JP2009079136A - Copper-based, oil-impregnated and sintered sliding member - Google Patents

Copper-based, oil-impregnated and sintered sliding member Download PDF

Info

Publication number
JP2009079136A
JP2009079136A JP2007249765A JP2007249765A JP2009079136A JP 2009079136 A JP2009079136 A JP 2009079136A JP 2007249765 A JP2007249765 A JP 2007249765A JP 2007249765 A JP2007249765 A JP 2007249765A JP 2009079136 A JP2009079136 A JP 2009079136A
Authority
JP
Japan
Prior art keywords
copper
weight
impregnated
sintered
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007249765A
Other languages
Japanese (ja)
Inventor
Yusuke Oda
裕介 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2007249765A priority Critical patent/JP2009079136A/en
Publication of JP2009079136A publication Critical patent/JP2009079136A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based, oil-impregnated and sintered sliding member exhibiting excellent frictional abrasion characteristics even on without using a solid lubricant such as graphite, molybdenum disulfide, etc. <P>SOLUTION: This copper-based, oil-impregnated and sintered sliding member comprises 0.5 to 10 wt.% of inorganic phosphate dispersed in a sintered matrix consisting of 0.5 to 15 wt.% of tin, 0.1 to 45 wt.% of at least one selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus, and the rest of copper, and also a lubricant oil impregnated in its vacant holes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銅系含油焼結摺動部材、詳しくは黒鉛や二硫化モリブデン等の固体潤滑剤を使用しないでも摩擦摩耗特性に優れる銅系含油焼結摺動部材に関する。   The present invention relates to a copper-based oil-impregnated sintered sliding member, and more particularly to a copper-based oil-impregnated sintered sliding member having excellent frictional wear characteristics without using a solid lubricant such as graphite or molybdenum disulfide.

日本工業規格JISZ2550(液体潤滑剤を含浸した軸受用材料)Japanese Industrial Standard JISZ2550 (bearing material impregnated with liquid lubricant) 特開昭55−134147号公報JP-A-55-134147 特公昭60−46161号公報Japanese Examined Patent Publication No. 60-46161

一般に、含油焼結軸受は、多孔質金属焼結マトリックス体の空孔(気孔)に潤滑油を含浸させたものからなり、代表的な含油焼結軸受は、JIS規格にも規定されている錫(Sn)9〜11重量%と黒鉛(Gr)0.5〜2.0重量%、その他2重量%以下、残部銅(Cu)とからなるものが知られている(非特許文献1所載)。また、黒鉛に代わる固体潤滑剤として二硫化モリブデンを含有した銅系含油焼結軸受も提案されている(特許文献1所載)。   In general, oil-impregnated sintered bearings are made by impregnating the pores (pores) of a porous metal sintered matrix with lubricating oil, and typical oil-impregnated sintered bearings are tins defined in JIS standards. (Sn) 9 to 11% by weight, graphite (Gr) 0.5 to 2.0% by weight, other 2% by weight or less, and remaining copper (Cu) are known (Non-Patent Document 1 publication) ). In addition, a copper-based oil-impregnated sintered bearing containing molybdenum disulfide as a solid lubricant in place of graphite has also been proposed (Patent Document 1).

固体潤滑剤として二硫化モリブデン(MoS)を使用し、これを金属粉末と共に混合して成形し焼結する方法では、700℃を超える焼結温度で、焼結中にモリブデン(Mo)と硫黄(S)とに熱分解し、二硫化モリブデンが本来具有する層状構造による潤滑性が低下するという問題がある。この問題を解決する方法として、二硫化モリブデンの表面を銅等で被覆した被銅二硫化モリブデンを用いる試みも提案されているが、被銅二硫化モリブデンの粉末は高価であるという問題がある。また、他の解決方法として、燐(P)を配合することにより焼結温度を下げる試みも提案されているが、燐の配合は、金属焼結マトリックス体に脆い燐化合物の生成を余儀なくし、金属焼結マトリックス体の強度低下を惹起したり、摺動性能を低下させるなどの問題がある。 In the method of using molybdenum disulfide (MoS 2 ) as a solid lubricant, mixing it with metal powder, forming and sintering, molybdenum (Mo) and sulfur during sintering at a sintering temperature exceeding 700 ° C. There is a problem that the lubricity due to the layered structure inherent to molybdenum disulfide is reduced due to thermal decomposition into (S). As a method for solving this problem, there has been proposed an attempt to use copper-coated molybdenum disulfide whose surface is coated with copper or the like, but there is a problem that the powder of copper-coated molybdenum disulfide is expensive. As another solution, an attempt to lower the sintering temperature by adding phosphorus (P) has also been proposed. However, the addition of phosphorus necessitates the formation of a brittle phosphorus compound in the sintered metal matrix, There are problems such as causing a decrease in strength of the sintered metal matrix and reducing sliding performance.

本発明は、上記諸点に鑑みてなされたものであり、その目的とするところは、黒鉛や二硫化モリブデン等の固体潤滑剤を使用しないでも優れた摩擦摩耗特性を発揮する銅系含油焼結摺動部材を提供することにある。   The present invention has been made in view of the above points, and its object is to provide a copper-based oil-impregnated sintered slide that exhibits excellent frictional wear characteristics without using a solid lubricant such as graphite or molybdenum disulfide. It is to provide a moving member.

本発明の銅系含油焼結摺動部材は、錫0.5〜15重量%と、亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐から選択される少なくとも一種0.1〜45重量%と、残部銅とからなる焼結マトリックス体に無機リン酸塩が0.5〜10重量%の割合で分散含有されていると共にその空孔に潤滑油が含浸されていることを特徴とする。   The copper-based oil-impregnated sintered sliding member of the present invention is 0.5 to 15% by weight of tin and 0.1 to 45% by weight selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus. % And the remaining copper is dispersed and contained in a ratio of 0.5 to 10% by weight, and the pores are impregnated with lubricating oil. .

本発明の銅系含油焼結摺動部材によれば、銅を主成分とする焼結マトリックス体に分散含有された無機リン酸塩の作用により、該銅系含油焼結摺動部材と相手材との摺動において相手材表面に焼結マトリックス体に分散含有された無機リン酸塩の薄い被膜が形成され、摺動がこの被膜を介して行われる結果、空孔に含浸された潤滑油であって摺動面間に介在することになる潤滑油と相俟って優れた摩擦摩耗特性を発揮する。焼結によって得られる摺動部材ではその摺動面に完全な液体潤滑被膜は形成され難く金属接触を伴う境界潤滑であるから、相手材表面に被膜が形成されることはかじり又は焼付きを生じ難くする。   According to the copper-based oil-impregnated sintered sliding member of the present invention, the copper-based oil-impregnated sintered sliding member and the counterpart material are obtained by the action of the inorganic phosphate dispersed in the sintered matrix body mainly composed of copper. As a result of forming a thin coating of inorganic phosphate dispersed and contained in the sintered matrix body on the surface of the mating material and sliding through this coating, the lubricating oil impregnated in the pores is used. Therefore, it exhibits excellent friction and wear characteristics in combination with the lubricating oil interposed between the sliding surfaces. In a sliding member obtained by sintering, it is difficult to form a complete liquid lubricant film on the sliding surface, and it is boundary lubrication with metal contact. Therefore, the formation of a film on the surface of the counterpart material causes galling or seizure. Make it difficult.

本発明では、無機リン酸塩の好ましい例として、ピロリン酸マグネシウム、ピロリン酸カルシウム及び第三リン酸アルミニウムの少なくとも一つが選択され、焼結マトリックス体に0.5〜10重量%の割合で分散含有されているとよい。   In the present invention, as a preferred example of the inorganic phosphate, at least one of magnesium pyrophosphate, calcium pyrophosphate and trialuminum phosphate is selected and dispersed and contained in the sintered matrix body at a ratio of 0.5 to 10% by weight. It is good to have.

焼結マトリックス体としては、錫0.5〜15重量%と、強化元素として亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐から選択される少なくとも一種0.1〜45重量%と、残部銅とからなる。これら亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐は、錫と銅とからなる銅系焼結マトリックス体を強度、靭性、機械的強度及び耐摩耗性に関して強化する作用を発揮する。   As the sintered matrix body, 0.5 to 15 wt% tin, and 0.1 to 45 wt% at least one selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus as reinforcing elements, It consists of the balance copper. These zinc, nickel, iron, cobalt, manganese, aluminum, silicon, and phosphorus exert an effect of strengthening a copper-based sintered matrix body composed of tin and copper with respect to strength, toughness, mechanical strength, and wear resistance.

焼結マトリックス体の空孔には、好ましくは、当該焼結マトリックス体の全容積に対して潤滑油が5〜30容積%の割合で含浸されている。   The pores of the sintered matrix body are preferably impregnated with a lubricating oil at a ratio of 5 to 30% by volume with respect to the total volume of the sintered matrix body.

本発明によれば、銅を主成分とする焼結マトリックス体に無機リン酸塩が分散含有されていると共にその空孔に潤滑油が含浸された銅系含油焼結摺動部材と相手材との摺動において、相手材表面に焼結マトリックス体に分散含有された無機リン酸塩の薄い被膜を形成でき、この被膜を介しての摺動に移行できる結果、空孔に含浸された潤滑油であって摺動面間に介在する潤滑油と相俟って優れた摩擦摩耗特性を発揮する銅系含油焼結摺動部材を提供することができる。   According to the present invention, the copper-based oil-impregnated sintered sliding member, in which the inorganic phosphate is dispersed and contained in the sintered matrix body mainly composed of copper and the pores are impregnated with the lubricating oil, and the counterpart material In this sliding, a thin film of inorganic phosphate dispersed and contained in the sintered matrix body can be formed on the surface of the counterpart material, and as a result of being able to move to sliding through this film, the lubricating oil impregnated in the pores Thus, it is possible to provide a copper-based oil-impregnated sintered sliding member that exhibits excellent friction and wear characteristics in combination with the lubricating oil interposed between the sliding surfaces.

本発明の銅系含油焼結摺動部材は、錫0.5〜15重量%と、亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐から選択される少なくとも一種0.1〜45重量%と、残部銅とからなる焼結マトリックス体に無機リン酸塩が0.5〜10重量%の割合で分散含有されていると共にその空孔に潤滑油が含浸されてなる。   The copper-based oil-impregnated sintered sliding member of the present invention is 0.5 to 15% by weight of tin and 0.1 to 45% by weight selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus. % And the remaining copper is dispersed in a proportion of 0.5 to 10% by weight, and the pores are impregnated with lubricating oil.

斯かる銅系含油焼結摺動部材において、好ましい例では、銅を主成分とする焼結マトリックス体に分散含有される無機リン酸塩としては、ピロリン酸マグネシウム(Mg)、ピロリン酸カルシウム(Ca)及び第三リン酸アルミニウム(AlPO)の少なくとも一つが選択されて使用される。 In such a copper-based oil-impregnated sintered sliding member, in a preferred example, as an inorganic phosphate dispersedly contained in a sintered matrix body mainly composed of copper, magnesium pyrophosphate (Mg 2 P 2 O 7 ), At least one of calcium pyrophosphate (Ca 2 P 2 O 7 ) and tribasic aluminum phosphate (Al 3 PO 4 ) is selected and used.

これら無機リン酸塩は、それ自体は黒鉛や二硫化モリブデンのような固体潤滑作用を示す物質ではないが、銅を主成分とする焼結マトリックス体に分散含有されることにより、相手材(軸)との摺動において、相手材表面に移着して薄い被膜を形成し、この被膜を介しての摺動に移行させることになり、摺動面間に介在する潤滑油と相俟って、焼結摺動部材に優れた摩擦摩耗特性を発揮させることができる。   These inorganic phosphates are not themselves substances having solid lubricating action such as graphite and molybdenum disulfide, but are dispersed and contained in a sintered matrix body mainly composed of copper, so ) To form a thin film that is transferred to the surface of the mating material, and to move to the sliding through this film, coupled with the lubricating oil interposed between the sliding surfaces. The sintered sliding member can exhibit excellent friction and wear characteristics.

無機リン酸塩の焼結マトリックス体に分散含有される割合は、0.5〜10重量%であるとよい。0.5重量%未満では、上記作用が充分発揮されず、また10重量%を超えると焼結マトリックス体の強度、靭性、機械的強度及び耐摩耗性に関しての強度低下をきたす。   The proportion of the inorganic phosphate dispersed in the sintered matrix body is preferably 0.5 to 10% by weight. If the amount is less than 0.5% by weight, the above-described effect is not sufficiently exhibited. If the amount exceeds 10% by weight, the strength, toughness, mechanical strength and wear resistance of the sintered matrix body are lowered.

焼結マトリックス体としては、錫0.5〜15重量%と、強化元素として亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐から選択される少なくとも一種0.1〜45重量%と、残部銅とからなる。   As the sintered matrix body, 0.5 to 15 wt% tin, and 0.1 to 45 wt% at least one selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus as reinforcing elements, It consists of the balance copper.

焼結マトリックス体中の錫成分は、主成分をなす銅成分と合金化して銅−錫合金を形成し、焼結マトリックス体の地の強度、靭性、機械的強度及び耐摩耗性の向上に寄与する。錫成分はその配合量が0.5重量%未満では上述した効果が充分発揮されず、また15重量%を超えて配合すると焼結性に悪影響を及ぼす。錫成分は、銅成分に対し錫成分単体で配合してもよいが、例えば銅−20%錫合金の形態で配合してもよい。 The tin component in the sintered matrix body is alloyed with the copper component, which is the main component, to form a copper-tin alloy, contributing to the improvement of the strength, toughness, mechanical strength and wear resistance of the sintered matrix body. To do. If the amount of tin component is less than 0.5% by weight, the above-described effects are not sufficiently exhibited, and if the amount exceeds 15% by weight, the sinterability is adversely affected. Although a tin component may be mix | blended with a tin component single-piece | unit with respect to a copper component, you may mix | blend, for example with the form of a copper-20% tin alloy.

焼結マトリックス体は、亜鉛成分、ニッケル成分、鉄成分、コバルト成分、マンガン成分、アルミニウム成分、珪素成分及び燐成分から選択される少なくとも一種のマトリックス強化成分を0.1〜45重量%含有している。マトリックス強化成分の配合量が0.1重量%未満では、マトリックス体の強度、靭性、機械的強度及び耐摩耗性の強化には充分でなく、また45重量%超えて配合するとマトリックス体の硬度が高くなり過ぎて摺動部材として使用するには不適当となる。   The sintered matrix body contains 0.1 to 45% by weight of at least one matrix reinforcing component selected from zinc component, nickel component, iron component, cobalt component, manganese component, aluminum component, silicon component and phosphorus component. Yes. If the blending amount of the matrix reinforcing component is less than 0.1% by weight, it is not sufficient to enhance the strength, toughness, mechanical strength and wear resistance of the matrix body. It becomes too high to be used as a sliding member.

これらマトリックス強化成分の亜鉛成分、ニッケル成分、鉄成分、コバルト成分、マンガン成分、アルミニウム成分、珪素成分及び燐成分は、各成分単体で配合してもよいが、銅と各成分との合金、例えば銅−30%亜鉛合金、銅−30%ニッケル合金、銅−35%マンガン合金、銅−8%燐合金などの形態で配合してもよい。   These matrix reinforcing components such as zinc component, nickel component, iron component, cobalt component, manganese component, aluminum component, silicon component and phosphorus component may be blended with each component alone, but an alloy of copper and each component, for example, You may mix | blend with forms, such as a copper-30% zinc alloy, a copper-30% nickel alloy, a copper-35% manganese alloy, and a copper-8% phosphorus alloy.

上記マトリックス強化成分の中でも、とくに亜鉛成分及びニッケル成分は、主成分をなす銅及び銅−錫合金と合金化して銅−錫−亜鉛合金あるいは銅−錫−ニッケル合金を形成し、マトリックス体の地の強度、靭性及び機械的強度を向上させると共に耐摩耗性の向上に寄与する。   Among the matrix reinforcing components, particularly, the zinc component and the nickel component are alloyed with copper and a copper-tin alloy as main components to form a copper-tin-zinc alloy or a copper-tin-nickel alloy. This improves the strength, toughness and mechanical strength of the steel and contributes to the improvement of wear resistance.

上記した成分組成からなる焼結マトリックス体の空孔には、潤滑油が当該焼結マトリックス体の全容積に対して5〜30容積%の割合で含浸されている。   Lubricating oil is impregnated in the pores of the sintered matrix body having the above-described component composition at a ratio of 5 to 30% by volume with respect to the total volume of the sintered matrix body.

本発明の銅系含油焼結摺動部材は、次のようにして製造される。   The copper-based oil-impregnated sintered sliding member of the present invention is manufactured as follows.

250メッシュの篩を通過するアトマイズ錫粉末0.5〜15重量%、200〜350メッシュの篩を通過する亜鉛粉末、ニッケル粉末、鉄粉末、コバルト粉末、マンガン粉末、アルミニウム粉末、珪素粉末及び燐粉末から選択される少なくとも一種のマトリックス強化成分粉末0.1〜45重量%、残部が150メッシュの篩を通過する電解銅粉末、200メッシュの篩を通過する無機リン酸塩0.5〜10重量%、滑材としてステアリン酸亜鉛0.5重量%をそれぞれV型ミキサーに投入し、30分間混合して混合粉末を得る。なお、ステアリン酸亜鉛は、後述する成形圧粉体を金型から取出す際の滑材としての役割を果たすものである。   Atomized tin powder passing through a 250 mesh sieve 0.5 to 15% by weight, zinc powder passing through a 200 to 350 mesh sieve, nickel powder, iron powder, cobalt powder, manganese powder, aluminum powder, silicon powder and phosphorus powder 0.1 to 45% by weight of at least one matrix reinforcing component powder selected from: electrolytic copper powder with the remainder passing through a 150 mesh sieve, inorganic phosphate 0.5 to 10% by weight passing through a 200 mesh sieve Then, 0.5% by weight of zinc stearate as a lubricant is put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder. In addition, zinc stearate plays a role as a lubricant when taking out a green compact to be described later from a mold.

混合粉末を所望の形状の中空部を備えた金型の中空部に装填し、成形圧力1.5〜4トン/cm(147〜392MPa)で成形して成形圧粉体を作製したのち、この成形圧粉体を中性又は還元性雰囲気に調整された焼結炉において、750〜900℃の温度で30〜120分間焼結する。得られた焼結体にサイジング加工などの機械加工を施して所望の焼結摺動部材を作製したのち、減圧下で含油処理を施して潤滑油を含浸し、焼結体の空孔に潤滑油が5〜30容積%の割合で含浸された銅系含油焼結摺動部材を作製する。 After the mixed powder is loaded into a hollow part of a mold having a hollow part of a desired shape and molded at a molding pressure of 1.5 to 4 ton / cm 2 (147 to 392 MPa), a molded green compact is produced. This molded green compact is sintered at a temperature of 750 to 900 ° C. for 30 to 120 minutes in a sintering furnace adjusted to a neutral or reducing atmosphere. The obtained sintered body is subjected to mechanical processing such as sizing to produce the desired sintered sliding member, and then subjected to oil impregnation under reduced pressure to impregnate the lubricating oil and lubricate the pores of the sintered body. A copper-based oil-containing sintered sliding member impregnated with 5 to 30% by volume of oil is produced.

以下、実施例により本発明を詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1〜3
250メッシュの篩を通過するアトマイズ錫粉末9重量%と、無機リン酸塩として200メッシュの篩を通過するピロリン酸マグネシウム1.5〜5重量%と、240メッシュの篩を通過する還元鉄粉末4.5重量%、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュの篩を通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(実施例1:錫9重量%、ピロリン酸マグネシウム1.5重量%、鉄4.5重量%、ステアリン酸亜鉛0.5重量%、銅84.5重量%、実施例2:錫9重量%、ピロリン酸マグネシウム3重量%、鉄4.5重量%、ステアリン酸亜鉛0.5重量%、銅83重量%、実施例3:錫9重量%、ピロリン酸マグネシウム5重量%、鉄4.5重量%、ステアリン酸亜鉛0.5重量%、銅81重量%、)。これらの混合粉末を一辺の長さが30.5mm、深さが4.5mmの中空部を具備する金型の中空部に装填し、2トン/cmの成形圧力で成形し、方形状の成形圧粉体を得た。この成形圧粉体を水素ガス雰囲気に調整した焼結炉において、780℃の温度で30分間焼結し、焼結体を得た。ついで、焼結体にサイジングを施し、一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Examples 1-3
9% by weight of atomized tin powder passing through a 250 mesh screen, 1.5-5% by weight of magnesium pyrophosphate passing through a 200 mesh screen as inorganic phosphate, and reduced iron powder 4 passing through a 240 mesh screen 0.5% by weight, zinc stearate 0.5% by weight as a lubricant, and electrolytic copper powder passing through a 150 mesh sieve are put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder ( Example 1: 9% by weight of tin, 1.5% by weight of magnesium pyrophosphate, 4.5% by weight of iron, 0.5% by weight of zinc stearate, 84.5% by weight of copper, Example 2: 9% by weight of tin, Magnesium pyrophosphate 3 wt%, iron 4.5 wt%, zinc stearate 0.5 wt%, copper 83 wt%, Example 3: tin 9 wt%, magnesium pyrophosphate 5 wt%, iron 4.5 wt% Zinc stearate 0. Wt%, copper 81 wt%,). These mixed powders are loaded into a hollow part of a mold having a hollow part with a side length of 30.5 mm and a depth of 4.5 mm, and molded at a molding pressure of 2 ton / cm 2 . A green compact was obtained. This molded green compact was sintered at a temperature of 780 ° C. for 30 minutes in a sintering furnace adjusted to a hydrogen gas atmosphere to obtain a sintered body. Next, sizing was performed on the sintered body to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm, and this was subjected to oil impregnation treatment under reduced pressure to obtain 12% by volume of lubricating oil (turbine oil). An impregnated copper-based oil-impregnated sintered sliding member was obtained.

実施例4〜6
250メッシュの篩を通過するアトマイズ錫粉末9重量%と、無機リン酸塩として200メッシュの篩を通過するピロリン酸カルシウム又は第三リン酸アルミニウム1.5〜5重量%と、250メッシュの篩を通過する粉砕マンガン粉末4.5重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュを通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(実施例4:錫9重量%、ピロリン酸カルシウム1.5重量%、マンガン4.5重量%、ステアリン酸亜鉛0.5重量%、銅84.5重量%、実施例5:錫9重量%、ピロリン酸カルシウム3重量%、マンガン4.5重量%、ステアリン酸亜鉛0.5重量%、銅83重量%、実施例6:錫9重量%、ピロリン酸カルシウム5重量%、マンガン4.5重量%、ステアリン酸亜鉛0.5重量%、銅81重量%、)。これらの混合粉末を前記実施例と同様の金型の中空部に装填し、2トン/cmの成形圧力で成形し、方形状の成形圧粉体を得た。この成形圧粉体を水素ガス雰囲気に調整した焼結炉において、780℃の温度で30分間焼結し、焼結体を得た。ついで、焼結体にサイジングを施し、一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Examples 4-6
9% by weight of atomized tin powder passing through a 250 mesh screen, 1.5-5% by weight of calcium pyrophosphate or trialuminum phosphate passing through a 200 mesh screen as inorganic phosphate, and passing through a 250 mesh screen 4.5% by weight of pulverized manganese powder, 0.5% by weight of zinc stearate as a lubricant, and electrolytic copper powder with the remainder passing through 150 mesh are put into a V-type mixer, mixed for 30 minutes, and mixed powder (Example 4: tin 9% by weight, calcium pyrophosphate 1.5% by weight, manganese 4.5% by weight, zinc stearate 0.5% by weight, copper 84.5% by weight, Example 5: tin 9 % By weight, calcium pyrophosphate 3% by weight, manganese 4.5% by weight, zinc stearate 0.5% by weight, copper 83% by weight, Example 6: tin 9% by weight, calcium pyrophosphate 5% by weight, Cancer 4.5 wt%, 0.5 wt% of zinc stearate, copper 81 wt%,). These mixed powders were loaded into a hollow part of a mold similar to that in the above-described example, and molded at a molding pressure of 2 ton / cm 2 to obtain a square molded green compact. This molded green compact was sintered at a temperature of 780 ° C. for 30 minutes in a sintering furnace adjusted to a hydrogen gas atmosphere to obtain a sintered body. Next, sizing was performed on the sintered body to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm, and this was subjected to oil impregnation treatment under reduced pressure to obtain 12% by volume of lubricating oil (turbine oil). An impregnated copper-based oil-impregnated sintered sliding member was obtained.

実施例7〜10
250メッシュの篩を通過するアトマイズ錫粉末5重量%と、200メッシュの篩を通過する銅−30%ニッケル合金粉末50重量%又は200メッシュの篩を通過する銅−30%ニッケル合金粉末50重量%と、残部が150メッシュの篩を通過する電解銅粉末と、無機リン酸塩として200メッシュの篩を通過するピロリン酸マグネシウム1.5〜7重量%と、滑材としてステアリン酸亜鉛0.5重量%とをV型ミキサーに投入し、30分間混合して混合粉末を得た(実施例7:錫5重量%、亜鉛15重量%、ピロリン酸マグネシウム1.5重量%、ステアリン酸亜鉛0.5重量%、銅78.0重量%、実施例8:錫5重量%、ニッケル15重量%、ピロリン酸マグネシウム3重量%、ステアリン酸亜鉛0.5重量%、銅76.5重量%、実施例9:錫5重量%、ニッケル15重量%、ピロリン酸マグネシウム5重量%、ステアリン酸亜鉛0.5重量%、銅74.5重量%、実施例10:錫5重量%、ニッケル15重量%、ピロリン酸マグネシウム7重量%、ステアリン酸亜鉛0.5重量%、銅72.5重量%)。これらの混合粉末を、一辺の長さが30.5mm、深さが4.5mmの中空部を具備する金型の中空部に装填し、3.5トン/cmの成形圧力で成形し、方形状の成形圧粉体を得た。この成形圧粉体を水素ガス雰囲気に調整した焼結炉において、910℃の温度で60分間焼結し、焼結体を得た。ついで、焼結体にサイジングを施し、一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、12容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Examples 7-10
5% by weight of atomized tin powder passing through a 250 mesh screen and 50% by weight of copper-30% nickel alloy powder passing through a 200 mesh screen or 50% by weight of copper-30% nickel alloy powder passing through a 200 mesh screen And electrolytic copper powder with the remainder passing through a 150 mesh sieve, magnesium pyrophosphate 1.5-7% by weight passing through a 200 mesh sieve as an inorganic phosphate, and zinc stearate 0.5 weight as a lubricant % Was added to a V-shaped mixer and mixed for 30 minutes to obtain a mixed powder (Example 7: tin 5% by weight, zinc 15% by weight, magnesium pyrophosphate 1.5% by weight, zinc stearate 0.5% % By weight, copper 78.0% by weight, Example 8: tin 5% by weight, nickel 15% by weight, magnesium pyrophosphate 3% by weight, zinc stearate 0.5% by weight, copper 76.5% by weight Example 9: 5% by weight of tin, 15% by weight of nickel, 5% by weight of magnesium pyrophosphate, 0.5% by weight of zinc stearate, 74.5% by weight of copper, Example 10: 5% by weight of tin, 15% by weight of nickel , Magnesium pyrophosphate 7% by weight, zinc stearate 0.5% by weight, copper 72.5% by weight). These mixed powders were loaded into a hollow part of a mold having a hollow part with a side length of 30.5 mm and a depth of 4.5 mm, and molded at a molding pressure of 3.5 ton / cm 2 . A square shaped green compact was obtained. This molded green compact was sintered at a temperature of 910 ° C. for 60 minutes in a sintering furnace adjusted to a hydrogen gas atmosphere to obtain a sintered body. Next, sizing was performed on the sintered body to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm, and this was subjected to oil impregnation treatment under reduced pressure to obtain 12% by volume of lubricating oil (turbine oil). An impregnated copper-based oil-impregnated sintered sliding member was obtained.

比較例1
250メッシュの篩を通過するアトマイズ錫粉末9重量%と、250メッシュの篩を通過する粉砕マンガン粉末6重量%と、平均粒径40μmの天然黒鉛粉末1重量%、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュの篩を通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た。この混合粉末を、焼結温度780℃をもって上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、10容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Comparative Example 1
9% by weight of atomized tin powder passing through a 250 mesh sieve, 6% by weight of pulverized manganese powder passing through a 250 mesh sieve, 1% by weight of natural graphite powder having an average particle size of 40 μm, and zinc stearate as a lubricant. 5 wt% and the electrolytic copper powder passing through a 150 mesh sieve are put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder. This mixed powder was sintered at 780 ° C. in the same manner as in the above example to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm. A copper-based oil-impregnated sintered sliding member impregnated with 100% lubricating oil (turbine oil) was obtained.

比較例2
250メッシュの篩を通過するアトマイズ錫粉末7重量%と、200メッシュの篩を通過するアトマイズ銅−30%亜鉛合金粉末30重量%と、平均粒径40μmの天然黒鉛粉末2重量%と、滑材としてステアリン酸亜鉛0.5重量%と、残部が150メッシュの篩を通過する電解銅粉末とをV型ミキサーに投入し、30分間混合して混合粉末を得た(錫7重量%、亜鉛9重量%、黒鉛2重量%、ステアリン酸亜鉛0.5重量%、銅81.5重量%)。この混合粉末を、焼結温度780℃をもって上記実施例と同様の方法で一辺が30mm、厚さが4mmの焼結摺動部材を得たのち、これに減圧下で含油処理を施し、14容積%の潤滑油(タービン油)を含浸した銅系含油焼結摺動部材を得た。
Comparative Example 2
7% by weight of atomized tin powder passing through a 250 mesh screen, 30% by weight of atomized copper-30% zinc alloy powder passing through a 200 mesh screen, 2% by weight of natural graphite powder having an average particle size of 40 μm, and a lubricant As an example, 0.5 wt% of zinc stearate and electrolytic copper powder passing through a 150 mesh screen are put into a V-type mixer and mixed for 30 minutes to obtain a mixed powder (7 wt% tin, 9 zinc) Weight%, graphite 2 weight%, zinc stearate 0.5 weight%, copper 81.5 weight%). This mixed powder was sintered at 780 ° C. in the same manner as in the above example to obtain a sintered sliding member having a side of 30 mm and a thickness of 4 mm. A copper-based oil-impregnated sintered sliding member impregnated with 100% lubricating oil (turbine oil) was obtained.

上記した実施例1〜6及び比較例1の銅系含油焼結摺動部材について、表1に示す試験条件によって摩擦摩耗特性の試験を行った。   For the copper-based oil-impregnated sintered sliding members of Examples 1 to 6 and Comparative Example 1 described above, the friction and wear characteristics were tested under the test conditions shown in Table 1.

Figure 2009079136
Figure 2009079136

上記した実施例7〜10の銅系含油焼結摺動部材及び比較例2の銅系含油焼結摺動部材について、表2に示す試験条件によって摩擦摩耗特性の試験を行った。   The above-described copper-based oil-impregnated sintered sliding members of Examples 7 to 10 and the copper-based oil-impregnated sintered sliding member of Comparative Example 2 were tested for friction and wear characteristics under the test conditions shown in Table 2.

Figure 2009079136
Figure 2009079136

表1の試験条件による試験結果を表3に示し、表2の試験条件による試験結果を表4に示す。   The test results under the test conditions in Table 1 are shown in Table 3, and the test results under the test conditions in Table 2 are shown in Table 4.

Figure 2009079136
Figure 2009079136

表3中の摩擦係数の値は、摺動後の安定域における摩擦係数の値を示し、摩耗量(μm)は試験時間20時間後の銅系含油焼結摺動部材の寸法変化量を示した。なお、比較例1の銅系含油焼結摺動部材は、試験時間8時間で摩擦係数が急激に上昇したので試験を中止し、摩耗量は試験終了時の銅系含油焼結摺動部材の寸法変化量を示した。   The value of the friction coefficient in Table 3 indicates the value of the friction coefficient in the stable region after sliding, and the amount of wear (μm) indicates the dimensional change of the copper-based oil-impregnated sintered sliding member after 20 hours of the test time. It was. In addition, since the friction coefficient of the copper-based oil-impregnated sintered sliding member of Comparative Example 1 rapidly increased in the test time of 8 hours, the test was stopped, and the wear amount of the copper-based oil-impregnated sintered sliding member at the end of the test The dimensional change was shown.

Figure 2009079136
Figure 2009079136

表4中の摩擦係数の値は、摺動後の安定域における摩擦係数の値を示しし、摩耗量(μm)は試験時間20時間後の銅系含油焼結摺動部材の寸法変化量を示した。なお、表4中の比較例2の銅系含油焼結摺動部材は、試験時間18時間で摩擦係数が急激に上昇したので試験を中止し、摩耗量は試験終了時の銅系含油焼結摺動部材の寸法変化量を示した。   The coefficient of friction in Table 4 indicates the value of the coefficient of friction in the stable region after sliding, and the amount of wear (μm) indicates the dimensional change of the copper-based oil-impregnated sintered sliding member after 20 hours of test time. Indicated. Note that the friction coefficient of the copper-based oil-impregnated sintered sliding member of Comparative Example 2 in Table 4 suddenly increased after 18 hours in the test time, so the test was stopped, and the wear amount was the copper-based oil-impregnated sintered at the end of the test. The dimensional change amount of the sliding member is shown.

試験結果から、黒鉛などの固体潤滑剤を含まない実施例1〜10の銅系含油焼結摺動部材は、摩擦係数及び摩耗量において、固体潤滑剤としての黒鉛を含有した比較例1及び比較例2の銅系含油焼結摺動部材より優れた摺動特性を示した。実施例1〜10の銅系含油焼結摺動部材では、摩擦係数が摺動初期においては若干高い値を示したが、試験時間の経過と共に低下し、安定域では、非常に低い摩擦係数(0.02〜0.06)を示した。これは、実施例1〜10の銅系含油焼結摺動部材の試験後の相手材表面に焼結マトリックス体に分散含有された無機リン酸塩の薄い被膜が形成されていることが確認され、この被膜を介しての摺動に移行したためと推察される。   From the test results, the copper-based oil-impregnated sintered sliding members of Examples 1 to 10 that do not contain a solid lubricant such as graphite were compared with Comparative Example 1 and Comparative Example 1 containing graphite as a solid lubricant in terms of friction coefficient and wear amount. The sliding characteristics superior to those of the copper-based oil-impregnated sintered sliding member of Example 2 were exhibited. In the copper-based oil-impregnated sintered sliding members of Examples 1 to 10, the friction coefficient showed a slightly high value at the beginning of sliding, but decreased with the lapse of the test time, and in the stable region, the friction coefficient (very low) 0.02 to 0.06). This confirms that a thin film of inorganic phosphate dispersed and contained in the sintered matrix body is formed on the surface of the counterpart material after the tests of the copper-based oil-impregnated sintered sliding members of Examples 1 to 10. This is presumed to be due to the transition to sliding through this film.

以上のように、本発明の銅系含油焼結摺動部材は、黒鉛や二硫化モリブデンなどの固体潤滑剤を含有した銅系含油焼結摺動部材よりも優れた摺動特性を発揮する。   As described above, the copper-based oil-impregnated sintered sliding member of the present invention exhibits sliding characteristics superior to those of the copper-based oil-impregnated sintered sliding member containing a solid lubricant such as graphite or molybdenum disulfide.

Claims (3)

錫0.5〜15重量%と、亜鉛、ニッケル、鉄、コバルト、マンガン、アルミニウム、珪素及び燐から選択される少なくとも一種0.1〜45重量%と、残部銅とからなる焼結マトリックス体に無機リン酸塩が0.5〜10重量%の割合で分散含有されていると共にその空孔に潤滑油が含浸されていることを特徴とする銅系含油焼結摺動部材。   A sintered matrix body comprising 0.5 to 15% by weight of tin, 0.1 to 45% by weight of at least one selected from zinc, nickel, iron, cobalt, manganese, aluminum, silicon and phosphorus, and the balance copper A copper-based oil-impregnated sintered sliding member, wherein inorganic phosphate is dispersed and contained at a ratio of 0.5 to 10% by weight and the pores are impregnated with lubricating oil. 無機リン酸塩として、ピロリン酸マグネシウム、ピロリン酸カルシウム及び第三リン酸アルミニウムの少なくとも一つが分散含有されている請求項1に記載の銅系含油焼結摺動部材。   The copper-based oil-impregnated sintered sliding member according to claim 1, wherein at least one of magnesium pyrophosphate, calcium pyrophosphate, and tertiary aluminum phosphate is dispersedly contained as the inorganic phosphate. 潤滑油は、焼結マトリックス体の空孔に、当該焼結マトリックス体の全容積に対して5〜30容積%含浸されている請求項1又は2に記載の銅系含油焼結摺動部材。   The copper-based oil-impregnated sintered sliding member according to claim 1 or 2, wherein the lubricating oil is impregnated in the pores of the sintered matrix body in an amount of 5 to 30% by volume with respect to the total volume of the sintered matrix body.
JP2007249765A 2007-09-26 2007-09-26 Copper-based, oil-impregnated and sintered sliding member Pending JP2009079136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249765A JP2009079136A (en) 2007-09-26 2007-09-26 Copper-based, oil-impregnated and sintered sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249765A JP2009079136A (en) 2007-09-26 2007-09-26 Copper-based, oil-impregnated and sintered sliding member

Publications (1)

Publication Number Publication Date
JP2009079136A true JP2009079136A (en) 2009-04-16

Family

ID=40654146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249765A Pending JP2009079136A (en) 2007-09-26 2007-09-26 Copper-based, oil-impregnated and sintered sliding member

Country Status (1)

Country Link
JP (1) JP2009079136A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147139A1 (en) * 2009-06-18 2010-12-23 株式会社ダイヤメット Sintered slider material and process for manufacture thereof
WO2012127995A1 (en) * 2011-03-18 2012-09-27 Ntn株式会社 Constant-velocity universal joint
JP2012197810A (en) * 2011-03-18 2012-10-18 Ntn Corp Constant-velocity universal joint
JP2013124762A (en) * 2011-12-16 2013-06-24 Ntn Corp Constant-velocity universal joint
WO2014081748A1 (en) * 2012-11-20 2014-05-30 Federal-Mogul Corporation High strength low friction engineered material for bearings and other applications
WO2014205915A1 (en) * 2013-06-26 2014-12-31 浙江长盛滑动轴承股份有限公司 Metal matrix self-lubricating composite and manufacturing method therefor
JP2020516788A (en) * 2017-03-20 2020-06-11 マテリオン コーポレイション Couplings for well pump components
US11459832B2 (en) 2014-06-05 2022-10-04 Materion Corporation Couplings for well pumping components

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147139A1 (en) * 2009-06-18 2010-12-23 株式会社ダイヤメット Sintered slider material and process for manufacture thereof
WO2012127995A1 (en) * 2011-03-18 2012-09-27 Ntn株式会社 Constant-velocity universal joint
JP2012197810A (en) * 2011-03-18 2012-10-18 Ntn Corp Constant-velocity universal joint
CN103429922A (en) * 2011-03-18 2013-12-04 Ntn株式会社 Constant-velocity universal joint
US9133886B2 (en) 2011-03-18 2015-09-15 Ntn Corporation Constant velocity universal joint
JP2013124762A (en) * 2011-12-16 2013-06-24 Ntn Corp Constant-velocity universal joint
US9366290B2 (en) 2012-11-20 2016-06-14 Federal-Mogul Corporation High strength low friction engineered material for bearings and other applications
WO2014081748A1 (en) * 2012-11-20 2014-05-30 Federal-Mogul Corporation High strength low friction engineered material for bearings and other applications
WO2014205915A1 (en) * 2013-06-26 2014-12-31 浙江长盛滑动轴承股份有限公司 Metal matrix self-lubricating composite and manufacturing method therefor
US9835199B2 (en) 2013-06-26 2017-12-05 Zhejiang Changsheng Sliding Bearings Co., Ltd. Metal matrix self-lubricating composite and manufacturing method therefor
US11459832B2 (en) 2014-06-05 2022-10-04 Materion Corporation Couplings for well pumping components
JP2020516788A (en) * 2017-03-20 2020-06-11 マテリオン コーポレイション Couplings for well pump components
JP7021248B2 (en) 2017-03-20 2022-02-16 マテリオン コーポレイション Coupling for well pump components

Similar Documents

Publication Publication Date Title
JP5783303B2 (en) Copper-based sintered sliding member
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
US20090311129A1 (en) Abrasion resistant sintered copper base cu-ni-sn alloy and bearing made from the same
JP5378530B2 (en) Sliding bearing with improved wear resistance and method for manufacturing the same
KR20080078537A (en) Sintered oil-containing bearing and its manufacturing method
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
US20070231182A1 (en) Low cost bronze powder for high performance bearings
JP5096130B2 (en) Iron-based sintered alloy for sliding members
EP2918693B1 (en) Sintered alloy superior in wear resistance
CN109692951B (en) Method for manufacturing powder metallurgy self-lubricating bearing
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP2008019929A (en) Oil-impregnated sintered bearing
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member
JP4704108B2 (en) Composite powder for powder metallurgy and method for producing the same
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP6858807B2 (en) Sintered bearing
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same
WO2019130566A1 (en) Sintered bearing and manufacturing method therefor
JP5424121B2 (en) Sliding material
JP2004270760A (en) Sliding material
JPH0128096B2 (en)