JP5496380B2 - Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy - Google Patents
Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy Download PDFInfo
- Publication number
- JP5496380B2 JP5496380B2 JP2013035293A JP2013035293A JP5496380B2 JP 5496380 B2 JP5496380 B2 JP 5496380B2 JP 2013035293 A JP2013035293 A JP 2013035293A JP 2013035293 A JP2013035293 A JP 2013035293A JP 5496380 B2 JP5496380 B2 JP 5496380B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- component composition
- powder
- phase
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010949 copper Substances 0.000 title claims description 156
- 229910052802 copper Inorganic materials 0.000 title claims description 113
- 229910045601 alloy Inorganic materials 0.000 title claims description 96
- 239000000956 alloy Substances 0.000 title claims description 96
- 229910018100 Ni-Sn Inorganic materials 0.000 title claims description 89
- 229910018532 Ni—Sn Inorganic materials 0.000 title claims description 89
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 86
- 239000000463 material Substances 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000203 mixture Substances 0.000 claims description 68
- 239000000843 powder Substances 0.000 claims description 34
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 30
- 239000012535 impurity Substances 0.000 claims description 29
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 28
- 229910052718 tin Inorganic materials 0.000 claims description 28
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 27
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 27
- 229910052759 nickel Inorganic materials 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 239000010439 graphite Substances 0.000 claims description 12
- 229910002804 graphite Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000011812 mixed powder Substances 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 6
- 229910002482 Cu–Ni Inorganic materials 0.000 claims description 5
- 229910017888 Cu—P Inorganic materials 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005299 abrasion Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- -1 (2) By mass% Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000009770 conventional sintering Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910003336 CuNi Inorganic materials 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NAKKFXYJBBFFPY-UHFFFAOYSA-L [F-].[Ca+2].[F-].[Ca+2] Chemical compound [F-].[Ca+2].[F-].[Ca+2] NAKKFXYJBBFFPY-UHFFFAOYSA-L 0.000 description 1
- CNLWYNYBIVOXBD-UHFFFAOYSA-N [Mo](=S)=S.[Mo](=S)=S Chemical compound [Mo](=S)=S.[Mo](=S)=S CNLWYNYBIVOXBD-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Description
この発明は、耐摩擦摩耗性に優れた軸受用Cu−Ni−Sn系銅基焼結合金とその製造方法およびその合金からなる軸受材に関するものである。 The present invention relates to a bearing Cu—Ni—Sn based copper-based sintered alloy having excellent friction and wear resistance, a method for producing the same, and a bearing material made of the alloy.
従来から軸受材としてCu−Ni−Sn系銅基焼結合金が使用されており、このCu−Ni−Sn系銅基焼結合金は特に高温環境下で耐摩擦摩耗性が優れているところから、例えば、高温環境下で耐摩擦摩耗性が要求されるEGR式内燃機関の再循環排ガス流量制御弁を作動させるステンレス鋼製往復動シャフトの軸受(例えば特許文献1参照)や内接式ギヤポンプのインナローターおよびアウタローター(例えば特許文献2参照)などに使用されている。
さらに、このCu−Ni−Sn系銅基焼結合金からなる軸受材の摩擦係数を下げて潤滑性を一層向上させるために、二硫化モリブデンなどの固体潤滑剤を添加することも知られており、Cu−Ni−Sn系銅基焼結合金の潤滑性を高めるために含まれる二硫化モリブデンの量は通常1〜5%である。
Conventionally, a Cu—Ni—Sn based copper-based sintered alloy has been used as a bearing material, and this Cu—Ni—Sn based copper-based sintered alloy is excellent in frictional wear resistance particularly in a high temperature environment. For example, a stainless steel reciprocating shaft bearing that operates a recirculation exhaust gas flow control valve of an EGR internal combustion engine that requires frictional wear resistance in a high temperature environment (see, for example, Patent Document 1) or an internal gear pump It is used for an inner rotor and an outer rotor (for example, refer to Patent Document 2).
Furthermore, it is also known to add a solid lubricant such as molybdenum disulfide in order to lower the coefficient of friction of the bearing material made of this Cu—Ni—Sn based copper-based sintered alloy and further improve the lubricity. The amount of molybdenum disulfide contained in order to improve the lubricity of the Cu—Ni—Sn based copper-based sintered alloy is usually 1 to 5%.
前述のように、前記Cu−Ni−Sn系銅基焼結合金は比較的Niを多量に含むので優れた強度、耐食性および耐摩擦摩耗性を有し、特に高温環境下において優れた耐摩擦摩耗性を有するが、さらに一層の耐摩擦摩耗が要求されていた。 As described above, the Cu-Ni-Sn based copper-based sintered alloy contains a relatively large amount of Ni and thus has excellent strength, corrosion resistance and friction wear resistance, and particularly excellent friction wear resistance in a high temperature environment. However, there has been a demand for further frictional wear.
そこで、本発明者らは、前記Cu−Ni−Sn系銅基焼結合金の耐摩擦摩耗性を一層向上させるべく研究を行った。その結果、所定の成分組成のCu−Ni合金粉末、Cu−Ni−Sn合金粉末、Sn粉末、あるいは、さらに、所定成分組成のCu−P合金粉末、黒鉛粉末、フッ化カルシウム粉末、二硫化モリブデン粉末、を用意し、これら原料粉末を所定の成分組成となるように配合し混合して混合粉末を作製し、この混合粉末を圧縮成形して得られた圧粉体を従来の焼結温度:700〜950℃よりも高い温度で焼結し、得られた焼結体をただちに従来の冷却速度(15℃/分以上)よりも緩やかな冷却速度:5〜10℃/分で徐冷することにより、Cu−Ni−Sn系銅基焼結合金の素地中に、少なくとも、Cu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を生成させることにより耐摩擦摩耗性が一層向上する、という研究結果が得られたのである。 Therefore, the present inventors have studied to further improve the friction and wear resistance of the Cu—Ni—Sn copper-based sintered alloy. As a result, Cu—Ni alloy powder, Cu—Ni—Sn alloy powder, Sn powder having a predetermined component composition, or Cu—P alloy powder, graphite powder, calcium fluoride powder, molybdenum disulfide having a predetermined component composition. A powder is prepared, these raw material powders are blended so as to have a predetermined component composition, and mixed to produce a mixed powder, and the green compact obtained by compression molding this mixed powder is subjected to conventional sintering temperature: Sintering at a temperature higher than 700 to 950 ° C., and immediately cooling the obtained sintered body at a slower cooling rate than the conventional cooling rate (15 ° C./min or more): 5 to 10 ° C./min Thus, at least Cu (4-xy) NixSny (x: 1.7 to 2.3, y: 0.2 to 1.) is contained in the base of the Cu—Ni—Sn based copper-based sintered alloy. 3) to produce a structure in which the phase of the component composition is dispersed. Is further improved abrasion wear resistance by, is the finding that were obtained.
この発明は、かかる研究結果に基づいてなされたものであって、
所定成分組成の原料粉末を所定の成分組成となるように配合した混合粉末を、従来の焼結温度:700〜950℃よりも高い温度で焼結し、得られた焼結体をただちに従来の冷却速度(15℃/分以上)よりも緩やかな冷却速度:5〜10℃/分で徐冷することにより、Ni、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金の素地中に、少なくとも、Cu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
より具体的にケース分けしていえば、以下のとおりである。
前記のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金は、質量%で、Ni:10〜40%、Sn:5〜25%を含有し、さらに必要に応じて、P:0.1〜0.9%および/またはC:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成を有するCu−Ni−Sn系銅基焼結合金であっても良い。前記必要に応じてP:0.1〜0.9%および/またはC:1〜10%を含むCu−Ni−Sn系銅基焼結合金の素地にはCu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相および/または黒鉛相が生成する。
したがって、この発明は、
(1)質量%で、Ni:10〜40%、Sn:5〜25%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(2)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相およびCu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金。
(3)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相および黒鉛相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(4)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相および黒鉛相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
The present invention has been made based on the results of such research,
A mixed powder prepared by mixing a raw material powder having a predetermined component composition so as to have a predetermined component composition is sintered at a temperature higher than a conventional sintering temperature: 700 to 950 ° C., and the obtained sintered body is immediately converted into a conventional powder. Cooling rate slower than the cooling rate (15 ° C./min or more): In the substrate of the Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu by slow cooling at 5 to 10 ° C./min And a structure in which a phase of a component composition consisting of at least Cu (4-xy) NixSny (x: 1.7 to 2.3, y: 0.2 to 1.3) is dispersed. It is characterized by a Cu—Ni—Sn based copper-based sintered alloy having excellent friction and wear resistance.
More specifically, the cases are as follows.
The Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu contains, by mass%, Ni: 10 to 40%, Sn: 5 to 25%, and if necessary, P : Cu-Ni-Sn based copper-based sintered alloy having a composition of 0.1 to 0.9% and / or C: 1 to 10% and the balance: Cu and inevitable impurities . Cu (4-z) Pz (provided that the base of the Cu—Ni—Sn based copper-based sintered alloy containing P: 0.1 to 0.9% and / or C: 1 to 10% as necessary is provided. , Z: 0.7 to 1.3), and / or a graphite phase having a component composition is formed.
Therefore, the present invention
(1) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) NixSny in the substrate (however, , X: 1.7 to 2.3, y: 0.2 to 1.3) having a structure in which a phase of a component composition is dispersed, a Cu—Ni—Sn based copper base having excellent frictional wear resistance Sintered alloy,
(2) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, the balance: component composition consisting of Cu and inevitable impurities, and in the substrate A phase of a component composition consisting of Cu (4-xy) NixSny (where x: 1.7 to 2.3, y: 0.2 to 1.3) and Cu (4-z) Pz (where z : Cu-Ni-Sn based copper-based sintered alloy having a structure in which a phase having a component composition of 0.7 to 1.3) is dispersed and having excellent frictional wear resistance.
(3) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4- xy) Friction and wear resistance having a structure in which a component phase composed of NixSny (x: 1.7 to 2.3, y: 0.2 to 1.3) and a graphite phase are dispersed. Excellent Cu-Ni-Sn copper-based sintered alloy,
(4) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, C: 1 to 10%, balance: Cu and inevitable impurities Component composition, as well as a phase of component composition comprising Cu (4-xy) NixSny (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, Cu (4- z) Cu—Ni—Sn based copper-based fired bond having excellent frictional wear resistance, having a composition having a component composition composed of Pz (where z is 0.7 to 1.3) and a structure in which a graphite phase is dispersed. It is characterized by gold.
また、前記(1)〜(4)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金に、さらに必要に応じて、フッ化カルシウム:0.3〜6%を含有しても良い。このフッ化カルシウムを含むCu−Ni−Sn系銅基焼結合金の素地中にはフッ化カルシウム相が分散している。したがって、この発明は、
(5)質量%で、Ni:10〜40%、Sn:5〜25%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相およびフッ化カルシウム相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(6)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相およびフッ化カルシウム相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(7)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相およびフッ化カルシウム相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(8)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、フッ化カルシウム:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相およびフッ化カルシウム相が分散している組織を有することを特徴とする耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
The Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu as described in (1) to (4) above further contains calcium fluoride: 0.3 to 6% as necessary. You may do it. The calcium fluoride phase is dispersed in the base of the Cu—Ni—Sn copper-based sintered alloy containing calcium fluoride. Therefore, the present invention
(5) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, calcium fluoride: 0.3 to 6%, the balance: component composition consisting of Cu and inevitable impurities, and in the substrate A structure in which a phase of a component composition composed of Cu (4-xy) NixSny (x: 1.7 to 2.3, y: 0.2 to 1.3) and a calcium fluoride phase are dispersed. Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance,
(6) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, calcium fluoride: 0.3-6%, the balance: Cu and A component composition composed of inevitable impurities, and a phase of a component composition composed of Cu (4-xy) NixSny (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate; Cu-Ni- having excellent friction and wear resistance, having a component composition phase composed of Cu (4-z) Pz (where z is 0.7 to 1.3) and a structure in which a calcium fluoride phase is dispersed. Sn-based copper-based sintered alloy,
(7) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, Calcium fluoride: 0.3 to 6%, balance: Cu and inevitable impurities The composition of the component, and the phase of the composition composed of Cu (4-xy) NixSny (where x: 1.7 to 2.3, y: 0.2 to 1.3), graphite phase and fluorine A Cu-Ni-Sn copper-based sintered alloy having a structure in which a calcium fluoride phase is dispersed and having excellent frictional wear resistance,
(8) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, C: 1-10%, calcium fluoride: 0.3-6% Contained, remainder: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) NixSny in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) Having a structure in which the phase of the component composition consisting of, the phase of the component composition consisting of Cu (4-z) Pz (where z is 0.7 to 1.3), the graphite phase and the calcium fluoride phase are dispersed. It is characterized by a Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance.
また、前記(1)〜(4)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金に、さらに必要に応じて、二硫化モリブデン:0.3〜6%を含有しても良い。この二硫化モリブデンを含むCu−Ni−Sn系銅基焼結合金の素地中には、二硫化モリブデン相が分散している。したがって、この発明は、
(9)質量%で、Ni:10〜40%、Sn:5〜25%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(10)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(11)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(12)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
Further, the Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu described in the above (1) to (4) further contains molybdenum disulfide: 0.3 to 6% as necessary. You may do it. The molybdenum disulfide phase is dispersed in the base of the Cu—Ni—Sn copper-based sintered alloy containing molybdenum disulfide. Therefore, the present invention
(9) In mass%, Ni: 10-40%, Sn: 5-25%, Molybdenum disulfide: 0.3-6%, the balance: component composition consisting of Cu and inevitable impurities, and in the substrate A structure in which a phase of a component composition composed of Cu (4-xy) NixSny (x: 1.7 to 2.3, y: 0.2 to 1.3) and a molybdenum disulfide phase are dispersed. Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance,
(10) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, molybdenum disulfide: 0.3-6%, the balance: Cu and A component composition composed of inevitable impurities, and a phase of a component composition composed of Cu (4-xy) NixSny (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate; Cu-Ni- excellent in frictional wear resistance having a structure in which a component composition phase composed of Cu (4-z) Pz (z: 0.7 to 1.3) and a molybdenum disulfide phase are dispersed. Sn-based copper-based sintered alloy,
(11) By mass%, Ni: 10 to 40%, Sn: 5 to 25%, C: 1 to 10%, Molybdenum disulfide: 0.3 to 6%, balance: Cu and inevitable impurities The composition of the composition, and the phase of the composition composed of Cu (4-xy) NixSny (x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate, the graphite phase, and the two A Cu—Ni—Sn based copper-based sintered alloy having a structure in which a molybdenum sulfide phase is dispersed and having excellent frictional wear resistance;
(12) By mass%, Ni: 10-40%, Sn: 5-25%, P: 0.1-0.9%, C: 1-10%, molybdenum disulfide: 0.3-6% Contained, remainder: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) NixSny in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) Having a structure in which a phase of a component composition composed of, a phase of a component composition composed of Cu (4-z) Pz (where z is 0.7 to 1.3), a graphite phase, and a molybdenum disulfide phase are dispersed. It is characterized by a Cu—Ni—Sn based copper-based sintered alloy having excellent friction and wear properties.
また、前記(1)〜(4)記載のNi、SnおよびCuを含むCu−Ni−Sn系銅基焼結合金に、さらに必要に応じて、フッ化カルシウム:0.3〜6%および二硫化モリブデン:0.3〜6%を含有しても良い。このフッ化カルシウムおよび二硫化モリブデンを含むCu−Ni−Sn系銅基焼結合金の素地中には、フッ化カルシウム相および二硫化モリブデン相が分散している。したがって、この発明は、
(13)質量%で、Ni:10〜40%、Sn:5〜25%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(14)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(15)質量%で、Ni:10〜40%、Sn:5〜25%、C:1〜10%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、黒鉛相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、
(16)質量%で、Ni:10〜40%、Sn:5〜25%、P:0.1〜0.9%、C:1〜10%、フッ化カルシウム:0.3〜6%、二硫化モリブデン:0.3〜6%を含有し、残部:Cuおよび不可避不純物からなる成分組成、並びに素地中にCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相、Cu(4−z)Pz(ただし、z:0.7〜1.3)からなる成分組成の相、黒鉛相、フッ化カルシウム相および二硫化モリブデン相が分散している組織を有する耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金、に特徴を有するものである。
In addition, the Cu—Ni—Sn based copper-based sintered alloy containing Ni, Sn and Cu described in the above (1) to (4) may be further added with calcium fluoride: 0.3 to 6% and 2 if necessary. Molybdenum sulfide: 0.3 to 6% may be contained. The calcium fluoride phase and the molybdenum disulfide phase are dispersed in the base of the Cu—Ni—Sn copper-based sintered alloy containing calcium fluoride and molybdenum disulfide. Therefore, the present invention
(13) By mass%, Ni: 10-40%, Sn: 5-25%, calcium fluoride: 0.3-6%, molybdenum disulfide: 0.3-6%, the balance: Cu and A component composition composed of inevitable impurities, and a phase of a component composition composed of Cu (4-xy) NixSny (where x: 1.7 to 2.3, y: 0.2 to 1.3) in the substrate; A Cu-Ni-Sn copper-based sintered alloy having a structure in which a calcium fluoride phase and a molybdenum disulfide phase are dispersed and having excellent frictional wear resistance,
(14) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, calcium fluoride: 0.3 to 6%, molybdenum disulfide: 0.3 Component composition consisting of Cu and inevitable impurities, and Cu (4-xy) NixSny (provided that x: 1.7 to 2.3, y: 0.2 to 1.3), a component composition phase consisting of Cu (4-z) Pz (where z: 0.7 to 1.3), a calcium fluoride phase and a molybdenum disulfide phase are dispersed. Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance,
(15) By mass%, Ni: 10-40%, Sn: 5-25%, C: 1-10%, calcium fluoride: 0.3-6%, molybdenum disulfide: 0.3-6% Contained, remainder: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) NixSny in the substrate (x: 1.7 to 2.3, y: 0.2 to 1.3) A Cu—Ni—Sn based copper-based sintered alloy excellent in frictional wear resistance having a structure in which a phase of a component composition comprising, a graphite phase, a calcium fluoride phase, and a molybdenum disulfide phase is dispersed;
(16) In mass%, Ni: 10 to 40%, Sn: 5 to 25%, P: 0.1 to 0.9%, C: 1 to 10%, calcium fluoride: 0.3 to 6%, Molybdenum disulfide: containing 0.3-6%, balance: component composition consisting of Cu and inevitable impurities, and Cu (4-xy) NixSny in the substrate (where x: 1.7-2.3) Y: 0.2 to 1.3) component composition phase, Cu (4-z) Pz (however, z: 0.7 to 1.3) component composition phase, graphite phase, fluorination It is characterized by a Cu—Ni—Sn based copper-based sintered alloy having a structure in which a calcium phase and a molybdenum disulfide phase are dispersed and having excellent frictional wear resistance.
前記(1)〜(16)記載のこの発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金を製造するには、原料粉末として、
Ni:5〜45質量%を含有し、残部がCuおよび不可避不純物からなる成分組成のCu−Ni合金粉末、
Ni:25〜60%、Sn:5〜60%を含有し、残部:Cuおよび不可避不純物からなる成分組成を有するCu−Ni−Sn合金粉末、
Sn粉末、
P:8質量%を含有し、残部がCuおよび不可避不純物からなる成分組成のCu−P合金粉末
黒鉛粉末、
フッ化カルシウム粉末
二硫化モリブデン粉末、
を用意し、これら原料粉末を前記(1)〜(16)記載の成分組成となるように配合し混合して混合粉末を作製し、この混合粉末を圧縮成形して得られた圧粉体を従来の焼結温度:700〜950℃よりも高い温度で焼結し、得られた焼結体をただちに従来の冷却速度(15℃/分以上)よりも緩やかな冷却速度:5〜10℃/分で徐冷することにより得られる。
このようにして得られた耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金は、素地に気孔率:5〜25%の割合で気孔が分散分布している。
In order to produce a Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance according to the present invention as described in (1) to (16) above,
Ni: Cu-Ni alloy powder having a composition of 5 to 45% by mass, the balance being Cu and inevitable impurities,
Cu: Ni-Sn alloy powder containing Ni: 25-60%, Sn: 5-60%, with the balance: Cu and inevitable impurities component composition,
Sn powder,
P: Cu-P alloy powder graphite powder having a component composition containing 8% by mass and the balance consisting of Cu and inevitable impurities,
Calcium fluoride powder molybdenum disulfide powder,
The raw material powder is blended and mixed so as to have the component composition described in the above (1) to (16) to prepare a mixed powder, and a green compact obtained by compression molding the mixed powder is obtained. Conventional sintering temperature: Sintered at a temperature higher than 700 to 950 ° C, and the obtained sintered body is immediately cooled more slowly than the conventional cooling rate (15 ° C / min or more): 5 to 10 ° C / It is obtained by slow cooling in minutes.
The Cu—Ni—Sn copper-based sintered alloy having excellent friction and wear resistance obtained as described above has pores dispersed and distributed in the base at a porosity of 5 to 25%.
つぎに、この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金の成分組成およびCu(4−x−y)NixSny(ただし、x:1.7〜2.3、y:0.2〜1.3)からなる成分組成の相におけるxおよびyを上記の通りに限定した理由を説明する。 Next, the component composition of the Cu—Ni—Sn-based copper-based sintered alloy having excellent frictional wear resistance according to the present invention and Cu (4-xy) NixSny (where x is 1.7 to 2.3, The reason why x and y in the phase of the component composition consisting of y: 0.2 to 1.3) are limited as described above will be described.
(A)成分組成の限定理由
(a)Ni
Niは高温環境下における強度、耐摩擦摩耗性を向上させる成分であるが、その含有量が10%未満では所望の効果が得られず、一方、40%を越えて含有すると高温環境下におけるシャフトとの摺動面間の抵抗が大きくなって摩耗が急速に増大するようになることから好ましくない。したがって、この発明のCu−Ni−Sn系銅基焼結合金に含まれるNi含有量を10〜40%と定めた。
(A) Reason for limitation of component composition (a) Ni
Ni is a component that improves the strength and frictional wear resistance in a high temperature environment, but if its content is less than 10%, the desired effect cannot be obtained, while if it exceeds 40%, the shaft in a high temperature environment is not obtained. Since the resistance between the sliding surfaces increases and the wear increases rapidly, this is not preferable. Therefore, the Ni content contained in the Cu—Ni—Sn copper-based sintered alloy of the present invention is determined to be 10 to 40%.
(b)Sn
Sn成分には、CuおよびNiと素地の固溶体を形成して、軸受の強度を向上させ、もって軸受の耐摩耗性向上に寄与する作用があるが、その含有量が5%未満では所望の強度向上効果が得られず、一方その含有量が25%を越えると相手材であるステンレス鋼・シャフトに対する攻撃性が急激に増大し、ステンレス鋼・シャフトの摩耗が促進されるようになることから、その含有量を5〜25%と定めた。
(B) Sn
The Sn component has the effect of forming a solid solution of Cu and Ni and the base to improve the strength of the bearing, thereby contributing to the improvement of the wear resistance of the bearing. However, if the content is less than 5%, the desired strength Since the improvement effect cannot be obtained, on the other hand, if its content exceeds 25%, the aggressiveness against the stainless steel / shaft which is the counterpart material will increase rapidly, and the wear of the stainless steel / shaft will be promoted. The content was determined to be 5 to 25%.
(c)P
P成分は、焼結時に焼結性を向上させ、もって素地の強度、すなわち軸受けの強度を向上させる作用があるので必要に応じて含有させるが、Pの含有量が0.1%未満では十分な焼結性を発揮させることができないことから十分な強度が得られないので好ましくなく、一方、0.9%を越えて含有させると、粒界部の強度が急激に低下するので焼結合金の強度がかえって低下するようになるので好ましくない。したがって、P成分の含有量を0.1〜0.9%に定めた。
(C) P
P component improves the sinterability at the time of sintering, and thus has the effect of improving the strength of the substrate, that is, the strength of the bearing. Therefore, the P component is included as necessary, but if the P content is less than 0.1%, it is sufficient Insufficient sinterability cannot be obtained, so that sufficient strength cannot be obtained, which is not preferable. On the other hand, when the content exceeds 0.9%, the strength of the grain boundary portion is drastically reduced, so that the sintered alloy Since the intensity | strength of it will come to fall on the contrary, it is unpreferable. Therefore, the content of the P component is set to 0.1 to 0.9%.
(d)C
C成分は、主体が素地に分散分布する遊離黒鉛として存在し、軸受の潤滑性を向上させ、もって軸受およびステンレス鋼・シャフトの耐摩耗性向上に寄与する作用をもつので必要に応じて添加するが、その含有量が1%未満では遊離黒鉛の分散分布割合が不十分で、所望のすぐれた潤滑性を確保することができず、一方その含有量が10%を越えると、軸受の強度が急激に低下し、摩耗が急激に進行するようになることから、その含有量を1〜10%と定めた。
(D) C
C component exists as free graphite whose main component is dispersed and distributed on the base, and improves the lubricity of the bearing, thereby contributing to the improvement of the wear resistance of the bearing and stainless steel / shaft. However, if the content is less than 1%, the dispersion distribution ratio of free graphite is insufficient, and the desired excellent lubricity cannot be ensured. On the other hand, if the content exceeds 10%, the strength of the bearing is reduced. The content was set to 1 to 10% because it rapidly decreased and the wear progressed rapidly.
(e)フッ化カルシウム
フッ化カルシウムは耐焼付き性を著しく向上させる作用があるので必要に応じて添加するが、その含有量が0.3%未満では所望の効果が得られず、一方、6%を越えて含有すると、強度が低下し、さらに強度、耐摩擦摩耗性が低下するようになるので好ましくない。したがって、フッ化カルシウムの含有量を0.3〜6%に定めた。
(E) Calcium fluoride Calcium fluoride has the effect of remarkably improving the seizure resistance and is added as necessary. However, if its content is less than 0.3%, the desired effect cannot be obtained. If the content exceeds 50%, the strength is lowered, and further, the strength and frictional wear resistance are lowered. Therefore, the content of calcium fluoride is set to 0.3 to 6%.
(f)二硫化モリブデン
二硫化モリブデンは耐焼付き性を向上させる作用があるので必要に応じて添加するが、その含有量が0.3%未満では所望の効果が得られず、一方、6%を越えて含有すると、強度が低下し、さらに強度、耐摩擦摩耗性が低下するようになるので好ましくない。したがって、二硫化モリブデンの含有量を0.3〜6%に定めた。
(F) Molybdenum disulfide Molybdenum disulfide has the effect of improving seizure resistance and is added as necessary. However, if its content is less than 0.3%, the desired effect cannot be obtained, while 6% If it exceeds V, the strength is lowered, and further, the strength and frictional wear resistance are lowered. Therefore, the content of molybdenum disulfide is set to 0.3 to 6%.
(B)Cu(4−x−y)NixSnyからなる相の限定理由
前記Cu(4−x−y)NixSnyからなる相においてxおよびyをそれぞれx:1.7〜2.3、y:0.2〜1.3と定めたのは、通常よりも高い温度:900〜1080℃で焼結し、通常よりも緩やかに冷却することにより素地中に高硬度のCuNi2Sn相が主として生成するが、すべて完全なCuNi2Sn相が生成することは少なく、Cu(4−x−y)NixSnyとすると、x:1.7〜2.3、y:0.2〜1.3の範囲内にある相となることがあり、かかるxおよびyを有する相であれば耐摩擦摩耗性が向上するからである。
(B) Reason for limitation of phase composed of Cu (4-xy) NixSny In the phase composed of Cu (4-xy) NixSny, x and y are x: 1.7 to 2.3 and y: 0, respectively. .2 to 1.3 is determined by sintering at a higher temperature than normal: 900 to 1080 ° C., and by cooling more slowly than usual, a highly hard CuNi 2 Sn phase is mainly formed in the substrate. However, it is unlikely that a complete CuNi 2 Sn phase is generated. When Cu (4-xy) NixSny is used, x is within the range of 1.7 to 2.3 and y is within the range of 0.2 to 1.3. This is because the friction and wear resistance of the phase having x and y is improved.
前記(1)〜(16)記載のこの発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金は、各種電気部品および機械部品の軸受材、特に含油軸受材として一層すぐれた耐摩擦摩耗性を発揮し、特に回転数の多いシャフトの軸受材として使用すると長寿命の軸受が得られるので有効である。 The Cu—Ni—Sn copper-based sintered alloy having excellent frictional wear resistance according to the present invention described in the above (1) to (16) is further excellent as a bearing material for various electric parts and machine parts, particularly as an oil-impregnated bearing material. In particular, it is effective when it is used as a bearing material for a shaft having a large number of rotations because it provides a long-life bearing.
この発明の耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金を実施例により具体的に説明する。原料粉末として、
平均粒径:150μm以下でNi:15〜42.5質量%を含有し、残部がCuおよび不可避不純物からなる成分組成のアトマイズCu−Ni粉末、
平均粒径:150μm以下でNi:25〜60%、Sn:5〜60%を含有し、残部:Cuおよび不可避不純物からなる成分組成を有するCu−Ni−Sn合金粉末、
平均粒径:20μmのアトマイズSn粉末、
平均粒径:150μm以下のCu−P合金(Cu−8.4%P共晶合金)粉末、平均粒径:20μmの黒鉛粉末、平均粒径:60μmのCaF2粉末、
平均粒径:150μm以下のMoS2粉末を用意した。
The Cu—Ni—Sn based copper-based sintered alloy having excellent frictional wear resistance according to the present invention will be specifically described with reference to examples. As raw material powder,
Average particle size: 150 μm or less, Ni: 15 to 42.5% by mass, the balance of which is an atomized Cu—Ni powder composed of Cu and inevitable impurities,
Cu—Ni—Sn alloy powder having an average particle size of 150 μm or less, Ni: 25 to 60%, Sn: 5 to 60%, and the balance: Cu and an inevitable impurity component composition,
Average particle size: 20 μm atomized Sn powder,
Average particle size: Cu-P alloy (Cu-8.4% P eutectic alloy) powder of 150 μm or less, Average particle size: 20 μm graphite powder, Average particle size: 60 μm CaF 2 powder,
MoS 2 powder having an average particle size of 150 μm or less was prepared.
先に用意したこれら原料粉末を表1〜2に示される最終成分組成となるように配合し、ステアリン酸を1%加えてV型混合機で20分間混合した後、プレス成形して圧粉体を作製し、この圧粉体をアンモニア分解ガス雰囲気中、温度:900〜1080℃の範囲内の所定の温度で焼結することによりいずれも外径:18mm×内径:8mm×高さ:8mmの寸法を有し、表1〜2に示される成分組成および気孔率を有する本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を作製した。
得られた上記の本発明Cu−Ni−Sn系銅基焼結合金1〜16からなるリング状試験片の内でも代表的なものをEPMAにより観察し、その観察して写生した組織を図1〜5に示した。図1は本発明Cu−Ni−Sn系銅基焼結合金1の組織の写生図であり、図2は本発明Cu−Ni−Sn系銅基焼結合金3の組織の写生図であり、図3は本発明Cu−Ni−Sn系銅基焼結合金4の組織の写生図であり、図4は本発明Cu−Ni−Sn系銅基焼結合金8の写生図であり、さらに図5は本発明Cu−Ni−Sn系銅基焼結合金16の写生図である。
These raw material powders prepared in advance are blended so as to have the final component composition shown in Tables 1 and 2, 1% of stearic acid is added and mixed for 20 minutes with a V-type mixer, then pressed and compacted. And sintering the green compact in an ammonia decomposition gas atmosphere at a predetermined temperature in the range of 900 to 1080 ° C., the outer diameter: 18 mm × inner diameter: 8 mm × height: 8 mm The present invention Cu-Ni-Sn-based copper-based sintered alloys 1-16 having comparative dimensions and porosity shown in Tables 1-2, Comparative Cu-Ni-Sn-based copper-based sintered alloys 1-16 8 and conventional Cu-Ni-Sn copper-based sintered alloys 1 to 3 were produced.
Among the obtained ring-shaped test pieces made of the above-described Cu-Ni-Sn copper-based sintered alloys 1 to 16 of the present invention, typical ones were observed with EPMA, and the observed and copied structures were shown in FIG. -5. FIG. 1 is a copy of the structure of the Cu—Ni—Sn copper-based sintered alloy 1 of the present invention, and FIG. 2 is a copy of the structure of the Cu—Ni—Sn copper-based sintered alloy 3 of the present invention. FIG. 3 is a copy of the structure of the Cu—Ni—Sn copper-based sintered alloy 4 of the present invention, and FIG. 4 is a copy of the Cu—Ni—Sn copper-based sintered alloy 8 of the present invention. 5 is a transcript of the Cu—Ni—Sn copper-based sintered alloy 16 of the present invention.
得られた上記の本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片に合成油を含浸せしめ、この合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を用いて下記の試験を行った。
圧壊試験:
合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を120℃に加熱制御し、この加熱制御されたリング状試験片に半径方向から荷重をかけ、リング状試験片が破壊したときの圧壊荷重を測定し、その結果を表1〜2に示すことにより強度及び靭性を評価した。
The obtained Cu-Ni-Sn-based copper-based sintered alloys 1-16 of the present invention, comparative Cu-Ni-Sn-based copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn-based copper-based sintered alloys 1 to 3 of the present invention were impregnated with a synthetic oil into a ring-shaped test piece consisting of 1 to 3, and the inventive Cu-Ni-Sn-based copper-based sintered alloys 1 to 16 were impregnated with this synthetic oil. The following test was performed using the ring-shaped test piece which consists of the gold | metal | money 1-8 and the conventional Cu-Ni-Sn type copper base sintered alloys 1-3.
Crush test:
Cu-Ni-Sn copper-based sintered alloys 1-16 of the present invention impregnated with synthetic oil, comparative Cu-Ni-Sn copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn copper-based sintered bonds A ring-shaped test piece made of gold 1 to 3 is heated to 120 ° C., a load is applied to the heat-controlled ring-shaped test piece from the radial direction, and the crushing load when the ring-shaped test piece breaks is measured, The strength and toughness were evaluated by showing the results in Tables 1-2.
耐摩耗性試験:
合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片にSUS304の6S仕上げのシャフトを挿入し、本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片の半径方向(シャフトの軸方向に対して直角方向)に荷重:0.2MPaを前記リング状試験片の外側からかけながら前記リング状試験片を120℃になるように加熱制御し、前記シャフトを50m/minで30分間回転させる試験を実施し、試験後の試験片の内径の最大摩耗深さを測定し、その結果を表1〜2に示すことにより強度、耐摩擦摩耗性を評価した。
Abrasion resistance test:
Cu-Ni-Sn copper-based sintered alloys 1-16 of the present invention impregnated with synthetic oil, comparative Cu-Ni-Sn copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn copper-based sintered bonds Insert a SUS304 6S-finished shaft into a ring-shaped test piece made of gold 1-3, and the present invention Cu-Ni-Sn copper-based sintered alloy 1-16, comparative Cu-Ni-Sn copper-based sintered alloy 1 to 8 and a ring-shaped test piece made of a conventional Cu—Ni—Sn based copper-based sintered alloy 1 to 3 in the radial direction (perpendicular to the axial direction of the shaft) with a load of 0.2 MPa. The ring-shaped test piece is heated and controlled to reach 120 ° C. while being applied from the outside of the piece, and a test is performed in which the shaft is rotated at 50 m / min for 30 minutes, and the maximum wear depth of the inner diameter of the test piece after the test is performed. And the results are shown in Tables 1-2 It was evaluated more strength, the abrasion wear resistance.
耐焼付き性試験:
合成油を含浸せしめた本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片にSUS304の6S仕上げのシャフトを挿入し、本発明Cu−Ni−Sn系銅基焼結合金1〜16、比較Cu−Ni−Sn系銅基焼結合金1〜8および従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片を温度:120℃に保持し、リング状試験片の半径方向(シャフトの軸方向に対して直角方向)に荷重をかけながら前記シャフトを50m/minで30分間回転させ、前記荷重を段階的に増加させ、焼付きが発生したときの荷重を焼付き荷重として測定し、その結果を表1〜2に示すことにより耐焼付き性を評価した。
Seizure resistance test:
Cu-Ni-Sn copper-based sintered alloys 1-16 of the present invention impregnated with synthetic oil, comparative Cu-Ni-Sn copper-based sintered alloys 1-8, and conventional Cu-Ni-Sn copper-based sintered bonds Insert a SUS304 6S-finished shaft into a ring-shaped test piece made of gold 1-3, and the present invention Cu-Ni-Sn copper-based sintered alloy 1-16, comparative Cu-Ni-Sn copper-based sintered alloy A ring-shaped test piece consisting of 1 to 8 and a conventional Cu—Ni—Sn-based copper-based sintered alloy 1 to 3 is held at a temperature of 120 ° C., and the radial direction of the ring-shaped test piece (perpendicular to the axial direction of the shaft) The shaft is rotated at 50 m / min for 30 minutes while applying a load in the direction), the load is increased stepwise, and the load when seizure occurs is measured as a seizure load. The seizure resistance was evaluated by showing in 2.
表1〜2に示される結果から、本発明Cu−Ni−Sn系銅基焼結合金1〜16からなるリング状試験片はいずれも従来Cu−Ni−Sn系銅基焼結合金1〜3からなるリング状試験片に比べて最大摩耗深さが小さいことから優れた耐摩擦摩耗性を有することが分かる。しかし、この発明の範囲から外れた成分組成を有する比較Cu−Ni−Sn系銅基焼結合金1〜8からなるリング状試験片は高強度、耐摩擦摩耗性、耐焼付き性のうちの少なくともいずれかの特性が劣ることが分かる。
From the results shown in Tables 1-2, all of the ring-shaped test pieces made of the Cu-Ni-Sn-based copper-based sintered alloys 1-16 of the present invention are the conventional Cu-Ni-Sn-based copper-based sintered alloys 1-3. It can be seen that the frictional wear resistance is excellent because the maximum wear depth is smaller than that of the ring-shaped test piece. However, the ring-shaped test piece comprising the comparative Cu—Ni—Sn based copper-based sintered alloys 1 to 8 having a component composition outside the scope of the present invention has at least one of high strength, friction wear resistance, and seizure resistance. It turns out that either characteristic is inferior.
Claims (5)
The bearing material which consists of a Cu-Ni-Sn type | system | group copper base sintered alloy excellent in the friction-and-wear resistance of Claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013035293A JP5496380B2 (en) | 2013-02-26 | 2013-02-26 | Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013035293A JP5496380B2 (en) | 2013-02-26 | 2013-02-26 | Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006176255A Division JP5371182B2 (en) | 2006-06-27 | 2006-06-27 | Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013144849A JP2013144849A (en) | 2013-07-25 |
JP5496380B2 true JP5496380B2 (en) | 2014-05-21 |
Family
ID=49040790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013035293A Active JP5496380B2 (en) | 2013-02-26 | 2013-02-26 | Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5496380B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6440297B2 (en) | 2014-09-04 | 2018-12-19 | 株式会社ダイヤメット | Cu-based sintered bearing |
JP6468766B2 (en) * | 2014-09-11 | 2019-02-13 | 株式会社ダイヤメット | Sintered sliding material with excellent corrosion resistance, heat resistance and wear resistance, and method for producing the same |
JP6428180B2 (en) * | 2014-11-13 | 2018-11-28 | 株式会社村田製作所 | Oil-impregnated bearing manufacturing method, oil-impregnated bearing |
JP6620391B2 (en) | 2016-03-04 | 2019-12-18 | 株式会社ダイヤメット | Cu-based sintered sliding material and manufacturing method thereof |
JP6769007B2 (en) * | 2017-06-29 | 2020-10-14 | 株式会社ダイヤメット | Sintered bearings for motor fuel pumps and their manufacturing methods |
JP7057830B2 (en) * | 2018-08-02 | 2022-04-20 | 日産自動車株式会社 | Sliding members and internal combustion engine members |
-
2013
- 2013-02-26 JP JP2013035293A patent/JP5496380B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013144849A (en) | 2013-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5371182B2 (en) | Cu-Ni-Sn based copper-based sintered alloy having excellent friction and wear resistance and bearing material made of the alloy | |
JP5496380B2 (en) | Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy | |
JP6119830B2 (en) | Method for producing Cu-based sintered oil-impregnated bearing | |
JP5684977B2 (en) | Cu-based sintered sliding member | |
JP4507766B2 (en) | Sintered Cu alloy bearing for recirculation exhaust gas flow control valve of EGR type internal combustion engine showing high strength and excellent wear resistance in high temperature environment | |
JP6052336B2 (en) | Manufacturing method of sintered bearing for motor type fuel pump excellent in corrosion resistance, wear resistance and conformability | |
EP2918693B1 (en) | Sintered alloy superior in wear resistance | |
JP5386373B2 (en) | Method for producing sintered copper alloy sliding material and sintered copper alloy sliding material | |
WO2016035880A1 (en) | Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING | |
JP5337884B2 (en) | Sintered sliding member | |
JP2010533756A (en) | Lead-free sintered lubricating material and sintered powder for its production | |
JP6523682B2 (en) | Sintered bearing | |
JP2009079136A (en) | Copper-based, oil-impregnated and sintered sliding member | |
KR101717347B1 (en) | Copper based sintered alloy with wear resistance | |
JP6620391B2 (en) | Cu-based sintered sliding material and manufacturing method thereof | |
JP2008007795A (en) | Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY FOR BEARING HAVING EXCELLENT CORROSION RESISTANCE, FRICTION-WEAR RESISTANCE AND SEIZURE RESISTANCE | |
JP5566394B2 (en) | Bearing material | |
JP2007270254A (en) | Bearing superior in strength, friction and abrasion resistance and seizure resistance for starter of four-wheel vehicle | |
JP2008007794A (en) | BEARING MADE OF Cu-Ni-Sn SERIES COPPER BASED SINTERED ALLOY FOR ELECTRONIC CONTROL TYPE THROTTLE | |
JP5424121B2 (en) | Sliding material | |
JP2005179692A (en) | Copper alloy sintered sliding material | |
JPH0364426A (en) | Sintered copper alloy for heavy-load sliding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5496380 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |