JP2008297361A - Copper-based oil-impregnated sintered sliding member - Google Patents
Copper-based oil-impregnated sintered sliding member Download PDFInfo
- Publication number
- JP2008297361A JP2008297361A JP2007142442A JP2007142442A JP2008297361A JP 2008297361 A JP2008297361 A JP 2008297361A JP 2007142442 A JP2007142442 A JP 2007142442A JP 2007142442 A JP2007142442 A JP 2007142442A JP 2008297361 A JP2008297361 A JP 2008297361A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- sintered
- impregnated
- sliding member
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lubricants (AREA)
Abstract
Description
本発明は、銅系含油焼結摺動部材、詳しくは黒鉛や二硫化モリブデン等の固体潤滑剤を使用しないでも摩擦摩耗特性に優れる銅系含油焼結摺動部材に関する。 The present invention relates to a copper-based oil-impregnated sintered sliding member, and more particularly to a copper-based oil-impregnated sintered sliding member having excellent frictional wear characteristics without using a solid lubricant such as graphite or molybdenum disulfide.
一般に、含油焼結軸受は、多孔質金属焼結マトリックス体の空孔(気孔)に潤滑油を含浸させたものからなり、代表的な含油焼結軸受は、JIS規格にも規定されている錫(Sn)9〜11重量%と黒鉛(Gr)0.5〜2.0重量%、その他2重量%以下、残部銅(Cu)からなるものが知られている(非特許文献1所載)。また、黒鉛に代わる固体潤滑剤として二硫化モリブデンを含有した銅系含油焼結軸受も提案されている(特許文献1所載)。 In general, oil-impregnated sintered bearings are made by impregnating the pores (pores) of a porous metal sintered matrix with lubricating oil, and typical oil-impregnated sintered bearings are tins defined in JIS standards. (Sn) 9 to 11% by weight, graphite (Gr) 0.5 to 2.0% by weight, other 2% by weight or less, and remaining copper (Cu) are known (described in Non-Patent Document 1). . In addition, a copper-based oil-impregnated sintered bearing containing molybdenum disulfide as a solid lubricant in place of graphite has also been proposed (Patent Document 1).
固体潤滑剤として二硫化モリブデン(MoS2)を使用し、これを金属粉末と共に混合して成形し焼結する方法では、700℃を超える焼結温度で、焼結中にモリブデン(Mo)と硫黄(S)とに熱分解し、二硫化モリブデンが本来具有する層状構造による潤滑性が低下するという問題がある。この問題を解決する方法として、二硫化モリブデンの表面を銅等で被覆した被銅二硫化モリブデンを用いる試みも提案されているが、被銅二硫化モリブデンの粉末は高価であるという問題がある。また、他の解決方法として、燐(P)を配合することにより焼結温度を下げる試みも提案されているが、燐の配合は、金属焼結マトリックス体に脆い燐化合物の生成を余儀なくし、金属焼結マトリックス体の強度低下を惹起したり、摺動性能を低下させるなどの問題がある。 In the method of using molybdenum disulfide (MoS 2 ) as a solid lubricant, mixing it with metal powder, forming and sintering, molybdenum (Mo) and sulfur during sintering at a sintering temperature exceeding 700 ° C. There is a problem that the lubricity due to the layered structure inherent to molybdenum disulfide is degraded by thermal decomposition into (S). As a method for solving this problem, attempts have been made to use copper-coated molybdenum disulfide in which the surface of molybdenum disulfide is coated with copper or the like, but there is a problem that the powder of copper-coated molybdenum disulfide is expensive. In addition, as another solution, an attempt to lower the sintering temperature by blending phosphorus (P) has also been proposed. However, the blending of phosphorus necessitates the formation of a brittle phosphorus compound in the sintered metal matrix body, There are problems such as causing a decrease in strength of the sintered metal matrix and reducing sliding performance.
本発明は、上記諸点に鑑みてなされたものであり、その目的とするところは、黒鉛や二硫化モリブデン等の固体潤滑剤を使用しないでも優れた摩擦摩耗特性を発揮する銅系含油焼結摺動部材を提供することにある。 The present invention has been made in view of the above points, and its object is to provide a copper-based oil-impregnated sintered slide that exhibits excellent frictional wear characteristics without using a solid lubricant such as graphite or molybdenum disulfide. It is to provide a moving member.
本発明の銅系含油焼結摺動部材は、銅を主成分とする焼結マトリックス体に無機リン酸塩が分散含有されていると共にその空孔に潤滑油が含浸されていることを特徴とする。 The copper-based oil-impregnated sintered sliding member of the present invention is characterized in that inorganic phosphate is dispersedly contained in a sintered matrix body mainly composed of copper, and that the pores are impregnated with lubricating oil. To do.
本発明の銅系含油焼結摺動部材によれば、銅を主成分とする焼結マトリックス体に分散含有された無機リン酸塩の作用により、該銅系含油焼結摺動部材と相手材との摺動において相手材表面に焼結マトリックス体に分散含有された無機リン酸塩の薄い被膜が形成され、摺動がこの被膜を介して行われる結果、空孔に含浸された潤滑油であって摺動面間に介在することになる潤滑油と相俟って優れた摩擦摩耗特性を発揮する。焼結によって得られる摺動部材ではその摺動面に完全な液体潤滑被膜は形成され難く金属接触を伴う境界潤滑であるから、相手材表面に被膜が形成されることはかじり又は焼付きを生じ難くする。 According to the copper-based oil-impregnated sintered sliding member of the present invention, the copper-based oil-impregnated sintered sliding member and the counterpart material are obtained by the action of the inorganic phosphate dispersed in the sintered matrix body mainly composed of copper. As a result of forming a thin coating of inorganic phosphate dispersed and contained in the sintered matrix body on the surface of the mating material and sliding through this coating, the lubricating oil impregnated in the pores is used. Therefore, it exhibits excellent friction and wear characteristics in combination with the lubricating oil interposed between the sliding surfaces. In a sliding member obtained by sintering, it is difficult to form a complete liquid lubricant film on the sliding surface, and it is boundary lubrication with metal contact. Therefore, the formation of a film on the surface of the counterpart material causes galling or seizure. Make it difficult.
本発明では、無機リン酸塩の好ましい例として、ピロリン酸マグネシウム、ピロリン酸カルシウム及び第三リン酸アルミニウムの少なくとも一つが選択され、焼結マトリックス体に0.5〜5重量%の割合で分散含有されているとよい。 In the present invention, as a preferable example of the inorganic phosphate, at least one of magnesium pyrophosphate, calcium pyrophosphate and trialuminum phosphate is selected and dispersed and contained in the sintered matrix body at a ratio of 0.5 to 5% by weight. It is good to have.
焼結マトリックス体は、錫0.5〜15重量%と残部銅とからなるものがよい。 The sintered matrix body is preferably composed of 0.5 to 15% by weight of tin and the balance copper.
また、焼結マトリックス体としては、錫0.5〜15重量%と、強化元素として亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐から選択される少なくとも一種0.1〜45重量%と、残部銅とからなるものであってもよい。これら亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐は、錫と銅とからなる銅系焼結マトリックス体を強度、靭性、機械的強度及び耐摩耗性に関して強化する作用を発揮する。 The sintered matrix body is 0.5 to 15% by weight of tin, and at least one kind selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus as the reinforcing element is 0.1 to 45% by weight. And the balance copper. These zinc, nickel, iron, cobalt, manganese, aluminum, silicon, and phosphorus exert an effect of strengthening a copper-based sintered matrix body composed of tin and copper with respect to strength, toughness, mechanical strength, and wear resistance.
焼結マトリックス体の空孔には、好ましくは、当該焼結マトリックス体の全容積に対して潤滑油が5〜30容積%の割合で含浸されている。 The pores of the sintered matrix body are preferably impregnated with a lubricating oil at a ratio of 5 to 30% by volume with respect to the total volume of the sintered matrix body.
本発明によれば、銅を主成分とする焼結マトリックス体に無機リン酸塩が分散含有されていると共にその空孔に潤滑油が含浸された銅系含油焼結摺動部材と相手材との摺動において、相手材表面に焼結マトリックス体に分散含有された無機リン酸塩の薄い被膜を形成でき、この被膜を介しての摺動に移行できる結果、空孔に含浸された潤滑油であって摺動面間に介在する潤滑油と相俟って優れた摩擦摩耗特性を発揮する銅系含油焼結摺動部材を提供することができる。 According to the present invention, the copper-based oil-impregnated sintered sliding member, in which the inorganic phosphate is dispersed and contained in the sintered matrix body mainly composed of copper and the pores are impregnated with the lubricating oil, and the counterpart material In this sliding, a thin film of inorganic phosphate dispersed and contained in the sintered matrix body can be formed on the surface of the counterpart material, and as a result of being able to move to sliding through this film, the lubricating oil impregnated in the pores Thus, it is possible to provide a copper-based oil-impregnated sintered sliding member that exhibits excellent friction and wear characteristics in combination with the lubricating oil interposed between the sliding surfaces.
本発明の銅系含油焼結摺動部材は、銅を主成分とする焼結マトリックス体に無機リン酸塩が分散含有されていると共にその空孔に潤滑油が含浸されてなる。 The copper-based oil-impregnated sintered sliding member of the present invention is formed by dispersing inorganic phosphate in a sintered matrix body mainly composed of copper and impregnating the pores with lubricating oil.
斯かる銅系含油焼結摺動部材において、好ましい例では、銅を主成分とする焼結マトリックス体に分散含有される無機リン酸塩としては、ピロリン酸マグネシウム(Mg2P2O7)、ピロリン酸カルシウム(Ca2P2O7)及び第三リン酸アルミニウム(Al3PO4)の少なくとも一つが選択されて使用される。 In such a copper-based oil-impregnated sintered sliding member, in a preferred example, as an inorganic phosphate dispersedly contained in a sintered matrix body mainly composed of copper, magnesium pyrophosphate (Mg 2 P 2 O 7 ), At least one of calcium pyrophosphate (Ca 2 P 2 O 7 ) and tribasic aluminum phosphate (Al 3 PO 4 ) is selected and used.
これら無機リン酸塩は、それ自体は黒鉛や二硫化モリブデンのような固体潤滑作用を示す物質ではないが、銅を主成分とする焼結マトリックス体に分散含有されることにより、相手材(軸)との摺動において、相手材表面に移着して薄い被膜を形成し、この被膜を介しての摺動に移行させることになり、摺動面間に介在する潤滑油と相俟って、焼結摺動部材に優れた摩擦摩耗特性を発揮させることができる。 These inorganic phosphates are not themselves substances having solid lubricating action such as graphite and molybdenum disulfide, but are dispersed and contained in a sintered matrix body mainly composed of copper, so ) To form a thin film that is transferred to the surface of the mating material, and to move to the sliding through this film, coupled with the lubricating oil interposed between the sliding surfaces. Thus, excellent friction and wear characteristics can be exhibited in the sintered sliding member.
無機リン酸塩の焼結マトリックス体に分散含有される割合は、0.5〜5重量%であるとよい。0.5重量%未満では、上記作用が充分発揮されず、また5重量%を超えると焼結マトリックス体の強度、靭性、機械的強度及び耐摩耗性に関しての強度低下をきたす。 The proportion of the inorganic phosphate dispersed in the sintered matrix body is preferably 0.5 to 5% by weight. If the amount is less than 0.5% by weight, the above-described effect is not sufficiently exhibited. If the amount exceeds 5% by weight, the strength, toughness, mechanical strength and wear resistance of the sintered matrix body are lowered.
焼結マトリックス体としては、錫成分0.5〜15重量%と残部銅成分とからなる焼結マトリックス体が好ましい。錫成分は、主成分をなす銅成分と合金化して銅−錫合金を形成し、焼結マトリックス体の地の強度、靭性、機械的強度及び耐摩耗性の向上に寄与する。錫成分はその配合量が0.5重量%未満では上述した効果が充分発揮されず、また15重量%を超えて配合すると焼結性に悪影響を及ぼす。錫成分は、銅成分に対し錫成分単体で配合してもよいが、例えば銅−20%錫合金の形態で配合してもよい。 As the sintered matrix body, a sintered matrix body composed of 0.5 to 15% by weight of a tin component and the remaining copper component is preferable. The tin component is alloyed with the copper component constituting the main component to form a copper-tin alloy, and contributes to the improvement of the strength, toughness, mechanical strength and wear resistance of the sintered matrix body. If the amount of tin component is less than 0.5% by weight, the above-described effects are not sufficiently exhibited. If the amount exceeds 15% by weight, the sinterability is adversely affected. Although a tin component may be mix | blended with a tin component single-piece | unit with respect to a copper component, you may mix | blend, for example with the form of a copper-20% tin alloy.
また、焼結マトリックス体としては、上記錫成分0.5〜15重量%と残部銅成分とに対し、亜鉛成分、ニッケル成分、鉄成分、コバルト成分、マンガン成分、アルミニウム成分、珪素成分及び燐成分から選択される少なくとも一種のマトリックス強化成分を0.1〜45重量%含有してもよい。マトリックス強化成分の配合量が0.1重量%未満では、マトリックス体の強度、靭性、機械的強度及び耐摩耗性の強化には充分でなく、また45重量%超えて配合するとマトリックス体の硬度が高くなり過ぎて摺動部材として使用するには不適当となる。 In addition, as the sintered matrix body, zinc component, nickel component, iron component, cobalt component, manganese component, aluminum component, silicon component and phosphorus component with respect to 0.5 to 15% by weight of the tin component and the remaining copper component You may contain 0.1 to 45 weight% of at least 1 type of matrix reinforcement | strengthening components selected from these. If the blending amount of the matrix reinforcing component is less than 0.1% by weight, it is not sufficient to enhance the strength, toughness, mechanical strength and wear resistance of the matrix body. It becomes too high to be used as a sliding member.
これらマトリックス強化成分の亜鉛成分、ニッケル成分、鉄成分、コバルト成分、マンガン成分、アルミニウム成分、珪素成分及び燐成分は、各成分単体で配合してもよいが、銅と各成分との合金、例えば銅−30%亜鉛合金、銅−30%ニッケル合金、銅−35%マンガン合金、銅−8%燐合金などの形態で配合してもよい。 These matrix reinforcing components such as zinc component, nickel component, iron component, cobalt component, manganese component, aluminum component, silicon component and phosphorus component may be blended with each component alone, but an alloy of copper and each component, for example, You may mix | blend with forms, such as a copper-30% zinc alloy, a copper-30% nickel alloy, a copper-35% manganese alloy, and a copper-8% phosphorus alloy.
上記マトリックス強化成分の中でも、とくに亜鉛成分及びニッケル成分は、主成分をなす銅及び銅−錫合金と合金化して銅−錫−亜鉛合金あるいは銅−錫−ニッケル合金を形成し、マトリックス体の地の強度、靭性及び機械的強度を向上させると共に耐摩耗性の向上に寄与する。 Among the matrix reinforcing components, particularly, the zinc component and the nickel component are alloyed with copper and a copper-tin alloy as main components to form a copper-tin-zinc alloy or a copper-tin-nickel alloy. This improves the strength, toughness and mechanical strength of the steel and contributes to the improvement of wear resistance.
上記した成分組成からなる焼結マトリックス体の空孔には、潤滑油が当該焼結マトリックス体の全容積に対して5〜30容積%の割合で含浸されている。 Lubricating oil is impregnated in the pores of the sintered matrix body having the above-described component composition at a ratio of 5 to 30% by volume with respect to the total volume of the sintered matrix body.
本発明の銅系含油焼結摺動部材は、次のようにして製造される。 The copper-based oil-impregnated sintered sliding member of the present invention is manufactured as follows.
(1)350メッシュの篩を通過するアトマイズ錫粉末0.5〜15重量%、200メッシュの篩を通過する無機リン酸塩0.5〜5重量%、ステアリン酸亜鉛などの滑材0.5重量%及び残部が150メッシュの篩を通過する電解銅粉末、(2)350メッシュを通過するアトマイズ錫粉末0.5〜15重量%、200〜350メッシュの篩を通過する亜鉛粉末、ニッケル粉末、鉄粉末、コバルト粉末、マンガン粉末、アルミニウム粉末、珪素粉末及び燐粉末から選択される少なくとも一種のマトリックス強化成分粉末0.1〜45重量%、滑材としてステアリン酸亜鉛0.5重量%並びに残部が150メッシュの篩を通過する電解銅粉末、をそれぞれV型ミキサーに投入し、30分間混合して混合粉末を得る。なお、ステアリン酸亜鉛は、後述する成形圧粉体を金型から取出す際の滑材としての役割を果たすものである。 (1) 0.5-15% by weight of atomized tin powder passing through a 350-mesh sieve, 0.5-5% by weight of inorganic phosphate passing through a 200-mesh sieve, and a lubricant 0.5 such as zinc stearate (2) 0.5 to 15% by weight of atomized tin powder passing through a 350 mesh, zinc powder passing through a 200 to 350 mesh sieve, nickel powder, At least one matrix reinforcing component powder selected from iron powder, cobalt powder, manganese powder, aluminum powder, silicon powder and phosphorus powder, 0.1 to 45% by weight, zinc stearate 0.5% by weight as a lubricant, and the balance Each of the electrolytic copper powders passing through a 150 mesh sieve is put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder. In addition, zinc stearate plays a role as a lubricant when taking out a green compact to be described later from a mold.
混合粉末を所望の形状の中空部を備えた金型の中空部に装填し、成形圧力1.5〜4トン/cm2(147〜392MPa)で成形して成形圧粉体を作製したのち、この成形圧粉体を中性又は還元性雰囲気に調整された焼結炉において、750〜900℃の温度で30〜120分間焼結する。得られた焼結体にサイジング加工などの機械加工を施して所望の焼結摺動部材を作製したのち、減圧下で含油処理を施して潤滑油を含浸し、焼結体の空孔に潤滑油が5〜30容積%の割合で含浸された銅系含油焼結摺動部材を作製する。 After the mixed powder is loaded into a hollow part of a mold having a hollow part of a desired shape and molded at a molding pressure of 1.5 to 4 ton / cm 2 (147 to 392 MPa), a molded green compact is produced. This molded green compact is sintered at a temperature of 750 to 900 ° C. for 30 to 120 minutes in a sintering furnace adjusted to a neutral or reducing atmosphere. The obtained sintered body is subjected to mechanical processing such as sizing to produce the desired sintered sliding member, and then subjected to oil impregnation under reduced pressure to impregnate the lubricating oil and lubricate the pores of the sintered body. A copper-based oil-containing sintered sliding member impregnated with 5 to 30% by volume of oil is produced.
以下、実施例により本発明を詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example, unless the summary is exceeded.
実施例1〜3
350メッシュの篩を通過するアトマイズ錫粉末9重量%と、無機リン酸塩として200メッシュの篩を通過するピロリン酸マグネシウム、ピロリン酸カルシウム、第三リン酸アルミニウムのいずれか一つの1.5重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュの篩を通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(錫9重量%、無機リン酸塩1.5重量%、ステアリン酸亜鉛0.5重量%、銅89.0重量%)。この混合粉末を、一辺の長さが30.5mm、深さが4.5mmの中空部を具備する金型の中空部に装填し、2トン/cm2の成形圧力で成形し、方形状の成形圧粉体を得た。この成形圧粉体を水素ガス雰囲気に調整した焼結炉において、780℃の温度で30分間焼結し、焼結体を得た。ついで、焼結体にサイジングを施し、一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Examples 1-3
9% by weight of atomized tin powder that passes through a 350 mesh sieve, and 1.5% by weight of any one of magnesium pyrophosphate, calcium pyrophosphate, and aluminum triphosphate that pass through a 200 mesh sieve as inorganic phosphate Then, 0.5% by weight of zinc stearate as a lubricant and electrolytic copper powder passing through a 150 mesh screen were put into a V-shaped mixer and mixed for 30 minutes to obtain a mixed powder (9% by weight of tin) Inorganic phosphate 1.5% by weight, zinc stearate 0.5% by weight, copper 89.0% by weight). This mixed powder is loaded into a hollow part of a mold having a hollow part with a side length of 30.5 mm and a depth of 4.5 mm, and molded at a molding pressure of 2 ton / cm 2 , A green compact was obtained. This molded green compact was sintered at a temperature of 780 ° C. for 30 minutes in a sintering furnace adjusted to a hydrogen gas atmosphere to obtain a sintered body. Next, sizing was performed on the sintered body to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm, and this was subjected to oil impregnation treatment under reduced pressure to obtain 12% by volume of lubricating oil (turbine oil). An impregnated copper-based oil-impregnated sintered sliding member was obtained.
実施例4〜5
350メッシュの篩を通過するアトマイズ錫粉末9重量%と、無機リン酸塩として200メッシュの篩を通過するピロリン酸マグネシウム1.5重量%と、240メッシュの篩を通過する還元鉄粉末4.5重量%又は250メッシュの篩を通過する粉砕マンガン粉末4.5重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(錫9重量%、無機リン酸塩1.5重量%、鉄又はマンガン4.5重量%、ステアリン酸亜鉛0.5重量%、銅84.5重量%)。この混合粉末を前記実施例と同様の金型の中空部に装填し、2トン/cm2の成形圧力で成形し、方形状の成形圧粉体を得た。この成形圧粉体を水素ガス雰囲気に調整した焼結炉において、780℃の温度で30分間焼結し、焼結体を得た。ついで、焼結体にサイジングを施し、一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Examples 4-5
9% by weight of atomized tin powder passing through a 350 mesh screen, 1.5% by weight of magnesium pyrophosphate passing through a 200 mesh screen as inorganic phosphate, and 4.5% reduced iron powder passing through a 240 mesh screen 4.5% by weight of pulverized manganese powder that passes through a sieve of 250% or 250 mesh, 0.5% by weight of zinc stearate as a lubricant, and electrolytic copper powder that passes through 150 mesh as a lubricant are put into a V-type mixer. And mixed for 30 minutes to obtain a mixed powder (tin 9% by weight, inorganic phosphate 1.5% by weight, iron or manganese 4.5% by weight, zinc stearate 0.5% by weight, copper 84.5% weight%). This mixed powder was loaded into a hollow part of a mold similar to that in the above example and molded at a molding pressure of 2 ton / cm 2 to obtain a square shaped green compact. This molded green compact was sintered at a temperature of 780 ° C. for 30 minutes in a sintering furnace adjusted to a hydrogen gas atmosphere to obtain a sintered body. Next, after sizing the sintered body to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm, this was subjected to oil impregnation treatment under reduced pressure to obtain 12 vol% lubricating oil (turbine oil). An impregnated copper-based oil-impregnated sintered sliding member was obtained.
実施例6
350メッシュを通過するアトマイズ錫粉末7重量%と、無機リン酸塩として200メッシュを通過するピロリン酸マグネシウム1.5重量%と、200メッシュを通過するアトマイズ銅−30%亜鉛合金粉末30重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(錫7重量%、無機リン酸塩1.5重量%、亜鉛9重量%、ステアリン酸亜鉛0.5重量%、銅82重量%)。この混合粉末を、上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Example 6
7% by weight of atomized tin powder passing through 350 mesh, 1.5% by weight of magnesium pyrophosphate passing through 200 mesh as inorganic phosphate, 30% by weight of atomized copper-30% zinc alloy powder passing through 200 mesh Then, 0.5% by weight of zinc stearate as a lubricant and electrolytic copper powder with the remainder passing through 150 mesh were put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder (7% by weight of tin, inorganic Phosphate 1.5% by weight, zinc 9% by weight, zinc stearate 0.5% by weight, copper 82% by weight). A sintered sliding member having a side of 30 mm and a thickness of 4 mm was obtained from this mixed powder in the same manner as in the above example, and then subjected to oil impregnation treatment under reduced pressure to obtain a 12 volume% lubricating oil (turbine A copper-based oil-impregnated sintered sliding member impregnated with (oil) was obtained.
実施例7
350メッシュを通過するアトマイズ錫粉末7重量%と、無機リン酸塩として200メッシュを通過するピロリン酸マグネシウム1.5重量%と、200メッシュを通過する銅−30%ニッケル合金粉末30重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(錫7重量%、無機リン酸塩1.5重量%、ニッケル9重量%、ステアリン酸亜鉛0.5重量%、銅82重量%)。この混合粉末を、一辺の長さが30.5mm、深さが4.5mmの中空部を具備する金型の中空部に装填し、2トン/cm2の成形圧力で成形し、方形状の成形圧粉体を得た。この成形圧粉体を水素ガス雰囲気に調整した焼結炉において、850℃の温度で60分間焼結し、焼結体を得た。以下、上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Example 7
7% by weight of atomized tin powder passing through 350 mesh, 1.5% by weight of magnesium pyrophosphate passing through 200 mesh as inorganic phosphate, 30% by weight of copper-30% nickel alloy powder passing through 200 mesh, As a lubricant, 0.5% by weight of zinc stearate and electrolytic copper powder with the remainder passing through 150 mesh were put into a V-shaped mixer and mixed for 30 minutes to obtain a mixed powder (7% by weight of tin, inorganic phosphorus Acid salt 1.5% by weight, nickel 9% by weight, zinc stearate 0.5% by weight, copper 82% by weight). This mixed powder is loaded into a hollow part of a mold having a hollow part with a side length of 30.5 mm and a depth of 4.5 mm, and molded at a molding pressure of 2 ton / cm 2 , A green compact was obtained. This molded green compact was sintered at a temperature of 850 ° C. for 60 minutes in a sintering furnace adjusted to a hydrogen gas atmosphere to obtain a sintered body. Hereinafter, after obtaining a sintered sliding member having a side of 30 mm and a thickness of 4 mm in the same manner as in the above-described embodiment, it was subjected to oil impregnation under reduced pressure, and 12 volume% of lubricating oil (turbine oil) was applied. An impregnated copper-based oil-impregnated sintered sliding member was obtained.
比較例1
350メッシュを通過するアトマイズ錫粉末9重量%と、平均粒径40μmの天然黒鉛粉末2重量%、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た。この混合粉末を、焼結温度780℃をもって上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、10容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Comparative Example 1
9% by weight of atomized tin powder passing through 350 mesh, 2% by weight of natural graphite powder having an average particle size of 40 μm, 0.5% by weight of zinc stearate as a lubricant, and electrolytic copper powder with the remainder passing through 150 mesh The mixture was put in a V-shaped mixer and mixed for 30 minutes to obtain a mixed powder. This mixed powder was sintered at 780 ° C. in the same manner as in the above example to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm. A copper-based oil-impregnated sintered sliding member impregnated with 100% lubricating oil (turbine oil) was obtained.
比較例2
350メッシュの篩を通過するアトマイズ錫粉末9重量%と、250メッシュの篩を通過する粉砕マンガン粉末6重量%と、平均粒径40μmの天然黒鉛粉末1重量%、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た。この混合粉末を、焼結温度780℃をもって上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、10容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Comparative Example 2
9% by weight of atomized tin powder passing through a 350 mesh screen, 6% by weight of pulverized manganese powder passing through a 250 mesh screen, 1% by weight of natural graphite powder having an average particle size of 40 μm, and zinc stearate as a lubricant. 5 wt% and the electrolytic copper powder with the remainder passing through 150 mesh were put into a V-shaped mixer and mixed for 30 minutes to obtain a mixed powder. This mixed powder was sintered at 780 ° C. in the same manner as in the above example to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm. A copper-based oil-impregnated sintered sliding member impregnated with 1% lubricating oil (turbine oil) was obtained.
比較例3
350メッシュを通過するアトマイズ錫粉末7重量%と、200メッシュを通過するアトマイズ銅−30%亜鉛合金粉末30重量%と、平均粒径40μmの天然黒鉛粉末2重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(錫7重量%、亜鉛9重量%、黒鉛2重量%、ステアリン酸亜鉛0.5重量%、銅81.5重量%)。この混合粉末を、焼結温度780℃をもって上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、14容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Comparative Example 3
7% by weight of atomized tin powder passing through 350 mesh, 30% by weight of atomized copper-30% zinc alloy powder passing through 200 mesh, 2% by weight of natural graphite powder having an average particle size of 40 μm, and zinc stearate as a lubricant 0.5 wt% and electrolytic copper powder with the remainder passing through 150 mesh were put into a V-shaped mixer and mixed for 30 minutes to obtain a mixed powder (7 wt% tin, 9 wt% zinc, 2 wt% graphite). %, Zinc stearate 0.5% by weight, copper 81.5% by weight). This mixed powder was sintered at 780 ° C. in the same manner as in the above example to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm. A copper-based oil-impregnated sintered sliding member impregnated with 100% lubricating oil (turbine oil) was obtained.
上記した実施例1〜3及び比較例1の銅系含油焼結摺動部材について、表1に示す試験条件によって摩擦摩耗特性の試験を行った。 The copper-based oil-impregnated sintered sliding members of Examples 1 to 3 and Comparative Example 1 described above were tested for friction and wear characteristics under the test conditions shown in Table 1.
(表1)
(摩擦摩耗試験1)
荷重(面圧) 1.96MPa(20kgf/cm2)
摺動速度 20m/min
試験時間 20時間
相手軸材 機械構造用炭素鋼(S45C)
運動形態 スラスト試験
(Table 1)
(Friction and wear test 1)
Load (surface pressure) 1.96 MPa (20 kgf / cm 2 )
Sliding speed 20m / min
Motion form Thrust test
上記した実施例4及び5の銅系含油焼結摺動部材及び比較例2の銅系含油焼結摺動部材について、表2に示す試験条件によって摩擦摩耗特性の試験を行った。 The above-described copper-based oil-impregnated sintered sliding member of Examples 4 and 5 and the copper-based oil-impregnated sintered sliding member of Comparative Example 2 were tested for friction and wear characteristics under the test conditions shown in Table 2.
(表2)
(摩擦摩耗試験2)
荷重(面圧) 4.9MPa(50kgf/cm2)
摺動速度 20m/min
試験時間 20時間
相手軸材 機械構造用炭素鋼(S45C)
運動形態 スラスト試験
(Table 2)
(Friction and wear test 2)
Load (surface pressure) 4.9 MPa (50 kgf / cm 2 )
Sliding speed 20m / min
Motion form Thrust test
上記した実施例6及び7の銅系含油焼結摺動部材及び比較例3の銅系含油焼結摺動部材について、表3に示す試験条件によって摩擦摩耗特性の試験を行った。 The above-described copper-based oil-impregnated sintered sliding member of Examples 6 and 7 and the copper-based oil-impregnated sintered sliding member of Comparative Example 3 were tested for friction and wear characteristics under the test conditions shown in Table 3.
(表3)
(摩擦摩耗試験3)
荷重(面圧) 14.7MPa(150kgf/cm2)
摺動速度 5m/min
試験時間 20時間
相手軸材 機械構造用炭素鋼(S45C)
運動形態 スラスト試験
(Table 3)
(Friction and wear test 3)
Load (surface pressure) 14.7 MPa (150 kgf / cm 2 )
Sliding speed 5m / min
Motion form Thrust test
表1の試験条件による試験時間と摩擦係数との関係の試験結果を図1に示し、表2の試験条件による試験時間と摩擦係数との関係の試験結果を図2に示し、表3の試験条件による試験時間と摩擦係数との関係の試験結果を図3に示し、試験後の実施例及び比較例の銅系含油焼結摺動部材の摩耗量を図4に示す。 The test results of the relationship between the test time and the friction coefficient under the test conditions in Table 1 are shown in FIG. 1, the test results of the relationship between the test time and the friction coefficient under the test conditions in Table 2 are shown in FIG. FIG. 3 shows the test results of the relationship between the test time and the friction coefficient according to conditions, and FIG. 4 shows the wear amount of the copper-based oil-impregnated sintered sliding members of the examples and comparative examples after the test.
試験結果から、黒鉛などの固体潤滑剤を含まない実施例1〜3の銅系含油焼結摺動部材は、摩擦係数及び摩耗量において、固体潤滑剤としての黒鉛を含有した比較例1の銅系含油焼結摺動部材と同等ないしそれ以上の摩擦摩耗特性を示し、実施例4〜5の銅系含油焼結摺動部材は、比較例2の銅系含油焼結摺動部材よりも摩擦係数及び摩耗量において優れており、実施例6〜7の銅系含油焼結摺動部材は、比較例3の銅系含油焼結摺動部材よりも摩擦係数及び摩耗量において優れていることがわかる。なお、図2における比較例2の銅系含油焼結摺動部材は、試験時間8時間で摩擦係数が急激に上昇したので試験を中止し、また図3における比較例3の銅系含油焼結摺動部材は、試験時間18時間で摩擦係数が急激に上昇したので試験を中止した。摩耗量はそれぞれ試験終了時の銅系含油焼結摺動部材の寸法変化量を示した。 From the test results, the copper-based oil-impregnated sintered sliding members of Examples 1 to 3 that do not contain a solid lubricant such as graphite are the copper of Comparative Example 1 containing graphite as a solid lubricant in terms of friction coefficient and wear amount. The copper-based oil-impregnated sintered sliding member of Examples 4 to 5 exhibits a frictional wear characteristic equivalent to or higher than that of the oil-based sintered sintered member. The copper-based oil-impregnated sintered sliding member of Examples 6 to 7 is superior in the coefficient of friction and the amount of wear than the copper-based oil-impregnated sintered sliding member of Comparative Example 3. Recognize. In addition, since the friction coefficient of the copper-based oil-impregnated sintered sliding member of Comparative Example 2 in FIG. 2 rapidly increased in the test time of 8 hours, the test was stopped, and the copper-based oil-impregnated sintered member of Comparative Example 3 in FIG. The sliding member was stopped from the test because the friction coefficient increased rapidly after 18 hours. The amount of wear indicates the amount of dimensional change of the copper-based oil-impregnated sintered sliding member at the end of the test.
実施例1〜7の銅系含油焼結摺動部材では、摩擦係数が摩擦初期においては高い値を示したが、試験時間の経過と共に低下し、非常に低い摩擦係数(0.01〜0.06)で安定した摺動を示した。これは、実施例1〜7の銅系含油焼結摺動部材の試験後の相手材表面に焼結マトリックス体に分散含有された無機リン酸塩の薄い被膜が形成されていることが確認され、この被膜を介しての摺動に移行したためと推察される。 In the copper-based oil-impregnated sintered sliding members of Examples 1 to 7, the friction coefficient showed a high value in the initial stage of friction, but it decreased with the lapse of the test time, and the friction coefficient was very low (0.01 to 0.00). 06) showed stable sliding. This confirms that a thin coating of inorganic phosphate dispersed and contained in the sintered matrix body is formed on the surface of the counterpart material after the tests of the copper-based oil-impregnated sintered sliding members of Examples 1 to 7. This is presumed to be due to the transition to sliding through this film.
以上のように、本発明の銅系含油焼結摺動部材は、黒鉛や二硫化モリブデンなどの固体潤滑剤を含有した銅系含油焼結摺動部材よりも優れた摩擦摩耗特性を発揮する。 As described above, the copper oil-impregnated sintered sliding member of the present invention exhibits friction and wear characteristics superior to those of a copper oil-impregnated sintered sliding member containing a solid lubricant such as graphite or molybdenum disulfide.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007142442A JP2008297361A (en) | 2007-05-29 | 2007-05-29 | Copper-based oil-impregnated sintered sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007142442A JP2008297361A (en) | 2007-05-29 | 2007-05-29 | Copper-based oil-impregnated sintered sliding member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008297361A true JP2008297361A (en) | 2008-12-11 |
Family
ID=40171177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007142442A Pending JP2008297361A (en) | 2007-05-29 | 2007-05-29 | Copper-based oil-impregnated sintered sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008297361A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105134845A (en) * | 2015-09-15 | 2015-12-09 | 北京天宜上佳新材料有限公司 | Brake pad without damaging disc |
CN105240406A (en) * | 2015-10-20 | 2016-01-13 | 江门市前通粉末冶金厂有限公司 | High-wear-resisting oil bearing with high rotation speed |
EP2647858A4 (en) * | 2010-11-29 | 2017-05-31 | Hyundai Steel Company | Sintered bearing and preparation method thereof |
-
2007
- 2007-05-29 JP JP2007142442A patent/JP2008297361A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2647858A4 (en) * | 2010-11-29 | 2017-05-31 | Hyundai Steel Company | Sintered bearing and preparation method thereof |
CN105134845A (en) * | 2015-09-15 | 2015-12-09 | 北京天宜上佳新材料有限公司 | Brake pad without damaging disc |
CN105240406A (en) * | 2015-10-20 | 2016-01-13 | 江门市前通粉末冶金厂有限公司 | High-wear-resisting oil bearing with high rotation speed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5783303B2 (en) | Copper-based sintered sliding member | |
JP5371182B2 (en) | Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy | |
JP2009079136A (en) | Copper-based, oil-impregnated and sintered sliding member | |
KR20080078537A (en) | Sintered oil-containing bearing and its manufacturing method | |
US20070231182A1 (en) | Low cost bronze powder for high performance bearings | |
JP4749260B2 (en) | Sintered oil-impregnated bearing | |
JP5367502B2 (en) | Iron-based sintered sliding member and manufacturing method thereof | |
CN109692951B (en) | Method for manufacturing powder metallurgy self-lubricating bearing | |
US9663844B2 (en) | Sintered alloy superior in wear resistance | |
JP5096130B2 (en) | Iron-based sintered alloy for sliding members | |
JP5496380B2 (en) | Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy | |
WO2016104067A1 (en) | Sintered bearing | |
JP2018048358A (en) | Copper-based sintered alloy oil retaining bearing | |
GB2333779A (en) | Composite metal powder for sintered bearing, and sintered oil-retaining bearing | |
JP3411353B2 (en) | Sliding material | |
JP2008297361A (en) | Copper-based oil-impregnated sintered sliding member | |
JPH07118777A (en) | Sliding member | |
JP4704108B2 (en) | Composite powder for powder metallurgy and method for producing the same | |
JP2009007433A (en) | Copper-based oil-containing sintered sliding member and method for producing the same | |
JP6819696B2 (en) | Iron-based sintered oil-impregnated bearing | |
JP6858807B2 (en) | Sintered bearing | |
JP2019065323A (en) | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing | |
JP2012162771A (en) | Iron-based sintered sliding member, and method for manufacturing the same | |
JP5424121B2 (en) | Sliding material | |
JPS6096702A (en) | Oil-containing sintered bearing and preparation thereof |