JP4737007B2 - Metal powder for metal stereolithography - Google Patents

Metal powder for metal stereolithography Download PDF

Info

Publication number
JP4737007B2
JP4737007B2 JP2006230327A JP2006230327A JP4737007B2 JP 4737007 B2 JP4737007 B2 JP 4737007B2 JP 2006230327 A JP2006230327 A JP 2006230327A JP 2006230327 A JP2006230327 A JP 2006230327A JP 4737007 B2 JP4737007 B2 JP 4737007B2
Authority
JP
Japan
Prior art keywords
powder
metal
alloyed
stereolithography
mechanical alloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230327A
Other languages
Japanese (ja)
Other versions
JP2008050671A (en
Inventor
勲 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006230327A priority Critical patent/JP4737007B2/en
Publication of JP2008050671A publication Critical patent/JP2008050671A/en
Application granted granted Critical
Publication of JP4737007B2 publication Critical patent/JP4737007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、金属粉末に光ビームを照射して三次元形状造形物を得る金属光造形用金属粉末に関する。   The present invention relates to a metal powder for metal stereolithography that obtains a three-dimensional shaped object by irradiating a metal powder with a light beam.

従来から、金属粉末の粉末層に光ビーム(例えばレーザ光のような指向性エネルギービーム)を照射して焼結層を形成し、この焼結層の上に新たな粉末層を敷いて光ビームを照射し焼結層を形成する、ということを繰り返して三次元形状造形物を製造する金属光造形技術が知られている。この技術によれば、複雑な三次元形状造形物を短時間で製造することができる。エネルギー密度の高い光ビームを照射することにより金属粉末を完全に溶融させた後に固化させることにより、焼結密度がほぼ100%の状態となり、この高密度の造形物の表面を仕上げ加工して滑らかな面とすることにより、プラスチック成形用金型などに適用することができる。   Conventionally, a powder layer of metal powder is irradiated with a light beam (eg, a directional energy beam such as a laser beam) to form a sintered layer, and a new powder layer is laid on the sintered layer to form a light beam. A metal stereolithography technique is known in which a three-dimensional shaped article is manufactured by repeating the process of forming a sintered layer. According to this technique, a complicated three-dimensional shaped object can be manufactured in a short time. By irradiating with a light beam with high energy density, the metal powder is completely melted and then solidified, so that the sintered density becomes almost 100%, and the surface of this high-density model is finished and smoothed. By making it a smooth surface, it can be applied to plastic molds and the like.

しかし、このような三次元形状造形物を金属光造形によって得るにあたっては、圧縮成形してから焼結するような他の粉末焼結に用いられる金属粉末とは異なった特性の金属粉末が必要となる。   However, in order to obtain such a three-dimensional shaped object by metal stereolithography, a metal powder having characteristics different from those of metal powders used for other powder sintering such as compression molding and sintering is required. Become.

例えば、金属粉末の粒子径は、光ビームが照射される粉末層の厚みよりも小さくする必要がある。粒子径は、細かい方が粉末の充填密度が高く、造形時の光ビーム吸収率も良いので焼結密度も高くすることができると共に、造形物の表面粗さも小さくすることができる。また、粉末が細かすぎて凝集を起こしてしまうと、逆に粉末の充填密度は小さくなり、粉末層を薄く均一に敷けなくなってしまう。   For example, the particle diameter of the metal powder needs to be smaller than the thickness of the powder layer irradiated with the light beam. The finer the particle diameter, the higher the powder packing density and the better the light beam absorptance during modeling, so that the sintered density can be increased and the surface roughness of the modeled object can also be reduced. On the other hand, if the powder is too fine and agglomerates, the packing density of the powder decreases, and the powder layer cannot be spread thinly and uniformly.

また、造形物の強度を高くするためには、形成する新たな焼結層と、その下層にある固化している焼結層との接合面積が広く、かつ、その密着強度が高くなければならないと同時に、隣接する固化している焼結層との接合面積も広く、密着強度も高いものである必要がある。   In addition, in order to increase the strength of the modeled object, the bonding area between the new sintered layer to be formed and the solidified sintered layer in the lower layer must be wide and the adhesion strength must be high. At the same time, it is necessary that the bonding area with the adjacent solidified sintered layer is wide and the adhesion strength is high.

更に、新たな焼結層の上面があまり大きく盛り上がってはならない。次の層を形成するために次の粉末層を敷く際に、盛り上がり量が粉末層の厚み以上となると、粉末層の形成そのものが困難となってしまう。   Furthermore, the upper surface of the new sintered layer should not rise too much. When the next powder layer is laid to form the next layer, if the bulging amount is equal to or greater than the thickness of the powder layer, the formation of the powder layer itself becomes difficult.

そして、光ビームが照射された金属粉末は、その一部又は全部が一旦溶融し、その後急冷凝固されて焼結層となるが、この溶融した時の濡れ性が大きいと、隣接する焼結層との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく、かつ、濡れ性も大きいことが望まれる。   Then, the metal powder irradiated with the light beam is partially melted or partially melted and then rapidly solidified to form a sintered layer. If the wettability at the time of melting is large, the adjacent sintered layer If the bonding area is large and the fluidity is large, the swell is small. Therefore, it is desired that the fluidity when melted is large and the wettability is also large.

また、金属光造形で製造される三次元形状造形物は、その造形物表面に金属粉末が付着して表面粗さを悪くしている。この三次元形状造形物を高精度なプラスチック射出成形金型等として使用するためには、造形物表面に付着した金属粉末を除去しなければならず、切削仕上げ等の加工を行う時の加工性が良いことが望まれる。   Moreover, as for the three-dimensional shape molded article manufactured by metal stereolithography, metal powder adheres to the surface of the molded article, and the surface roughness is deteriorated. In order to use this three-dimensional shaped object as a high-precision plastic injection mold, etc., metal powder adhering to the surface of the object must be removed, and workability when processing such as cutting finish is performed It is desirable that it is good.

また、造形物の外観に大きな割れが生じてはならないし、射出成形金型などの内部に流体(冷却水)を流す場合のことなども考慮すると、内部組織にマイクロクラックが無いことが望まれる。   In addition, there should be no large cracks in the appearance of the modeled object, and it is desirable that the internal structure be free of microcracks in consideration of the flow of fluid (cooling water) inside the injection mold. .

次に、金属粉末の組成に関して説明する。金属粉末を鉄系粉末のみにしてレーザを照射して高密度な三次元形状造形物を製造することは困難である。これは、先に形成された鉄の焼結層に、次の焼結層を隙間なしに一体化することが困難であるからである。鉄系粉末としてクロムモリブデン鋼粉末を用いても、クロムモリブデン鋼自体は硬度が高く機械的強度に優れているが、クロムモリブデン鋼粉末のみでは、焼結層を隙間なしに作ることができず、レーザ照射をして得られる三次元形状造形物の焼結密度は低くその強度も弱い。   Next, the composition of the metal powder will be described. It is difficult to produce a high-density three-dimensional shaped object by irradiating a laser with only metal-based powder as a metal powder. This is because it is difficult to integrate the next sintered layer into the previously formed iron sintered layer without a gap. Even if chrome molybdenum steel powder is used as iron-based powder, chrome molybdenum steel itself has high hardness and excellent mechanical strength, but with chrome molybdenum steel powder alone, a sintered layer cannot be made without gaps, The three-dimensional shaped object obtained by laser irradiation has a low sintered density and a low strength.

鉄系粉末がニッケル成分を多く含む合金の場合は、粉末の表面に形成されている強固な酸化膜が、鉄系粉末同士の融着一体化を阻害するため、上述の焼結層の隙間の問題が甚だしくなる。鉄系金属にニッケルを含有させることは、その鉄系金属の靭性や強度および耐食性を向上できるという利点があるが、レーザ照射による三次元形状造形物の製造に使用した場合には、その利点が全く発揮できない。粉末の表面の酸化膜の障害を除くために、レーザ照射のエネルギーを大きくすると、クロムモリブデン鋼やニッケル成分を含む鉄系粉末でも、十分に融着一体化することができるが、レーザの照射装置が大掛かりになり、過大な電力が必要になって、製造コストが高くなる。また、レーザの走査速度を高められないため、製造能率も低下し、また、過大な照射エネルギー量で作られた造形物は、熱応力により反りや変形を起こし易くなる。   In the case where the iron-based powder is an alloy containing a large amount of nickel component, the strong oxide film formed on the surface of the powder inhibits fusion integration between the iron-based powders. The problem becomes exaggerated. Inclusion of nickel in an iron-based metal has the advantage that the toughness, strength, and corrosion resistance of the iron-based metal can be improved, but when used for the production of three-dimensional shaped objects by laser irradiation, the advantage is I can't show it at all. If the energy of laser irradiation is increased to eliminate the obstacle of the oxide film on the surface of the powder, iron-based powder containing chromium molybdenum steel and nickel components can be sufficiently fused and integrated. Becomes large and requires excessive electric power, which increases the manufacturing cost. Further, since the scanning speed of the laser cannot be increased, the production efficiency is also reduced, and a shaped article made with an excessive amount of irradiation energy is likely to be warped or deformed by thermal stress.

銅は、溶融された時にその流動性が良く、溶融状態で鉄系材料との濡れ性が良く、かつ、鉄系材料と合金化された場合でも特性の劣化がほとんど無い。鉄系粉末と、銅又は銅合金粉末とからなる金属粉末にレーザを照射すると、この銅又は銅合金が先に溶融し、鉄系粉末間の隙間を埋めると同時に、これが結合材となって融着一体化する。レーザの照射エネルギーが高い場合は、金属粉末を形成する鉄系粉末と、銅又は銅合金粉末とが溶融し合金となる。溶融金属の流動性は、溶融時の温度と融点の差が大きいほど良くなるので、同じエネルギーで照射した場合の流動性は、融点が低いリン銅合金やマンガン銅合金の方が純銅よりも良い。   Copper, when melted, has good fluidity, good wettability with an iron-based material in a molten state, and hardly deteriorates in characteristics even when alloyed with an iron-based material. When a metal powder composed of iron-based powder and copper or copper alloy powder is irradiated with laser, this copper or copper alloy melts first, filling the gaps between the iron-based powders, and at the same time, this becomes a binder and melts. To be integrated. When the laser irradiation energy is high, the iron-based powder forming the metal powder and the copper or copper alloy powder are melted to form an alloy. Since the fluidity of the molten metal increases as the difference between the melting temperature and the melting point increases, the fluidity when irradiated with the same energy is better for pure copper and manganese copper alloys than for pure copper. .

ニッケルが、鉄系粉末に含有されているのではなく、ニッケル粉末として銅又は銅合金粉末と共に混合された場合には、これらの粉末同士の融着一体化は良好になる。そして、鉄系成分とニッケルと銅又は銅合金成分からなる硬化層は、その焼結密度は高く、その結果、靭性や強度の高いものとなる。   When nickel is not contained in the iron-based powder but is mixed with the copper or copper alloy powder as the nickel powder, the fusion integration of these powders becomes good. And the hardened layer which consists of an iron-type component, nickel, copper, or a copper alloy component has the high sintered density, As a result, it becomes a thing with high toughness and intensity | strength.

また、できあがった造形物のマイクロクラックを低減するために、鉄系粉末に黒鉛粉末を添加することが極めて有効である。黒鉛粉末が造形物に与える影響について、図4乃至図8を参照して説明する。図4は、黒鉛を0.3重量%まで添加したときの金属光造形物の曲げ強度と、曲げ弾性率と、ねばさの結果を示す。曲げ強度、曲げ弾性率、ねばさとも、黒鉛粉末の添加量が多い程、良好な結果となっている。なお、ねばさの値は、黒鉛粉末の添加量が0.3重量%のときのシャルピー衝撃試験における吸収エネルギーの値を1として示している。図5乃至図8は、黒鉛粉末がそれぞれの添加量のときの造形物の断面の写真を示す。黒鉛の添加量が少ない程、矢印Aで示すマイクロクラックが発生している。金属光造形用の鉄系粉末に黒鉛粉末が配合されていると、レーザ照射によって金属粉末が溶融凝固する際に発生する収縮現象と、炭素が鉄中に固溶する際に発生する膨張現象との釣り合いが取れて内部応力が小さくなり、マイクロクラックの発生が低減するものと考えられる。   Moreover, it is extremely effective to add graphite powder to the iron-based powder in order to reduce microcracks in the formed object. The influence of the graphite powder on the shaped object will be described with reference to FIGS. FIG. 4 shows the bending strength, bending elastic modulus, and stickiness of the metal stereolithography when graphite is added to 0.3 wt%. Bending strength, bending elastic modulus and stickiness both show better results as the amount of graphite powder added increases. In addition, the value of stickiness shows the value of the absorbed energy in the Charpy impact test when the addition amount of graphite powder is 0.3% by weight as 1. FIG. 5 thru | or FIG. 8 shows the photograph of the cross section of a molded article when graphite powder is each addition amount. The smaller the amount of graphite added, the more microcracks indicated by arrow A are generated. When graphite powder is blended with iron-based powder for metal stereolithography, the shrinkage phenomenon that occurs when the metal powder melts and solidifies by laser irradiation, and the expansion phenomenon that occurs when carbon dissolves in iron. It is considered that the internal stress is reduced and the generation of microcracks is reduced.

このような観点から、本出願人は特許文献1に示されるように、鉄系粉末(クロムモリブデン鋼)と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と黒鉛粉末からなる金属光造形用金属粉末を提案した。クロムモリブデン鋼はその強度や靭性の点から、銅及び銅系合金粉末は濡れ性及び流動性の点から、ニッケル及びニッケル系合金粉末は強度及び加工性の点から、黒鉛粉末は光ビームの吸収率及びマイクロクラック低減の点から採用している。   From this point of view, as shown in Patent Document 1, the present applicant has disclosed an iron-based powder (chromium molybdenum steel), a nickel or nickel-based alloy powder, a copper or copper-based alloy powder, and a graphite powder. We proposed a metal powder for metal stereolithography. Chrome molybdenum steel has strength and toughness, copper and copper alloy powders have wettability and fluidity, nickel and nickel alloy powders have strength and workability, and graphite powder absorbs light beams. Adopted from the viewpoint of rate and microcrack reduction.

そして、金属光造形では、レーザ照射されなかった未焼結の金属粉末を、回収して再利用するが、造形時に発生した溶解屑や、金属光造形の装置内での造形物表面の切削加工により発生した切り粉が金属粉末の中に入っているために、金属粉末をメッシュに通すふるいがけを行い、溶解屑や切り粉を除去しなければならない。   And in metal stereolithography, unsintered metal powder that has not been irradiated with laser is recovered and reused. However, molten metal generated during modeling, and cutting of the surface of the model in the metal stereolithography apparatus Since the swarf generated by is contained in the metal powder, it is necessary to screen the metal powder through a mesh to remove the swarf and swarf.

しかしながら、ふるいがけを行う時に、軽い金属粉末、特に比重の小さな黒鉛粉末が飛散して減少するという問題がある。図9は、金属光造形後に回収した金属粉末を示す。金属粉末中に矢印Bによって示す切削切り粉が混入している。
特開2004−277877号公報
However, when sieving, there is a problem that light metal powder, particularly graphite powder having a small specific gravity, is scattered and reduced. FIG. 9 shows the metal powder collected after metal stereolithography. Cutting chips indicated by arrows B are mixed in the metal powder.
JP 2004-277877 A

本発明は、上記従来の問題を解決するためになされたものであり、再利用のためのふるいがけを行っても、比重の小さな粉末成分が飛散せずに、配合成分が変動しない金属光造形用金属粉末を提供することを目的とする。   The present invention has been made to solve the above-mentioned conventional problems, and even if sieving for reuse, a powder component having a small specific gravity is not scattered and the compounding component does not fluctuate. The object is to provide a metal powder.

上記目的を達成するために請求項1の発明は、金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末と、を組成とする粉末(以下、組成粉末という)から成り、前記組成粉末をメカニカルアロイング法によって合金化したものである。   In order to achieve the above-mentioned object, the invention of claim 1 is characterized in that a sintered layer is formed by irradiating a powder layer made of metal powder with a light beam, and a three-dimensional shaped object is formed by laminating the sintered layer. Metal powder for metal stereolithography used for metal stereolithography to obtain, iron-based powder, nickel and nickel-based alloy powder or both, copper and copper-based alloy powder or both, Graphite powder and a composition (hereinafter referred to as composition powder), and the composition powder is alloyed by a mechanical alloying method.

請求項2の発明は、金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末と、を組成とする粉末(以下、組成粉末という)から成り、前記組成粉末の内の2種類以上の粉末をメカニカルアロイング法によって合金化した粉末と、前記組成粉末の内の1種類以上の粉末とを、混合して成り、前記メカニカルアロイング法によって合金化される2種類以上の粉末の内の1つに、黒鉛粉末が含まれる。 The invention of claim 2 is used for metal stereolithography in which a powder layer made of metal powder is irradiated with a light beam to form a sintered layer and the sintered layer is laminated to obtain a three-dimensional shaped object. A metal powder for metal stereolithography, comprising an iron-based powder, nickel and / or nickel-based alloy powder, copper and / or copper-based alloy powder and / or graphite powder, and composition A powder obtained by alloying two or more kinds of powders of the composition powders by a mechanical alloying method and one or more kinds of powders of the composition powders. Ri formed by the one of the two or more kinds of powder to be alloyed by a mechanical alloying method include graphite powder.

請求項の発明は、請求項に記載の金属光造形用金属粉末において、金属粉末からなる粉末層に光ビームを照射して焼結層を形成する工程と、前記焼結層の積層により形成した造形物の表面部及び不要部分の両方又はいずれか一方の切削除去を行う工程と、を繰り返すことにより三次元形状造形物を得る金属光造形に用いられるものである。 A third aspect of the present invention, in the metal laser sintering metal powder according to claim 2, by irradiating a light beam to a powder layer made of a metal powder forming a sintered layer, the lamination of the sintered layer It is used for metal stereolithography that obtains a three-dimensional shaped object by repeating the process of cutting and removing either or both of the surface part and the unnecessary part of the formed object.

請求項の発明は、請求項2又は請求項に記載の金属光造形用金属粉末において、前記組成粉末の内のメカニカルアロイング法によって合金化された金属粉末、及びメカニカルアロイング法によって合金化されていない金属粉末のそれぞれの平均粒子径が10〜40μmであるものである。 The invention of claim 4 is the metal powder for metal stereolithography according to claim 2 or claim 3 , wherein the composition powder is alloyed by mechanical alloying and alloyed by mechanical alloying. The average particle diameter of each of the unconverted metal powders is 10 to 40 μm.

請求項の発明は、請求項2又は請求項に記載の金属光造形用金属粉末において、前記組成粉末の内のメカニカルアロイング法によって合金化された金属粉末の平均粒子径がメカニカルアロイング法によって合金化されていない金属粉末の平均粒子径よりも大きく、メカニカルアロイング法によって合金化された金属粉末が50〜80重量%であり、メカニカルアロイング法によって合金化されていない金属粉末が20〜50重量%であるものである。 The invention according to claim 5 is the metal powder for metal stereolithography according to claim 2 or claim 3 , wherein the average particle diameter of the metal powder alloyed by the mechanical alloying method of the composition powder is mechanical alloying. 50-80% by weight of metal powder alloyed by mechanical alloying method is larger than the average particle size of metal powder not alloyed by the method, and metal powder not alloyed by mechanical alloying method 20 to 50% by weight.

請求項の発明は、請求項2又は請求項に記載の金属光造形用金属粉末において、前記組成粉末の内のメカニカルアロイング法によって合金化された金属粉末の平均粒子径がメカニカルアロイング法によって合金化されていない金属粉末の平均粒子径よりも小さく、メカニカルアロイング法によって合金化された金属粉末が20〜50重量%であり、メカニカルアロイング法によって合金化されていない金属粉末が50〜80重量%であるものである。 The invention according to claim 6 is the metal powder for metal stereolithography according to claim 2 or claim 3 , wherein the average particle diameter of the metal powder alloyed by the mechanical alloying method of the composition powder is mechanical alloying. The metal powder which is smaller than the average particle diameter of the metal powder not alloyed by the method, alloyed by the mechanical alloying method is 20 to 50% by weight, and the metal powder not alloyed by the mechanical alloying method is 50 to 80% by weight.

請求項1の発明によれば、金属光造形に用いられる金属光造形用金属粉末を、全てメカニカルアロイング法によって合金化することにより、全ての金属が積み重なった状態の粉末となり、比重の小さい黒鉛粉末も他の金属と一体化にされているので、ふるいがけを行なって再利用する場合においても、黒鉛粉末が飛散することがなく、配合成分が変動しない。   According to the first aspect of the present invention, the metal powder for metal stereolithography used for metal stereolithography is all alloyed by mechanical alloying to form a powder in a state where all metals are stacked, and graphite having a small specific gravity. Since the powder is also integrated with other metals, the graphite powder does not scatter and the compounding components do not fluctuate even when sieving and reusing.

請求項2の発明によれば、金属光造形に用いられる金属光造形用金属粉末の内の2種類以上の粉末をメカニカルアロイング法により合金化するので、ふるいがけを行なって再利用する場合においても、合金化された金属の粉末が飛散せず、配合成分が変動しない。また、黒鉛粉末を他の金属粉末とメカニカルアロイング法により合金化するので、ふるいがけを行なって再利用する場合においても、比重が小さい黒鉛粉末が飛散せず、配合成分が変動しない。 According to the second aspect of the present invention, since two or more kinds of powders for metal stereolithography used for metal stereolithography are alloyed by the mechanical alloying method, when sieving and reused However, the alloyed metal powder does not scatter and the blending components do not fluctuate. Further, since graphite powder is alloyed with other metal powders by mechanical alloying method, even when sieving and reused, graphite powder having a small specific gravity does not scatter and the blending components do not fluctuate.

請求項の発明によれば、金属光造形複合加工においても金属光造形における効果と同様の効果が得られる。 According to invention of Claim 3 , the effect similar to the effect in metal stereolithography is acquired also in metal stereolithography composite processing.

請求項の発明によれば、金属粉末の平均粒子径が同等であるので、金属粉末の流動性が良くなり、50μmの厚みで粉末層を敷く際にも、均一な密度で敷くことができ、金属粉末の充填密度が安定し、焼結欠陥が少ない造形物を作ることができる。 According to the invention of claim 4 , since the average particle diameter of the metal powder is the same, the fluidity of the metal powder is improved, and even when the powder layer is laid with a thickness of 50 μm, it can be laid with a uniform density. A molded product with a stable filling density of metal powder and few sintering defects can be produced.

請求項の発明によれば、平均粒子径が異なる2種類の金属粉末を混合しているので、金属粉末の充填密度が高くなり、焼結密度が高い造形物を作ることができる。 According to the invention of claim 5 , since two kinds of metal powders having different average particle diameters are mixed, a molded article having a high packing density and a high sintering density can be produced.

請求項の発明によれば、平均粒子径が異なる2種類の金属粉末を混合しているので、金属粉末の充填密度が高くなり、焼結密度が高い造形物を作ることができる。 According to the invention of claim 6 , since two kinds of metal powders having different average particle diameters are mixed, a molded article having a high packing density and a high sintering density can be made.

(第1の実施形態)
本発明の第1の実施形態に係る金属光造形用金属粉末を使用する金属光造形複合加工について図1を参照して説明する。図1は、金属光造形複合加工を行なう金属光造形複合加工機1の構成を示す。金属光造形複合加工機1は、金属粉末を所定の厚みの層に敷く粉末層形成手段2と、光ビームLを発し、光ビームLを任意の位置に照射する焼結層形成手段3と、造形物の周囲を削る除去手段4とを備えている。粉末層形成手段2は、上下に昇降する昇降テーブル20と、昇降テーブル20の上に配され造形物の土台となる図示していない造形用ベースと、造形用ベースに金属粉末の粉末層22を敷くスキージング用ブレード23とを有している。焼結層形成手段3は、光ビームLを発する光ビーム発信器30と、光ビームLを粉末層22の上にスキャニングするガルバノミラー31とを有している。除去手段4は、造形物の周囲を削るミーリングヘッド40と、ミーリングヘッド40を切削箇所に移動させるXY駆動機構41とを有している。
(First embodiment)
A metal stereolithography combined process using the metal stereolithography metal powder according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a configuration of a metal stereolithography combined processing machine 1 that performs metal stereolithography combined processing. The metal stereolithography composite processing machine 1 includes a powder layer forming means 2 for laying a metal powder in a layer having a predetermined thickness, a sintered layer forming means 3 for emitting a light beam L and irradiating the light beam L to an arbitrary position, The removal means 4 which scrapes the circumference | surroundings of a molded article is provided. The powder layer forming means 2 includes an elevating table 20 that moves up and down, a modeling base (not shown) that is arranged on the elevating table 20 and serves as a foundation of a modeled object, and a metal powder powder layer 22 on the modeling base. And a squeezing blade 23 for spreading. The sintered layer forming means 3 includes a light beam transmitter 30 that emits a light beam L, and a galvanometer mirror 31 that scans the light beam L onto the powder layer 22. The removing means 4 includes a milling head 40 that cuts the periphery of the modeled object, and an XY drive mechanism 41 that moves the milling head 40 to a cutting location.

金属光造形複合加工機1の動作を図2及び図3を参照して説明する。図2は、金属光造形複合加工機1の動作のフローを示し、図3は、金属光造形複合加工機1の動作を示す。金属光造形複合加工機1の動作は、金属粉末を敷く粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して焼結層24を形成する焼結層形成ステップ(S2)と、造形物の表面を切削する除去ステップ(S3)とから構成されている。粉末層形成ステップ(S1)では、最初に昇降テーブル20を矢印Z方向にΔt1下げる(S11)。造形用ベース21に金属粉末を供給し(S12)、スキージング用ブレード23を、矢印A方向に移動させ、供給された金属粉末を造形用ベース21上にならして、所定厚み矢印Δt1の粉末層22を形成する(S13)。次に、焼結層形成ステップ(S2)に移行し、光ビーム発信器30から光ビームLを発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングし(S22)、金属粉末を溶融し、焼結させて造形用ベース21と一体化した焼結層24を形成する(S23)。   The operation of the metal stereolithography composite processing machine 1 will be described with reference to FIGS. FIG. 2 shows a flow of the operation of the metal stereolithography composite processing machine 1, and FIG. 3 shows the operation of the metal stereolithography composite processing machine 1. The operation of the metal stereolithography composite processing machine 1 includes a powder layer forming step (S1) for spreading metal powder, and a sintered layer forming step (S2) for forming the sintered layer 24 by irradiating the powder layer 22 with the light beam L. And a removal step (S3) for cutting the surface of the modeled object. In the powder layer forming step (S1), the elevating table 20 is first lowered by Δt1 in the arrow Z direction (S11). The metal powder is supplied to the modeling base 21 (S12), the squeezing blade 23 is moved in the direction of arrow A, the supplied metal powder is leveled on the modeling base 21, and the powder having the predetermined thickness arrow Δt1 The layer 22 is formed (S13). Next, the process proceeds to the sintered layer forming step (S2), where a light beam L is emitted from the light beam transmitter 30 (S21), and the light beam L is scanned to an arbitrary position on the powder layer 22 by the galvanometer mirror 31 ( S22) The metal powder is melted and sintered to form a sintered layer 24 integrated with the modeling base 21 (S23).

焼結層24の厚みがミーリングヘッド40の工具長さ等から求めた所定の厚みになるまで粉末層形成ステップ(S1)と焼結層形成ステップ(S2)とを繰り返し、焼結層24を積層する。   The powder layer forming step (S1) and the sintered layer forming step (S2) are repeated until the thickness of the sintered layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the sintered layer 24 is laminated. To do.

そして、積層した焼結層24の厚みが所定の厚みになると、除去ステップ(S3)に移行し、ミーリングヘッド40を駆動する(S31)。XY駆動機構41によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、焼結層24が積層した造形物の表面を切削する(S32)。そして、三次元形状造形物の造形が終了していないと、粉末層形成ステップ(S1)へ戻る。こうして、S1乃至S3を繰り返して焼結層24を積層することで、三次元形状造形物を製造する。   And when the thickness of the laminated | stacked sintered layer 24 becomes predetermined thickness, it transfers to a removal step (S3) and drives the milling head 40 (S31). The milling head 40 is moved in the directions of arrows X and Y by the XY drive mechanism 41 to cut the surface of the shaped object on which the sintered layer 24 is laminated (S32). And if modeling of a three-dimensional shaped model is not completed, the process returns to the powder layer forming step (S1). In this way, the three-dimensional shaped object is manufactured by repeating S1 to S3 and laminating the sintered layer 24.

焼結層形成ステップ(S2)における光ビームLの照射経路と、除去ステップ(S3)における切削加工経路は、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。そして、除去ステップ(S3)に移行する焼結層24の厚みは、造形物の形状に応じて変動させる。造形物の形状が傾斜しているときは所定の厚みより薄い時点において、除去ステップ(S3)に移行することで、滑らかな表面が得られる。   The irradiation path of the light beam L in the sintered layer forming step (S2) and the cutting path in the removal step (S3) are created in advance from three-dimensional CAD data. At this time, a machining path is determined by applying contour line machining. And the thickness of the sintered layer 24 which transfers to a removal step (S3) is changed according to the shape of a molded article. When the shape of the modeled object is inclined, a smooth surface can be obtained by shifting to the removal step (S3) at a time when the shape is thinner than a predetermined thickness.

次に、本実施形態に係る金属光造形用金属粉末について説明する。ふるいがけによって黒鉛粉末が飛散して、黒鉛粉末が減少することを防止し、また、各金属が均一に分散するように各粉末をメカニカルアロイング法により合金化する。金属粉末は、それぞれの平均粒子径が100μmのクロムモリブデン鋼(SCM440)粉末とニッケル(Ni)粉末と銅マンガン合金(CuMnNi)粉末と、フレーク状の黒鉛(C)粉末を用いる。配合組成は(70重量%SCM440−20重量%Ni−9重量%CuMnNi−0.3重量%C)である。   Next, the metal powder for metal stereolithography according to this embodiment will be described. The graphite powder is scattered by the sieving to prevent the graphite powder from being reduced, and each powder is alloyed by a mechanical alloying method so that each metal is uniformly dispersed. As the metal powder, chromium molybdenum steel (SCM440) powder, nickel (Ni) powder, copper manganese alloy (CuMnNi) powder, and flaky graphite (C) powder each having an average particle diameter of 100 μm are used. The blending composition is (70 wt% SCM440-20 wt% Ni-9 wt% CuMnNi-0.3 wt% C).

これらの配合組成において、全ての金属粉末をボールミルによるメカニカルアロイングを行い、全ての金属粉末の粒子径を約30μmにする。ボールミル用容器内の雰囲気はArガス雰囲気であり、ミリングに用いるボールは直径10mmの鋼製ボールで、運転時間は48時間である。作成した金属光造形用金属粉末を金属光造形複合加工機1に用い、未焼結の金属粉末をふるいがけを行なって再利用する。   In these compounding compositions, all metal powders are mechanically alloyed by a ball mill, and the particle diameter of all metal powders is set to about 30 μm. The atmosphere in the ball mill container is an Ar gas atmosphere, the balls used for milling are steel balls having a diameter of 10 mm, and the operation time is 48 hours. The produced metal stereolithography metal powder is used in the metal stereolithography composite processing machine 1, and the unsintered metal powder is screened and reused.

各金属がメカニカルアロイング法により、積み重ねられた状態の粉末に合金化されており、比重の小さい黒鉛粉末も他の金属と一体化にされているので、ふるいがけを行なって再利用する場合においても、軽い金属粉末、特に黒鉛粉末が飛散することがなく、配合成分が変動しない。また、全ての金属粉末の粒子径及び比重がほぼ同じであり、かつ、黒鉛粉末が他の粉末と一体化されているので粉末の流動性が良くなり、金属光造形複合加工機1において50μmの厚みに粉末層22を敷く際にも、均一な密度で敷くことができ、金属粉末の充填密度が安定し、焼結欠陥も少ない造形物となる。また、有機の接着剤等を用いることなく、黒鉛粉末を機械的に他の金属粉末に結合するので、焼結密度が高くなり、かつ、レーザ照射時の有機接着剤の蒸発によるヒューム発生量が無く、装置内のレンズの汚染量が少ない。   Each metal is alloyed into a stacked powder by mechanical alloying method, and graphite powder with low specific gravity is also integrated with other metals, so when reusing by sieving However, light metal powders, especially graphite powders are not scattered and the blending components do not fluctuate. Moreover, since the particle diameter and specific gravity of all the metal powders are almost the same, and the graphite powder is integrated with other powders, the fluidity of the powder is improved. Even when the powder layer 22 is laid on the thickness, the powder layer 22 can be laid at a uniform density, and the molded product has a stable filling density of metal powder and few sintering defects. In addition, graphite powder is mechanically bonded to other metal powders without using an organic adhesive or the like, so that the sintered density is increased and the amount of fumes generated by evaporation of the organic adhesive during laser irradiation is reduced. No contamination of the lens in the device.

(第2の実施形態)
本発明の第2の実施形態に係る金属光造形用金属粉末について説明する。本実施形態では、第1の実施形態と同じ配合組成の金属粉末を用いるが、金属粉末の粒子径とメカニカルアロイング法により合金化する金属粉末の種類が異なる。金属粉末は、平均粒子径100μmのクロムモリブデン鋼粉末と平均粒子径30μmのニッケル粉末と平均粒子径30μmの銅マンガン合金粉末と、フレーク状の黒鉛粉末を用いる。
(Second Embodiment)
The metal powder for metal stereolithography which concerns on the 2nd Embodiment of this invention is demonstrated. In the present embodiment, metal powder having the same composition as in the first embodiment is used, but the particle diameter of the metal powder and the type of metal powder alloyed by the mechanical alloying method are different. As the metal powder, chromium molybdenum steel powder having an average particle diameter of 100 μm, nickel powder having an average particle diameter of 30 μm, copper manganese alloy powder having an average particle diameter of 30 μm, and flaky graphite powder are used.

70重量%分のクロムモリブデン鋼粉末と0.3重量%分の炭素粉末のみをメカニカルアロイング法により合金化を行い、平均粒子径30μmの金属粉末とする。このメカニカルアロイングを行なった金属粉末と、残りの20重量%分のニッケル粉末と9重量%分の銅マンガン合金粉末を、スクリュー式ミキサーにより混合を行い、金属光造形用金属粉末とする。   Only 70% by weight of chromium molybdenum steel powder and 0.3% by weight of carbon powder are alloyed by a mechanical alloying method to obtain a metal powder having an average particle size of 30 μm. The metal powder subjected to mechanical alloying, the remaining 20% by weight of nickel powder and 9% by weight of copper-manganese alloy powder are mixed by a screw mixer to obtain a metal powder for metal stereolithography.

第1の実施形態に係る金属光造形用金属粉末と比べ、一部の金属粉末のみをメカニカルアロイング法により合金化しているので、合金化していない金属の配合量の変動を防ぐ効果は無いが、他の効果は第1の実施形態に係るものと同様である。特に、メカニカルアロイングを行なった金属粉末の粒子径とメカニカルアロイングを行なっていない金属粉末の粒子径を同じにしているので、粉末の流動性も良い。また、メカニカルアロイングを行なう回数が少ないので、コストを低くすることができる。   Compared with the metal stereolithography metal powder according to the first embodiment, only a part of the metal powder is alloyed by the mechanical alloying method, so there is no effect of preventing fluctuations in the blending amount of the non-alloyed metal. The other effects are the same as those according to the first embodiment. In particular, since the particle diameter of the metal powder subjected to mechanical alloying and the particle diameter of the metal powder not subjected to mechanical alloying are the same, the fluidity of the powder is also good. Moreover, since the number of times of mechanical alloying is small, the cost can be reduced.

クロムモリブデン鋼粉末と炭素粉末とのメカニカルアロイングにおいて、全てのクロムモリブデン鋼粉末を合金化せずに、一部のクロムモリブデン鋼粉末と炭素粉末とを合金化してもよい。全てのクロムモリブデン鋼粉末を合金化するのと同様の効果が得られ、しかも、メカニカルアロイングを行なう回数を減らせられるのでコストを削減することができる。ただし、その場合はメカニカルアロイングを行わない残りのクロムモリブデン鋼粉末の粒子径を30μm程度としておかなければならない。   In mechanical alloying of chromium molybdenum steel powder and carbon powder, some chromium molybdenum steel powder and carbon powder may be alloyed without alloying all the chromium molybdenum steel powder. The same effect as that obtained by alloying all chromium molybdenum steel powders can be obtained, and the number of mechanical alloying operations can be reduced, so that the cost can be reduced. However, in that case, the particle diameter of the remaining chromium molybdenum steel powder not subjected to mechanical alloying must be about 30 μm.

また、黒鉛粉末をニッケル粉末や銅合金粉末とメカニカルアロイングしてもよい。クロムモリブデン鋼とメカニカルアロイングを行なったのと同様の効果がある。ただし、メカニカルアロイングする粉末は粒子径を100μmのものを用い、メカニカルアロイングしない粉末は、粒子径30μmのものを用いる。   Further, the graphite powder may be mechanically alloyed with nickel powder or copper alloy powder. It has the same effect as mechanical alloying with chromium molybdenum steel. However, powder having a particle diameter of 100 μm is used for the mechanical alloying powder, and powder having a particle diameter of 30 μm is used for the powder not mechanically alloying.

(第3の実施形態)
本発明の第3の実施形態に係る金属光造形用金属粉末について説明する。本実施形態では、第1の実施形態と同じ配合組成の金属粉末を用いるが、金属粉末の粒子径とメカニカルアロイング法により合金化する金属粉末の種類が異なる。クロムモリブデン鋼粉末とニッケル粉末と銅マンガン合金粉末と、の内の2種類以上の粉末をメカニカルアロイング法により合金化する。メカニカルアロイング法により、合金化する金属粉末は、平均粒子径が100μmのものを用い、メカニカルアロイングを行なわない金属粉末は平均粒子径が30μmのものを用いる。メカニカルアロイングにより、30μmに合金化された金属粉末とメカニカルアロイングを行なっていない金属粉末とを混合し、金属光造形用金属粉末とする。
(Third embodiment)
A metal powder for metal stereolithography according to a third embodiment of the present invention will be described. In the present embodiment, metal powder having the same composition as in the first embodiment is used, but the particle diameter of the metal powder and the type of metal powder alloyed by the mechanical alloying method are different. Two or more kinds of chromium molybdenum steel powder, nickel powder, and copper manganese alloy powder are alloyed by a mechanical alloying method. The metal powder to be alloyed by the mechanical alloying method has an average particle diameter of 100 μm, and the metal powder not to be mechanically alloyed has an average particle diameter of 30 μm. The metal powder alloyed to 30 μm and the metal powder not mechanically alloyed are mixed by mechanical alloying to obtain a metal powder for metal stereolithography.

第1の実施形態に係る金属光造形用金属粉末と比べ、黒鉛粉末をメカニカルアロイング法により他の金属粉末と合金化していないので、ふるいがけ時の黒鉛粉末の減少を防止できないが、他の効果は第1の実施形態に係るものと同様であり、また、メカニカルアロイングを行なう回数が少ないので、コストを低くすることができる。   Compared with the metal stereolithography metal powder according to the first embodiment, the graphite powder is not alloyed with other metal powders by the mechanical alloying method, so the reduction of the graphite powder during sieving cannot be prevented. The effect is the same as that according to the first embodiment, and the number of times of mechanical alloying is small, so the cost can be reduced.

(第4の実施形態)
本発明の第4の実施形態に係る金属光造形用金属粉末について説明する。本実施形態では、第1の実施形態と同じ配合組成の金属粉末を用いるが、金属粉末の粒子径が異なる。平均粒子径が100μmのクロムモリブデン鋼粉末と、平均粒径が10μmのニッケル粉末と、平均粒径が10μmの銅マンガン合金粉末と、フレーク状の黒鉛粉末を用いる。
(Fourth embodiment)
The metal powder for metal stereolithography which concerns on the 4th Embodiment of this invention is demonstrated. In the present embodiment, metal powder having the same composition as that in the first embodiment is used, but the particle diameter of the metal powder is different. A chromium molybdenum steel powder having an average particle diameter of 100 μm, a nickel powder having an average particle diameter of 10 μm, a copper manganese alloy powder having an average particle diameter of 10 μm, and a flaky graphite powder are used.

70重量%分のクロムモリブデン鋼粉末と0.3重量%分の炭素粉末のみをメカニカルアロイングを行い、30μmの合金粉末とする。メカニカルアロイングをした粉末と、20重量%分のニッケル粉末と9重量%分の銅マンガン合金粉末を混合し、金属光造形用金属粉末とする。約70重量%が平均粒子径30μmの粉末であり、約30重量%が平均粒子径10μmの粉末である金属粉末となる。平均粒子径が異なる2種類の金属粉末を混合することにより、金属粉末の充填密度が高くなり、造形物の焼結密度も高くなる。   Only 70% by weight of chromium molybdenum steel powder and 0.3% by weight of carbon powder are mechanically alloyed to obtain 30 μm alloy powder. The mechanically alloyed powder, 20% by weight of nickel powder and 9% by weight of copper manganese alloy powder are mixed to obtain a metal powder for metal stereolithography. About 70% by weight is a powder having an average particle diameter of 30 μm, and about 30% by weight is a metal powder having a mean particle diameter of 10 μm. By mixing two kinds of metal powders having different average particle diameters, the packing density of the metal powder is increased, and the sintered density of the shaped article is also increased.

2種類の金属粉末の平均粒子径は、大きい方が25〜35μmで、小さい方が5〜15μmでもよい。また、平均粒子径の大きい方の金属粉末の割合が全体の50〜80重量%で、小さい方の金属粉末の割合が全体の20〜50重量%でもよい。   The average particle diameter of the two types of metal powders may be 25 to 35 μm on the larger side and 5 to 15 μm on the smaller side. Further, the proportion of the metal powder having the larger average particle diameter may be 50 to 80% by weight of the whole, and the proportion of the metal powder having the smaller average particle diameter may be 20 to 50% by weight of the whole.

平均粒子径が異なる2種類の金属粉末を混合することにより、充填密度が高くなる効果と、金属粉末の金属の種類とは関係が無く、例えば、平均粒子径の大きい金属粉末がクロムモリブデン鋼粉末とニッケル粉末とをメカニカルアロイングにより合金化したものであり、平均粒子径の小さい金属粉末がクロムモリブデン鋼粉末と銅マンガン合金粉末でもよい。   There is no relationship between the effect of increasing the packing density by mixing two types of metal powders having different average particle sizes and the type of metal of the metal powder. For example, a metal powder having a large average particle size is a chromium molybdenum steel powder. And nickel powder are alloyed by mechanical alloying, and the metal powder having a small average particle diameter may be chromium molybdenum steel powder and copper manganese alloy powder.

(第5の実施形態)
本発明の第5の実施形態に係る金属光造形用金属粉末について説明する。本実施形態は、第4の実施形態において、メカニカルアロイング法によって合金化した金属粉末を平均粒子径が小さい方の金属粉末とするものである。
(Fifth embodiment)
A metal powder for metal stereolithography according to a fifth embodiment of the present invention will be described. In this embodiment, the metal powder alloyed by the mechanical alloying method in the fourth embodiment is used as a metal powder having a smaller average particle diameter.

それぞれの平均粒子径が30μmのクロムモリブデン鋼粉末とニッケル粉末と銅マンガン合金粉末と、フレーク状の黒鉛粉末を用いる。30重量%分のクロムモリブデン鋼粉末と0.3重量%分の炭素粉末のみをメカニカルアロイングを行い、10μmの合金粉末とする。メカニカルアロイングの条件は、ボールミル用容器内の雰囲気がArガス雰囲気であり、ミリングに用いるボールが直径5mmの鋼製ボールであり、運転時間が72時間である。ミリングに用いるボールの直径を小さくし、運転時間を長くすることで細かくすることができる。   Chromium molybdenum steel powder, nickel powder, copper manganese alloy powder, and flaky graphite powder each having an average particle diameter of 30 μm are used. Only 30 wt% chromium molybdenum steel powder and 0.3 wt% carbon powder are mechanically alloyed to obtain a 10 μm alloy powder. The mechanical alloying conditions are that the atmosphere in the ball mill container is an Ar gas atmosphere, the ball used for milling is a steel ball having a diameter of 5 mm, and the operation time is 72 hours. It can be made fine by reducing the diameter of the ball used for milling and extending the operation time.

メカニカルアロイングをした粉末と、40重量%分のクロムモリブデン鋼粉末と20重量%分のニッケル粉末と9重量%分の銅マンガン合金粉末を混合し、金属光造形用混合粉末とする。約70重量%が平均粒子径30μmの粉末で、約30重量%が平均粒子径10μmの粉末からなる混合粉末となる。平均粒子径が異なる2種類の金属粉末を混合することにより、金属粉末の充填密度が高くなり、造形物の焼結密度も高くなる。   The mechanically alloyed powder, 40 wt% chromium molybdenum steel powder, 20 wt% nickel powder, and 9 wt% copper manganese alloy powder are mixed to obtain a mixed powder for metal stereolithography. About 70% by weight is a powder having an average particle diameter of 30 μm, and about 30% by weight is a mixed powder composed of a powder having an average particle diameter of 10 μm. By mixing two kinds of metal powders having different average particle diameters, the packing density of the metal powder is increased, and the sintered density of the shaped article is also increased.

第4の実施形態と同様に平均粒子径は、大きい方が25〜35μmで、小さい方が5〜15μmでもよい。また、平均粒子径の大きい方の金属粉末の割合が全体の50〜80重量%で、小さい方の金属粉末の割合が全体の20〜50重量%でもよい。また、平均粒子径の大きい方と小さい方の金属の種類についても、第4の実施形態と同様に何れの金属でもよい。   As in the fourth embodiment, the average particle size may be 25 to 35 μm on the larger side and 5 to 15 μm on the smaller side. Further, the proportion of the metal powder having the larger average particle diameter may be 50 to 80% by weight of the whole, and the proportion of the metal powder having the smaller average particle diameter may be 20 to 50% by weight of the whole. In addition, as for the type of the metal having the larger average particle diameter and the smaller one, any metal may be used as in the fourth embodiment.

第1乃至第5の実施形態において、金属粉末の配合組成を(70重量%SCM440−20重量%Ni−9重量%CuMnNi−0.3重量%C)として行なったが、第1乃至第5の実施形態に係るメカニカルアロイング法の効果は、金属粉末の配合組成(70重量%SCM440−20重量%Ni−9重量%CuMnNi−0.3重量%C)に拘らずに効果がある。   In the first to fifth embodiments, the composition of the metal powder was (70 wt% SCM440-20 wt% Ni-9 wt% CuMnNi-0.3 wt% C). The effect of the mechanical alloying method according to the embodiment is effective regardless of the composition of the metal powder (70 wt% SCM440-20 wt% Ni-9 wt% CuMnNi-0.3 wt% C).

特に、鉄系粉末の配合量が60〜90重量%、ニッケル及びニッケル系合金の両方又はいずれか一方の粉末の配合量が5〜35重量%、銅及び銅系合金の両方又はいずれか一方の粉末の配合量が5〜15重量%である金属粉末に、黒鉛粉末を0.2〜0.8重量%配合することで、強度が強く、内部にマイクロクラックが無い造形物を作ることができ、更に、鉄系粉末をクロムモリブデン鋼粉末、又は急冷によりマルテンサイト組織になって硬度が高くなり、焼き戻しにより硬度が低下する工具鋼、例えば炭素工具鋼、ダイス鋼、高速度工具鋼等の粉末とすることで、高強度・高硬度であり、かつ、表面の切削性も良好な造形物とすることができる。   In particular, the blending amount of iron-based powder is 60 to 90% by weight, the blending amount of both nickel and nickel-based alloy is 5 to 35% by weight, and / or both of copper and copper-based alloy. By blending 0.2 to 0.8% by weight of graphite powder into metal powder with a powder content of 5 to 15% by weight, it is possible to make a shaped product with high strength and no microcracks inside. Furthermore, the iron-based powder is a chromium molybdenum steel powder, or a tool steel that has a martensite structure due to rapid cooling and has a high hardness and a hardness that decreases by tempering, such as carbon tool steel, die steel, high-speed tool steel, etc. By using a powder, it is possible to obtain a molded article that has high strength and high hardness and good surface machinability.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、本実施形態では金属光造形複合加工機1に用いたが、金属光造形により三次元形状造形物の全体を製造してから、造形物の表面を切削加工する金属光造形に用いてもよい。また、メカニカルアロイング法の条件も各種実施形態の条件に拘らず、金属粉末が合金化され、所定の粒子径が得られる条件であればよい。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, in this embodiment, although it used for the metal stereolithography composite processing machine 1, even if it uses for the metal stereolithography which cuts the surface of a modeling thing after manufacturing the whole three-dimensional shape modeling thing by metal stereolithography. Good. Moreover, the conditions of the mechanical alloying method should just be the conditions which a metal powder is alloyed and a predetermined particle diameter is obtained irrespective of the conditions of various embodiment.

本発明の実施形態に係る金属光造形複合加工を行なう金属光造形複合加工機の構成図。The block diagram of the metal optical modeling composite processing machine which performs the metal optical modeling composite processing which concerns on embodiment of this invention. 金属光造形複合加工機の動作のフローチャート。The flowchart of operation | movement of a metal stereolithography composite processing machine. 金属光造形複合加工機の動作を示す図。The figure which shows operation | movement of a metal stereolithography composite processing machine. 従来の金属光造形物での黒鉛粉末添加量と曲げ試験結果との関係を示す図。The figure which shows the relationship between the amount of graphite powder addition in the conventional metal stereolithography, and a bending test result. 黒鉛粉末を添加していない従来の金属光造形物の断面組織の写真。The photograph of the cross-sectional structure of the conventional metal stereolithography object which does not add graphite powder. 黒鉛粉末を0.1重量%添加した従来の金属光造形物の断面組織の写真。The photograph of the cross-sectional structure | tissue of the conventional metal stereolithography thing which added graphite powder 0.1weight%. 黒鉛粉末を0.2重量%添加した従来の金属光造形物の断面組織の写真。The photograph of the cross-sectional structure of the conventional metal stereolithography object which added 0.2 weight% of graphite powder. 黒鉛粉末を0.3重量%添加した従来の金属光造形物の断面組織の写真。The photograph of the cross-sectional structure | tissue of the conventional metal stereolithography thing which added 0.3 weight% of graphite powder. 金属光造形複合加工機から回収した従来の金属粉末のSEM写真。The SEM photograph of the conventional metal powder collect | recovered from the metal stereolithography composite processing machine.

符号の説明Explanation of symbols

22 粉末層
24 焼結層
22 Powder layer 24 Sintered layer

Claims (6)

金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、
鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末と、を組成とする粉末(以下、組成粉末という)から成り、
前記組成粉末をメカニカルアロイング法によって合金化したことを特徴とする金属光造形用金属粉末。
A metal powder for metal stereolithography used in metal stereolithography used to form a sintered layer by irradiating a light beam onto a powder layer made of metal powder, and obtaining a three-dimensional shaped article by laminating the sintered layer. There,
From powder (hereinafter referred to as composition powder) comprising iron-based powder, nickel and / or nickel-based alloy powder, copper and / or copper-based alloy powder, and graphite powder Consisting of
A metal powder for metal stereolithography, wherein the composition powder is alloyed by a mechanical alloying method.
金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、
鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末と、を組成とする粉末(以下、組成粉末という)から成り、
前記組成粉末の内の2種類以上の粉末をメカニカルアロイング法によって合金化した粉末と、前記組成粉末の内の1種類以上の粉末とを、混合して成り、
前記メカニカルアロイング法によって合金化される2種類以上の粉末の内の1つに、黒鉛粉末が含まれることを特徴とする金属光造形用金属粉末。
A metal powder for metal stereolithography used in metal stereolithography used to form a sintered layer by irradiating a light beam onto a powder layer made of metal powder, and obtaining a three-dimensional shaped article by laminating the sintered layer. There,
From powder (hereinafter referred to as composition powder) comprising iron-based powder, nickel and / or nickel-based alloy powder, copper and / or copper-based alloy powder, and graphite powder Consisting of
A powder alloying two or more kinds of powder of said composition powder by a mechanical alloying method, and one or more powders of said composition powder, Ri formed by mixing,
A metal powder for metal stereolithography , wherein graphite powder is contained in one of two or more kinds of powders alloyed by the mechanical alloying method .
金属粉末からなる粉末層に光ビームを照射して焼結層を形成する工程と、前記焼結層の積層により形成した造形物の表面部及び不要部分の両方又はいずれか一方の切削除去を行う工程と、を繰り返すことにより三次元形状造形物を得る金属光造形に用いられることを特徴とする請求項に記載の金属光造形用金属粉末。 A step of forming a sintered layer by irradiating a powder layer made of metal powder with a light beam, and cutting and / or removing one or both of a surface portion and an unnecessary portion of a shaped article formed by stacking the sintered layers. The metal powder for metal stereolithography according to claim 2 , wherein the metal powder for metal stereolithography is used for metal stereolithography to obtain a three-dimensional modeled article by repeating the steps. 前記組成粉末の内のメカニカルアロイング法によって合金化された金属粉末、及びメカニカルアロイング法によって合金化されていない金属粉末のそれぞれの平均粒子径が10〜40μmであることを特徴とする請求項2又は請求項に記載の金属光造形用金属粉末。 The average particle size of each of the metal powder alloyed by the mechanical alloying method and the metal powder not alloyed by the mechanical alloying method is 10 to 40 µm. Metal powder for metal stereolithography of Claim 2 or Claim 3 . 前記組成粉末の内のメカニカルアロイング法によって合金化された金属粉末の平均粒子径がメカニカルアロイング法によって合金化されていない金属粉末の平均粒子径よりも大きく、
メカニカルアロイング法によって合金化された金属粉末が50〜80重量%であり、メカニカルアロイング法によって合金化されていない金属粉末が20〜50重量%であることを特徴とする請求項2又は請求項に記載の金属光造形用金属粉末。
The average particle size of the metal powder alloyed by the mechanical alloying method of the composition powder is larger than the average particle size of the metal powder not alloyed by the mechanical alloying method,
Metal powders alloyed by a mechanical alloying method is 50 to 80 wt%, claim 2 or claim in which the metal powder which is not alloyed, characterized in that 20 to 50% by weight by mechanical alloying Item 4. The metal powder for metal stereolithography according to Item 3 .
前記組成粉末の内のメカニカルアロイング法によって合金化された金属粉末の平均粒子径がメカニカルアロイング法によって合金化されていない金属粉末の平均粒子径よりも小さく、
メカニカルアロイング法によって合金化された金属粉末が20〜50重量%であり、メカニカルアロイング法によって合金化されていない金属粉末が50〜80重量%であることを特徴とする請求項2又は請求項に記載の金属光造形用金属粉末。
The average particle size of the metal powder alloyed by the mechanical alloying method of the composition powder is smaller than the average particle size of the metal powder not alloyed by the mechanical alloying method,
Metal powders alloyed by a mechanical alloying method is 20 to 50 wt%, claim 2 or claim in which the metal powder which is not alloyed, characterized in that 50 to 80% by weight by mechanical alloying Item 4. The metal powder for metal stereolithography according to Item 3 .
JP2006230327A 2006-08-28 2006-08-28 Metal powder for metal stereolithography Expired - Fee Related JP4737007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230327A JP4737007B2 (en) 2006-08-28 2006-08-28 Metal powder for metal stereolithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230327A JP4737007B2 (en) 2006-08-28 2006-08-28 Metal powder for metal stereolithography

Publications (2)

Publication Number Publication Date
JP2008050671A JP2008050671A (en) 2008-03-06
JP4737007B2 true JP4737007B2 (en) 2011-07-27

Family

ID=39234993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230327A Expired - Fee Related JP4737007B2 (en) 2006-08-28 2006-08-28 Metal powder for metal stereolithography

Country Status (1)

Country Link
JP (1) JP4737007B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763790B (en) * 2015-04-19 2017-06-09 吉林大学 Metal dust electron-beam melting lamination shaping station z-axis kinematic system
WO2018090188A1 (en) 2016-11-15 2018-05-24 东台精机股份有限公司 Powder spreader having automatic powder recovery
CN108067614A (en) * 2016-11-15 2018-05-25 东台精机股份有限公司 The powdering machine of automatic recycling powder
CN107052338A (en) * 2017-03-22 2017-08-18 安徽恒利增材制造科技有限公司 A kind of powder reclaiming device of 3D printing rapidform machine
CN108788151B (en) * 2018-06-29 2020-08-04 普睿玛智能科技(苏州)有限公司 Synchronous selective laser melting S L M forming device and printing method thereof
US11591484B1 (en) 2019-01-30 2023-02-28 Hrl Laboratories, Llc Resin formulations for additive manufacturing of metals, and methods of making and using the same
CN110625116B (en) * 2019-10-23 2021-11-23 成都先进金属材料产业技术研究院股份有限公司 Support for lifting powder bin of electron beam 3D printing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589802B2 (en) * 1977-04-14 1983-02-23 日本黒鉛工業株式会社 Method for producing iron-graphite composite powder for powder metallurgy
JPH04210402A (en) * 1990-11-30 1992-07-31 Kobe Steel Ltd Mixed iron powder
JP3633607B2 (en) * 2003-02-25 2005-03-30 松下電工株式会社 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
JP4561187B2 (en) * 2004-05-26 2010-10-13 パナソニック電工株式会社 Method for producing three-dimensional shaped object and powder material recycling apparatus for producing three-dimensional shaped object

Also Published As

Publication number Publication date
JP2008050671A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5213006B2 (en) Manufacturing method of three-dimensional shaped object
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
JP4925048B2 (en) Manufacturing method of three-dimensional shaped object
JP4737007B2 (en) Metal powder for metal stereolithography
JP4661842B2 (en) Method for producing metal powder for metal stereolithography and metal stereolithography
KR100586360B1 (en) Metal powder composition for use in selective laser sintering
WO2012160811A1 (en) Method for producing three-dimensional shape structure
US8329092B2 (en) Metal powder for metal laser-sintering and metal laser-sintering process using the same
KR101330977B1 (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5302710B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP4640216B2 (en) Metal powder for metal stereolithography
JP4915660B2 (en) Manufacturing method of three-dimensional shaped object
Beal et al. Optimisation of processing parameters in laser fused H13/Cu materials using response surface method (RSM)
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
JP3687667B2 (en) Metal powder for metal stereolithography
JP5016300B2 (en) Manufacturing method of three-dimensional shaped object
Sun et al. Microstructure and properties of Fe-base alloy fabricated using selective laser melting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4737007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees