由来する強化相で埋めて、空隙率を小さくし
密度を高くする技術が示されている。
In Japanese Patent Laid-Open No. 8-39275 (Prior Art 2), a mixed powder of a metal that cannot be melted by a single high-density energy beam is simultaneously irradiated with a plurality of high-density energy beams to be melted. The technique for obtaining a modeled object is shown. Japanese Patent Publication No. 10-506151 (Prior Art 2)
In the case of producing a shaped article by sintering a mixed powder containing a copper alloy as a main component and also containing an iron group metal, the sintering is performed in a gas atmosphere containing an iron group metal compound. Thus, a technique is disclosed in which the pores of the sintered material composed of the mixed powder are filled with the reinforcing phase derived from the iron group metal compound to reduce the porosity and increase the density.

【0005】[0005]

【発明が解決しようとする課題】上記した何れの先行技
術でも、成形金型などに利用できるほど表面粗さの小さ
な造形物を得ることは困難である。先行技術1では、堆
積層の圧粉や全体の圧縮を行っても、隙間や空孔がある
程度は小さくなるだけで、完全に無くすことはできな
い。
With any of the above-mentioned prior arts, it is difficult to obtain a shaped article having a surface roughness as small as that which can be used for a molding die or the like. In Prior Art 1, even if the deposited layer is compressed or the whole is compressed, the gaps and pores are only reduced to some extent and cannot be completely eliminated.

【0006】先行技術2では、金属の混合粉体を完全に
溶融させるには、複数の高密度エネルギー線を同時に照
射する装置が必要であり、複数の高密度エネルギー線を
焦点を合わせて同時に照射しながら走査するには高度な
技術が必要となり、製造装置が複雑で高価なものとな
り、生産性も低くなる。金属を完全に溶融させたあとで
固化させると、熱変形にって反りやクラックが発生し易
く、造形物の寸法精度が低下してしまう。
In Prior Art 2, a device for simultaneously irradiating a plurality of high-density energy rays is required to completely melt the mixed powder of metal, and a plurality of high-density energy rays are focused and simultaneously irradiated. However, scanning requires sophisticated technology, which makes the manufacturing apparatus complicated and expensive, and lowers productivity. When the metal is completely melted and then solidified, warping or cracks are likely to occur due to thermal deformation, and the dimensional accuracy of the modeled object is deteriorated.

【0007】先行技術3では、鉄族金属化合物は1種の
化学蒸着によって焼結材料の表面に堆積するので、焼結
材料の表面から内部までの全体の隙間を完全に埋めるに
は時間がかかり、造形作業の能率が低下する。レーザ光
を照射する領域を特定のガス雰囲気に維持する装置など
が必要であり、装置構造が複雑で高価になる。造形物の
隙間や空孔を埋める方法として、金属や樹脂を溶融させ
て含浸させる方法が考えられる。
In the prior art 3, the iron group metal compound is deposited on the surface of the sintered material by one kind of chemical vapor deposition, so it takes time to completely fill the entire gap from the surface to the inside of the sintered material. , The efficiency of modeling work is reduced. A device or the like for maintaining the region for irradiating the laser beam in a specific gas atmosphere is required, which makes the device structure complicated and expensive. As a method of filling the gaps and voids of the modeled object, a method of melting and impregnating a metal or resin can be considered.

【0008】但し、樹脂では強度や耐久性などに問題が
あり、前記した成形金型などには適用できない。金属を
用いる場合、溶融した高温の金属が造形物と接触する
と、造形物の一部が溶けたり熱変形を起こしたりする可
能性がある。本発明が解決しようとする課題は、前記し
た粉末の光レーザ硬化層を積層して三次元形状造形物を
製造する技術において、従来技術が有する問題点を解消
し、緻密で精度の高い造形品を容易かつ能率的に得られ
るようにすることである。
However, the resin has a problem in strength and durability and cannot be applied to the above-mentioned molding die. In the case of using a metal, when the molten high-temperature metal comes into contact with the modeled object, a part of the modeled object may be melted or thermally deformed. The problem to be solved by the present invention is to solve the problems of the prior art in the technology for producing a three-dimensional shaped object by laminating the above-mentioned powdered optical laser-cured layer, and to provide a dense and highly accurate object Is to be obtained easily and efficiently.

【0009】[0009]

〔その他の技術事項[Other technical matters ]

前記粉末材料が、球状もしくは略球状をなし、平均粒径
が0.1〜200μmであることができる。好ましくは
1〜100μm、さらに好ましくは5〜50μmである
ことができる。
The powder material may have a spherical shape or a substantially spherical shape, and have an average particle diameter of 0.1 to 200 μm. The thickness can be preferably 1 to 100 μm, more preferably 5 to 50 μm.

【0010】前記鉄系粉末を70〜95重量%含むこと
ができる。前記鉄系粉末が、焼入したときの硬さがビッ
カース硬さ400以上またはロックウェル硬さ40以上
になる良焼入性材料であることができる。前記鉄系粉末
が、合金工具鋼材料であることができる。前記非鉄系粉
末として、銅とリンまたはマンガンとの合金からなる銅
系合金を含むことができる。
The iron-based powder may be contained in an amount of 70 to 95% by weight. The iron-based powder may be a good hardenability material having a hardness of 400 or more Vickers hardness or 40 or more Rockwell hardness when quenched. The iron-based powder may be an alloy tool steel material. The non-ferrous powder may include a copper alloy made of an alloy of copper and phosphorus or manganese.

【0011】前記非鉄系粉末として、ニッケルとクロ
ム、リン、シリコンからなる群から選ばれる1種類以上
の材料との合金からなるニッケル系合金を含むことがで
きる。前記鉄系粉末が、クロムモリブデン鋼を含み、前
記非鉄系粉末が、リン銅またはマンガン銅の何れかとニ
ッケルとを含むことができる。前記粉末材料が、クロム
モリブデン鋼70〜90重量%、リン銅またはマンガン
銅5〜30重量%、ニッケル0〜10重量%を含むこと
ができる。
The non-ferrous powder may include a nickel alloy composed of an alloy of nickel and one or more materials selected from the group consisting of chromium, phosphorus and silicon. The iron-based powder may include chromium molybdenum steel, and the non-ferrous-based powder may include either phosphorous copper or manganese copper and nickel. The powder material may include 70 to 90% by weight of chromium molybdenum steel, 5 to 30% by weight of phosphorous copper or manganese copper, and 0 to 10% by weight of nickel.

【0012】前記粉末材料の凝集防止剤をさらに含むこ
とができる。前記凝集防止剤が、前記粉末材料の表面に
コーティングされていることができる。前記凝集防止剤
が、脂肪酸であることができる。前記粉末材料が、平均
粒径1〜20μmであることができる。
The powder material may further include an anti-agglomeration agent. The anti-agglomeration agent may be coated on the surface of the powder material. The anti-aggregation agent can be a fatty acid. The powder material may have an average particle size of 1 to 20 μm.

【0013】〔三次元形状造形物の製造方法〕粉末材料
に光ビームを照射して硬化層を形成し、この硬化層を積
み重ねて所望の三次元形状を有する造形物を製造する方
法であって、前記粉末材料から製造された造形物に、造
形物よりも融点の低い金属からなる含浸材料を含浸させ
る工程(a) を含む。
[Method for Producing Three-dimensional Shaped Object] A method for producing a molded article having a desired three-dimensional shape by irradiating a powder material with a light beam to form a cured layer, and stacking the cured layers. The method includes the step (a) of impregnating a shaped article manufactured from the powder material with an impregnating material made of a metal having a melting point lower than that of the shaped article.

【0014】前記含浸材料が、銅もしくは銅合金である
ことができる。前記工程(a) が、不活性または還元性の
雰囲気中で減圧下で、前記含浸材料の粉末を前記造形物
と接触させて含浸材料を造形物に含浸させることができ
る。前記含浸材料が、ブロンズであることができる。前
記含浸材料が、銅とすず、リン、マンガンとの合金であ
ることができる。
The impregnating material can be copper or a copper alloy. In the step (a), the impregnated material can be impregnated with the powder of the impregnating material in contact with the shaped article under reduced pressure in an inert or reducing atmosphere. The impregnating material can be bronze. The impregnating material may be an alloy of copper and tin, phosphorus, and manganese.

【0015】前記工程(a) のあとで、造形物に放電加工
を施す工程(b) をさらに含むことができる。 〔三次元形状造形物〕前記製造方法で製造され、プラス
チック射出成形用金型、あるいは、放電加工用電極であ
ることができる。
After the step (a), a step (b) of subjecting the shaped article to electrical discharge machining can be further included. [Three-dimensional shape-molded article] A three-dimensional shaped article manufactured by the above-described manufacturing method can be a plastic injection molding die or an electric discharge machining electrode.

【0016】[0016]

【発明の実施の形態】〔基本的製造工程〕図1に、基本
的な製造工程を示している。図1(a) に示すように、周
囲が囲まれた造形枠10の内部に、昇降自在な造形台1
2を備えている。造形台12の上には、造形物を載せて
取り扱うための載置板14が配置される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Basic Manufacturing Process] FIG. 1 shows a basic manufacturing process. As shown in FIG. 1 (a), a molding table 1 that can be raised and lowered is placed inside a molding frame 10 surrounded by the periphery.
Equipped with 2. A mounting plate 14 for mounting and handling a modeled object is arranged on the modeling table 12.

【0017】造形枠10の内部で載置板14の上には、
既に作製された硬化層32が複数層積み重ねられてい
る。硬化層32の周囲には未硬化の粉末材料30が存在
している。造形台12の上下位置を調整することで、硬
化層32および未硬化の粉末材料30の表面が、造形枠
10の上端よりも少し低い位置になるように配置する。
造形枠10と硬化層32の表面との間隔が、次に作製さ
れる硬化層32の厚みを決める。
Inside the molding frame 10 and on the mounting plate 14,
A plurality of cured layers 32 that have already been manufactured are stacked. The uncured powder material 30 is present around the hardened layer 32. By adjusting the upper and lower positions of the modeling table 12, the surfaces of the hardened layer 32 and the uncured powder material 30 are positioned so as to be slightly lower than the upper end of the modeling frame 10.
The distance between the shaping frame 10 and the surface of the hardened layer 32 determines the thickness of the hardened layer 32 to be produced next.

【0018】先に形成された硬化層32および未硬化の
粉末材料30の上に、新たな粉末材料30を供給し、造
形枠10を横断する幅板状の規制部材16を造形枠10
よりも少し高い位置で水平方向に移動させて、粉末材料
30の高さ位置を規制し、全体が一定の厚みを有する粉
末材料30の層を形成する。図1(b) に示すように、造
形枠10の内側の粉末材料30表面にビーム状のレーザ
光50を照射すると、その部分の粉末材料の全体あるい
は一部が溶融して粉末材料同士が一体的に接合され、新
たな硬化層32が形成される。粉末材料が溶融硬化する
際には、先に形成された硬化層32とも接合一体化され
るので、新たに形成された硬化層32は下方に積層され
た硬化層32…と一体化することになる。
New powder material 30 is supplied on the hardened layer 32 and the uncured powder material 30 formed previously, and the plate-shaped regulating member 16 that traverses the frame 10 is formed.
The powder material 30 is moved in the horizontal direction at a position slightly higher than that to regulate the height position of the powder material 30 to form a layer of the powder material 30 having a constant thickness as a whole. As shown in FIG. 1 (b), when the surface of the powder material 30 inside the molding frame 10 is irradiated with the beam-shaped laser beam 50, all or part of the powder material in that portion is melted and the powder materials are integrated with each other. Are joined together to form a new hardened layer 32. When the powder material is melt-cured, it is joined and integrated with the previously formed hardened layer 32. Therefore, the newly formed hardened layer 32 is integrated with the lower hardened layer 32. Become.

【0019】レーザ光50を水平方向に走査すること
で、所定のパターン形状を有する硬化層32が得られ
る。上記のような工程を繰り返すことで、所定のパター
ン形状を有する硬化層32が複数層積層された三次元形
状を有する造形物が得られる。硬化層32すなわち造形
物の周囲には未硬化の粉末材料30が残留している。
By scanning the laser beam 50 in the horizontal direction, the hardened layer 32 having a predetermined pattern is obtained. By repeating the above steps, a three-dimensional shaped object in which a plurality of hardened layers 32 having a predetermined pattern shape are stacked is obtained. The uncured powder material 30 remains around the hardened layer 32, that is, around the shaped object.

【0020】図1(c) に示すように、造形枠10の内部
から、載置板14とともに造形物Mを取り出せば、三次
元形状を有する造形物Mが得られる。 〔粉末材料〕粉末材料は、造形物の基本的構造や特性を
決めるベースになる材料と、このベース材料を接合する
バインダになる材料とを組み合わせる。
As shown in FIG. 1C, if the molded article M is taken out together with the placing plate 14 from the inside of the molded frame 10, the molded article M having a three-dimensional shape can be obtained. [Powder Material] The powder material is a combination of a material that serves as a base that determines the basic structure and characteristics of a modeled object and a material that serves as a binder for joining the base material.

【0021】ベース材料として、硬度の高い材料が好ま
しい。造形物を成形用金型や放電加工用電極のような耐
久性を要求される用途に使用する場合には、製品寿命な
どを考慮すれば、造形物には高い硬度が要求され、ベー
ス材料にも高い硬度の材料を用いることが望ましい。ベ
ース材料として、焼入れ性の良い材料を用いると、光照
射によって焼結およひ造形が行われる際に、光照射時の
加熱とその後の急冷によって焼入れが行われて、硬度な
どの特性が向上する。
A material having a high hardness is preferable as the base material. When the molded product is used for applications requiring durability such as molding dies and electrodes for electrical discharge machining, considering the life of the product, the molded product requires high hardness and It is desirable to use a material having a high hardness. When a material with good hardenability is used as the base material, when sintering and shaping are performed by light irradiation, quenching is performed by heating during light irradiation and subsequent quenching, and characteristics such as hardness are improved. To do.

【0022】ベース材料に適した材料として鉄系粉末が
用いられる。上記した硬度および焼入れ性の点で、合金
工具鋼の材料が好ましいものとなる。具体的には、クロ
ムモリブデン鋼(例えば、SCM440)などがある。
バインダ材料はベース材料との相性が良く(合金を作り
やすく)、溶融時に流動性の良い材料が好ましい。
Iron-based powder is used as a material suitable for the base material. From the viewpoints of hardness and hardenability described above, the alloy tool steel material is preferable. Specifically, there is chrome molybdenum steel (for example, SCM440).
It is preferable that the binder material has a good compatibility with the base material (it is easy to form an alloy) and has a good fluidity when melted.

【0023】具体的には、鉄系材料と相性の良いニッケ
ルやニッケル系合金があげられ、靱性、強度、耐食性な
どを向上させて、線膨張係数を低下させるという機能も
ある。ニッケル系合金として、クロム、リン、シリコン
などとの合金を用いることができる。Ni−P系合金
は、鉄系材料(SCM鋼)に比べて融点が500℃以上
も低いので、バインダとしての機能に優れている。
Specifically, nickel and nickel-based alloys which are compatible with iron-based materials are mentioned, and they also have a function of improving toughness, strength, corrosion resistance and the like and lowering the linear expansion coefficient. As the nickel alloy, an alloy with chromium, phosphorus, silicon or the like can be used. The Ni-P alloy has a melting point lower than that of the iron-based material (SCM steel) by 500 ° C. or more, and thus has an excellent function as a binder.

【0024】銅や銅系合金も鉄系材料と相性が良く、流
動性や濡れ性も良く、鉄系材料に比べて融点が300℃
以上も低いので、鉄系材料を光照射で焼結させて造形す
る際のバインダ機能が高い。銅系合金として、銅とリン
やマンガンとの合金を用いると、鉄系材料に比べて融点
が500℃以上も低くなり、前記機能に優れたものとな
る。
Copper and copper-based alloys are also compatible with iron-based materials, have good fluidity and wettability, and have a melting point of 300 ° C. as compared with iron-based materials.
Since the above is also low, the binder function is high when the iron-based material is sintered by light irradiation to be shaped. When an alloy of copper and phosphorus or manganese is used as the copper-based alloy, the melting point is lower than that of the iron-based material by 500 ° C. or more, and the above-mentioned function is excellent.

【0025】粉末材料に占めるバインダ材料の割合が多
いほど、低エネルギーの光ビームでも焼結できるので、
光照射による焼結性が良くなる。しかし、バインダ材料
の割合が多いと、造形物の融点が低下する。そのため、
造形物に金属を含浸させるのが困難になる。これらの条
件を考慮して、バインダ材料の割合が決められる。造形
物を製造後に金属などを含浸させる場合、造形物の融点
は含浸材料よりも高く設定しておく必要がある。含浸材
料がブロンズや銅合金の場合、造形物を製造する粉末材
料は、融点の高い鉄系粉末を70〜95重量%の範囲で
含むことが好ましい。
The larger the proportion of the binder material in the powder material, the more the low energy light beam can be sintered.
Sinterability by light irradiation is improved. However, if the proportion of the binder material is high, the melting point of the shaped article decreases. for that reason,
It becomes difficult to impregnate the shaped article with metal. The ratio of the binder material is determined in consideration of these conditions. When impregnating a molded article with a metal or the like after manufacturing, the melting point of the molded article needs to be set higher than that of the impregnated material. When the impregnating material is bronze or a copper alloy, the powder material for producing the shaped article preferably contains iron-based powder having a high melting point in the range of 70 to 95% by weight.

【0026】具体的には、下記組成の粉末材料が使用で
きる。
Specifically, a powder material having the following composition can be used.

【0027】[0027]

【表1】 上記表において、マンガン鋼(SCM440)は、JI
S規格に規定される材料であり、以下の組成を有する。
[Table 1] In the above table, manganese steel (SCM440) is JI
It is a material specified by the S standard and has the following composition.

【0028】[0028]

【表2】 <SCM440の成分割合> ───────────────────────────────── 成分 Fe Cr Ni Mo Mn Si C ───────────────────────────────── 割合(wt% ) 残部 1.11 0.16 0.24 0.68 0.33 0.39 ───────────────────────────────── また、リン銅としては、リン(P)を6.5重量%含む
ものを用いた。
<Table 2><Component ratio of SCM440> ───────────────────────────────── Component Fe Cr Cr Ni Mo Mn Si C ───────────────────────────────── Ratio (wt%) Remainder 1.11 0.16 0.24 0.68 0.33 0.39 ──── ───────────────────────────── In addition, phosphorus copper containing 6.5 wt% phosphorus (P) is used. I was there.

【0029】以下の組成配合からなる粉末材料も使用で
きる。
A powder material having the following compositional composition can also be used.

【0030】[0030]

【表3】 ここで、Ni−P系合金は、C:0.09重量%および
P:11.0重量%、残部Niからなる合金である。
[Table 3] Here, the Ni-P-based alloy is an alloy composed of C: 0.09% by weight, P: 11.0% by weight, and the balance Ni.

【0031】〔粉末材料の粒径〕粉末材料の粒径は小さ
いほうが、堆積させたときの粉末材料層の厚みを薄くで
き、造形物の寸法精度を向上させることができる。しか
し、粒径の小さな粉末は、表面積が大きくなって凝集を
起こし易くなり、粉末を散布しても転がって一様に拡が
ることが行われ難くなり、粉末材料層における粉末材料
の充填密度が低下する。厚みの薄い粉末材料層が形成で
き難くなる。小さな粉末が多く存在するほど、上記問題
が顕著になる。
[Particle Size of Powder Material] As the particle size of the powder material is smaller, the thickness of the powder material layer when deposited can be reduced, and the dimensional accuracy of the modeled object can be improved. However, powder with a small particle size has a large surface area and is prone to agglomeration, making it difficult for the powder to spread evenly even if sprinkled, and the packing density of the powder material in the powder material layer decreases. To do. It becomes difficult to form a thin powder material layer. The more small powders are present, the more pronounced the above problem.

【0032】これらの条件を考慮して、粉末材料の平均
粒径は0.1〜200μmが好ましい。また、種々の条
件で実験を繰り返した結果、実用的に最も好ましい粒径
範囲は、平均粒径5〜50μmであった。 〔造形条件〕光ビーム50として、パルスYAGレーザ
が用いられる。照射エネルギー0.1J/ショット、シ
ョット数150pps 、レーザ走査速度50mm/sec、走査
間隔0.2mmに設定する。光ビームとして、CW(連続
波)YAGレーザ、パルス炭酸レーザ、CW炭酸ガスレ
ーザを用いることもできる。
Considering these conditions, the average particle size of the powder material is preferably 0.1 to 200 μm. Further, as a result of repeating the experiment under various conditions, the most preferable particle size range for practical use was an average particle diameter of 5 to 50 μm. [Modeling Conditions] As the light beam 50, a pulse YAG laser is used. The irradiation energy is set to 0.1 J / shot, the number of shots is 150 pps, the laser scanning speed is 50 mm / sec, and the scanning interval is 0.2 mm. As the light beam, a CW (continuous wave) YAG laser, a pulse carbon dioxide laser, or a CW carbon dioxide gas laser can also be used.

【0033】造形雰囲気は、窒素ガスによる不活性ガス
雰囲気とする。積層硬化させる粉末材料層30の厚み
を、0.05mmに設定する。積層厚さを、0.1mmある
いは0.2mmに設定することもできるが、造形物の寸法
精度を向上させるには出来るだけ薄いほうが好ましい。
また、粉末材料の粒径よりも薄い積層厚さは形成できな
い。
The modeling atmosphere is an inert gas atmosphere of nitrogen gas. The thickness of the powder material layer 30 to be laminated and hardened is set to 0.05 mm. The layer thickness can be set to 0.1 mm or 0.2 mm, but it is preferably as thin as possible in order to improve the dimensional accuracy of the modeled object.
In addition, a laminated thickness smaller than the particle size of the powder material cannot be formed.

【0034】硬化層32を形成する載置板14として、
ダイス鋼、ハイス鋼、超硬合金など、造形物よりも硬度
の大きな材料からなるものが用いられる。前記した粉末
材料(1)(2)を用いて、上記処理条件で造形を行っ
たところ、何れの組成でも良好な造形物が得られた。粉
末材料(1)を用いて製造された造形物の融点は115
0℃以上であった。
As the mounting plate 14 for forming the hardened layer 32,
Materials such as die steel, high-speed steel, and cemented carbide that have a hardness higher than that of the modeled object are used. When the powder materials (1) and (2) described above were used to perform modeling under the above processing conditions, good molded products were obtained with any composition. The melting point of the modeled object manufactured using the powder material (1) is 115.
It was 0 ° C or higher.

【0035】〔凝集防止剤〕凝集防止剤を使用すること
で、粉末材料の凝集を防止して、粉末材料層の形成を容
易にし、粉末充填密度を向上させることができる。凝集
防止剤としては、微粉末の凝集を防ぐ機能のある材料で
あれば、一般的に凝集防止剤として利用されている各種
の材料が使用できる。具体的には、ステアリン酸などの
脂肪酸を含む化合物が使用できる。
[Agglomeration Prevention Agent] By using an aggregation prevention agent, it is possible to prevent the powder material from aggregating, facilitate the formation of the powder material layer, and improve the powder packing density. As the agglomeration inhibitor, various materials generally used as an agglomeration inhibitor can be used as long as they have a function of preventing the agglomeration of fine powder. Specifically, a compound containing a fatty acid such as stearic acid can be used.

【0036】粉末状あるいはフレーク状のステアリン酸
亜鉛が使用できる。粉末材料に混合されたステアリン酸
亜鉛は、光照射による焼結の際に大部分が蒸発する。ス
テアリン酸亜鉛の一部は鉄系材料と反応して浸炭機能を
発揮し、硬度を向上させる効果がある。この浸炭機能
は、凝集防止剤を含まれる脂肪酸中の炭素が、光照射に
よって鉄系粉末と反応して生じるものであると推定でき
る。
Powdered or flake zinc stearate can be used. Most of the zinc stearate mixed with the powder material evaporates during sintering by light irradiation. A part of zinc stearate reacts with the iron-based material to exert a carburizing function and has an effect of improving hardness. It can be presumed that this carburizing function is caused by the reaction of carbon in the fatty acid containing the anti-agglomeration agent with the iron-based powder by light irradiation.

【0037】但し、凝集防止剤には、粉末材料の焼結す
なわち結合を阻害する作用があるので、配合量が多すぎ
ると、造形密度が小さくなり、造形強度が低下し、造形
物に金属を含浸させる際に形状が崩れる問題が生じる。
これらの条件を考慮して、凝集防止剤の添加量が決定さ
れる。具体的には、0.5〜1.0重量%程度を配合し
ておくことができる。
However, since the anti-agglomeration agent has an effect of inhibiting the sintering, that is, the binding of the powder material, if the blending amount is too large, the modeling density decreases, the modeling strength decreases, and a metal is added to the modeled object. When impregnated, there is a problem that the shape collapses.
The addition amount of the aggregation inhibitor is determined in consideration of these conditions. Specifically, about 0.5 to 1.0% by weight can be blended.

【0038】凝集防止剤が配合された粉末材料の具体的
組成を以下に示す。
The specific composition of the powder material containing the agglomeration inhibitor is shown below.

【0039】[0039]

【表4】 上記粉末材料(3)は、粉末材料(1)(2)に比べて
平均粒径が小さいが、凝集防止剤を配合していること
で、粉末材料層の形成に問題が生じることはない。粒径
の小さな粉末を使用することで、厚みの薄い粉末材料層
すなわち硬化層を形成することが可能になる。この場
合、例えば、厚み0.03mm程度の粉末材料層が形成で
きる。
[Table 4] The powder material (3) has a smaller average particle size than the powder materials (1) and (2), but since it contains the agglomeration inhibitor, no problem occurs in forming the powder material layer. The use of powder having a small particle size makes it possible to form a thin powder material layer, that is, a hardened layer. In this case, for example, a powder material layer having a thickness of about 0.03 mm can be formed.

【0040】凝集防止剤は、粉末材料を構成する鉄系粉
末および非鉄系粉末の表面にコーティングしておくこと
もできる。凝集防止剤がコーティングされた粉末材料の
具体例を以下に示す。
The anti-agglomeration agent may be coated on the surfaces of the iron-based powder and the non-ferrous powder constituting the powder material. Specific examples of the powder material coated with the agglomeration inhibitor are shown below.

【0041】[0041]

【表5】 凝集防止剤は、粉末材料に混合しておくよりもコーティ
ングしておくほうが、凝集防止機能が高くなり、粉末材
料層の形成がより良好に行える。
[Table 5] When the anti-agglomeration agent is coated on the powder material rather than being mixed with the anti-agglomeration agent, the anti-aggregation function is enhanced, and the powder material layer can be formed more favorably.

【0042】〔造形物への含浸処理〕含浸材料として
は、造形物の表面に接触させた状態で溶融させて、造形
物に存在する微細な隙間あるいは空孔を埋めて含浸させ
ることができる材料が用いられる。含浸材料として、造
形物よりも低い融点を有する材料を用いる。溶融時に流
動性の良い材料が好ましい。
[Impregnation Treatment of Modeled Object] As the impregnating material, a material that can be melted while being in contact with the surface of the modeled object and filled with fine gaps or pores existing in the modeled object to be impregnated Is used. As the impregnating material, a material having a melting point lower than that of the modeled object is used. A material having good fluidity when melted is preferable.

【0043】含浸材料は造形物の機械的特性に影響を与
える。造形物の用途や要求性能に合わせて、含浸材料を
選択する。通常は、粉末材料に用いられるのと同様の金
属の中から選んで使用される。含浸材料の具体例とし
て、銅や銅合金が使用できる。銅合金として、銅とす
ず、リン、マンガンなどとの合金が使用できる。より具
体的には、ブロンズ(青銅)が使用できる。
The impregnating material affects the mechanical properties of the shaped article. Select the impregnating material according to the intended use and required performance of the modeled object. Usually, it is used by selecting from the same metals as those used for powder materials. Copper or a copper alloy can be used as a specific example of the impregnating material. As the copper alloy, an alloy of copper and tin, phosphorus, manganese, or the like can be used. More specifically, bronze can be used.

【0044】例えば、前記した粉末材料(1)を用いて
製造された造形物は、融点が1150℃以上になるの
で、融点が1084℃程度の銅が好適に使用できる。含
浸処理は、造形物の表面に含浸材料を接触させた状態
で、含浸材料を溶融させることで造形物に含浸させる。
減圧下で含浸処理を行えば、毛細管現象などの作用で、
造形物への含浸材料の浸透が効率的に行われる。
For example, the molded article manufactured by using the above-mentioned powder material (1) has a melting point of 1150 ° C. or higher, so copper having a melting point of about 1084 ° C. can be preferably used. In the impregnation treatment, the molded article is impregnated by melting the impregnated material while the impregnated material is in contact with the surface of the molded article.
By performing the impregnation treatment under reduced pressure, due to the action of capillary phenomenon,
The impregnation material is efficiently infiltrated into the shaped article.

【0045】処理雰囲気を不活性雰囲気で行えば、造形
物あるいは含浸材料の酸化が生じ難い。処理雰囲気が還
元性雰囲気であれば、造形時あるいは造形後にある程度
の酸化が生じていても、含浸処理と同時に表面が還元さ
れて活性化し、含浸材料の内部への浸透が良好に行われ
る。粉末状の含浸材料を用いれば、造形物の形状に合わ
せて表面に配置する作業が行い易い。含浸処理に用いる
量を容易に変更できる。含浸処理時の溶融も容易であ
る。造形物の隙間に容易に浸透することができる。
If the treatment atmosphere is an inert atmosphere, the molded article or impregnated material is unlikely to be oxidized. If the treatment atmosphere is a reducing atmosphere, even if some oxidation occurs during or after modeling, the surface is reduced and activated at the same time as the impregnation treatment, and the impregnation material penetrates well into the interior. If a powdery impregnated material is used, the work of arranging it on the surface according to the shape of the modeled object is easy. The amount used for the impregnation treatment can be easily changed. Melting during the impregnation treatment is also easy. It can easily penetrate into the gaps of the shaped object.

【0046】含浸処理の具体的処理条件を以下に示す。 処理装置:真空炉 含浸材料:銅粉末。造形物に表面に接触するように配
置。 処理温度:1150℃ 処理圧力:133Pa(1Torr) 処理雰囲気:水素(還元性ガス)を約5リットル/min
で供給。 前記した各種の粉末材料(1)〜(4)を用いて造形物
を製造し、上記条件で含浸処理を行ったところ、何れの
場合も、表面粗さが小さく、強度に優れ、熱伝導率の高
い製品を得ることができた。
Specific treatment conditions for the impregnation treatment are shown below. Processing equipment: Vacuum furnace Impregnation material: Copper powder. Placed on the model so that it contacts the surface. Processing temperature: 1150 ° C. Processing pressure: 133 Pa (1 Torr) Processing atmosphere: Hydrogen (reducing gas) about 5 liters / min
Supplied by. When a molded article was manufactured using the above-mentioned various powder materials (1) to (4) and impregnated under the above conditions, the surface roughness was small, the strength was excellent, and the thermal conductivity was in each case. I was able to obtain a high product.

【0047】含浸材料を、ブロンズ(70Cu−30S
n)に代え、粉末材料(1)から造形された造形物に、
上記と同じ含浸処理を行ったところ、上記同様に品質性
能に優れた処理製品が得られた。この場合、造形物の融
点は1150℃であり、含浸材料の融点は800℃以下
である。したがって、粉末材料(1)の鉄系粉末の配合
割合を少なくしバインダ材料の非鉄系粉末を増やして、
融点をもう少し下げても、十分に含浸処理は可能であ
る。
The impregnating material is bronze (70Cu-30S).
n), instead of the powder material (1)
When the same impregnation treatment as described above was performed, a treated product having excellent quality performance was obtained in the same manner as above. In this case, the melting point of the modeled object is 1150 ° C, and the melting point of the impregnated material is 800 ° C or less. Therefore, by decreasing the blending ratio of the iron-based powder of the powder material (1) and increasing the non-ferrous powder of the binder material,
Even if the melting point is lowered a little, the impregnation treatment can be sufficiently performed.

【0048】含浸材料を、リン銅(P=6.5重量%)
に代えて同様の処理を行ったところ、前記同様に優れた
性能が発揮できた。なお、リン銅の融点は850℃以下
である。したがって、この場合も、粉末材料(1)の鉄
系粉末の配合割合を少なくすることができる。以上に説
明した含浸処理によって、造形物の表面粗さが良好に
(小さく)なる。造形物の隙間や空孔が含浸材料で埋め
られることで熱伝導率が高くなる。強度も向上する。
The impregnating material is copper copper (P = 6.5% by weight)
When the same treatment was performed instead of the above, the same excellent performance as described above could be exhibited. The melting point of phosphorous copper is 850 ° C. or lower. Therefore, also in this case, the mixing ratio of the iron-based powder of the powder material (1) can be reduced. By the impregnation treatment described above, the surface roughness of the modeled object becomes good (small). By filling the gaps and pores of the modeled object with the impregnating material, the thermal conductivity increases. Strength is also improved.

【0049】〔放電加工処理〕上記のようにして造形さ
れ含浸処理を施した造形物に、放電加工による仕上げ加
工を行うことができる。放電加工に使用する装置および
処理条件は、通常の金属材料に対する加工処理と同様の
装置や処理条件を適用することができる。
[Electric Discharge Machining] The shaped article shaped and impregnated as described above can be finished by electric discharge machining. As the apparatus and processing conditions used for electric discharge machining, the same apparatus and processing conditions as those for the processing for ordinary metal materials can be applied.

【0050】放電加工には、加工形状に対応する形状の
電極を用いて、電極の形状通りに加工を行う方法があ
る。この場合は、加工速度が遅くなり、電極製造に手間
がかかることになる。予め三次元形状に作製された造形
物に対して、表面の形状を整形したり、小さな凹凸形状
を形成したりするだけで良い場合には、次の方法が採用
できる。
For electric discharge machining, there is a method in which an electrode having a shape corresponding to the machining shape is used and machining is performed in accordance with the shape of the electrode. In this case, the processing speed becomes slow and it takes time to manufacture the electrode. The following method can be adopted when it is sufficient to shape the surface shape or form small unevenness on a three-dimensionally shaped object in advance.

【0051】図2に示すように、角棒状をなす電極60
の先端を造形物Mの表面に沿って移動させることで、造
形物Mの表面を削り取って、造形物Mの表面形状を仕上
げることができる。造形物Mの表面に付着している金属
粉末の残留物を除去したり、光照射による造形では作製
が困難な形状部分を形成したり、造形物Mの表面に部分
的に孔や溝、凹みなどを作製する場合に有効である。
As shown in FIG. 2, an electrode 60 having a rectangular rod shape.
By moving the tip of the object along the surface of the modeled article M, the surface of the modeled article M can be scraped off to finish the surface shape of the modeled article M. The residue of the metal powder adhering to the surface of the molded article M is removed, a shape part which is difficult to be formed by light irradiation modeling is formed, or holes, grooves, and depressions are partially formed on the surface of the molded article M. It is effective when producing the above.

【0052】電極60としては、角棒状のもののほか、
円棒状その他の比較的に単純な棒状その他の立体形状の
ものが使用できる。上記方法は、造形物Mの一部を削り
取るだけなので、加工能率が高く、短時間で仕上げるこ
とができる。また、放電加工の長所である高アスペクト
の加工が可能である点も活かすことができる。
As the electrode 60, in addition to the square bar-shaped one,
A circular bar shape or other relatively simple bar shape or other three-dimensional shape can be used. Since the above method only scrapes off a part of the molded article M, it has high processing efficiency and can finish in a short time. Further, it is possible to take advantage of the fact that high aspect machining, which is an advantage of electric discharge machining, is possible.

【0053】特に、粉末材料を用いた造形方法では、造
形物Mの表面に不要な金属粉末が付着したままになり易
いので、放電加工による不要金属粉末の除去加工によっ
て、表面が平滑で表面粗さの小さな造形物を効率的に得
ることができる。 〔三次元形状造形物〕本発明の粉末材料を用いて、本発
明の製造方法で製造された造形物は、硬度が高く、機械
的強度に優れ、表面粗さが小さいことなどの利点によ
り、プラスチック射出成形用金型や放電加工用電極とし
て優れたものとなる。
Particularly, in the molding method using the powder material, since unnecessary metal powder is likely to remain attached to the surface of the molded article M, the surface is smooth and the surface is roughened by the removal processing of the unnecessary metal powder by electric discharge machining. It is possible to efficiently obtain a small shaped object. [Three-dimensional shaped article] Using the powder material of the present invention, the shaped article produced by the production method of the present invention has high hardness, excellent mechanical strength, and advantages such as small surface roughness. It is excellent as a mold for plastic injection molding and an electrode for electric discharge machining.

【0054】これらの用途では、複雑な三次元形状を高
い寸法精度で備えていることが要求されたり、設計変更
に迅速に対応することが要求されたりするため、光照射
の走査パターンを変更するだけで造形物の形状が変更で
き、造形物が高速できる前記方法が極めて有効である。
In these applications, it is required to have a complicated three-dimensional shape with high dimensional accuracy, and it is required to quickly respond to a design change. Therefore, the light irradiation scanning pattern is changed. The above-mentioned method, in which the shape of the modeled article can be changed by itself and the molded article can be processed at high speed, is extremely effective.

【0055】[0055]

【発明の効果】本発明にかかる三次元形状造形物製造用
の粉末材料は、鉄系粉末をベースにして、バインダにな
る非鉄系粉末を組み合わせていることで、硬度が高く機
械的強度や耐久性にも優れた造形物を提供することがで
きる。しかも、造形物に含浸材料を含浸させることで、
造形物の表面に生じる隙間や空孔を埋めて、表面粗さの
小さな造形物を得ることができる。
EFFECTS OF THE INVENTION The powder material for producing a three-dimensional shaped object according to the present invention has a high hardness and a high mechanical strength and durability by combining a non-ferrous powder serving as a binder based on the iron powder. It is possible to provide a molded article having excellent properties. Moreover, by impregnating the molded article with the impregnating material,
It is possible to fill the gaps and voids formed on the surface of the modeled object to obtain a modeled object having a small surface roughness.

【0056】含浸処理の際には、含浸させる金属に比べ
て、はるかに融点が高い鉄系粉末をベースにした造形物
は、部分的に溶融したり熱変形を起こしたりすることが
なく、造形された三次元形状を正確に維持することがで
きる。含浸させる金属として、比較的に融点が高い材料
を用いることができ、使用時における耐久性や機械的特
性を向上させることができる。含浸材料の流動性が良く
なる高温で含浸処理を行うことが可能になり、造形物の
内部の隙間や空孔までに迅速かつ十分に含浸材料を浸透
させることができる。
At the time of the impregnation treatment, the shaped article based on the iron-based powder, which has a melting point much higher than that of the metal to be impregnated, does not partially melt or undergo thermal deformation and is shaped. The formed three-dimensional shape can be accurately maintained. As a metal to be impregnated, a material having a relatively high melting point can be used, and durability and mechanical characteristics during use can be improved. The impregnation material can be impregnated at a high temperature where the fluidity of the impregnation material is improved, and the impregnation material can quickly and sufficiently penetrate into the gaps and pores inside the modeled object.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態となる製造方法を段階的に
示す模式的断面図
FIG. 1 is a schematic cross-sectional view showing stepwise a manufacturing method according to an embodiment of the present invention.

【図2】 放電加工工程を示す斜視図FIG. 2 is a perspective view showing an electric discharge machining process.

【符号の説明】[Explanation of symbols]

10 造形枠 12 造形台 14 載置板 16 規制板 30 粉末材料 32 硬化層 50 レーザ光 60 放電加工電極 10 modeling frame 12 modeling table 14 Placement plate 16 Regulation plate 30 powder material 32 hardened layer 50 laser light 60 EDM electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 諭 大阪府門真市大字門真1048番地 松下電 工株式会社内 (72)発明者 武南 正孝 大阪府門真市大字門真1048番地 松下電 工株式会社内 (56)参考文献 特開 平3−183530(JP,A) 特開 平4−193929(JP,A) 特開 平1−96353(JP,A) 特開 平3−24205(JP,A) 特開 平5−148511(JP,A) 特開2000−73108(JP,A) 特公 平3−50823(JP,B2) 特許2620353(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 7/08 B29C 67/00 - 67/24 B23K 26/00 - 26/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Abe 1048, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd. (72) Masataka Takenami, 1048, Kadoma, Kadoma City, Osaka Matsushita Electric Works, Ltd. ( 56) References JP-A-3-183530 (JP, A) JP-A-4-193929 (JP, A) JP-A-1-96353 (JP, A) JP-A-3-24205 (JP, A) Hei 5-148511 (JP, A) JP 2000-73108 (JP, A) JP-B 3-50823 (JP, B2) Patent 2620353 (JP, B2) (58) Fields investigated (Int.Cl. 7 , (DB name) B22F 1/00-7/08 B29C 67/00-67/24 B23K 26/00-26/18

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉末材料に光ビームを照射して硬化層を形
成し、この硬化層を積み重ねて所望の三次元形状を有す
る造形物を製造する方法に用いられる粉末材料であっ
て、クロムモリブデン鋼からなる鉄系粉末70〜90重量%
と、 リン銅またはマンガン銅からなる非鉄系粉末5〜30重
量%と、 ニッケルからなる非鉄系粉末0〜10重量% とを含む三
次元形状造形物製造用の粉末材料。
1. A powder material by irradiating a light beam to form a cured layer, a powder material used in the method for producing a molded article having a desired three-dimensional shape by stacking the cured layer, a chromium molybdenum Iron-based powder consisting of steel 70-90% by weight
And non-ferrous powder consisting of copper copper or manganese copper 5 to 30 times
A powder material for producing a three-dimensional shaped object, which comprises the amount of 0% to 0% to 10% by weight of non-ferrous powder made of nickel .
【請求項2】2. ニッケルからなる非鉄系粉末を10重量%10% by weight of non-ferrous powder made of nickel
以下で含む請求項1に記載の三次元形状造形物製造用のFor manufacturing a three-dimensional shaped object according to claim 1, including:
粉末材料。Powder material.
【請求項3】前記粉末材料が、球状もしくは略球状をな
し、平均粒径が0.1〜200μmである請求項1また
は2に記載の三次元形状造形物製造用の粉末材料。
Wherein the powder material forms a spherical or substantially spherical, claim 1 and the average particle size of 0.1~200μm
Is a powder material for producing a three-dimensional shaped object according to 2 .
【請求項4】前記粉末材料の凝集防止剤をさらに含む請
求項1〜の何れかに記載の三次元形状造形物製造用の
粉末材料。
4. A powder material for three-dimensionally shaped object manufactured according to any one of claims 1 to 3, further comprising a deflocculating agent in the powder material.
【請求項5】前記凝集防止剤が、前記粉末材料の表面に
コーティングされている請求項に記載の三次元形状造
形物製造用の粉末材料。
5. The powder material for producing a three-dimensional shaped article according to claim 4 , wherein the anti-agglomeration agent is coated on the surface of the powder material.
【請求項6】前記凝集防止剤が、脂肪酸である請求項
またはに記載の三次元形状造形物製造用の粉末材料。
Wherein said anti-agglomerating agent, according to claim 4 which is a fatty acid
Or the powder material for producing the three-dimensional shaped object according to 5 .
【請求項7】前記粉末材料が、平均粒径1〜20μmで
ある請求項の何れかに記載の三次元形状造形物製
造用の粉末材料。
Wherein said powder material is powder material for three-dimensionally shaped object manufactured according to the average particle diameter of any of claims 4-6 is 1 to 20 [mu] m.
【請求項8】粉末材料に光ビームを照射して硬化層を形
成し、この硬化層を積み重ねて所望の三次元形状を有す
る造形物を製造する方法であって、 前記粉末材料が請求項1〜の何れかに記載の粉末材料
であ三次元形状造形物の製造方法。
8. A method for forming a hardened layer by irradiating a powder material with a light beam, and stacking the hardened layers to produce a molded article having a desired three-dimensional shape. method for producing a three-dimensionally shaped object Ru powder material der according to any one of 1-7.
【請求項9】9. 請求項8に記載の方法で製造され、Manufactured according to the method of claim 8, クロムモリブデン鋼70〜90重量%と、リン銅またはChromium-molybdenum steel 70-90% by weight and phosphorous copper or
マンガン銅5〜30重量%と、ニッケル0〜10重量%Manganese copper 5-30% by weight, nickel 0-10% by weight
とを含む硬化層が積層一体化されてなる三次元形状造形Three-dimensional shape modeling in which hardened layers including
物。object.
JP33517899A 1999-11-25 1999-11-25 Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object Expired - Fee Related JP3446694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33517899A JP3446694B2 (en) 1999-11-25 1999-11-25 Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33517899A JP3446694B2 (en) 1999-11-25 1999-11-25 Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003098424A Division JP2003301202A (en) 2003-04-01 2003-04-01 Powder material for manufacturing three-dimensionally- shaped article, method for manufacturing three- dimensionally-shaped article, and three-dimensionally- shaped article

Publications (2)

Publication Number Publication Date
JP2001152204A JP2001152204A (en) 2001-06-05
JP3446694B2 true JP3446694B2 (en) 2003-09-16

Family

ID=18285639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33517899A Expired - Fee Related JP3446694B2 (en) 1999-11-25 1999-11-25 Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP3446694B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344902B4 (en) 2002-09-30 2009-02-26 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional object
CN1720127B (en) 2002-11-01 2010-05-26 株式会社普利司通 Method for producing tire vulcanizing mold and tire vulcanizing mold
DE102004008054B8 (en) * 2003-02-25 2007-02-08 Matsushita Electric Works, Ltd., Kadoma Metal powder composition for use in selective laser sintering
CN100393452C (en) * 2005-12-16 2008-06-11 华中科技大学 Preparation method of laser sintered fast shaping material
WO2008026500A1 (en) 2006-08-28 2008-03-06 Panasonic Electric Works Co., Ltd. Metal powder for metal photofabrication and method of metal photofabrication using the same
JP4867745B2 (en) * 2007-03-27 2012-02-01 パナソニック電工株式会社 Manufacturing method of three-dimensional shaped object
JP4867790B2 (en) * 2007-05-24 2012-02-01 パナソニック電工株式会社 Manufacturing method of three-dimensional shaped object
FR2981867B1 (en) * 2011-10-26 2016-02-12 Snecma PROCESS FOR MANUFACTURING A METAL PIECE FOR AIRCRAFT TURBOJET ENGINE
US8925180B2 (en) * 2012-03-06 2015-01-06 Top Tech Machines Co., Ltd. Processing machine
AT13536U1 (en) * 2013-05-07 2014-02-15 Plansee Se Process for the preparation of a shaped body and thus producible molded body
CN104858430A (en) * 2014-02-25 2015-08-26 通用电气公司 Manufacturing method of three-dimensional part
JP2015168228A (en) 2014-03-10 2015-09-28 日本電子株式会社 Apparatus and method for molding three-dimensional laminate
JP2015182252A (en) 2014-03-20 2015-10-22 日本電子株式会社 Three-dimensional laminate molding apparatus
JP2015193866A (en) 2014-03-31 2015-11-05 日本電子株式会社 Three-dimensional lamination molding device, three-dimensional lamination molding system and three-dimensional lamination molding method
US9505058B2 (en) * 2014-05-16 2016-11-29 Xerox Corporation Stabilized metallic nanoparticles for 3D printing
JP6475478B2 (en) 2014-11-27 2019-02-27 山陽特殊製鋼株式会社 Metal powder for modeling
JP6620029B2 (en) 2015-03-31 2019-12-11 山陽特殊製鋼株式会社 Metal powder consisting of spherical particles
JP7017562B2 (en) 2016-05-13 2022-02-08 マントル インク Sinterable metal paste for use in additive manufacturing
CN106238724B (en) * 2016-08-30 2018-04-24 温州先临左岸工业设计有限公司 A kind of 3D printing alloy material and preparation method thereof and 3D forming methods
JP6887896B2 (en) 2017-06-28 2021-06-16 日本電子株式会社 3D laminated modeling equipment
JP6887926B2 (en) * 2017-09-21 2021-06-16 日本電子株式会社 Manufacturing method of three-dimensional structure and manufacturing equipment of three-dimensional structure
WO2020188648A1 (en) * 2019-03-15 2020-09-24 株式会社ニコン Modeling method, modeling system, and modeling base
CN111118272B (en) * 2020-02-12 2022-01-04 广东省科学院新材料研究所 High-performance 17-4PH stainless steel material and high-pressure heat treatment method, manufacturing method and application thereof
JP7229977B2 (en) 2020-09-17 2023-02-28 日本電子株式会社 Three-dimensional layered manufacturing apparatus and three-dimensional layered manufacturing method.
WO2023170786A1 (en) * 2022-03-08 2023-09-14 三菱電機株式会社 Sealing-treated metal composite body, mold and method for producing sealing-treated metal composite body
JP2024003370A (en) 2022-06-27 2024-01-15 日本電子株式会社 Three-dimensional laminate molding apparatus, three-dimensional laminate molding method, and method for setting moving speed of restriction member in three-dimensional laminate forming

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996250A (en) * 1982-11-26 1984-06-02 Nissan Motor Co Ltd Wear resistant sintered alloy
DE3750931T3 (en) * 1986-10-17 1999-12-02 Univ Texas METHOD AND DEVICE FOR PRODUCING MOLDED BODIES BY PARTIAL INTERSTERING.
JPH0196353A (en) * 1987-10-08 1989-04-14 Kobe Steel Ltd Material for electric discharge machining and its manufacture
JPH0324205A (en) * 1989-06-19 1991-02-01 Kobe Steel Ltd Manufacture of metallic mold
AU643700B2 (en) * 1989-09-05 1993-11-25 University Of Texas System, The Multiple material systems and assisted powder handling for selective beam sintering
JPH04193929A (en) * 1990-11-27 1992-07-14 Kobe Steel Ltd Production of sintered body of iron-based powder having superior machinability
JPH05148511A (en) * 1991-11-25 1993-06-15 Kawasaki Steel Corp Manufacture of ferrous metal powder sintering metal mold
JP3446618B2 (en) * 1998-08-26 2003-09-16 松下電工株式会社 Surface finishing method for metal powder sintered parts

Also Published As

Publication number Publication date
JP2001152204A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP3446694B2 (en) Powder material for manufacturing a three-dimensional shaped object, a method for producing a three-dimensional shaped object, and a three-dimensional shaped object
US11904391B2 (en) Additive manufacturing of articles comprising beryllium
EP2060343B1 (en) Metal powder for metal photofabrication and method of metal photofabrication using the same
US4431449A (en) Infiltrated molded articles of spherical non-refractory metal powders
US20040182202A1 (en) Metal powder composition for laser sintering
Kruth et al. New ferro powder for selective laser sintering of dense parts
JP2019518865A (en) Sputtering target assembly with graded interlayer and method of making
EP1083239B1 (en) Non-magnetic, high density tungsten alloy
US20090274923A1 (en) Tools Having Compacted Powder Metal Work Surfaces, And Method
CN100595018C (en) Method of preparing novel gradient functional material fine blanking die based on laser fusing-covering forming technique
CN114134427A (en) Stainless steel powder for molding
CN113426997B (en) High-specific-gravity tungsten-nickel-iron alloy and laser additive manufacturing method thereof
US6761852B2 (en) Forming complex-shaped aluminum components
Allen et al. Three-dimensional printing of metal parts for tooling and other applications
JP4737007B2 (en) Metal powder for metal stereolithography
Su et al. Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminium garnet) laser
TWI239874B (en) Metal powder composition for use in selective laser sintering, method of making same, and three-dimensional object shaped from same
JP2003301202A (en) Powder material for manufacturing three-dimensionally- shaped article, method for manufacturing three- dimensionally-shaped article, and three-dimensionally- shaped article
Lü et al. Selective laser sintering
US20240043974A1 (en) Shaped Article Produced From Powder
EP3502298A1 (en) Methods and compositions for making a near net shape article
Dolinšek Investigation of direct metal laser sintering process
CN116103581A (en) Fe-based alloy for melt-solidification molding and metal powder
RU2027553C1 (en) Method of production of moulds for glassware moulding
WO2022124358A1 (en) Fe-group alloy powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3446694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees