JP3633607B2 - Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography - Google Patents

Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography Download PDF

Info

Publication number
JP3633607B2
JP3633607B2 JP2003281260A JP2003281260A JP3633607B2 JP 3633607 B2 JP3633607 B2 JP 3633607B2 JP 2003281260 A JP2003281260 A JP 2003281260A JP 2003281260 A JP2003281260 A JP 2003281260A JP 3633607 B2 JP3633607 B2 JP 3633607B2
Authority
JP
Japan
Prior art keywords
powder
metal
copper
nickel
stereolithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281260A
Other languages
Japanese (ja)
Other versions
JP2004277877A (en
Inventor
勲 不破
徳雄 吉田
修士 上永
俊治 岩永
喜万 東
裕彦 峠山
諭 阿部
正孝 武南
俊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003281260A priority Critical patent/JP3633607B2/en
Priority to TW093104612A priority patent/TWI239874B/en
Publication of JP2004277877A publication Critical patent/JP2004277877A/en
Application granted granted Critical
Publication of JP3633607B2 publication Critical patent/JP3633607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形に用いる金属粉末とその製造方法及び金属光造形による三次元形状造形物の製造方法並びに金属光造形物に関するものである。   The present invention irradiates a powder layer made of metal powder with a light beam to form a sintered layer, and laminates the sintered layer to obtain a desired three-dimensional shaped object. The present invention relates to a manufacturing method, a manufacturing method of a three-dimensional shaped object by metal stereolithography, and a metal stereolithography object.

金属粉末で形成した粉末層に光ビーム(指向性エネルギービーム、例えばレーザ)を照射して焼結層を形成し、この焼結層の上に新たな粉末層を形成して光ビームを照射することで焼結層を形成するということを繰り返して三次元形状造形物を製造する技術が知られている。金属光造形と称されているこの技術においては、光ビームのエネルギー密度の調整により、造形物に隙間(空孔)が多く存在している状態から、金属粉末がほぼ完全に溶融した後に固化した状態、つまり造形密度(焼結密度)がほぼ100%の状態まで得ることができるものであり、このために表面が滑らかな面となっていることが求められる成形用金型などを形成することもできる。また、表面は高密度、内部は低密度、その間は中密度に形成することも可能であるとともに、このように密度を変化させる場合、滑らかな表面を持つものを造形速度を犠牲にすることなく得ることができる。   A powder layer formed of metal powder is irradiated with a light beam (directional energy beam, for example, a laser) to form a sintered layer, and a new powder layer is formed on the sintered layer and irradiated with the light beam. Thus, a technique for manufacturing a three-dimensional shaped object by repeating the formation of a sintered layer is known. In this technology, which is called metal stereolithography, by adjusting the energy density of the light beam, the metal powder is solidified after almost completely melting from the state in which there are many gaps (holes) in the modeled object. Forming a molding die or the like that can be obtained up to a state, that is, a molding density (sintered density) of almost 100%, and for this reason, the surface must be smooth. You can also. In addition, it is possible to form the surface with a high density, the inside with a low density, and a medium density in the meantime, and when changing the density in this way, a smooth surface without sacrificing the modeling speed. Can be obtained.

しかし、このような密度差が表面と内部とにある造形物を金属光造形で得るにあたっては、通常の粉末焼結に用いられる金属粉末とは異なった特性のものが必要となる。   However, in order to obtain a shaped object having such a density difference between the surface and the interior by metal stereolithography, a metal powder having characteristics different from those of metal powder used for normal powder sintering is required.

たとえば、金属粉末の粒径は、粉末層の厚みよりも小さくする必要があり、この時、粒子径は細かい方が粉末の充填密度が高く、造形時の光ビーム(レーザ)吸収率も良いために造形密度も高くすることができるとともに表面粗さも小さくすることができるが、粉末が細かすぎて凝集を起こしてしまうと、逆に粉末の充填密度は小さくなり、薄く均一に敷けなくなってしまう。   For example, the particle size of the metal powder needs to be smaller than the thickness of the powder layer. At this time, the smaller the particle size, the higher the packing density of the powder, and the better the light beam (laser) absorption during modeling. In addition, the modeling density can be increased and the surface roughness can be decreased. However, if the powder is too fine and agglomerates, the packing density of the powder is decreased, and the powder cannot be spread uniformly and thinly.

また、ある程度の造形強度を得るためには、レーザ照射された造形部とその下層の焼結層との接合面積が大きく、かつその密着強度が高くなければならないと同時に、隣接する焼結層との接合面積が大きくて密着強度が高いものである必要がある。   Also, in order to obtain a certain degree of modeling strength, the bonding area between the laser-irradiated modeling part and the underlying sintered layer must be large and the adhesion strength must be high, The bonding area must be large and the adhesion strength must be high.

さらに、レーザ照射された箇所の上面があまり大きく盛り上がってはならない。次の層を造形するために次の粉末層を敷く際に、盛り上がり量が粉末層の厚み以上となると、粉末層の形成そのものが困難となってしまう場合がある。   Furthermore, the upper surface of the laser-irradiated portion should not rise so much. When the next powder layer is laid to form the next layer, if the bulge amount exceeds the thickness of the powder layer, the formation of the powder layer itself may be difficult.

また、造形された造形物の表面には金属粉末が付着してしまっていることから、この不要な金属粉末を落として高密度な表面を露出させるための切削仕上げ等の加工を行う時の加工性が良いことが望まれる。   In addition, since the metal powder has adhered to the surface of the modeled object, the processing when performing processing such as cutting finish to remove this unnecessary metal powder and expose the high-density surface It is desirable that the property is good.

もちろん、外観に大きな割れが生じてはならないし、射出成形用金型などの内部に流体(冷却水)を流す場合のことなども考慮すると、内部組織にマイクロクラックが無いことが望まれる。   Of course, there should be no large cracks in the appearance, and it is desirable that the internal structure should be free of microcracks in consideration of the case of flowing a fluid (cooling water) inside an injection mold or the like.

ここにおいて、レーザ照射された金属粉末は、その一部または全部が一旦溶融し、その後急冷凝固されて焼結品となるが、この溶融した時の濡れ性が大きいと隣接する焼結部との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく且つ濡れ性も良いことが望まれる。   Here, a part or all of the metal powder irradiated with the laser is once melted and then rapidly solidified to form a sintered product. If the bonding area is large and the fluidity is large, the rise is small. Therefore, it is desired that the fluidity when melted is high and the wettability is good.

このような観点から、本出願人は特願平11−335178号(特開2001−152204号公報:特許文献1)において、クロムモリブデン鋼と、リン銅またはマンガン銅並びにニッケルの各粉末の混合物からなる金属光造形用金属粉末を提案した。クロムモリブデン鋼はその強度や靭性の点から、リン銅またはマンガン銅は濡れ性及び流動性の点から、ニッケルは強度及び加工性の点から採用している。   From this point of view, the present applicant in Japanese Patent Application No. 11-335178 (Japanese Patent Application Laid-Open No. 2001-152204: Patent Document 1) is based on a mixture of chromium molybdenum steel and phosphorous copper, manganese copper and nickel powders. We proposed a metal powder for metal stereolithography. Chrome molybdenum steel is adopted from the viewpoint of strength and toughness, phosphorous copper or manganese copper is adopted from the viewpoint of wettability and fluidity, and nickel is adopted from the viewpoint of strength and workability.

