JP6760807B2 - Copper-based sintered alloy oil-impregnated bearing - Google Patents

Copper-based sintered alloy oil-impregnated bearing Download PDF

Info

Publication number
JP6760807B2
JP6760807B2 JP2016182985A JP2016182985A JP6760807B2 JP 6760807 B2 JP6760807 B2 JP 6760807B2 JP 2016182985 A JP2016182985 A JP 2016182985A JP 2016182985 A JP2016182985 A JP 2016182985A JP 6760807 B2 JP6760807 B2 JP 6760807B2
Authority
JP
Japan
Prior art keywords
copper
alloy
nickel
mass
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016182985A
Other languages
Japanese (ja)
Other versions
JP2018048358A (en
Inventor
康広 白坂
康広 白坂
大野 正人
正人 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2016182985A priority Critical patent/JP6760807B2/en
Publication of JP2018048358A publication Critical patent/JP2018048358A/en
Application granted granted Critical
Publication of JP6760807B2 publication Critical patent/JP6760807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、銅基焼結合金含油軸受、特に、高荷重条件下において優れた摩擦摩耗特性を発揮する銅基焼結合金含油軸受に関する。 The present invention relates to a copper-based sintered alloy oil-impregnated bearing, particularly a copper-based sintered alloy oil-impregnated bearing that exhibits excellent friction and wear characteristics under high load conditions.

従来から、自動車や一般産業機械の摺動部材料として、摩擦の初期なじみ性が良好で、焼付きを抑制することができるという利点を有する青銅(銅−錫合金)系、燐青銅(銅−錫−燐合金)系又は青銅ニッケル(銅−錫−ニッケル合金)系の銅系焼結合金が広く用いられている。しかしながら、銅−錫合金系や銅−錫−燐合金系の焼結合金は、強度が低く、高荷重が作用する用途では使用することができず、これら焼結合金のマトリックス(銅−錫合金マトリックス)中に、該マトリックスよりも高硬度の硬質粒子、例えば、モリブデン(Mo)及びタングステン(W)といった金属系粒子又はシリカ(SiO)、アルミナ(Al)及び炭化ケイ素(SiC)等のセラミックス系硬質粒子を分散含有させて強度の向上、耐荷重性、耐摩耗性又は耐焼付き性を改善している。 Conventionally, bronze (copper-tin alloy) type and phosphorus bronze (copper-), which have the advantages of having good initial compatibility with friction and suppressing seizure as a sliding part material for automobiles and general industrial machines. Tin-phosphorus alloys) or bronze nickel (copper-tin-nickel alloys) -based copper-based sintered alloys are widely used. However, copper-tin alloy-based and copper-tin-phosphorus alloy-based sintered alloys have low strength and cannot be used in applications where high loads are applied, and a matrix of these sintered alloys (copper-tin alloy). In the matrix), hard particles having a hardness higher than that of the matrix, for example, metallic particles such as molybdenum (Mo) and tungsten (W) or silica (SiO 2 ), alumina (Al 2 O 3 ) and silicon carbide (SiC). The ceramic hard particles such as the above are dispersed and contained to improve the strength, load resistance, abrasion resistance or seizure resistance.

しかしながら、モリブデン及びタングステン等の金属系硬質粒子は、セラミックス系硬質粒子に比べて硬さが低いため、相手材の表面に凝着した銅合金を削り取る効果が弱く、また、モリブデン及びタングステン等の金属系硬質粒子は、金属同士であるため鉄合金鋼(鋼)からなる相手材に対して比較的凝着し易いといった問題がある。また、シリカ、アルミナ及び炭化ケイ素等のセラミック系硬質粒子を分散含有した銅系焼結合金は、硬質粒子部分で荷重を受けるため、銅系マトリックスと硬質粒子との境界に発生する剪断力により、銅系マトリックスから硬質粒子が脱落して摺動界面に介在し、アブレッシブ摩耗を引き起こして相手材(回転軸等)のみならず銅系焼結合金自体をも攻撃して、相手材及び銅系焼結合金の摩耗を進行させたり、焼付きを生じさせたりする虞がある。 However, since metal-based hard particles such as molybdenum and tungsten have lower hardness than ceramic-based hard particles, the effect of scraping off the copper alloy adhering to the surface of the mating material is weak, and metals such as molybdenum and tungsten have a weak effect. Since the hard particles are metals, there is a problem that they are relatively easy to adhere to a mating material made of iron alloy steel (steel). Further, since the copper-based sintered alloy containing dispersed ceramic-based hard particles such as silica, alumina, and silicon carbide receives a load at the hard particle portion, the shearing force generated at the boundary between the copper-based matrix and the hard particles causes the shearing force. Hard particles fall off from the copper-based matrix and intervene in the sliding interface, causing abstract wear and attacking not only the mating material (rotary shaft, etc.) but also the copper-based sintered alloy itself, and the mating material and copper-based baking There is a risk that the binder will wear out and seizure will occur.

一方、銅−錫−ニッケル合金系の焼結合金は、ニッケル成分を多く含有することで、銅−錫合金系や銅−錫−燐合金系の焼結合金よりも強度が高められているが、高荷重が作用する用途では、耐摩耗性に劣るという問題がある。 On the other hand, the copper-tin-nickel alloy-based sintered alloy contains a large amount of nickel component, so that the strength is higher than that of the copper-tin alloy-based or copper-tin-phosphorus alloy-based sintered alloy. In applications where a high load acts, there is a problem that the wear resistance is inferior.

この高荷重が作用する用途での耐摩耗性を改善するべく、例えば、特許文献1、特許文献2、特許文献3及び特許文献4等には、銅−ニッケル−錫合金系の焼結合金が提案されている。 In order to improve the wear resistance in applications where this high load acts, for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like include copper-nickel-tin alloy-based sintered alloys. Proposed.

特開2004−68074号公報Japanese Unexamined Patent Publication No. 2004-68074 特開2008−07796号公報Japanese Unexamined Patent Publication No. 2008-07996 特開2016−53200号公報Japanese Unexamined Patent Publication No. 2016-53200 特開昭57−101603号公報Japanese Unexamined Patent Publication No. 57-101603

ところで、特許文献1から特許文献4に記載された銅−ニッケル−錫合金系の焼結合金では、合金化される銅粉末、ニッケル粉末、銅−ニッケル合金粉末、錫粉末、銅−ニッケル−錫合金粉末、銅−燐合金粉末を原料粉末として所望の組成となるように選択し、混合して焼結しているため、混合粉内では各原料粉末が偏析し易く、均質な焼結合金を得ることが難しいという問題がある。 By the way, in the copper-nickel-tin alloy-based sintered alloys described in Patent Documents 1 to 4, the alloyed copper powder, nickel powder, copper-nickel alloy powder, tin powder, and copper-nickel-tin Since the alloy powder and the copper-phosphorus alloy powder are selected as the raw material powder so as to have the desired composition, mixed and sintered, each raw material powder is easily segregated in the mixed powder, and a homogeneous sintered alloy is obtained. There is a problem that it is difficult to obtain.

本発明者らは、上記実情に鑑み鋭意検討した結果、優れた摩擦摩耗特性を発揮する特許文献4に記載された焼結合金層の組成である銅、ニッケル、錫及び燐に着目し、これら金属を原料金属として溶解し、溶湯を作製すると共に当該溶湯を溶湯噴霧法(アトマイズ法)、特に水アトマイズ法により粉末化して作製した粉末粒子を観察したところ、当該粉末粒子は、銅−ニッケル−錫合金を含むマトリックス相と、このマトリックス相中に微細に拡散して凝固(晶出)したニッケル−燐合金相を含んだ金属組織を呈しており、ニッケル−燐合金相は、該マトリックス相よりも硬度が高いことを見出し、この水アトマイズ粉末を使用することにより金属成分の偏析を抑制できると共に、当該水アトマイズ粉末を使用して得た焼結合金は、金属系やセラミックス系硬質粒子を分散含有させた銅系焼結合金と同様、優れた耐摩耗性を発揮することを知見した。 As a result of diligent studies in view of the above circumstances, the present inventors have focused on copper, nickel, tin and phosphorus, which are the compositions of the sintered alloy layer described in Patent Document 4, which exhibit excellent friction and wear characteristics. When a metal was melted as a raw metal to prepare a molten metal and powder particles prepared by powdering the molten metal by a molten metal spraying method (atomization method), particularly a water atomizing method, were observed, the powder particles were copper-nickel-. It exhibits a metal structure containing a matrix phase containing a tin alloy and a nickel-phosphorus alloy phase that is finely diffused and solidified (crystallized) in the matrix phase, and the nickel-phosphorus alloy phase is more than the matrix phase. It was found that the hardness is high, and segregation of metal components can be suppressed by using this water atomizing powder, and the sintered alloy obtained by using the water atomizing powder disperses metal-based and ceramic-based hard particles. It was found that it exhibits excellent wear resistance as well as the contained copper-based sintered alloy.

本発明は、前記知見に基づきなされたもので、その目的とするところは、高い荷重を支持でき、しかも、高い荷重を支持しても優れた耐摩耗性を発揮する銅基焼結合金含油軸受を提供することにある。 The present invention has been made based on the above findings, and an object of the present invention is a copper-based sintered alloy oil-impregnated bearing that can support a high load and exhibits excellent wear resistance even if a high load is supported. Is to provide.

本発明の銅基焼結合金含油軸受は、ニッケル、錫及び燐並びに主成分として銅を含有する水アトマイズ銅基合金粉末と、黒鉛粉末と、潤滑油とを含んでおり、ニッケル9〜38.8質量%、錫3.6〜9.7質量%、燐0.45〜4.9質量%及び黒鉛3〜10質量%を含むと共に、銅−ニッケル−錫合金を含むマトリックス相及びこのマトリックス相中に拡散したニッケル−燐合金相を含んだ金属組織を有している。 The copper-based sintered alloy oil-impregnated bearing of the present invention contains nickel, tin and phosphorus, as well as water-atomized copper-based alloy powder containing copper as a main component, graphite powder, and lubricating oil, and nickel 9 to 38. A matrix phase containing 8% by mass, 3.6 to 9.7% by mass of tin, 0.45 to 4.9% by mass of phosphorus and 3 to 10% by mass of graphite, and a copper-nickel-tin alloy and this matrix phase. It has a metallographic structure containing a nickel-phosphorus alloy phase diffused inside.

本発明の銅基焼結合金含油軸受において、銅−ニッケル−錫合金を含むマトリックス相は、少なくともマイクロビッカース硬度(HMV)(以下、硬度という)170を有しており、ニッケル−燐合金相は、少なくとも硬度600を有している。 In the copper-based sintered alloy oil-impregnated bearing of the present invention, the matrix phase containing the copper-nickel-tin alloy has at least a micro Vickers hardness (HMV) (hereinafter referred to as hardness) 170, and the nickel-phosphorus alloy phase is , At least have a hardness of 600.

本発明の銅基焼結合金含油軸受において、潤滑油は、好ましくは、1.5〜2.5質量%含んでおり、斯かる潤滑油は、好ましい例では、銅基焼結合金含油軸受の空孔及び黒鉛に含浸保持されている。 In the copper-based sintered alloy oil-impregnated bearing of the present invention, the lubricating oil preferably contains 1.5 to 2.5% by mass, and such a lubricating oil is preferably the copper-based sintered alloy oil-impregnated bearing. It is impregnated and held in pores and graphite.

本発明の銅基焼結合金含油軸受によれば、銅−ニッケル−錫合金を含むマトリックス相中に微細に拡散して凝固(晶出)したニッケル−燐合金相は、軟質な銅−ニッケル−錫合金を含むマトリックス相よりも高い荷重を支持でき、摩擦する相手材との摺動性を向上させると共に、黒鉛粉末と潤滑油とにより、高荷重が付加された摺動時に相手材との金属接触を軽減し、耐摩耗性及び耐焼付性を向上させることができる。 According to the copper-based sintered alloy oil-impregnated bearing of the present invention, the nickel-phosphorus alloy phase that is finely diffused and solidified (crystallized) in the matrix phase containing the copper-nickel-tin alloy is a soft copper-nickel-nickel. It can support a higher load than the matrix phase containing a tin alloy, improves the slidability with the mating material that rubs, and is a metal with the mating material when sliding with a high load applied by the graphite powder and lubricating oil. Contact can be reduced and wear resistance and seizure resistance can be improved.

本発明の銅基焼結合金含油軸受の製造方法は、銅単体、銅−ニッケル合金、ニッケル単体、錫単体、銅−錫合金及び銅−燐合金の原料金属から、主成分としての銅に加えて、10〜40質量%のニッケル、4〜10質量%の錫及び0.5〜5質量%の燐を含有する銅基原料を作製し、銅基原料を溶解して銅基原料の溶湯を作製すると共に当該溶湯を水アトマイズ法により粉末化し、主成分としての銅に加えて、10〜40質量%のニッケル、4〜10質量%の錫及び0.5〜5質量%の燐を含む水アトマイズ銅基合金粉末を作製する工程と、黒鉛粉末を準備する工程と、水アトマイズ銅基合金粉末90〜97質量%と黒鉛粉末3〜10質量%とを計量して混合機に投入し、撹拌混合して水アトマイズ銅基合金粉末と黒鉛粉末との混合粉末を作製する工程と、混合粉末を所望の金型内に充填し、3〜7トン/cmの成形圧力で圧縮成形して圧粉体を作製する工程と、この圧粉体を還元性雰囲気に調整した加熱炉内で800〜900℃の温度で10〜30分間焼結して、主成分としての銅に加えて、9〜38.8質量%のニッケル、3.6〜9.7質量%の錫、0.45〜4.9質量%の燐を含むと共に3〜10質量%の黒鉛を分散含有した銅基焼結合金体を作製する工程と、銅基焼結合金体に機械加工を施して所望の銅基焼結合金軸受を作製したのち、銅基焼結合金軸受の空孔及び黒鉛に1.5〜2.5質量%の潤滑油を含浸保持させる工程とからなる。 The method for manufacturing a copper-based sintered alloy oil-impregnated bearing of the present invention is to add copper as a main component from raw materials of copper alone, copper-nickel alloy, nickel alone, tin alone, copper-tin alloy and copper-phosphorus alloy. A copper-based raw material containing 10 to 40% by mass of nickel, 4 to 10% by mass of tin and 0.5 to 5% by mass of phosphorus was prepared, and the copper-based raw material was dissolved to prepare a molten copper-based raw material. Water containing 10 to 40% by mass of nickel, 4 to 10% by mass of tin and 0.5 to 5% by mass of phosphorus in addition to copper as a main component by powdering the molten metal by a water atomization method. A step of preparing an atomized copper-based alloy powder, a step of preparing a graphite powder, and 90 to 97% by mass of water atomized copper-based alloy powder and 3 to 10% by mass of the graphite powder are weighed and put into a mixer and stirred. The process of mixing to prepare a mixed powder of water atomized copper-based alloy powder and graphite powder, and the mixed powder is filled in a desired mold and compression-molded at a molding pressure of 3 to 7 tons / cm 2. In the process of producing powder, this powder is sintered in a heating furnace adjusted to a reducing atmosphere at a temperature of 800 to 900 ° C. for 10 to 30 minutes, and in addition to copper as the main component, 9 to 9 to A copper-based sintered alloy containing 38.8% by mass of nickel, 3.6 to 9.7% by mass of tin, 0.45 to 4.9% by mass of phosphorus, and 3 to 10% by mass of graphite in a dispersed manner. After the process of manufacturing the body and machining the copper-based sintered alloy body to prepare the desired copper-based sintered alloy bearing, the pores and graphite of the copper-based sintered alloy bearing are 1.5 to 2. It comprises a step of impregnating and holding 5% by mass of lubricating oil.

本発明の銅基焼結合金含油軸受の製造方法において、水アトマイズ銅基合金粉末は、銅単体、銅−ニッケル合金、ニッケル単体、錫単体、銅−錫合金及び銅−燐合金の原料金属から適宜選択して作製した主成分としての銅に加えて、10〜40質量%のニッケル、4〜10質量%の錫及び0.5〜5質量%の燐を含有する銅基原料の溶湯を、高速で噴射された流体(水)に衝突させることにより、当該溶湯を微粉化すると共に冷却して得られる。この水アトマイズ銅基合金粉末は、均一に溶融された銅基原料の溶湯を瞬間的に液滴化と冷却とを行うため、偏析のない均一な微細組織を有することになる。流体として水を使用した水アトマイズ銅基合金粉末は、不規則形状を呈している。 In the method for producing a copper-based sintered alloy oil-impregnated bearing of the present invention, the water-atomized copper-based alloy powder is made from raw materials for copper alone, copper-nickel alloy, nickel alone, tin alone, copper-tin alloy and copper-phosphorus alloy. In addition to copper as a main component prepared by appropriately selecting, a molten copper-based raw material containing 10 to 40% by mass of nickel, 4 to 10% by mass of tin and 0.5 to 5% by mass of phosphorus is added. By colliding with the fluid (water) injected at high speed, the molten metal is pulverized and cooled. This water atomized copper-based alloy powder instantaneously drops and cools the uniformly melted molten copper-based raw material, so that it has a uniform microstructure without segregation. The water atomized copper-based alloy powder using water as a fluid has an irregular shape.

このように作製された水アトマイズ銅基合金粉末において、ニッケルは、主成分をなす銅及び錫と固溶体を形成して銅−ニッケル−錫合金を含むマトリックス相を形成すると共に燐とニッケル−燐合金との液相を生成してマトリックス相中に微細に拡散したニッケル−燐合金相を晶出する。ニッケルの含有量が10質量%未満では、銅−ニッケル−錫合金を含むマトリックス相の強度が得られず、耐摩耗性、耐荷重性を低下させる虞があり、また含有量が40質量%を超えると焼結性を低下させ、強度及び耐摩耗性を低下させる虞がある。したがって、水アトマイズ銅基合金粉末におけるニッケルの含有量は10〜40質量%、就中20〜35質量%が適当である。 In the water-atomized copper-based alloy powder thus prepared, nickel forms a solid solution with copper and tin, which are the main components, to form a matrix phase containing a copper-nickel-tin alloy, and phosphorus and a nickel-phosphory alloy. A liquid phase with and is formed to crystallize a nickel-phosphorus alloy phase finely diffused in the matrix phase. If the nickel content is less than 10% by mass, the strength of the matrix phase containing the copper-nickel-tin alloy cannot be obtained, which may reduce wear resistance and load resistance, and the content may be 40% by mass. If it exceeds, the sinterability is lowered, and the strength and abrasion resistance may be lowered. Therefore, the nickel content in the water atomized copper-based alloy powder is preferably 10 to 40% by mass, especially 20 to 35% by mass.

錫は、主成分をなす銅及びニッケルと固溶体を形成して合金化し、銅−ニッケル−錫合金を含むマトリックス相を形成して銅−ニッケル−錫合金を含むマトリックス相を強化すると共に耐摩耗性を向上させる。錫の含有量が4質量%未満では、上記効果が十分発揮されず、また含有量が10質量%を超えると焼結性を低下させ、耐摩耗性を低下させる虞がある。したがって、水アトマイズ銅基合金粉末における錫の含有量は4〜10質量%、就中5〜8質量%が適当である。 Tin forms a solid solution with copper and nickel, which are the main components, and alloys them to form a matrix phase containing a copper-nickel-tin alloy to strengthen the matrix phase containing a copper-nickel-tin alloy and has abrasion resistance. To improve. If the tin content is less than 4% by mass, the above effect is not sufficiently exhibited, and if the tin content exceeds 10% by mass, the sinterability is lowered and the wear resistance may be lowered. Therefore, the tin content in the water atomized copper-based alloy powder is preferably 4 to 10% by mass, particularly 5 to 8% by mass.

燐は、ニッケルとニッケル−燐合金を生成してマトリックス相中に微細に拡散したニッケル−燐合金相を晶出し、マトリックス相の耐摩耗性を向上させる。燐の含有量が0.5質量%未満では、ニッケル−燐合金の液相を生成する割合が少なく、耐摩耗性の向上に効果が充分発揮されず、また含有量が5質量%を超えるとマトリックス相中に微細に拡散するニッケル−燐合金相の晶出割合が多くなりすぎ、却って耐摩耗性を悪化させる虞がある。したがって、水アトマイズ銅基合金粉末における燐の含有量は0.5〜5質量%、就中1〜3質量%が適当である。 Phosphorus forms a nickel-nickel-phosphorus alloy to crystallize the nickel-phosphorus alloy phase finely diffused in the matrix phase, improving the wear resistance of the matrix phase. When the phosphorus content is less than 0.5% by mass, the ratio of forming a liquid phase of the nickel-phosphorus alloy is small, the effect of improving the abrasion resistance is not sufficiently exhibited, and when the content exceeds 5% by mass. The crystallization ratio of the nickel-phosphorus alloy phase finely diffused in the matrix phase becomes too large, and there is a risk that the wear resistance is deteriorated. Therefore, the phosphorus content in the water atomized copper-based alloy powder is preferably 0.5 to 5% by mass, especially 1 to 3% by mass.

水アトマイズ銅基合金粉末に配合される黒鉛は、固体潤滑作用による自己潤滑性を高め、高荷重が付加された摺動時において、耐摩耗性、耐荷重性及び耐焼付性を一層向上させると共に潤滑油の保持体としての役割を果たす。黒鉛の含有量が3質量%未満では、上記効果が充分発揮されず、また含有量が10質量%を超えると固体潤滑作用は高められる反面、焼結性を悪化させて銅基焼結合金軸受の強度を低下させる虞がある。したがって、黒鉛の含有量は3〜10質量%、就中3〜8質量%が適当である。黒鉛は、天然黒鉛及び人造黒鉛の何れもが使用可能であり、特に潤滑性に優れる天然黒鉛が好ましく使用される。 Graphite blended in water atomized copper-based alloy powder enhances self-lubricating property by solid lubrication action, and further improves wear resistance, load resistance and seizure resistance when sliding under high load. It serves as a retainer for lubricating oil. If the graphite content is less than 3% by mass, the above effect is not sufficiently exhibited, and if the content exceeds 10% by mass, the solid lubrication action is enhanced, but the sinterability is deteriorated and the copper-based sintered alloy bearing is deteriorated. May reduce the strength of the Therefore, the graphite content is preferably 3 to 10% by mass, especially 3 to 8% by mass. As the graphite, either natural graphite or artificial graphite can be used, and natural graphite having excellent lubricity is particularly preferably used.

銅基焼結合金体は、当該銅基焼結合金体の寸法を所定の公差内に入れるべく、機械加工(サイジング)される。 The copper-based sintered alloy body is machined (sizing) so that the dimensions of the copper-based sintered alloy body are within a predetermined tolerance.

このようにして作製された銅基焼結合金体には含油処理が施され、当該銅基焼結合金体の空孔及び黒鉛に1.5〜2.5質量%の潤滑油が含浸保持された銅基焼結合金含油軸受に形成される。 The copper-based sintered alloy body thus produced is subjected to an oil-impregnated treatment, and the pores and graphite of the copper-based sintered alloy body are impregnated with 1.5 to 2.5% by mass of lubricating oil and held. It is formed on a copper-based sintered alloy oil-impregnated bearing.

本発明の銅基焼結合金含油軸受の製造方法によれば、銅単体、銅−ニッケル合金、ニッケル単体、錫単体、銅−錫合金及び銅−燐合金の原料金属から水アトマイズ銅基合金粉末を作製することにより、複数の金属単体粉末を混合する際に生じ易い金属成分の偏析を抑制できるので、均質な銅基焼結合金体を得ることができる。また、水アトマイズ法により得た水アトマイズ銅基合金粉末の粒子は、銅−ニッケル−錫合金を含むマトリックス相と、このマトリックス相中に微細に拡散して凝固(晶出)したニッケル−燐合金相とを含んだ金属組織を呈していると共に、ニッケル−燐合金相は、該マトリックス相よりも硬度が高く、この水アトマイズ銅基合金粉末を使用して得られる銅基焼結合金軸受においても、前記マトリックス相及びニッケル−燐合金相を含んだ金属組織を呈するので、該マトリックス相中に微細に拡散して凝固したニッケル−燐合金相は、銅−ニッケル−錫合金を含むマトリックス相よりも高い荷重を支持でき、摩擦する相手材との摺動性を向上させる。 According to the method for manufacturing a copper-based sintered alloy oil-impregnated bearing of the present invention, water atomized copper-based alloy powder from raw materials of copper alone, copper-nickel alloy, nickel alone, tin alone, copper-tin alloy and copper-phosphorus alloy. By producing the above, segregation of metal components that tends to occur when a plurality of single metal powders are mixed can be suppressed, so that a homogeneous copper-based sintered alloy can be obtained. The particles of the water atomizing copper-based alloy powder obtained by the water atomizing method are a matrix phase containing a copper-nickel-tin alloy and a nickel-phosphorus alloy that is finely diffused and solidified (crystallized) in the matrix phase. The nickel-phosphorus alloy phase has a higher hardness than the matrix phase as well as exhibiting a metal structure containing a phase, and even in a copper-based sintered alloy bearing obtained by using this water-atomized copper-based alloy powder. Since it exhibits a metal structure containing the matrix phase and the nickel-phosphorus alloy phase, the nickel-phosphorus alloy phase finely diffused and solidified in the matrix phase is more than the matrix phase containing the copper-nickel-tin alloy. It can support a high load and improve the slidability with the mating material that rubs.

本発明によれば、銅−ニッケル−錫合金を含むマトリックス相よりも高い荷重を支持できるニッケル−燐合金相により、接触する相手材との摺動性を向上させることができると共に、水アトマイズ銅基合金粉末及び黒鉛粉末に含浸保持された潤滑油により、高荷重が付加された摺動時に相手材との金属接触を軽減し、耐摩耗性及び耐焼付性を向上させることができる銅基焼結合金含油軸受を提供することができる。 According to the present invention, a nickel-phosphorus alloy phase capable of supporting a higher load than a matrix phase containing a copper-nickel-tin alloy can improve the slidability with a contacting mating material and water atomized copper. The lubricating oil impregnated and held in the base alloy powder and the graphite powder reduces metal contact with the mating material when sliding under high load, and can improve wear resistance and seizure resistance. A bonded metal oil-impregnated bearing can be provided.

図1は、水アトマイズ銅基合金粉末の顕微鏡写真による組織説明図である。FIG. 1 is a microscopic photograph of a water atomized copper-based alloy powder. 図2は、銅基焼結合金軸受の顕微鏡写真による金属組織説明図である。FIG. 2 is an explanatory view of the metal structure of a copper-based sintered alloy bearing by a micrograph. 図3は、図2の顕微鏡写真の要部を拡大した金属組織説明図である。FIG. 3 is an explanatory view of a metal structure in which a main part of the micrograph of FIG. 図4は、スラスト試験方法を説明するための斜視説明図である。FIG. 4 is a perspective explanatory view for explaining a thrust test method. 図5は、ラジアル揺動試験方法を説明するための斜視説明図である。FIG. 5 is a perspective explanatory view for explaining a radial swing test method.

次に、本発明及びその実施の形態を、図に示す好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。 Next, the present invention and embodiments thereof will be described in more detail based on the preferred examples shown in the figure. The present invention is not limited to these examples.

<水アトマイズ銅基合金粉末の作製>
10〜40質量%のニッケル、4〜10質量%の錫、0.5〜5質量%の燐及び主成分として銅を含有する水アトマイズ銅基合金粉末は、原料金属として、銅単体、銅−20〜35質量%ニッケル合金、ニッケル単体、錫単体、銅−10質量%錫合金及び銅−8〜15質量%燐合金を準備し、これら原料金属から10〜40質量%のニッケル、4〜10質量%の錫及び0.5〜5質量%の燐が含有され、残部に銅及び不可避不純物が含有されるように適宜選択して銅基合金原料を作製し、この銅基合金原料を溶解して銅基溶融合金(溶湯)を作製し、この溶湯を高速で噴射された流体(水)に衝突させて微粉化すると共に冷却することにより作製される。
<Preparation of water atomized copper-based alloy powder>
Water atomized copper-based alloy powder containing 10 to 40% by mass of nickel, 4 to 10% by mass of tin, 0.5 to 5% by mass of phosphorus and copper as a main component is a raw material metal such as copper alone or copper-. 20 to 35% by mass nickel alloy, nickel alone, tin alone, copper-10% by mass tin alloy and copper-8 to 15% by mass phosphorus alloy are prepared, and 10 to 40% by mass of nickel, 4 to 10% from these raw materials. A copper-based alloy raw material was prepared by appropriately selecting so that mass% tin and 0.5 to 5 mass% phosphorus were contained and copper and unavoidable impurities were contained in the balance, and the copper-based alloy raw material was dissolved. It is produced by producing a copper-based molten alloy (molten metal) and colliding this molten metal with a fluid (water) injected at high speed to pulverize and cool it.

この水アトマイズ銅基合金粉末は、不規則形状を呈している。水アトマイズ銅基合金粉末の粒径は、概ね200〜300メッシュ(74〜46μm)である。 This water atomized copper-based alloy powder has an irregular shape. The particle size of the water atomized copper-based alloy powder is approximately 200 to 300 mesh (74 to 46 μm).

ニッケル30質量%、錫5質量%、燐3質量%含有し、残部が銅及び不可避不純物からなる水アトマイズ銅基合金粉末1は、図1に示すように、銅−ニッケル−錫合金を含むマトリックス相(白く見える部位)2と、マトリックス相2中に微細に拡散して凝固(晶出)したニッケル−燐合金相(黒く見える部位)3とを含み、マトリックス相2は、少なくとも硬度170を、ニッケル−燐合金相3は、少なくとも硬度600を夫々有している。 As shown in FIG. 1, the water-atomized copper-based alloy powder 1 containing 30% by mass of nickel, 5% by mass of tin, and 3% by mass of phosphorus and having the balance of copper and unavoidable impurities is a matrix containing a copper-nickel-tin alloy. The matrix phase 2 contains a phase (part that looks white) 2 and a nickel-phosphorus alloy phase (part that looks black) 3 that is finely diffused and solidified (crystallized) in the matrix phase 2, and the matrix phase 2 has a hardness of at least 170. The nickel-phosphorus alloy phase 3 has a hardness of at least 600, respectively.

<圧粉体の作製>
黒鉛粉末として、天然黒鉛(鱗片状黒鉛、塊状黒鉛及び土状黒鉛等)及び人造黒鉛から選択される黒鉛粉末を準備し、該黒鉛粉末を3〜10質量%、前記水アトマイズ銅基合金粉末を90〜97質量%の割合で配合し、この配合比の黒鉛粉末及び水アトマイズ銅基合金粉末を混合機(V型ミキサー、ロッキングミキサー、タンブラーミキサー等)に投入して撹拌混合し、水アトマイズ銅基合金粉末と黒鉛粉末との混合粉末を作製する。ついで、所望の金型、例えば方形状の中空部又は円環状の中空部を有する金型を準備し、この混合粉末を金型の中空部内に充填し、3〜7トン/cmの成形圧力で圧縮成形して所望の圧粉体を作製する。
<Preparation of green compact>
As the graphite powder, a graphite powder selected from natural graphite (scaly graphite, massive graphite, earthy graphite, etc.) and artificial graphite is prepared, and the graphite powder is 3 to 10% by mass, and the water atomized copper-based alloy powder is used. The mixture is blended at a ratio of 90 to 97% by mass, and the graphite powder and the water atomized copper-based alloy powder of this blending ratio are put into a mixer (V-type mixer, rocking mixer, tumbler mixer, etc.) and mixed by stirring, and the water atomized copper is mixed. A mixed powder of a base alloy powder and a graphite powder is prepared. Then, a desired mold, for example, a mold having a rectangular hollow portion or an annular hollow portion is prepared, and this mixed powder is filled in the hollow portion of the mold to form a molding pressure of 3 to 7 tons / cm 2 . To prepare a desired green compact by compression molding with.

<銅基焼結合金体の作製>
圧粉体は、真空又は水素ガス、水素・窒素混合ガス(25vol%H−75vol%N)、アンモニア分解ガス(AXガス:75vol%H、25vol%Nの混合ガス)等の還元性雰囲気に調整された加熱(焼結)炉に搬入され、加熱炉内で800〜900℃の温度で10〜30分間加熱、焼結され、この加熱、焼結で、ニッケル9〜38.8質量%、錫3.6〜9.7質量%、燐0.45〜4.9質量%、残部が銅及び不可避不純物を含むと共に黒鉛を3〜10質量%の割合で分散含有した銅基焼結合金体が作製される。
<Manufacturing of copper-based sintered alloy>
Green compact vacuum or hydrogen gas, a hydrogen-nitrogen mixed gas (25vol% H 2 -75vol% N 2), ammonia decomposition gas (AX gas: mixed gas of 75vol% H 2, 25vol% N 2) reduction of such It is carried into a heating (sintering) furnace adjusted to a sexual atmosphere, heated and sintered at a temperature of 800 to 900 ° C. for 10 to 30 minutes in the heating furnace, and by this heating and sintering, nickel 9 to 38.8 Copper-based firing containing 3.6 to 9.7% by mass of tin, 0.45 to 4.9% by mass of phosphorus, the balance containing copper and unavoidable impurities, and 3 to 10% by mass of graphite. A bonded metal body is produced.

一例として、ニッケル30質量%、錫5質量%、燐3質量%含み、残部が銅及び不可避不純物からなる水アトマイズ銅基合金粉末97質量%に対して、黒鉛粉末を3質量%の割合で配合し、撹拌混合して得た混合粉末の圧粉体を加熱、焼結して作製したニッケル29.1質量%、錫4.9質量%、燐2.9質量%、残部銅及び不可避不純物を含むと共に黒鉛を3質量%の割合で分散含有した図2に示す銅基焼結合金体は、金属組織4を有しており、金属組織4は、銅−ニッケル−錫合金を含むマトリックス相5を含んでおり、図2において、符号6は、空孔を、符号7は、黒鉛を示す。また、図3において、部位5(白く見える部位)は、銅−ニッケル−錫合金を含むマトリックス相、部位8(黒く見える部位)は、マトリックス相5中に微細に拡散して凝固(晶出)したニッケル−燐合金相である。 As an example, graphite powder is mixed in a ratio of 3% by mass with respect to 97% by mass of water atomized copper-based alloy powder containing 30% by mass of metal, 5% by mass of tin, and 3% by mass of phosphorus, and the balance is composed of copper and unavoidable impurities. Then, 29.1% by mass of nickel, 4.9% by mass of tin, 2.9% by mass of phosphorus, residual copper and unavoidable impurities prepared by heating and sintering the green compact of the mixed powder obtained by stirring and mixing were added. The copper-based sintered alloy body shown in FIG. 2, which contains and disperses graphite in a proportion of 3% by mass, has a metal structure 4, and the metal structure 4 is a matrix phase 5 containing a copper-nickel-tin alloy. In FIG. 2, reference numeral 6 indicates a hole, and reference numeral 7 indicates graphite. Further, in FIG. 3, the part 5 (the part that looks white) is a matrix phase containing a copper-nickel-tin alloy, and the part 8 (the part that looks black) is finely diffused and solidified (crystallized) in the matrix phase 5. Nickel-phosphorus alloy phase.

図2及び図3における銅基焼結合金体の金属組織4は、前記水アトマイズ銅基合金粉末の粒子の金属組織と同様の金属組織である、銅−ニッケル−錫合金を含むマトリックス相と、このマトリックス相中に微細に拡散して凝固(晶出)したニッケル−燐合金相を含んでおり、マトリックス相5は、少なくとも硬度170を有しており、マトリックス相5中に微細に拡散して晶出したニッケル−燐合金相8は、少なくとも硬度600を有している。 The metal structure 4 of the copper-based sintered alloy body in FIGS. 2 and 3 includes a matrix phase containing a copper-nickel-tin alloy, which is a metal structure similar to the metal structure of the particles of the water-atomized copper-based alloy powder. The matrix phase contains a nickel-phosphorus alloy phase that is finely diffused and solidified (crystallized), and the matrix phase 5 has at least a hardness of 170 and is finely diffused into the matrix phase 5. The crystallized nickel-phosphorus alloy phase 8 has a hardness of at least 600.

<銅基焼結合金含油軸受の作製>
銅基焼結合金体は、寸法精度の向上、密度アップ等を目的として、該銅基焼結合金体の寸法を所定の公差に入れるべく、おおよそ1〜4トン/cmの圧力条件下で機械加工(サイジング)を施し、所定の寸法公差内に入る銅基焼結合金軸受に作製する。ついで、スピンドル油、モータ油又はギア油等の潤滑油を満たした容器内に銅基焼結合金軸受を浸漬し、100〜110℃の温度まで徐々に加熱しながら当該容器内におおよそ30〜60分間保持した後、常温まで冷却し、取出すという含油処理を施して銅基焼結合金軸受の空孔及び黒鉛部位に潤滑油を1.5〜2.5質量%の割合で含浸保持した銅基焼結合金含油軸受を作製する。
<Manufacturing of copper-based sintered alloy oil-impregnated bearings>
The copper-based sintered alloy is provided under a pressure condition of approximately 1 to 4 tons / cm 2 in order to bring the dimensions of the copper-based sintered alloy within a predetermined tolerance for the purpose of improving dimensional accuracy and increasing density. Machined (sizing) to produce copper-based sintered alloy bearings that fall within the specified dimensional tolerances. Then, the copper-based sintered alloy bearing is immersed in a container filled with lubricating oil such as spindle oil, motor oil, or gear oil, and the temperature of 100 to 110 ° C. is gradually heated to about 30 to 60 in the container. After holding for a minute, the copper group was cooled to room temperature and then taken out, which was oil-impregnated to impregnate the pores and graphite parts of the copper-based sintered alloy bearing with lubricating oil at a ratio of 1.5 to 2.5% by mass. A sintered alloy oil-impregnated bearing is manufactured.

このように銅単体、銅−ニッケル合金、ニッケル単体、錫単体、銅−錫合金及び銅−燐合金の原料金属から水アトマイズ法により作製した不規則形状を有する銅基合金粉末とすることにより、複数の金属単体粉末を混合する際に生じ易い金属成分の偏析を抑制できるので、均質な銅基焼結合金体及び銅基焼結合金軸受を得ることができ、また、水アトマイズ法により得た銅基合金粉末粒子は、銅−ニッケル−錫合金を含むマトリックス相と、このマトリックス相中に微細に拡散して凝固(晶出)したニッケル−燐合金相を含んだ金属組織を呈していると共に、ニッケル−燐合金相は、該マトリックス相よりも硬度が高く、この水アトマイズ粉末を使用して得られる銅基焼結合金体及び銅基焼結合金軸受においても、前記マトリックス相及びニッケル−燐合金相を含んだ金属組織を呈するので、該マトリックス相中に微細に拡散して凝固したニッケル−燐合金相は、銅−ニッケル−錫合金を含むマトリックス相よりも高い荷重を支持でき、摩擦する相手材との摺動性を向上させ、銅基焼結合金軸受の空孔及び黒鉛部位に含浸保持された潤滑油により、高荷重が付加された摺動時に相手材との金属接触を軽減し、耐摩耗性及び耐焼付性を向上させることができる。 By preparing a copper-based alloy powder having an irregular shape produced from the raw metal of copper alone, copper-nickel alloy, nickel alone, tin alone, copper-tin alloy and copper-phosphorus alloy by the water atomization method in this way, Since segregation of metal components that are likely to occur when a plurality of metal single powders are mixed can be suppressed, a homogeneous copper-based sintered alloy body and copper-based sintered alloy bearing can be obtained, and also obtained by a water atomization method. The copper-based alloy powder particles exhibit a metal structure containing a matrix phase containing a copper-nickel-tin alloy and a nickel-phosphorus alloy phase that is finely diffused and solidified (crystallized) in the matrix phase. , The nickel-phosphorus alloy phase has a higher hardness than the matrix phase, and the matrix phase and nickel-phosphorus also in the copper-based sintered alloy body and the copper-based sintered alloy bearing obtained by using this water atomizing powder. Since it exhibits a metallic structure containing an alloy phase, the nickel-phosphorus alloy phase finely diffused and solidified in the matrix phase can support a higher load than the matrix phase containing a copper-nickel-tin alloy and rubs. The slidability with the mating material is improved, and the lubricating oil impregnated and held in the pores and graphite parts of the copper-based sintered alloy bearing reduces metal contact with the mating material when sliding under high load. , Abrasion resistance and seizure resistance can be improved.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれら実施例に何等限定されないのである。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1〜14
<水アトマイズ銅基合金粉末の作製>
金属原料として、銅単体、銅−25質量%ニッケル合金、銅−30質量%ニッケル合金、銅−35質量%ニッケル合金、ニッケル単体、錫単体、銅−10質量%錫合金及び銅−15質量%燐合金を準備し、原料金属を選択して銅基合金原料を作製した。実施例1から実施例14の銅基合金原料の成分を表1及び表2に示す。
Examples 1-14
<Preparation of water atomized copper-based alloy powder>
As metal raw materials, copper alone, copper-25% by mass nickel alloy, copper-30% by mass nickel alloy, copper-35% by mass nickel alloy, nickel alone, tin alone, copper-10% by mass tin alloy and copper-15% by mass A phosphorus alloy was prepared, and a raw material metal was selected to prepare a copper-based alloy raw material. The components of the copper-based alloy raw materials of Examples 1 to 14 are shown in Tables 1 and 2.

この銅基合金原料を溶解して銅基溶融合金(溶湯)を作製し、この溶湯を高速で噴射された水に衝突させて微粉化すると共に冷却して不規則形状を呈する粒径が200〜300メッシュ(74〜46μm)の水アトマイズ銅基合金粉末を作製した。水アトマイズ銅基合金粉末は、銅−ニッケル−錫合金を含むマトリックス相と該マトリックス相中に微細に拡散して晶出(凝固)したニッケル−燐合金相とを含む金属組織を呈していた。実施例1から実施例14の水アトマイズ銅基合金粉末の成分組成並びに銅−ニッケル−錫合金を含むマトリックス相及びニッケル−燐合金相のマイクロビッカース硬度(HMV)を表3及び表4に示す。 This copper-based alloy raw material is melted to produce a copper-based molten alloy (molten metal), and the molten metal is collided with water jetted at high speed to be pulverized and cooled to exhibit an irregular shape. A 300 mesh (74-46 μm) water-atomized copper-based alloy powder was prepared. The water-atomized copper-based alloy powder exhibited a metal structure containing a matrix phase containing a copper-nickel-tin alloy and a nickel-phosphorus alloy phase that was finely diffused and crystallized (solidified) in the matrix phase. Tables 3 and 4 show the component compositions of the water-atomized copper-based alloy powders of Examples 1 to 14 and the micro Vickers hardness (HMV) of the matrix phase containing the copper-nickel-tin alloy and the nickel-phosphorus alloy phase.

<圧粉体の作製>
黒鉛粉末として、天然黒鉛(鱗片状黒鉛)粉末を準備し、該黒鉛粉末を前記水アトマイズ銅基合金粉末に配合し、混合機(V型ミキサー)に投入して撹拌混合し、水アトマイズ銅基合金粉末と黒鉛粉末の混合粉末を作製した。実施例1から実施例14の水アトマイズ銅基合金粉末と黒鉛の混合粉末との成分組成を表5及び表6に示す。ついで、(1)方形状の中空部を有する金型及び(2)円環状の中空部を有する金型を準備し、この混合粉末を金型の中空部内に充填し、5トン/cmの成形圧力で圧縮成形して(1)方形状の圧粉体及び(2)円環状の圧粉体を作製した。
<Preparation of green compact>
Natural graphite (scaly graphite) powder is prepared as the graphite powder, the graphite powder is mixed with the water atomized copper-based alloy powder, charged into a mixer (V-type mixer), stirred and mixed, and the water atomized copper base is mixed. A mixed powder of alloy powder and graphite powder was prepared. The composition of the water atomized copper-based alloy powder of Examples 1 to 14 and the mixed powder of graphite is shown in Tables 5 and 6. Then, (1) a mold having a rectangular hollow portion and (2) a mold having an annular hollow portion are prepared, and this mixed powder is filled in the hollow portion of the mold to be 5 tons / cm 2 . Compression molding was performed at the forming pressure to prepare (1) a square green compact and (2) an annular green compact.

<銅基焼結合金含油軸受の作製>
前記圧粉体を水素・窒素混合ガス(25vol%H−75vol%N)の還元性雰囲気に調整された加熱(焼結)炉に搬送し、840℃の温度で15分間焼結して銅基焼結合金体を作製したのち、サイジング加工を施し、(1)一辺30mm、厚さ5mmの寸法の銅基焼結合金スラスト軸受及び(2)内径20mm、外径28mm、高さ15mmの寸法の銅基焼結合金ラジアル軸受を作製した。これら銅基焼結合金軸受は、銅−ニッケル−錫合金を含むマトリックス相と該マトリックス相中に微細に拡散して晶出したニッケル−燐合金相とを有する金属組織を呈していることを確認した。そして、銅−ニッケル−錫合金を含むマトリックス相及びニッケル−燐合金相のマイクロビッカース硬度を測定した。
<Manufacturing of copper-based sintered alloy oil-impregnated bearings>
The green compact was conveyed to the heating (sintering) furnace was adjusted to a reducing atmosphere of hydrogen-nitrogen mixed gas (25vol% H 2 -75vol% N 2), and sintered for 15 minutes sintered at a temperature of 840 ° C. After producing a copper-based sintered alloy body, it is sizing processed to (1) a copper-based sintered alloy thrust bearing having a side of 30 mm and a thickness of 5 mm, and (2) an inner diameter of 20 mm, an outer diameter of 28 mm, and a height of 15 mm. A copper-based sintered alloy radial bearing having dimensions was manufactured. It was confirmed that these copper-based sintered alloy bearings exhibit a metal structure having a matrix phase containing a copper-nickel-tin alloy and a nickel-phosphorus alloy phase finely diffused and crystallized in the matrix phase. did. Then, the micro Vickers hardness of the matrix phase containing the copper-nickel-tin alloy and the nickel-phosphorus alloy phase was measured.

ついで、潤滑油を満たした容器内に銅基焼結合金軸受を浸漬し、100℃の温度まで徐々に加熱しながら当該容器内に30分間保持する含油処理を施し、空孔及び黒鉛部位に潤滑油を含浸保持した銅基焼結合金含油軸受を作製した。銅基焼結合金含油軸受の成分、銅−ニッケル−錫合金を含むマトリックス相及びニッケル−燐合金相のマイクロビッカース硬度並びに含油率を表7及び表8に示す。 Then, the copper-based sintered alloy bearing is immersed in a container filled with lubricating oil, and oil-impregnated treatment is performed to keep the inside of the container for 30 minutes while gradually heating to a temperature of 100 ° C. to lubricate the pores and graphite parts. A copper-based sintered alloy oil-impregnated bearing impregnated with oil was produced. Tables 7 and 8 show the components of the copper-based sintered alloy oil-impregnated bearing, the micro Vickers hardness and the oil content of the matrix phase containing the copper-nickel-tin alloy and the nickel-phosphorus alloy phase.

比較例1
粒径が350メッシュ(45μm)の篩を通過するアトマイズ銅−10質量%錫合金粉末80質量%、粒径が100メッシュ(150μm)の篩を通過する天然黒鉛(鱗片状黒鉛)粉末5重量%及び粒径が350メッシュ(45μm)の篩を通過する電解銅粉末15質量%をV型ミキサーに投入して20分間混合し、混合粉末を得た。この混合粉末を前記実施例と同様の金型の方形状の中空部内に充填し、2トン/cmの成形圧力で圧縮成形して方形状の圧粉体を作製した。この圧粉体を水素・窒素混合ガス(25vol%H−75vol%N)の還元性雰囲気に調整された加熱(焼結)炉に搬送し、760℃の温度で60分間焼結し銅基焼結合金体を作製したのち、サイジング加工を施して(1)一辺30mm、厚さ5mmの寸法の銅基焼結合金スラスト軸受、(2)内径20mm、外径28mm、高さ15mmの寸法の銅基焼結合金ラジアル軸受(銅:87質量%、錫:8質量%、黒鉛5質量%)を作製した。ついで、この銅基焼結合金軸受に前記実施例と同様の含油処理を施し、銅基焼結合金含油軸受を作製した。
Comparative Example 1
Atomized copper-10% by mass tin alloy powder passing through a sieve having a particle size of 350 mesh (45 μm) 80% by mass, natural graphite (scaly graphite) powder passing through a sieve having a particle size of 100 mesh (150 μm) 5% by weight And 15% by mass of electrolytic copper powder passing through a sieve having a particle size of 350 mesh (45 μm) was put into a V-type mixer and mixed for 20 minutes to obtain a mixed powder. This mixed powder was filled in a square hollow portion of a mold similar to the above embodiment and compression molded at a molding pressure of 2 tons / cm 2 to prepare a square green compact. The green compact heating which is adjusted to a reducing atmosphere of hydrogen-nitrogen mixed gas (25vol% H 2 -75vol% N 2) and conveyed to (sintering) furnace, and sintered for 60 minutes sintered at a temperature of 760 ° C. Copper After producing the base sintered alloy body, it is sizing processed to (1) copper-based sintered alloy thrust bearing with a side of 30 mm and a thickness of 5 mm, and (2) an inner diameter of 20 mm, an outer diameter of 28 mm, and a height of 15 mm. Copper-based sintered alloy radial bearings (copper: 87% by mass, tin: 8% by mass, graphite 5% by mass) were produced. Then, the copper-based sintered alloy bearing was subjected to the same oil-impregnating treatment as in the above embodiment to produce a copper-based sintered alloy oil-impregnated bearing.

比較例2
粒径が100メッシュ(150μm)の篩を通過するアトマイズ銅−25質量%ニッケル合金粉末87質量%、粒径が250メッシュ(63μm)の篩を通過するアトマイズ錫粉末8質量%、粒径が150メッシュ(106μm)の篩を通過する天然黒鉛(鱗片状黒鉛)粉末5質量%をV型ミキサーに投入して20分間混合し、混合粉末を得た。この混合粉末を前記実施例と同様の金型の方形状の中空部内に充填し、2トン/cmの成形圧力で圧縮成形して方形状の圧粉体を作製した。この圧粉体を水素・窒素混合ガス(25vol%H−75vol%N)の還元性雰囲気に調整された加熱(焼結)炉に搬送し、920℃の温度で30分間焼結し銅基焼結合金体を作製したのち、サイジング加工を施して(1)一辺30mm、厚さ5mmの寸法の銅基焼結合金スラスト軸受、(2)内径20mm、外径28mm、高さ15mmの寸法の銅基焼結合金ラジアル軸受(銅:65.2質量%、ニッケル:21.8、錫:8質量%、黒鉛5質量%)を作製した。ついで、この銅基焼結合金軸受に前記実施例と同様の含油処理を施し、銅基焼結合金含油軸受を作製した。
Comparative Example 2
Atomized copper-25% by mass nickel alloy powder passing through a sieve with a particle size of 100 mesh (150 μm) 87% by mass, atomized tin powder passing through a sieve with a particle size of 250 mesh (63 μm) 8% by mass, particle size 150 5% by mass of natural graphite (scaly graphite) powder passing through a mesh (106 μm) sieve was put into a V-type mixer and mixed for 20 minutes to obtain a mixed powder. This mixed powder was filled in a square hollow portion of a mold similar to the above embodiment and compression molded at a molding pressure of 2 tons / cm 2 to prepare a square green compact. The green compact heating which is adjusted to a reducing atmosphere of hydrogen-nitrogen mixed gas (25vol% H 2 -75vol% N 2) and conveyed to (sintering) furnace, and sintered for 30 minutes sintered at a temperature of 920 ° C. Copper After producing the base sintered alloy body, it is sizing processed to (1) copper-based sintered alloy thrust bearing with a side of 30 mm and a thickness of 5 mm, and (2) an inner diameter of 20 mm, an outer diameter of 28 mm, and a height of 15 mm. Copper-based sintered alloy radial bearings (copper: 65.2% by mass, nickel: 21.8, tin: 8% by mass, graphite 5% by mass) were produced. Then, the copper-based sintered alloy bearing was subjected to the same oil-impregnating treatment as in the above embodiment to produce a copper-based sintered alloy oil-impregnated bearing.

比較例3
粒径が100メッシュ(150μm)の篩を通過するアトマイズ銅−30質量%ニッケル合金粉末89質量%、粒径が250メッシュ(63μm)の篩を通過するアトマイズ錫粉末8質量%、粒径が150メッシュ(106μm)の篩を通過する天然黒鉛(鱗片状黒鉛)粉末3質量%をV型ミキサーに投入して20分間混合し、混合粉末を得た。以下、前記比較例2と同様の方法で(1)一辺30mm、厚さ5mmの寸法の銅基焼結合金スラスト軸受、(2)内径20mm、外径28mm、高さ15mmの寸法の銅基焼結合金ラジアル軸受(銅:62.3質量%、ニッケル:26.7、錫:8質量%、黒鉛3質量%)を作製した。ついで、この銅基焼結合金軸受に前記実施例と同様の含油処理を施し、銅基焼結合金含油軸受を作製した。
Comparative Example 3
Atomized copper-30% by mass nickel alloy powder passing through a sieve with a particle size of 100 mesh (150 μm) 89% by mass, atomized tin powder passing through a sieve with a particle size of 250 mesh (63 μm) 8% by mass, particle size 150 3% by mass of natural graphite (scaly graphite) powder passing through a mesh (106 μm) sieve was put into a V-type mixer and mixed for 20 minutes to obtain a mixed powder. Hereinafter, in the same manner as in Comparative Example 2, (1) a copper-based sintered alloy thrust bearing having a side of 30 mm and a thickness of 5 mm, and (2) a copper-based firing having an inner diameter of 20 mm, an outer diameter of 28 mm, and a height of 15 mm. A bonded gold radial bearing (copper: 62.3% by mass, nickel: 26.7, tin: 8% by mass, graphite 3% by mass) was produced. Then, the copper-based sintered alloy bearing was subjected to the same oil-impregnating treatment as in the above embodiment to produce a copper-based sintered alloy oil-impregnated bearing.

比較例4
粒径が100メッシュ(150μm)の篩を通過するアトマイズ銅−35質量%ニッケル合金粉末65.7質量%、粒径が250メッシュ(63μm)の篩を通過するアトマイズ錫粉末5質量%、粒径が200メッシュ(75μm)の篩を通過する銅−15質量%P合金粉末2.7質量%、粒径が350メッシュ(45μm)の篩を通過する電解銅粉末21.6質量%、粒径が150メッシュ(106μm)の篩を通過する天然黒鉛(鱗片状黒鉛)粉末5質量%をV型ミキサーに投入して20分間混合し、混合粉末を得た。以下、前記比較例2と同様の方法で(1)一辺30mm、厚さ5mmの寸法の銅基焼結合金スラスト軸受、(2)内径20mm、外径28mm、高さ15mmの寸法の銅基焼結合金ラジアル軸受(銅:66.6質量%、ニッケル:23質量%、錫:5質量%、燐:0.4質量%、黒鉛3質量%)を作製した。ついで、この銅基焼結合金軸受に前記実施例と同様の含油処理を施し、銅基焼結合金含油軸受を作製した。
Comparative Example 4
Atomized copper-35% by mass nickel alloy powder 65.7% by mass passing through a sieve having a particle size of 100 mesh (150 μm), 5% by mass of atomized tin powder passing through a sieve having a particle size of 250 mesh (63 μm), particle size Is 2.7% by mass of copper-15% by mass P alloy powder passing through a 200 mesh (75 μm) sieve, 21.6% by mass of electrolytic copper powder passing through a 350 mesh (45 μm) sieve, and has a particle size of 21.6% by mass. 5% by mass of natural graphite (scaly graphite) powder passing through a 150 mesh (106 μm) sieve was put into a V-type mixer and mixed for 20 minutes to obtain a mixed powder. Hereinafter, in the same manner as in Comparative Example 2, (1) a copper-based sintered alloy thrust bearing having a side of 30 mm and a thickness of 5 mm, and (2) a copper-based firing having an inner diameter of 20 mm, an outer diameter of 28 mm, and a height of 15 mm. A bonded gold radial bearing (copper: 66.6% by mass, nickel: 23% by mass, tin: 5% by mass, phosphorus: 0.4% by mass, graphite 3% by mass) was produced. Then, the copper-based sintered alloy bearing was subjected to the same oil-impregnating treatment as in the above embodiment to produce a copper-based sintered alloy oil-impregnated bearing.

比較例1から比較例4の銅基焼結合金含油軸受の成分及び含油率を表8に示す。 Table 8 shows the components and oil content of the copper-based sintered alloy oil-impregnated bearings of Comparative Examples 1 to 4.

次に、実施例1から実施例14及び比較例1から比較例4で得た銅基焼結合金含油軸受において、銅基焼結合金含油スラスト軸受については、下記に示すスラスト試験条件によってスラスト摺動特性を評価し、銅基焼結合金含油ラジアル軸受については、下記に示すジャーナル揺動試験条件によってジャーナル揺動摺動特性を評価した。摩擦係数については、試験を開始してから1時間経過後、安定時の摩擦係数を示し、摩耗量については、試験時間終了後の銅基焼結合金含油軸受の摺動面の寸法変化量(μm)で示した。 Next, in the copper-based sintered alloy oil-impregnated bearings obtained in Examples 1 to 14 and Comparative Examples 1 to 4, the copper-based sintered alloy oil-impregnated thrust bearings are thrust-sliding according to the thrust test conditions shown below. The dynamic characteristics were evaluated, and for the copper-based sintered alloy oil-impregnated radial bearing, the journal swinging sliding characteristics were evaluated under the journal swinging test conditions shown below. The coefficient of friction indicates the coefficient of friction at the time of stability 1 hour after the start of the test, and the amount of wear indicates the amount of dimensional change of the sliding surface of the copper-based sintered alloy oil-impregnated bearing after the end of the test time ( It is shown by μm).

<スラスト試験条件>
速度 1.3m/min
荷重(面圧) (1)300kgf/cm (2)500kgf/cm
試験時間 20時間
相手材 機械構造用炭素鋼(S45C)
潤滑 試験開始時に摺動面にリチウム系グリース(出光興産社製「ダフニーエポネックス(商品名)」)を塗布
<Thrust test conditions>
Speed 1.3m / min
Load (surface pressure) (1) 300kgf / cm 2 (2) 500kgf / cm 2
Test time 20 hours Mating material Carbon steel for machine structure (S45C)
Lithium grease ("Daphney Eponex (trade name)" manufactured by Idemitsu Kosan Co., Ltd.) is applied to the sliding surface at the start of the lubrication test.

<試験方法>
図4に示すように、銅基焼結合金含油軸受としての銅基焼結合金含油スラスト軸受9を固定し、相手材となる円筒体10を銅基焼結合金含油スラスト軸受9の上から(矢印A方向)その表面11に所定の荷重を付加しながら、円筒体10を矢印B方向に回転させ、銅基焼結合金含油スラスト軸受9と円筒体10との間の摩擦係数及び試験時間経過後の銅基焼結合金含油スラスト軸受9の摩耗量を測定した。
<Test method>
As shown in FIG. 4, the copper-based sintered alloy oil-impregnated thrust bearing 9 as the copper-based sintered alloy oil-impregnated bearing is fixed, and the cylindrical body 10 as the mating material is mounted on the copper-based sintered alloy oil-impregnated thrust bearing 9 ( (A direction of arrow A) While applying a predetermined load to the surface 11, the cylindrical body 10 is rotated in the direction of arrow B, and the friction coefficient between the copper-based sintered alloy oil-impregnated thrust bearing 9 and the cylindrical body 10 and the elapse of the test time. The amount of wear of the later copper-based sintered alloy oil-impregnated thrust bearing 9 was measured.

<ジャーナル揺動試験条件>
速度 0.5m/min
荷重(面圧) 300kgf/cm
揺動角度 ±45°
試験時間 100時間
相手材 軸受鋼(SUJ2焼入れ材)
潤滑条件 試験開始時に摺動面にリチウム系グリース(前記と同じ)を塗布
<Journal swing test conditions>
Speed 0.5m / min
Load (surface pressure) 300 kgf / cm 2
Swing angle ± 45 °
Test time 100 hours Mating material Bearing steel (SUJ2 hardened material)
Lubrication conditions Lithium grease (same as above) is applied to the sliding surface at the start of the test.

<試験方法>
図5に示すように、銅基焼結合金含油軸受としての銅基焼結合金含油ラジアル軸受12に矢印A方向の荷重を付加して固定し、相手材となる回転軸13を一定のすべり速度で矢印C方向に揺動回転させ、試験時間経過後の銅基焼結合金含油ラジアル軸受12の摩耗量を測定した。
<Test method>
As shown in FIG. 5, a load in the direction of arrow A is applied to and fixed to the copper-based sintered alloy oil-impregnated radial bearing 12 as the copper-based sintered alloy oil-impregnated bearing, and the rotating shaft 13 serving as the mating material has a constant sliding speed. The amount of wear of the copper-based sintered alloy oil-impregnated radial bearing 12 after the lapse of the test time was measured by swinging and rotating in the direction of arrow C.

銅基焼結合金含油スラスト軸受9及び銅基焼結合金含油ラジアル軸受12のスラスト試験結果及びラジアル揺動試験結果を表7及び表8に示す。 Tables 7 and 8 show the thrust test results and the radial swing test results of the copper-based sintered alloy oil-impregnated thrust bearing 9 and the copper-based sintered alloy oil-impregnated radial bearing 12.

Figure 0006760807
Figure 0006760807

Figure 0006760807
Figure 0006760807

Figure 0006760807
Figure 0006760807

Figure 0006760807
Figure 0006760807

Figure 0006760807
Figure 0006760807

Figure 0006760807
Figure 0006760807

Figure 0006760807
Figure 0006760807

Figure 0006760807
表8中、比較例1の面圧(2)の条件におけるスラスト試験結果の*印は、試験開始直後に摩擦係数が急激に上昇したため試験を中止し、摩擦係数及び摩耗量の測定ができなかったことを示す。
Figure 0006760807
In Table 8, the * mark in the thrust test result under the condition of the surface pressure (2) of Comparative Example 1 indicates that the test was stopped because the friction coefficient increased sharply immediately after the start of the test, and the friction coefficient and the amount of wear could not be measured. Show that.

スラスト試験及びラジアル揺動試験結果から、実施例の銅基焼結合金含油軸受は、比較例の銅基焼結合金含油軸受よりも摩擦係数が低く、摩耗量が少ないことが分かる。特に、実施例の銅基焼結合金含油軸受は、銅−ニッケル−錫合金を含むマトリックス相と該マトリックス相中に微細に拡散して晶出したニッケル−燐合金相を含んだ金属組織を有し、マトリックス相中に微細に拡散して凝固したニッケル−燐合金相が該マトリックス相よりも高い荷重を支持できると共に黒鉛の固体潤滑作用及び潤滑油の潤滑作用との重畳効果により、摩擦する相手材との摺動性を向上させることで耐摩耗性を向上させるものと推察する。 From the results of the thrust test and the radial rocking test, it can be seen that the copper-based sintered alloy oil-impregnated bearing of the example has a lower friction coefficient and a smaller amount of wear than the copper-based sintered alloy oil-impregnated bearing of the comparative example. In particular, the copper-based sintered alloy oil-impregnated bearing of the embodiment has a metal structure containing a matrix phase containing a copper-nickel-tin alloy and a nickel-phosphorus alloy phase finely diffused and crystallized in the matrix phase. However, the nickel-phosphorus alloy phase, which is finely diffused and solidified in the matrix phase, can support a higher load than the matrix phase and rubs against each other due to the overlapping effect of the solid lubricating action of graphite and the lubricating action of the lubricating oil. It is presumed that the wear resistance is improved by improving the slidability with the material.

以上説明したように、本発明に係る銅基焼結合金含油軸受は、銅−ニッケル−錫合金を含むマトリックス相と該マトリックス相中に微細に拡散して晶出したニッケル−燐合金相とを含む金属組織を有すると共に、ニッケル−燐合金相が高い荷重を支持して摩擦する相手材との摺動性を向上させることと、該銅基焼結合金含油軸受に分散含有された黒鉛の固体潤滑作用及び空孔及び黒鉛部位に含浸保持された潤滑油の潤滑作用との重畳効果により、高荷重が付加された摺動時に相手材との金属接触を軽減し、耐摩耗性及び耐焼付性を向上させることができる。また、本発明に係る製造方法においては、銅単体、銅−ニッケル合金、ニッケル単体、錫単体、銅−錫合金及び銅−燐合金の原料金属から水アトマイズ法により銅基合金粉末を作製することにより、複数の金属単体粉末を混合する際に生じ易い金属成分の偏析を抑制できるので、均質な銅基焼結合金含油軸受を得ることができる。 As described above, the copper-based sintered alloy oil-impregnated bearing according to the present invention comprises a matrix phase containing a copper-nickel-tin alloy and a nickel-phosphorus alloy phase finely diffused and crystallized in the matrix phase. It has a metallic structure containing metal, and the nickel-phosphorus alloy phase supports a high load to improve the slidability with the mating material that rubs against it, and the solid graphite that is dispersed and contained in the copper-based sintered alloy oil-impregnated bearing. Due to the lubricating action and the overlapping effect with the lubricating action of the lubricating oil impregnated and held in the pores and graphite parts, metal contact with the mating material is reduced during sliding when a high load is applied, and wear resistance and seizure resistance Can be improved. Further, in the production method according to the present invention, a copper-based alloy powder is produced from the raw metal of copper alone, copper-nickel alloy, nickel alone, tin alone, copper-tin alloy and copper-phosphorus alloy by the water atomization method. As a result, segregation of metal components that tends to occur when a plurality of single metal powders are mixed can be suppressed, so that a homogeneous copper-based sintered alloy oil-impregnated bearing can be obtained.

1 水アトマイズ銅基合金粉末
2、5 マトリックス相
3、8 ニッケル−燐合金相
4 金属組織
6 空孔
7 黒鉛
1 Water atomized copper-based alloy powder 2, 5 Matrix phase 3, 8 Nickel-phosphorus alloy phase 4 Metal structure 6 Pore 7 Graphite

Claims (2)

ニッケル、錫及び燐並びに主成分として銅を含有する水アトマイズ銅基合金粉末と、黒鉛粉末と、潤滑油とを含んでおり、ニッケル19.4〜38.8質量%、錫3.6〜9.7質量%、燐0.45〜4.9質量%及び黒鉛3〜10質量%を含むと共に、銅−ニッケル−錫合金を含むマトリックス相及びこのマトリックス相中に拡散したニッケル−燐合金相を含んだ金属組織を有し、
銅−ニッケル−錫合金を含むマトリックス相は、少なくともマイクロビッカース硬度175を有しており、ニッケル−燐合金相は、少なくともマイクロビッカース硬度613を有している銅基焼結合金含油軸受。
It contains nickel, tin and phosphorus, a water-atomized copper-based alloy powder containing copper as a main component, graphite powder, and lubricating oil. Nickel 19.4 to 38.8% by mass, tin 3.6 to 9 A matrix phase containing 7.7% by mass, 0.45 to 4.9% by mass of phosphorus and 3 to 10% by mass of graphite, and containing a copper-nickel-tin alloy, and a nickel-phosphory alloy phase diffused in the matrix phase. It has a inclusive metal structure,
Copper - Nickel - matrix phase comprising a tin alloy has at least a micro Vickers hardness 175, nickel - phosphorus alloy phase, copper-based sintered alloy oil-impregnated bearings that have at least micro Vickers hardness 613.
潤滑油は、1.5〜2.5質量%含んでいる請求項1に記載の銅基焼結合金含油軸受。 The copper-based sintered alloy oil-impregnated bearing according to claim 1, wherein the lubricating oil contains 1.5 to 2.5% by mass.
JP2016182985A 2016-09-20 2016-09-20 Copper-based sintered alloy oil-impregnated bearing Active JP6760807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016182985A JP6760807B2 (en) 2016-09-20 2016-09-20 Copper-based sintered alloy oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182985A JP6760807B2 (en) 2016-09-20 2016-09-20 Copper-based sintered alloy oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2018048358A JP2018048358A (en) 2018-03-29
JP6760807B2 true JP6760807B2 (en) 2020-09-23

Family

ID=61767255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182985A Active JP6760807B2 (en) 2016-09-20 2016-09-20 Copper-based sintered alloy oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP6760807B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108655412A (en) * 2018-04-20 2018-10-16 西安理工大学 A kind of preparation method of load nickel particles graphene powder
US20210323063A1 (en) * 2018-11-20 2021-10-21 Hunan Terry New Materials Co., Ltd Method for preparing metal powder by water atomization
CN112430763B (en) * 2020-10-29 2021-09-21 桂林金格电工电子材料科技有限公司 Al (aluminum)2O3Preparation method of dispersion-strengthened copper-based composite material
CN114908271B (en) * 2022-05-27 2023-04-07 中国科学院兰州化学物理研究所 High-temperature-resistant copper alloy-based solid lubricating composite material and preparation method thereof
CN115351272A (en) * 2022-08-22 2022-11-18 浙江汉格科技有限公司 Preparation method of copper-based powder metallurgy material for high-energy-load braking working condition

Also Published As

Publication number Publication date
JP2018048358A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JPH08253826A (en) Sintered friction material, composite copper alloy powder used therefor and their production
CN101775521A (en) Ultrahigh rotating speed oil bearing for powder metallurgy and manufacturing method thereof
JP2011094167A (en) Iron-copper based sintered sliding member, and method for producing the same
JP2012506494A (en) Sliding bearing with improved wear resistance and method for manufacturing the same
JP6440297B2 (en) Cu-based sintered bearing
WO2007103193A2 (en) Low cost bronze powder for high performance bearings
CN109692951B (en) Method for manufacturing powder metallurgy self-lubricating bearing
JP5972963B2 (en) Sintered alloy with excellent wear resistance
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
CN101845568A (en) Oil impregnated bearing of powder metallurgy with ultra-long service life and manufacturing method thereof
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
JP5995389B1 (en) Method for producing copper composite iron powder and method for producing sintered metal
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
CN108883472B (en) Cu-based sintered sliding material and method for producing same
JP4236665B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP5403707B2 (en) Cu-based infiltration powder
CN107855517A (en) A kind of oiliness bearing powdered metallurgical material and preparation method thereof
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JPWO2018100660A1 (en) Iron-based sintered oil-impregnated bearing
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200903

R150 Certificate of patent or registration of utility model

Ref document number: 6760807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250