上記配合の金属光造形用金属粉末は、金属光造形によって表面と内部とに密度差がある造形物を金属光造形で得るという点において、概ね好ましい結果を得ることができているが、上記濡れ性及び流動性の点で造形時にやや問題があるほか、加工性(切削性)もあまり良好ではなく、そして何よりの問題点として、倍率25倍で示した図11から明らかなように、高密度焼結させた部分にマイクロクラックが多数生じてしまう。このマイクロクラックは、得られた造形物を成型用金型として用いる場合において問題となる。
特開2001−152204号公報
Although the metal powder for metal stereolithography of the above composition can obtain a generally preferable result in terms of obtaining a model having a density difference between the surface and the interior by metal stereolithography, the wet There are some problems during molding in terms of properties and fluidity, and workability (cutability) is not so good, and the most important problem is that as shown in FIG. Many micro cracks are generated in the sintered portion. This microcrack becomes a problem when the obtained shaped article is used as a molding die.
JP 2001-152204 A

本発明は上記の点に鑑みなされたものであって、その目的とするところは金属光造形という造形に際しての造形性に優れているとともにマイクロクラックのない造形物を得ることができる金属粉末を提供するにあり、他の目的とするところは複数種の粉末を配合した上記金属粉末を容易に得ることができる金属粉末材料の製造方法を提供するにあり、更に他の目的とするところは射出成形用金型などに好適に使用することができる造形物を容易に得ることができる金属光造形による三次元形状造形物の製造方法を提供するにあり、また射出成形用金型としての利用が可能な金属光造形物を提供するにある。   The present invention has been made in view of the above points. The object of the present invention is to provide a metal powder that is excellent in modeling at the time of modeling called metal stereolithography and can obtain a modeled article without microcracks. Therefore, another object is to provide a method for producing a metal powder material that can easily obtain the above metal powder containing a plurality of kinds of powders, and still another object is injection molding. The object is to provide a method for producing a three-dimensional shaped article by metal stereolithography that can easily obtain a shaped article that can be suitably used for a metal mold, and can be used as an injection mold. Is to provide a simple metal stereolithography.

しかして本発明に係る金属光造形用金属粉末は、金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形用の金属粉末であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とからなるとともに、黒鉛粉末が混合されていることに特徴を有している。ここにおける黒鉛粉末は、鉄系の粉末焼結などにおいても焼結材料の融点の低下や焼結密度の向上などを目的としてなされているが、ここでの黒鉛粉末は、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の低減をもたらす。   Accordingly, the metal powder for metal stereolithography according to the present invention forms a sintered layer by irradiating a powder layer made of metal powder with a light beam, and laminates the sintered layer to form a desired three-dimensional shaped object. A metal powder for metal stereolithography, comprising an iron-based powder, a nickel or nickel-based alloy powder, a copper or copper-based alloy powder, and a graphite powder mixed therein Has characteristics. The graphite powder here is used for the purpose of lowering the melting point of the sintered material and improving the sintering density even in the sintering of iron-based powders, etc. Improvement and reduction of the occurrence of microcracks during solidification.

黒鉛粉末の配合量は1重量パーセント以内であることが望ましい。1重量パーセントを超えた場合、マイクロクラックの低減効果を得ることができなくなる。   The blending amount of the graphite powder is desirably within 1 weight percent. When it exceeds 1 weight percent, the effect of reducing microcracks cannot be obtained.

特に鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセントである場合、黒鉛粉末の配合量は0.2〜1.0重量パーセントであることが好ましい。黒鉛粉末の添加効果が良好に現れる。 In particular, the amount of iron-based powder is 60 to 90 weight percent, the amount of nickel or nickel-based alloy powder is 5 to 35 weight percent, and the amount of copper or copper-based alloy powder is 5 to 15 weight percent . In some cases , the blending amount of the graphite powder is preferably 0.2 to 1.0 weight percent. The effect of adding graphite powder appears well.

また、鉄系粉末がクロムモリブデン鋼粉末であるか銅系合金粉末が銅マンガン合金粉末であるかの条件の少なくとも一方を満たしていることが、造形性の点や黒鉛粉末の添加による特性向上に好ましい結果を与える。   In addition, satisfying at least one of the conditions of whether the iron-based powder is a chromium molybdenum steel powder or the copper-based alloy powder is a copper-manganese alloy powder improves the characteristics due to the formability and the addition of graphite powder. Gives favorable results.

鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径が5〜50μmであることが望ましいが、鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径よりも小さいこと、特に鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の平均粒子径のほぼ3/4以下であることがマイクロクラックの低減に関して望ましい。   The average particle diameter of each of the iron-based powder, nickel or nickel-based alloy powder, and copper or copper-based alloy powder is preferably 5 to 50 μm, but the iron-based powder has an average particle diameter of nickel or In addition, the average particle size of each of the powders of the nickel-based alloy and the copper and / or the copper-based alloy powder is smaller than the average particle size of the iron-based powder, in particular, the nickel-based and nickel-based alloy powder and the copper or copper It is desirable for reducing the microcracks that the average particle diameter of the alloy powder is about 3/4 or less.

また、金属光造形用金属粉末としては、一般に粉末を高密度且つ均一に積層させるために粉末粒子が球状粒子であるとともに粒度分布が狭いことが好ましいとされているが、黒鉛粉末の添加を行う場合、鉄系粉末が非球形粒子状、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の各粉末が球形粒子状であることが好ましい。特に鉄系粉末がクロムモリブデン鋼粉末である時、その平均粒子径が25μm以下の非球形粒子状であることが好ましい。黒鉛粉末の分散が良くなることや鉄系粉末の溶融が良好になされる点などにおいて効果的である。   As metal powder for metal stereolithography, it is generally preferred that the powder particles are spherical particles and that the particle size distribution is narrow in order to laminate the powders with high density and uniformity, but graphite powder is added. In this case, the iron-based powder is preferably non-spherical particles, and the nickel or nickel-based alloy powder and the copper or copper-based alloy powder are preferably spherical particles. In particular, when the iron-based powder is a chromium molybdenum steel powder, it is preferably a non-spherical particle having an average particle size of 25 μm or less. This is effective in that the dispersion of the graphite powder is improved and the iron-based powder is well melted.

黒鉛粉末としては、その粒子の最大長さが鉄系粉末の平均粒子径以下であるものを好適に用いることができる。黒鉛粉末が細かいと、レーザ照射による溶融時、鉄中に炭素が浸入して融点を下げるために、溶融時の流れ性が向上し、焼結層の表面の凹凸が小さくなる。   As the graphite powder, one having a maximum particle length equal to or less than the average particle diameter of the iron-based powder can be suitably used. When the graphite powder is fine, carbon melts into the iron and lowers the melting point when melted by laser irradiation, so that the flowability at the time of melting is improved and the irregularities on the surface of the sintered layer are reduced.

炭化物生成元素を混入させていることも好ましい。余剰炭素の析出を防ぐことができるために、高密度・高強度・高硬度の造形を行うことができるとともに、析出炭素がなくなることで切削仕上げ後の表面粗さも向上させることができる。   It is also preferable that a carbide generating element is mixed. Since precipitation of surplus carbon can be prevented, high-density, high-strength, and high-hardness modeling can be performed, and the surface roughness after cutting finish can be improved by eliminating the precipitated carbon.

また、ここでの金属粉末は、造粒粉として形成されたものであってもよい。   Moreover, the metal powder here may be formed as granulated powder.

そして本発明に係る金属光造形用金属粉末の製造方法は、フレーク状の黒鉛を混合して該混合時にフレーク状黒鉛をすり潰すために、各粉末の配合及び混合に際して、黒鉛の取り扱いが容易となるとともに、黒鉛粉末を均質に分散させることができる。   And the manufacturing method of the metal powder for metal stereolithography according to the present invention mixes flake-shaped graphite and grinds the flake-shaped graphite at the time of mixing. In addition, the graphite powder can be uniformly dispersed.

また、本発明に係る金属光造形による三次元形状造形物の製造方法は、上記に記載の金属粉末で形成した粉末層の所望の箇所に光ビームを照射して所望の箇所に焼結層を形成し、次いで上記焼結層の上に新たな粉末層を上記金属粉末で形成するとともに該粉末層の所望の箇所に光ビームを照射して先に形成していた焼結層と一体化された新たな焼結層を形成することを繰り返すことで所望の三次元形状造形物を形成することに特徴を有しており、本発明に係る金属光造形物は、上記製造方法によって製造されていることに特徴を有するものである。   Moreover, the manufacturing method of the three-dimensional shape molded article by metal stereolithography according to the present invention includes irradiating a desired portion of the powder layer formed of the metal powder described above with a light beam to form a sintered layer at the desired portion. Then, a new powder layer is formed on the sintered layer with the metal powder, and a desired portion of the powder layer is irradiated with a light beam to be integrated with the previously formed sintered layer. It is characterized by forming a desired three-dimensional shaped object by repeatedly forming a new sintered layer, and the metal stereolithography object according to the present invention is manufactured by the above manufacturing method. It has a feature in being.

上記製造方法によれば、表面と内部とで密度差があるものでも良好な特性を有する金属光造形物を容易に製造することができ、この製造方法で製造した金属光造形物は、外観割れはもちろん内部組織にマイクロクラックも殆どなくて射出成形用金型などにも利用することができるものとなっている。   According to the above manufacturing method, even if there is a difference in density between the surface and the inside, it is possible to easily manufacture a metal stereolithography product having good characteristics. Of course, there are almost no microcracks in the internal structure, and it can be used for injection molds.

本発明の金属光造形用金属粉末においては、黒鉛粉末の添加が、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の低減に有効であり、また本発明の金属光造形用金属粉末の製造方法においては、黒鉛の取り扱いが容易であるとともに均質に分散させることができ、黒鉛添加による効果を有利に導き出すことができる。   In the metal stereolithographic metal powder of the present invention, the addition of graphite powder is effective in improving the wettability during melting and reducing the occurrence of microcracks during solidification, and the metal powder for metal stereolithography of the present invention In this production method, the handling of graphite is easy and it can be uniformly dispersed, and the effect of adding graphite can be advantageously derived.

また、本発明に係る金属光造形による三次元形状造形物の製造方法においては、表面と内部とで密度差があるものでも良好な特性を有する金属光造形物を容易に製造することができる。   Moreover, in the manufacturing method of the three-dimensional shaped structure by metal stereolithography according to the present invention, a metal stereolithography object having good characteristics can be easily manufactured even if there is a density difference between the surface and the inside.

以下本発明を実施の形態の一例に基づいて詳述する。なお、図示例では造形途中での切削加工のための除去手段4を備えて、造形途中にそれまでに造形した造形物表面の切削加工を行うものを示しているが、本発明は、この除去手段4を有しておらず、造形途中での切削加工を行わない通常の金属光造形に対しても適用することができる。   Hereinafter, the present invention will be described in detail based on an embodiment. In addition, although the example of illustration shows what has the removal means 4 for the cutting process in the middle of modeling, and performs the cutting process of the surface of the modeled object modeled so far in the middle of the modeling, this invention is this removal The present invention can also be applied to normal metal stereolithography that does not have the means 4 and does not perform cutting work during modeling.

図2は金属光造形のための装置の一例を示しており、外周が囲まれた空間内をシリンダーで上下に昇降する昇降テーブル20上に供給した金属粉末をスキージング用ブレード21でならすことで所定厚みΔt1の粉末層10を形成する粉末層形成手段2と、レーザー発振器30から出力されたレーザーをガルバノミラー31等のスキャン光学系を介して上記粉末層10に照射することで金属粉末を焼結して焼結層11を形成する焼結層形成手段3と、上記粉末層形成手段2のベース部にXY駆動機構40を介してミーリングヘッド41を設けることで形成した除去手段4とを備えている。   FIG. 2 shows an example of an apparatus for metal stereolithography. By using a squeezing blade 21, the metal powder supplied on a lifting table 20 that moves up and down by a cylinder in a space surrounded by an outer periphery is smoothed. The powder layer forming means 2 for forming the powder layer 10 having a predetermined thickness Δt1 and the powder outputted from the laser oscillator 30 are irradiated onto the powder layer 10 through a scanning optical system such as a galvano mirror 31 to burn the metal powder. And a removal layer 4 formed by providing a milling head 41 via an XY drive mechanism 40 at the base portion of the powder layer formation unit 2. ing.

このものにおける三次元形状造形物の製造は、図3に示すように、焼結層形成手段と焼結層との相対距離を調整する調整手段であるところの昇降テーブル20上面の造形用ベース22表面に金属粉末をブレード21で供給すると同時にブレード21でならすことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させてベース22と一体化した焼結層11を形成する。   As shown in FIG. 3, the manufacture of the three-dimensional shaped article in this product is a modeling base 22 on the upper surface of the lifting table 20 which is an adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer. The first powder layer 10 is formed by supplying metal powder to the surface with the blade 21 and at the same time with the blade 21, and a portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to produce powder. Is sintered to form the sintered layer 11 integrated with the base 22.

この後、昇降テーブル20を少し下げて再度金属粉末を供給してブレード21でならすことで第2層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   After that, the lifting table 20 is slightly lowered, the metal powder is supplied again, and the blade 21 is used to form the second powder layer 10. A light beam (laser) is applied to the portion of the powder layer 10 to be cured. L is irradiated to sinter the powder to form the sintered layer 11 integrated with the lower sintered layer 11.

昇降テーブル20を下降させて新たな粉末層10を形成し、光ビームを照射して所要箇所を焼結層11とする工程を繰り返すことで、目的とする三次元形状造形物を製造するものであり、光ビームとしては炭酸ガスレーザーを好適に用いることができ、粉末層10の厚みΔt1としては、得られた三次元形状造形物を成形用金型などに利用する場合、0.05mm程度とするのが好ましい。   By lowering the elevating table 20 to form a new powder layer 10 and irradiating a light beam to make the required portion a sintered layer 11, a desired three-dimensional shaped object is manufactured. Yes, a carbon dioxide laser can be suitably used as the light beam, and the thickness Δt1 of the powder layer 10 is about 0.05 mm when the obtained three-dimensional shaped object is used for a molding die or the like. It is preferable to do this.

光ビームの照射経路は、予め三次元CADデータから作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチ(Δt1を0.05mmとした場合、0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。この時、三次元形状造形物の少なくとも最表面が高密度(気孔率5%以下)となるように焼結させることができるように光ビームの照射を行い、内部は低密度となるように焼結させることで、つまりは形状モデルデータを予め、表層部と内部とに分割しておき、内部についてはポーラスとなるような焼結条件、表層部はほぼ粉末が溶融して高密度となる条件で光ビームを照射することで、緻密な表面を持つ造形物を高速に得ることができる。   The irradiation path of the light beam is created in advance from three-dimensional CAD data. That is, contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (0.05 mm pitch when Δt1 is 0.05 mm) is used. At this time, irradiation with a light beam is performed so that at least the outermost surface of the three-dimensional shaped object can be sintered at a high density (porosity of 5% or less), and the inside is baked to a low density. In other words, the shape model data is preliminarily divided into the surface layer part and the inside, and the inside is a sintering condition that becomes porous, and the surface layer part is a condition that the powder almost melts and becomes high density By irradiating with a light beam, a shaped object having a dense surface can be obtained at high speed.

そして、上記粉末層10を形成しては光ビームを照射して焼結層11を形成することを繰り返していくのであるが、焼結層11の全厚みがたとえばミーリングヘッド41の工具長さなどから求めた所要の値になれば、いったん除去手段4を作動させてそれまでに造形した造形物の表面を切削する。たとえば、ミーリングヘッド41の工具(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みΔt1が0.05mmであるならば、60層の焼結層11を形成した時点で、除去手段4を作動させる。   Then, the powder layer 10 is formed and the light beam is irradiated to repeatedly form the sintered layer 11. The total thickness of the sintered layer 11 is, for example, the tool length of the milling head 41. When the required value obtained from the above is reached, the removal means 4 is once activated to cut the surface of the shaped object that has been shaped so far. For example, if the tool (ball end mill) of the milling head 41 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, 60 layers of fired When the binder layer 11 is formed, the removing means 4 is operated.

この除去手段4による切削加工により、造形物表面に付着した粉末による低密度表面層を除去すると同時に、高密度部まで削り込むことで、造形物表面に高密度部を全面的に露出させる。   By removing the low-density surface layer of the powder adhering to the surface of the modeled object by cutting by the removing means 4, the high-density part is entirely exposed on the surface of the modeled object by cutting into the high-density part.

この除去手段4による切削加工経路は、光ビームの照射経路と同様に予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定するが、Z方向ピッチは焼結時の積層ピッチにこだわる必要はなく、緩い傾斜の場合はZ方向ピッチをより細かくして補間することで、滑らかな表面を得られるようにしておく。   The cutting path by the removing means 4 is created in advance from three-dimensional CAD data in the same manner as the light beam irradiation path. At this time, the machining path is determined by applying contour processing, but the Z-direction pitch does not need to stick to the lamination pitch at the time of sintering, and in the case of a gentle inclination, by interpolating with a finer Z-direction pitch, Keep a smooth surface.

このような金属光造形での三次元形状造形物の製造にあたっては、前述のように金属粉末としてどのようなものを用いるかが、造形性の点や造形物の出来上がり具合に大きな影響を及ぼすのであるが、この金属光造形用金属粉末として要求されている前述の点から、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とからなるものを用いているとともに、本発明においては黒鉛粉末を混合したものを用いている。   In manufacturing a three-dimensional shaped object in such metal stereolithography, what kind of metal powder is used as described above has a great influence on the point of formability and the quality of the object. However, from the above-mentioned points required as a metal powder for metal stereolithography, a powder comprising iron-based powder, nickel or nickel-based alloy powder, copper or copper-based alloy powder is used. In the present invention, a mixture of graphite powder is used.

鉄系の粉末焼結などにおいても焼結材料の融点の低下や焼結密度の向上などを目的として黒鉛の添加がなされているものの、厚みΔt1が0.05mmというきわめて薄い粉末層10に光ビームを照射して溶融させる場合、黒鉛の添加は不要であるとしてこれまで試みられたことはなかったのあるが、本発明者らは、溶融時の濡れ性の向上及び高密度部分の凝固時におけるマイクロクラックの発生の低減に黒鉛粉末の添加が非常に有効であることを見出したものである。なお、黒鉛粉末の添加がマイクロクラックの発生を低減する理由は定かではないが、造形後の断面には黒鉛の塊が点在する状態(図1中の黒い点が黒鉛)が見受けられる。   In iron-based powder sintering and the like, although graphite is added for the purpose of lowering the melting point of the sintered material and improving the sintering density, a light beam is applied to the extremely thin powder layer 10 having a thickness Δt1 of 0.05 mm. In the case of melting by irradiation, there has been no attempt so far to add graphite, but the present inventors have improved wettability during melting and solidification of high-density portions. It has been found that the addition of graphite powder is very effective in reducing the occurrence of microcracks. The reason why the addition of graphite powder reduces the occurrence of microcracks is not clear, but a state in which a mass of graphite is scattered in the cross section after modeling (black dots in FIG. 1 are seen as graphite).

黒鉛粉末の配合量は、他の金属粉末材料の配合にもよるが、概ね1重量パーセント以内であることが望ましく、特に鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセントである時、黒鉛粉末の配合量は0.2〜1.0重量パーセントであることが望ましい。黒鉛粉末の配合量が1重量パーセントを超えた場合、マイクロクラックの低減効果が全くなくなり、添加しない場合と同等のマイクロクラックが発生する。   The blending amount of the graphite powder depends on the blending of other metal powder materials, but is preferably within about 1 weight percent, particularly 60 to 90 weight percent of the iron-based powder, nickel or nickel-based alloy When the amount of the powder is 5 to 35 weight percent and the amount of the copper or copper alloy powder is 5 to 15 weight percent, the amount of the graphite powder is 0.2 to 1.0 weight percent. It is desirable. When the blending amount of the graphite powder exceeds 1 weight percent, the effect of reducing microcracks is completely lost, and microcracks equivalent to the case of not adding are generated.

そして、金属材料としては、鉄系粉末にクロムモリブデン鋼粉末を、銅系合金粉末として銅マンガン合金粉末を好適に用いることができる。この二つの条件のうちの少なくとも一方を満たしていると、黒鉛粉末の添加による特性向上をより確実に得ることができる。   As the metal material, chromium-molybdenum steel powder can be suitably used as the iron-based powder, and copper-manganese alloy powder as the copper-based alloy powder. When at least one of these two conditions is satisfied, it is possible to more reliably improve the characteristics by adding graphite powder.

また、クロムモリブデン鋼粉末の配合量が60〜80重量パーセント、ニッケル粉末の配合量が15〜25重量パーセント、銅マンガン合金粉末の配合量が5〜15重量パーセント、黒鉛粉末の配合量が0.2〜0.75重量パーセントである時、高密度部分にマイクロクラックの発生がなく、しかも高密度部分及び低密度部分のいずれについても良好な造形性を得ることができた。   Further, the blending amount of chromium molybdenum steel powder is 60 to 80% by weight, the blending amount of nickel powder is 15 to 25% by weight, the blending amount of copper manganese alloy powder is 5 to 15% by weight, and the blending amount of graphite powder is 0.00. When the content was 2 to 0.75 weight percent, no microcracks were generated in the high density portion, and good formability could be obtained in both the high density portion and the low density portion.

また、鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末はその平均粒子径が5〜50μmであることが望ましいが、粒子径が小さすぎる場合は凝集を起こしてしまうことから、粉末層10の厚みΔt1を0.05mmとする場合、平均粒子径をほぼ30μmとしておくとよい。   In addition, it is desirable that the average particle diameter of each of the iron-based powder, nickel or nickel-based alloy powder, and copper or copper-based alloy powder is 5 to 50 μm. Therefore, when the thickness Δt1 of the powder layer 10 is 0.05 mm, the average particle diameter is preferably about 30 μm.

もっとも、金属光造形用金属粉末としては一般に粉末を高密度且つ均一に積層させるために粉末粒子が球状粒子であるとともに粒度分布が狭いことが好ましいとされている。しかし、黒鉛粉末の添加を行う場合、鉄系粉末が非球形粒子状、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の各粉末が球形粒子状である場合、特に鉄系粉末がクロムモリブデン鋼粉末でその平均粒子径が25μm以下の非球形粒子状であり、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径のほぼ3/4以下である場合に、良好な結果を得ることができた。   However, as a metal powder for metal stereolithography, it is generally preferable that the powder particles are spherical particles and that the particle size distribution is narrow in order to uniformly stack the powders. However, when graphite powder is added, the iron-based powder is non-spherical particles, the powder of nickel or nickel-based alloy and the powder of copper or copper-based alloy are spherical particles, especially the iron-based powder. Chrome-molybdenum steel powder with non-spherical particles having an average particle size of 25 μm or less, and approximately 3/4 or less of the average particle size of each powder of nickel or nickel-based alloy powder and copper or copper-based alloy powder In this case, good results could be obtained.

[実施例]
非球形粒子状で平均粒子径20μmのクロムモリブデン鋼SCM440粉末(図4参照)と、球形粒子状で平均粒子径が30μmのニッケルNi粉末(図5参照)と、球形粒子状で平均粒子径が30μmの銅マンガン合金CuMnNi(たとえばCu−10%Mn−3%Ni)粉末(図6参照)とを用意し、黒鉛Cの配合量を異ならせた次の6種の金属光造形用金属粉末を形成した。なお、各%はいずれも重量%である。
a.70%SCM440−21%Ni−9%CuMnNi
b.(70%SCM440−21%Ni−9%CuMnNi)+0.2%C
c.(70%SCM440−21%Ni−9%CuMnNi)+0.4%C
d.(70%SCM440−21%Ni−9%CuMnNi)+0.5%C
e.(70%SCM440−21%Ni−9%CuMnNi)+0.75%C
f.(70%SCM440−21%Ni−9%CuMnNi)+1.0%C
これらa〜fの6種の金属粉末を用いて金属光造形を行った。粉末層の厚みは0.05mmとし、使用したレーザは炭酸ガスレーザ(出力200Wの90%出力)であり、レーザスキャン速度75mm/sec、スキャンピッチ0.25mmで焼結させたところ、aの黒鉛を添加していないものにおいては多数のマイクロクラックが認められたのに対して、dの黒鉛を0.5%添加したものにおいてはマイクロクラックが認められなかった(図1参照)。また、黒鉛を0.4%添加したものにおいては僅かなマイクロクラックが認められただけであった。そして黒鉛を0.2%添加したもの及び0.75%添加したものにおいては、黒鉛を添加していないものに比してマイクロクラックの低減効果を確認することができ、黒鉛を1%添加したものにおいては、黒鉛を添加していないものに比してほぼ同じか僅かにすくないマイクロクラックが認められた。
[Example]
Chrome-molybdenum steel SCM440 powder (see FIG. 4) with non-spherical particles and an average particle size of 20 μm, nickel Ni powder (see FIG. 5) with spherical particles and an average particle size of 30 μm, and spherical particles with an average particle size of 30 μm copper-manganese alloy CuMnNi (for example, Cu-10% Mn-3% Ni) powder (see FIG. 6) is prepared, and the following six types of metal stereolithographic metal powders with different amounts of graphite C are prepared. Formed. Each% is% by weight.
a. 70% SCM440-21% Ni-9% CuMnNi
b. (70% SCM440-21% Ni-9% CuMnNi) + 0.2% C
c. (70% SCM440-21% Ni-9% CuMnNi) + 0.4% C
d. (70% SCM440-21% Ni-9% CuMnNi) + 0.5% C
e. (70% SCM440-21% Ni-9% CuMnNi) + 0.75% C
f. (70% SCM440-21% Ni-9% CuMnNi) + 1.0% C
Metal stereolithography was performed using these six types of metal powders a to f. The thickness of the powder layer was 0.05 mm, and the laser used was a carbon dioxide laser (90% output of 200 W output). When sintered at a laser scan speed of 75 mm / sec and a scan pitch of 0.25 mm, A number of microcracks were observed in those not added, whereas no microcracks were observed in those added with 0.5% of graphite d (see FIG. 1). In addition, only a few microcracks were observed in the case where 0.4% of graphite was added. And in what added 0.2% of graphite and what added 0.75%, the reduction effect of a microcrack can be confirmed compared with the thing which does not add graphite, and 1% of graphite was added. In the samples, microcracks were observed which were almost the same or slightly less than those not added with graphite.

また、高密度部はレーザスキャン速度75mm/sec、スキャンピッチ0.25mmで、中密度部はレーザスキャン速度150mm/sec、スキャンピッチ0.5mmで、低密度部はレーザスキャン速度200mm/sec、スキャンピッチ0.3mmで且つ粉末層に対して1層置きでレーザ照射することにより、密度差がある三次元形状造形物を造形したところ、黒鉛粉末を添加したものにおいては、流動性の良さが盛り上がりの少なさから確認することができた。   The high density part has a laser scan speed of 75 mm / sec and a scan pitch of 0.25 mm, the medium density part has a laser scan speed of 150 mm / sec and a scan pitch of 0.5 mm, and the low density part has a laser scan speed of 200 mm / sec. When a three-dimensional shaped object having a density difference is formed by irradiating the powder layer with laser every other layer at a pitch of 0.3 mm, the fluidity is enhanced in the case of adding graphite powder. We were able to confirm from the small amount of.

また、上記dと同じ配合の金属粉末において、クロムモリブデン鋼粉末として球形粒子状で平均粒子径が他の非鉄金属粉末と同じ30μmのものを用い、粉末層の厚み0.05mm、炭酸ガスレーザ(出力200Wの90%出力)、レーザスキャン速度75mm/sec、スキャンピッチ0.25mmの条件で焼結させたところ、上記dのものに比して、マイクロクラックが少し認められる上に、空孔が生じて造形密度が少々低下したものの、概ね良好な造形物を得ることができた。   In addition, in the metal powder having the same composition as the above d, a chrome molybdenum steel powder having a spherical particle shape and an average particle diameter of 30 μm is the same as that of other non-ferrous metal powder, and the powder layer has a thickness of 0.05 mm, a carbon dioxide laser (output) Sintered under the conditions of 90% output of 200 W), laser scan speed of 75 mm / sec, and scan pitch of 0.25 mm, a few micro cracks are observed and pores are generated compared to the above d. Although the modeling density was slightly reduced, a generally good model could be obtained.

また上記dの配合における銅マンガン合金に代えて銅リンCuP合金粉末(球形粒子状で平均粒子径は30μm)を用いてやはり同じ条件で焼結させたところ、マイクロクラックの発生が認められるとともに、焼結層上面に凹凸が生じて次の粉末層の形成に支障が生じるものとなった。抗折強度の点でも少し問題があった。   Moreover, when sintered under the same conditions using copper phosphorus CuP alloy powder (spherical particles and average particle size of 30 μm) instead of the copper-manganese alloy in the composition of d, generation of microcracks was observed, Unevenness was generated on the upper surface of the sintered layer, which hindered the formation of the next powder layer. There was also a problem in terms of bending strength.

また上記dの配合における銅マンガン合金に代えて銅リン合金粉末(球形粒子状で平均粒子径は30μm)を用いるとともに、クロムモリブデン鋼粉末として球形粒子状で平均粒子径が他の非鉄金属粉末と同じ30μmのものを用いたところ、非球形粒子状で平均粒子径20μmのクロムモリブデン鋼と、球形粒子状で平均粒子径が30μmの銅リンCuP合金粉末とを組み合わせたものよりも良好な結果を得ることができたが、マイクロクラックの発生が認められた。   Further, instead of the copper-manganese alloy in the blend of d, a copper phosphorus alloy powder (spherical particles having an average particle size of 30 μm) is used, and the chromium molybdenum steel powder has a spherical particle shape and an average particle size of other nonferrous metal powders. When the same 30 μm material was used, a better result was obtained than a combination of a non-spherical particle-shaped chromium molybdenum steel having an average particle size of 20 μm and a spherical particle-shaped copper phosphorus CuP alloy powder having an average particle size of 30 μm. Although it could be obtained, the occurrence of microcracks was observed.

銅リン合金粉末を配合したものと、銅マンガン合金粉末を配合したものとでは、マイクロクラックの発生する要因が異なり、銅マンガン合金粉末を配合したものではレーザ焼結時の溶融不足が原因でマイクロクラックが発生したものと考えられ、クロムモリブデン鋼粉末として他の非鉄金属粉末よりも平均粒子径が小さいものを用いることで溶融が促進されてマイクロクラックの発生が減少したものと考えられる。   The combination of copper-phosphorus alloy powder and the combination of copper-manganese alloy powder differ in the factors that cause microcracking. In the case of mixing copper-manganese alloy powder, the micro-cracks are caused by insufficient melting during laser sintering. It is considered that cracks are generated, and it is considered that the use of a chromium molybdenum steel powder having an average particle size smaller than that of other nonferrous metal powders promotes melting and reduces the occurrence of microcracks.

また、クロムモリブデン鋼粉末として非球形粒子状のものを用いた場合、球形粒子状のものを用いた場合よりも黒鉛粉末がクロムモリブデン鋼粉末の各粒子表面に効果的に分散し、黒鉛粉末の添加がより有効に作用しているように思われる。   In addition, when non-spherical particles are used as the chromium molybdenum steel powder, the graphite powder is more effectively dispersed on the surface of each particle of the chromium molybdenum steel powder than when the spherical particle is used. The addition seems to work more effectively.

ところで、上記黒鉛粉末の添加であるが、鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末とに対し、フレーク状の黒鉛(図7参照)を添加して、混合にあたり乳鉢を用いたすり潰しを行った場合、混合粉末(図8参照)中に黒鉛粉末が認められないものとなった。これは金属粉末、殊に非球形粒子状のクロムモリブデン鋼粉末の表面に黒鉛が効果的に分散したためと考えられ、黒鉛粉末を金属粉末に単に混ぜ合わせた場合よりも良好な造形性を得られることができた上にマイクロクラックも少なくなった。   By the way, it is addition of the graphite powder, but flake-like graphite (see FIG. 7) is added to the iron-based powder and nickel or nickel-based alloy powder and copper or copper-based alloy powder. When mashing was performed using a mortar for mixing, no graphite powder was observed in the mixed powder (see FIG. 8). This is thought to be due to the effective dispersion of graphite on the surface of metal powder, especially non-spherical chrome molybdenum steel powder, and better formability can be obtained than when graphite powder is simply mixed with metal powder. In addition, there were fewer microcracks.

また、黒鉛粉末として、その粒子の最大長さが鉄系粉末の平均粒子径以下のもの、特に10μm以下のものを用いた時、レーザ照射による溶融時、鉄中に炭素が浸入して融点を下げる浸炭効果を得ることができて、溶融時の流れ性が向上することから、焼結層の表面の凹凸を小さくすることができた。   In addition, when graphite powder whose maximum particle size is less than the average particle diameter of iron-based powder, especially 10 μm or less is used, when carbon is melted by laser irradiation, carbon enters the iron and the melting point is reduced. Since the carburizing effect can be obtained and the flowability at the time of melting is improved, the unevenness on the surface of the sintered layer can be reduced.

ちなみに最大長さが1〜数μmという黒鉛粉末の超微粒子は、天然ガス乃至液状炭化水素の不完全燃焼または熱分解によって得られる黒色微粉末であるカーボンブラックとして得ることができ、またジェットミル粉砕法によっても得ることができる。   Incidentally, ultrafine particles of graphite powder with a maximum length of 1 to several μm can be obtained as carbon black, which is black fine powder obtained by incomplete combustion or thermal decomposition of natural gas or liquid hydrocarbon, and jet mill pulverization It can also be obtained by law.

また、前述のように、図1中の黒い点は黒鉛が析出したものであるが、鉄中に炭化物生成元素を予め混入させておくのも好ましい。クロムCrやモリブデンMoやタングステンW、ヴァナジウムVなどの炭化物生成元素を混入させていると、溶融状態から固化する際に析出しようとする炭素が上記炭化物生成元素との結合で炭化物となるために、炭素の析出を防ぐことができる。   Further, as described above, the black dots in FIG. 1 are obtained by precipitating graphite, but it is also preferable that carbide forming elements are mixed in advance in iron. When carbide generating elements such as chromium Cr, molybdenum Mo, tungsten W, and vanadium V are mixed, carbon to be precipitated when solidifying from a molten state becomes carbide by bonding with the carbide generating elements. Carbon deposition can be prevented.

図9は上記実施例dにタングステンWの粉末を添加した場合((70%SCM440−21%Ni−9%CuMnNi)+0.5%C+0.5%W)のSEM写真であり、図10は鉄系粉末SCM440を炭化物生成元素を多く含むSKH鋼粉末に変えた場合((70%SKH51−21%Ni−9%CuMnNi)+0.5%C)のSEM写真である。なお、各%はいずれも重量%である。炭素の析出が図1に示した実施例dに係るものに比して明らかに減少している。このように炭素の析出が減少すると、高密度・高強度・高硬度の造形を行うことができ、また、析出炭素がないということは、切削仕上げ後の表面粗さの向上も得ることができる。   FIG. 9 is an SEM photograph of the above example d when tungsten W powder is added ((70% SCM440-21% Ni-9% CuMnNi) + 0.5% C + 0.5% W). It is a SEM photograph when the system powder SCM440 is changed to SKH steel powder containing a large amount of carbide forming elements ((70% SKH51-21% Ni-9% CuMnNi) + 0.5% C). Each% is% by weight. Carbon deposition is clearly reduced compared to that according to Example d shown in FIG. When the carbon precipitation is reduced in this way, it is possible to perform a high-density, high-strength, high-hardness modeling, and the absence of precipitated carbon can also improve the surface roughness after cutting finish. .

以上の各例における金属粉末は、造粒粉として形成されたものであってもよい。取り扱いが容易なものとなる。また、このような金属粉末を用いて金属光造形を行って得た三次元形状造形物は、射出成型用金型として用いるのに十分な特性を持つものとなっていた。   The metal powder in each of the above examples may be formed as a granulated powder. It becomes easy to handle. In addition, a three-dimensional shaped object obtained by performing metal stereolithography using such a metal powder has sufficient characteristics to be used as an injection mold.

本発明の実施の形態の一例の金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph of magnification 25 times of the metal stereolithography thing manufactured with the metal powder of an example of embodiment of this invention. 同上の金属粉末を用いて金属光造形を行う装置の一例の概略斜視図である。It is a schematic perspective view of an example of the apparatus which performs metal stereolithography using the metal powder same as the above. 同上の説明図である。It is explanatory drawing same as the above. 同上の非球形粒子状のクロムモリブデン鋼粉末のSEM写真である。It is a SEM photograph of the non-spherical particle-like chromium molybdenum steel powder same as the above. 同上の球形粒子状のニッケル粉末のSEM写真である。It is a SEM photograph of the spherical particle-like nickel powder same as the above. 同上の球形粒子状の銅マンガン合金粉末のSEM写真である。It is a SEM photograph of the spherical particulate copper manganese alloy powder same as the above. 同上のフレーク状黒鉛のSEM写真である。It is a SEM photograph of flaky graphite same as the above. 同上の混合物のSEM写真である。It is a SEM photograph of a mixture same as the above. 炭化物生成元素を添加した金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph of magnification 25 times of the metal stereolithography thing manufactured with the metal powder which added the carbide | carbonized_material production | generation element. 炭化物生成元素を多く含む鉄系粉末を用いた金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph of magnification 25 times of the metal stereolithography thing manufactured with the metal powder using the iron-type powder containing many carbide | carbonized_material generation elements. 従来例の金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph of magnification 25 times of the metal stereolithography thing manufactured with the metal powder of the prior art example.

Claims (15)

金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形用の金属粉末であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とからなるとともに、黒鉛粉末が混合されていることを特徴とする金属光造形用金属粉末。   A metal powder for metal stereolithography, which forms a sintered layer by irradiating a powder layer made of metal powder to form a sintered layer and obtains a desired three-dimensional shaped object by laminating the sintered layer. A metal powder for metal stereolithography, characterized in that it is made of a nickel-based powder, nickel or a nickel-based alloy powder, copper or a copper-based alloy powder, and graphite powder is mixed. 黒鉛粉末の配合量が1重量パーセント以内であることを特徴とする請求項1記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 1, wherein the amount of the graphite powder is within 1 weight percent. 鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセントである場合に、黒鉛粉末の配合量が0.2〜1.0重量パーセントであることを特徴とする請求項1または2記載の金属光造形用金属粉末。 The amount of iron-based powder is 60 to 90 percent by weight, the amount of nickel or nickel-based alloy powder is 5 to 35 percent by weight, and the amount of copper or copper-based alloy powder is 5 to 15 percent by weight. The metal powder for metal stereolithography according to claim 1 or 2, wherein the compounding amount of the graphite powder is 0.2 to 1.0 weight percent. 鉄系粉末がクロムモリブデン鋼粉末であるか銅系合金粉末が銅マンガン合金粉末であるかの条件の少なくとも一方を満たしていることを特徴とする請求項1〜3のいずれか1項に記載の金属光造形用金属粉末。   The iron-based powder satisfies at least one of the conditions as to whether the iron-based powder is a chromium molybdenum steel powder or the copper-based alloy powder is a copper-manganese alloy powder. Metal powder for metal stereolithography. 鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径が5〜50μmであることを特徴とする請求項1〜4のいずれか1項に記載の金属光造形用金属粉末。 5. The average particle diameter of each powder of iron-based powder, nickel or nickel-based alloy powder and copper or copper-based alloy powder is 5 to 50 μm, according to claim 1. Metal powder for metal stereolithography of description. 鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径よりも小さいことを特徴とする請求項5記載の金属光造形用金属粉末。 The average particle diameter of the iron-based powder is smaller than the average particle diameter of each powder of nickel or a nickel-based alloy powder and copper or a copper-based alloy powder . Metal powder. 鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の平均粒子径のほぼ3/4以下であることを特徴とする請求項6記載の金属光造形用金属粉末。 7. The metallic light according to claim 6, wherein the average particle diameter of the iron-based powder is approximately 3/4 or less of the average particle diameter of the nickel or nickel-based alloy powder and the copper or copper-based alloy powder. Metal powder for modeling. 鉄系粉末が非球形粒子状、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の各粉末が球形粒子状であることを特徴とする請求項5〜7のいずれか1項に記載の金属光造形用金属粉末。 The iron-based powder is non-spherical particles, nickel or a nickel-based alloy powder and copper or copper-based alloy powders are spherical particles, or any one of claims 5 to 7. Metal powder for metal stereolithography. 鉄系粉末がクロムモリブデン鋼粉末であってその平均粒子径が25μm以下の非球形粒子状であることを特徴とする請求項8記載の金属光造形用金属粉末。 9. The metal powder for metal stereolithography according to claim 8, wherein the iron-based powder is chrome molybdenum steel powder and has an average particle diameter of 25 μm or less . 黒鉛粉末の粒子の最大長さが鉄系粉末の平均粒子径以下であることを特徴とする請求項1〜9のいずれか1項に記載の金属光造形用金属粉末。 The metal powder for metal stereolithography according to any one of claims 1 to 9, wherein the maximum length of the graphite powder particles is equal to or less than the average particle diameter of the iron-based powder. 造粒粉として形成されていることを特徴とする請求項1〜10のいずれか1項に記載の金属光造形用金属粉末。 It forms as granulated powder, The metal powder for metal stereolithography of any one of Claims 1-10 characterized by the above-mentioned. 炭化物生成元素を混入させていることを特徴とする請求項1〜11のいずれか1項に記載の金属光造形用金属粉末。 The metal powder for metal stereolithography according to any one of claims 1 to 11, wherein a carbide generating element is mixed . 請求項1〜12のいずれか1項に記載の金属光造形用金属粉末の製造方法であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とに対して、フレーク状の黒鉛を混合して該混合時にフレーク状黒鉛をすり潰していることを特徴とする金属光造形用金属粉末の製造方法。It is a manufacturing method of the metal powder for metal stereolithography of any one of Claims 1-12, Comprising: Iron-type powder, nickel or a nickel-type alloy powder, copper or a copper-type alloy powder, On the other hand, a method for producing metal powder for metal stereolithography, characterized in that flaky graphite is mixed and flaked graphite is ground during mixing. 請求項1〜12のいずれか1項に記載の金属粉末で形成した粉末層の所望の箇所に光ビームを照射して所望の箇所に焼結層を形成し、次いで上記焼結層の上に新たな粉末層を上記金属粉末で形成するとともに該粉末層の所望の箇所に光ビームを照射して先に形成していた焼結層と一体化された新たな焼結層を形成することを繰り返すことで所望の三次元形状造形物を形成することを特徴とする金属光造形による三次元形状造形物の製造方法。A light beam is irradiated to a desired portion of the powder layer formed of the metal powder according to any one of claims 1 to 12 to form a sintered layer at a desired portion, and then on the sintered layer. Forming a new powder layer with the above metal powder and irradiating a desired portion of the powder layer with a light beam to form a new sintered layer integrated with the previously formed sintered layer. A method for producing a three-dimensional shaped object by metal stereolithography, wherein a desired three-dimensional shaped object is formed by repetition. 請求項14記載の金属光造形による三次元形状造形物の製造方法によって製造されていることを特徴とする金属光造形物。A metal stereolithographic product manufactured by the method for producing a three-dimensional modeled product by metal stereolithography according to claim 14.
JP2003281260A 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography Expired - Fee Related JP3633607B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003281260A JP3633607B2 (en) 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
TW093104612A TWI239874B (en) 2003-02-25 2004-02-24 Metal powder composition for use in selective laser sintering, method of making same, and three-dimensional object shaped from same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003048263 2003-02-25
JP2003281260A JP3633607B2 (en) 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography

Publications (2)

Publication Number Publication Date
JP2004277877A JP2004277877A (en) 2004-10-07
JP3633607B2 true JP3633607B2 (en) 2005-03-30

Family

ID=33301737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281260A Expired - Fee Related JP3633607B2 (en) 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography

Country Status (2)

Country Link
JP (1) JP3633607B2 (en)
TW (1) TWI239874B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439998B2 (en) 2004-12-06 2013-05-14 Sunrex Kogyo Co., Ltd. Manufacturing method of metal product and metal product
GB0511460D0 (en) * 2005-06-06 2005-07-13 Univ Liverpool Process
JP4640216B2 (en) * 2006-02-28 2011-03-02 パナソニック電工株式会社 Metal powder for metal stereolithography
JP4661842B2 (en) * 2006-08-28 2011-03-30 パナソニック電工株式会社 Method for producing metal powder for metal stereolithography and metal stereolithography
US8329092B2 (en) 2006-08-28 2012-12-11 Panasonic Corporation Metal powder for metal laser-sintering and metal laser-sintering process using the same
JP4737007B2 (en) * 2006-08-28 2011-07-27 パナソニック電工株式会社 Metal powder for metal stereolithography
SE530323C2 (en) * 2006-09-26 2008-05-06 Foersvarets Materielverk Methods of making amorphous metal objects
TWI472427B (en) 2012-01-20 2015-02-11 財團法人工業技術研究院 Device and method for powder distribution and additive manufacturing method using the same
JP6379850B2 (en) * 2013-10-11 2018-08-29 セイコーエプソン株式会社 Powder for laser sintering and method for producing structure
CN111151749A (en) * 2014-11-14 2020-05-15 株式会社尼康 Molding device and molding method
JP5840312B1 (en) 2015-02-16 2016-01-06 株式会社松浦機械製作所 3D modeling method
US20200180022A1 (en) 2016-10-24 2020-06-11 Toyo Aluminium Kabushiki Kaisha Aluminum particle group and method for manufacturing the same
CA3048153A1 (en) 2016-12-28 2018-07-05 Mitsubishi Electric Corporation Powder for metallurgy and method for manufacturing molded product using the powder for metallurgy

Also Published As

Publication number Publication date
JP2004277877A (en) 2004-10-07
TWI239874B (en) 2005-09-21
TW200427533A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
KR100586360B1 (en) Metal powder composition for use in selective laser sintering
Yang et al. Additive manufacturing of WC-Co hardmetals: a review
JP4661842B2 (en) Method for producing metal powder for metal stereolithography and metal stereolithography
JP7156948B2 (en) An economical method for manufacturing metal parts
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
Morgan et al. High density net shape components by direct laser re-melting of single-phase powders
KR101076353B1 (en) Metal powder for metal-laser sintering and metal-laser sintering process using the same
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
EP3187285B1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
JP7116495B2 (en) High carbon cobalt alloy
Beal et al. The effect of scanning strategy on laser fusion of functionally graded H13/Cu materials
WO2012124828A1 (en) Production method for three-dimensionally shaped object and three-dimensionally shaped object
JP4640216B2 (en) Metal powder for metal stereolithography
CN1684786A (en) Casting process and articles for performing the same
JP7216437B2 (en) 3D printed steel products with high hardness
JP2007016312A (en) Method for forming sintered compact
WO2017006610A1 (en) Powder material, lamination-fabricated article, and method for manufacturing lamination-fabricated article
JP3687667B2 (en) Metal powder for metal stereolithography
JP4737007B2 (en) Metal powder for metal stereolithography
Su et al. Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminium garnet) laser
CN105798294A (en) Rapid part prototyping method for refractory materials
CN112809022A (en) Novel method for preparing metal product by additive
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
WO2017150340A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
JP7103548B2 (en) Ni—Cr—Mo alloy member, Ni—Cr—Mo alloy powder, and composite member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R151 Written notification of patent or utility model registration

Ref document number: 3633607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees