JP6819696B2 - Iron-based sintered oil-impregnated bearing - Google Patents

Iron-based sintered oil-impregnated bearing Download PDF

Info

Publication number
JP6819696B2
JP6819696B2 JP2018553563A JP2018553563A JP6819696B2 JP 6819696 B2 JP6819696 B2 JP 6819696B2 JP 2018553563 A JP2018553563 A JP 2018553563A JP 2018553563 A JP2018553563 A JP 2018553563A JP 6819696 B2 JP6819696 B2 JP 6819696B2
Authority
JP
Japan
Prior art keywords
iron
based sintered
bearing
phase
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018553563A
Other languages
Japanese (ja)
Other versions
JPWO2018100660A1 (en
Inventor
亮一 宮崎
亮一 宮崎
英昭 河田
英昭 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2018100660A1 publication Critical patent/JPWO2018100660A1/en
Application granted granted Critical
Publication of JP6819696B2 publication Critical patent/JP6819696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、軸の外周面を支持する軸受面を有する鉄系焼結含油軸受に関する。 The present invention relates to an iron-based sintered oil-impregnated bearing having a bearing surface that supports the outer peripheral surface of the shaft.

軸の外周面を支持する軸受面を有するすべり軸受には、従来、焼結合金製の焼結軸受が多用されている。焼結含油軸受は、気孔を有する焼結合金製の焼結軸受の気孔中に潤滑油を含浸したものであり、含浸した潤滑油による自己潤滑性を付与できるため、耐焼付き性と耐摩耗性が良好で広く用いられている。 Conventionally, a sintered bearing made of a sintered alloy is often used as a slide bearing having a bearing surface that supports the outer peripheral surface of the shaft. Sintered oil-impregnated bearings are made by impregnating the pores of a sintered bearing made of a sintered alloy with pores with lubricating oil, and since self-lubricating property can be imparted by the impregnated lubricating oil, seizure resistance and abrasion resistance. Is good and widely used.

焼結含油軸受の潤滑理論を、図1を参照して説明する。焼結含油軸受の本体である焼結軸受1を構成する焼結体は、金属基地中に気孔が分散する多孔質体であり、気孔中に潤滑油2が含浸されている。焼結軸受は略円管又は略円環に形成され、その内周面で軸3を支承する。ここで、軸が回転すると、軸との摩擦熱により気孔に含浸された潤滑油が熱膨張するとともに、軸の回転により気孔中に含浸された潤滑油が吸い出され、図1に矢印4で示すように、油圧の低い上の部分から高い油圧を受ける摺動部に向かって潤滑油が流れる。この潤滑油の流れによって軸受の内周面から軸を持ち上げて、軸受内周面と軸との金属接触を防止する。また、軸と軸受内周面の間に入り込む潤滑油の流れによって、軸は回転方向に片寄せられ、軸受内周面での油圧分布5は図1のようになる。一方、油圧が生じても気孔を通じて潤滑油が逃げるため、気孔を通じて潤滑油が焼結軸受内を循環して、再び内周面で効果的な潤滑作用を発揮する。軸の回転が停止すると、熱膨張していた潤滑油は収縮するとともに、潤滑油が気孔中に毛細管力により吸収されて初期状態に戻る。これを繰り返すことで、長期にわたり、無給油で良好な潤滑特性を発揮する。 The lubrication theory of a sintered oil-impregnated bearing will be described with reference to FIG. The sintered body constituting the sintered bearing 1 which is the main body of the sintered oil-impregnated bearing is a porous body in which pores are dispersed in a metal matrix, and the pores are impregnated with lubricating oil 2. The sintered bearing is formed in a substantially circular tube or a substantially annular ring, and the shaft 3 is supported on the inner peripheral surface thereof. Here, when the shaft rotates, the lubricating oil impregnated in the pores thermally expands due to the frictional heat with the shaft, and the lubricating oil impregnated in the pores is sucked out by the rotation of the shaft. As shown, the lubricating oil flows from the upper part where the oil pressure is low toward the sliding part which receives the high oil pressure. The flow of the lubricating oil lifts the shaft from the inner peripheral surface of the bearing to prevent metal contact between the inner peripheral surface of the bearing and the shaft. Further, the shaft is offset in the rotational direction by the flow of the lubricating oil that enters between the shaft and the inner peripheral surface of the bearing, and the hydraulic distribution 5 on the inner peripheral surface of the bearing is as shown in FIG. On the other hand, even if flood pressure is generated, the lubricating oil escapes through the pores, so that the lubricating oil circulates in the sintered bearing through the pores and exerts an effective lubricating action on the inner peripheral surface again. When the rotation of the shaft is stopped, the thermally expanded lubricating oil contracts, and the lubricating oil is absorbed into the pores by capillary force to return to the initial state. By repeating this, good lubrication characteristics are exhibited without lubrication for a long period of time.

軸受が支持する軸は、一般に安価な鉄合金からなり、焼結軸受には、銅系の焼結合金が適用された銅系焼結軸受が多用されてきた。近年、銅の価格が高騰しているため、安価な鉄を主成分とする鉄系焼結合金を用いた鉄系焼結軸受に対するニーズが高まってきている。しかし、このような鉄を主成分とする軸受の場合には、焼付き易く、また、相手部品であるシャフトを傷付け易いという欠点がある。特に、熱処理を施していない硬さが低いシャフトと鉄を主成分とする軸受とを組み合わせて用いると、上記の現象は顕著となる。 The shaft supported by the bearing is generally made of an inexpensive iron alloy, and a copper-based sintered bearing to which a copper-based sintered alloy is applied has been widely used for the sintered bearing. In recent years, as the price of copper has soared, there is an increasing need for iron-based sintered bearings using an inexpensive iron-based sintered alloy containing iron as a main component. However, such a bearing containing iron as a main component has a drawback that it is easily seized and the shaft, which is a mating component, is easily damaged. In particular, when a shaft having low hardness that has not been heat-treated and a bearing containing iron as a main component are used in combination, the above phenomenon becomes remarkable.

このような状況の下、特許文献1では、優れた耐摩耗性を有するとともに、鉄銅系焼結合金を用いた鉄銅系焼結軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有するものとして、鉄系焼結軸受が提案されている。この軸受は、焼結合金の全体組成が、質量比で、Cu:2.0〜9.0%、C:1.5〜3.7%、残部:Feおよび不可避不純物からなり、軸受の内部は、面積率でフェライトが20〜85%および残部がパーライトからなる鉄合金相中に、軸受の軸方向に対して交差する方向に延在する銅相と、黒鉛相および気孔が分散する金属組織を示し、軸受面に、銅相が8〜40%の面積率で露出する。 Under such circumstances, Patent Document 1 has excellent wear resistance, seizure resistance comparable to that of iron-copper-based sintered bearings using iron-copper-based sintered alloys, and mitigation of attacks on mating parts. An iron-based sintered bearing has been proposed as having the above. In this bearing, the overall composition of the sintered alloy is Cu: 2.0 to 9.0%, C: 1.5 to 3.7%, the balance: Fe and unavoidable impurities in terms of mass ratio, and the inside of the bearing. Is a metal structure in which a copper phase extending in a direction intersecting the axial direction of the bearing, a graphite phase and pores are dispersed in an iron alloy phase in which ferrite is 20 to 85% in area ratio and the balance is pearlite. The copper phase is exposed on the bearing surface at an area ratio of 8 to 40%.

また、内周面に高い面圧が作用するような軸受に用いて好適な摺動部材用鉄基焼結合金として、全体組成が、質量比で、C:0.6〜1.2%、Cu:3.5〜9.0%、Mn:0.6〜2.2%、S:0.4〜1.3%、残部:Feおよび不可避不純物からなる摺動部材用鉄基焼結合金が提案(特許文献2)されており、その合金組織は、マルテンサイト基地中に、遊離したCu相及び遊離したCu−Fe合金相の少なくとも一方が分散しているとともに、MnS相が1.0〜3.5質量%分散していることを特徴とする。 Further, as an iron-based sintered alloy for sliding members suitable for use in bearings in which a high surface pressure acts on the inner peripheral surface, the overall composition is C: 0.6 to 1.2% in terms of mass ratio. Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3%, balance: Fe and iron-based sintered alloy for sliding members consisting of unavoidable impurities (Patent Document 2) has been proposed, in which at least one of a free Cu phase and a free Cu—Fe alloy phase is dispersed in a martensite matrix, and the MnS phase is 1.0. It is characterized in that it is dispersed in an amount of ~ 3.5% by mass.

特開2010−077474号公報JP-A-2010-077744 特開2009−155696号公報JP-A-2009-155696

上記のように、焼結含油軸受は、軸の回転により気孔中から引き出された潤滑油が、軸の回転につれて軸と軸受内周面と間に引き込まれ、軸と軸受の内周面の間に油膜を形成することで軸と軸受の内周面の金属接触を防止して良好な潤滑特性を示す。このため、各種用途への適用が進んでいるが、良好な油膜を形成しにくい用途に対しては、その適用が進んでいない。更なる用途拡大のためには、焼結軸受のさらなる改良が必要である。 As described above, in the sintered oil-impregnated bearing, the lubricating oil drawn out from the pores by the rotation of the shaft is drawn between the shaft and the inner peripheral surface of the bearing as the shaft rotates, and between the shaft and the inner peripheral surface of the bearing. By forming an oil film on the bearing, metal contact between the shaft and the inner peripheral surface of the bearing is prevented and good lubrication characteristics are exhibited. For this reason, application to various applications is progressing, but its application is not progressing to applications in which it is difficult to form a good oil film. Further improvement of sintered bearings is necessary for further expansion of applications.

このような焼結含油軸受の適用が難しいと考えられてきた分野として、例えば、複写機等の紙送りローラや、ヘッド駆動モータ等のような、正逆に回転する軸を支承するとともに、正転、逆転それぞれの駆動時間が短い用途のための軸受がある。このような用途の場合、図2(a)に示すように、良好な潤滑油膜が形成される前に回転が停止することから、軸と軸受の内周面との金属接触が発生しやすい。 In fields where it has been considered difficult to apply such sintered oil-impregnated bearings, for example, paper feed rollers for copiers, head drive motors, and other shafts that rotate in the forward and reverse directions are supported and positive. There are bearings for applications where the drive time for rolling and reversing is short. In such an application, as shown in FIG. 2A, the rotation is stopped before a good lubricating oil film is formed, so that metal contact between the shaft and the inner peripheral surface of the bearing is likely to occur.

また、スクロール式圧縮機等のような、固定子に対して偏心して回転する回転子の軸を支承する軸受としての用途においては、図2(b)に示すように、軸受内周面に対して軸の位置が偏心して移動することとなる。このような用途においても、良好な潤滑油膜を形成することが難しく、軸と軸受の内周面との金属接触が発生しやすい。 Further, in an application as a bearing that supports a rotor shaft that rotates eccentrically with respect to a stator, such as a scroll compressor, as shown in FIG. 2B, with respect to the inner peripheral surface of the bearing. The position of the shaft will move eccentrically. Even in such an application, it is difficult to form a good lubricating oil film, and metal contact between the shaft and the inner peripheral surface of the bearing is likely to occur.

これらの用途においては、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂で内周面を構成したすべり軸受が適用されているが、軟質なフッ素系樹脂は、摩耗が生じ易く、耐久性に問題がある。したがって、このような金属接触が発生しやすい用途であっても、良好な摺動特性を示す焼結軸受が提供できれば、焼結軸受の適用が拡大できることとなる。 In these applications, plain bearings whose inner peripheral surface is made of a fluororesin such as polytetrafluoroethylene (PTFE) are applied, but soft fluororesins are prone to wear and have a problem in durability. There is. Therefore, even in applications where such metal contact is likely to occur, if a sintered bearing exhibiting good sliding characteristics can be provided, the application of the sintered bearing can be expanded.

この点について、特許文献1の鉄系焼結軸受は、良好な潤滑油膜が形成できる用途に対しては優れた耐摩耗性を有し、鉄銅系焼結含油軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有する。しかし、金属接触が発生しやすい用途に対しては、さらなる改良が必要である。 In this regard, the iron-based sintered bearing of Patent Document 1 has excellent wear resistance for applications in which a good lubricating oil film can be formed, and has seizure resistance comparable to that of iron-copper-based sintered oil-impregnated bearings. Has the ability to mitigate attacks on partner parts. However, further improvements are needed for applications where metal contact is likely to occur.

一方、特許文献2の鉄基焼結摺動部材は、遊離したCu相またはCu−Fe合金相とMnS相によって潤滑を行い、摺動特性を発揮する。この点に関して、MnS相は、原料粉末に添加したMnS粉末がそのまま残留して形成されるので、MnS相は鉄粉末どうしの粒界(粉末粒界)のみに分散する。しかし、MnS粉末は、安定で、他の粉末と反応しないので、基地を形成する鉄粉末と反応せず、従って、基地への固着性が悪い。また、鉄粉末の粒界に存在して鉄粉末粒子どうしの結合を阻害するので、基地の強度が低下する虞がある。 On the other hand, the iron-based sintered sliding member of Patent Document 2 is lubricated by a free Cu phase or a Cu—Fe alloy phase and an MnS phase, and exhibits sliding characteristics. In this regard, since the MnS phase is formed by leaving the MnS powder added to the raw material powder as it is, the MnS phase is dispersed only at the grain boundaries (powder grain boundaries) of the iron powders. However, the MnS powder is stable and does not react with other powders, so it does not react with the iron powder forming the matrix, and therefore has poor adhesion to the matrix. Further, since it exists at the grain boundaries of the iron powder and inhibits the bonding between the iron powder particles, the strength of the matrix may decrease.

本発明は、固着性の乏しい特許文献2の手法によらず、鉄系焼結含油軸受に対して、よりいっそうの潤滑特性の向上を果たし、金属接触が発生しやすい用途においても良好な潤滑特性を示す鉄系焼結軸受およびその製造方法を提供することを目的とする。 The present invention achieves further improvement in lubrication characteristics for iron-based sintered oil-impregnated bearings regardless of the method of Patent Document 2 having poor adhesiveness, and has good lubrication characteristics even in applications where metal contact is likely to occur. It is an object of the present invention to provide an iron-based sintered bearing and a method for manufacturing the same.

本発明者らは、上記目的を達成する鉄系焼結軸受につき検討し、鉄系焼結軸受の本体を構成する鉄系焼結合金の基地中に硫化物を析出分散させることで、金属接触が発生しやすい用途においても良好な潤滑特性を示すことができることを見出した。
本発明の一態様によれば、鉄系焼結含油軸受は、軸の外周面を支持する軸受面を有し、気孔が分散する鉄系焼結合金で構成される鉄系焼結軸受と、前記気孔に含浸された潤滑油とを有する鉄系焼結含油軸受であって、前記鉄系焼結合金の全体組成が、質量比で、Cu:0.5〜3%、C:1〜5%、S:0.3〜2%、残部:Feおよび不可避不純物からなり、前記鉄系焼結合金の密度が5.2〜7.2g/cmであり、前記鉄系焼結合金は、フェライト組織、パーライト組織、及び、フェライトとパーライトとの混合組織のうちの1つの金属組織を有する基地と、前記基地中に分散する銅相及び黒鉛相と、前記基地および前記銅相の少なくとも一方から析出して分散する硫化物相とを有することを要旨とする。
The present inventors have studied an iron-based sintered bearing that achieves the above object, and metal contact is performed by precipitating and dispersing sulfide in the base of the iron-based sintered alloy constituting the main body of the iron-based sintered bearing. It was found that good lubrication characteristics can be exhibited even in applications where the above is likely to occur.
According to one aspect of the present invention, the iron-based sintered oil-impregnated bearing includes an iron-based sintered bearing having a bearing surface that supports the outer peripheral surface of the shaft and having an iron-based sintered alloy in which pores are dispersed. An iron-based sintered oil-impregnated bearing having the lubricating oil impregnated in the pores, and the overall composition of the iron-based sintered alloy is Cu: 0.5 to 3% and C: 1 to 5 in terms of mass ratio. %, S: 0.3 to 2%, balance: Fe and unavoidable impurities, the density of the iron-based sintered alloy is 5.2 to 7.2 g / cm 3 , and the iron-based sintered alloy is: From a matrix having a metal structure of one of a ferrite structure, a pearlite structure, and a mixed structure of ferrite and pearlite, a copper phase and a graphite phase dispersed in the matrix, and at least one of the matrix and the copper phase. The gist is that it has a sulfide phase that precipitates and disperses.

上記鉄系焼結軸受において、前記硫化物相は、前記基地および前記銅相の結晶粒界および結晶粒内に析出して分散すると良く、前記硫化物は、硫化鉄および硫化銅が主体であってよい。また、鉄系焼結軸受は、前記金属組織に分散する硫化物相が、金属組織の断面を観察した時に気孔を含む断面の面積に対して0.9〜6%の面積率で分散していると良好であり、前記硫化物相が粒状であり、最大粒径が50μm以下であると良い。さらに、前記軸受面に分散する銅相および硫化銅相が軸受面全体に対して5〜20%の面積率で分散していると好適である。 In the iron-based sintered bearing, the sulfide phase may be precipitated and dispersed in the grain boundaries and grain boundaries of the matrix and the copper phase, and the sulfide is mainly iron sulfide and copper sulfide. You can. Further, in the iron-based sintered bearing, the sulfide phase dispersed in the metal structure is dispersed at an area ratio of 0.9 to 6% with respect to the area of the cross section including the pores when observing the cross section of the metal structure. It is preferable that the sulfide phase is granular and the maximum particle size is 50 μm or less. Further, it is preferable that the copper phase and the copper sulfide phase dispersed on the bearing surface are dispersed at an area ratio of 5 to 20% with respect to the entire bearing surface.

本発明の実施形態によれば、鉄系焼結軸受は、潤滑特性について優れた改善が施され、金属接触が発生しやすい用途においても良好な潤滑特性を示すものである。 According to the embodiment of the present invention, the iron-based sintered bearing is provided with excellent improvement in lubrication characteristics, and exhibits good lubrication characteristics even in applications where metal contact is likely to occur.

焼結軸受の潤滑作用を説明する模式図である。It is a schematic diagram explaining the lubrication action of a sintered bearing. 良好な潤滑油膜が形成されない場合を説明する模式図である。It is a schematic diagram explaining the case where a good lubricating oil film is not formed. 本発明における鉄系焼結軸受を構成する鉄系焼結合金の金属組織の一例を示す図面代用写真である。It is a drawing substitute photograph which shows an example of the metal structure of the iron-based sintered alloy which comprises the iron-based sintered bearing in this invention.

以下、本発明における鉄系焼結含油軸受の本体である鉄系焼結軸受を構成する鉄系焼結合金の金属組織および数値特定の根拠を、本発明の作用とともに説明する。 Hereinafter, the metallographic structure of the iron-based sintered alloy constituting the iron-based sintered bearing, which is the main body of the iron-based sintered oil-impregnated bearing in the present invention, and the basis for specifying numerical values will be described together with the operation of the present invention.

本発明において、鉄系焼結含油軸受の本体である鉄系焼結軸受は、Fe(鉄)を主成分とする鉄系焼結合金によって構成される。鉄系焼結合金は、例えば、図3に示すように、鉄系の基地(図3においてはフェライト相P1)と、銅相P2と、黒鉛相P3と、硫化物相P4とを含んでいる。Feは、Cu(銅)に比して安価であり、機械的強さに優れることから、鉄系焼結合金の主成分として好適な成分である。Feは、鉄粉末の形態で導入され、鉄粉末を主成分とする原料粉末を用いることによって、鉄系焼結合金の基地が形成される。鉄系焼結合金の基地には、気孔が分散する。気孔は、粉末冶金法に起因して生じるものであり、原料粉末を圧粉成形した際の粉末粒子間の空隙が、原料粉末の結合によって形成された基地中に残留したものである。 In the present invention, the iron-based sintered bearing, which is the main body of the iron-based sintered oil-impregnated bearing, is composed of an iron-based sintered alloy containing Fe (iron) as a main component. As shown in FIG. 3, the iron-based sintered alloy contains, for example, an iron-based matrix (ferrite phase P1 in FIG. 3), a copper phase P2, a graphite phase P3, and a sulfide phase P4. .. Fe is a component suitable as a main component of an iron-based sintered alloy because it is cheaper than Cu (copper) and has excellent mechanical strength. Fe is introduced in the form of iron powder, and by using a raw material powder containing iron powder as a main component, a base of an iron-based sintered alloy is formed. Pore is dispersed in the base of the iron-based sintered alloy. The pores are generated by the powder metallurgy method, and the voids between the powder particles when the raw material powder is compacted remain in the matrix formed by the bonding of the raw material powder.

鉄系焼結合金の基地の金属組織は、フェライト組織、パーライト組織、及び、フェライトとパーライトとの混合組織のうちの1つである。フェライトは、軟質であり、相手材となる軸とのなじみ性が良好であるが、機械的強さが低い。一方、パーライトは、基地硬さが高く、機械的強さが高いが、相手材となる軸を摩耗させる虞がある。このため、鉄系焼結合金の基地の金属組織は、鉄系焼結軸受の要求特性に応じて、フェライト単相の金属組織、フェライトとパーライトが混合した金属組織、パーライト単相の金属組織のいずれかである。 The metal structure of the base of the iron-based sintered alloy is one of a ferrite structure, a pearlite structure, and a mixed structure of ferrite and pearlite. Ferrite is soft and has good compatibility with the shaft used as the mating material, but has low mechanical strength. On the other hand, pearlite has a high base hardness and a high mechanical strength, but there is a risk of wearing the shaft that is the mating material. Therefore, the metal structure of the base of the iron-based sintered alloy may be a ferrite single-phase metal structure, a metal structure in which ferrite and pearlite are mixed, or a pearlite single-phase metal structure, depending on the required characteristics of the iron-based sintered bearing. Either.

上述したように、焼結合金には製法に起因する気孔が形成されるため、焼結合金の密度(焼結体密度)は、理論密度よりも低くなる。焼結合金の密度が高いと、気孔量が少なくなり、焼結合金の密度が低いと気孔量が多くなる。焼結軸受においては、このような気孔を利用して、鉄系焼結合金に形成される気孔に潤滑油を含浸することで、無給油で長期にわたる潤滑特性を発揮する。本発明において、鉄系焼結軸受を構成する鉄系焼結合金に形成される気孔量が乏しい、すなわち鉄系焼結合金の密度が高いと、含浸される潤滑油の量が乏しくなり、良好な潤滑特性が発揮できなくなる。一方、鉄系焼結合金に形成される気孔量が過多、すなわち鉄系焼結合金の密度が低いと、鉄系焼結合金の基地の量が少なくなる結果、鉄系焼結合金の機械的強さが低下することとなる。この観点より、鉄系焼結合金の密度は5.2〜7.2g/cmとするとよい。この鉄系焼結合金の密度は、鉄系焼結合金の気孔率でおよそ10〜25%に相当する。なお、焼結体の密度比は、日本工業規格(JIS)Z2505に規定の金属焼結材料の焼結密度試験方法により測定される。As described above, since pores are formed in the sintered alloy due to the manufacturing method, the density of the sintered alloy (sintered body density) is lower than the theoretical density. When the density of the sintered alloy is high, the amount of pores is small, and when the density of the sintered alloy is low, the amount of pores is large. In a sintered bearing, by utilizing such pores to impregnate the pores formed in the iron-based sintered alloy with lubricating oil, it exhibits long-term lubrication characteristics without lubrication. In the present invention, when the amount of pores formed in the iron-based sintered alloy constituting the iron-based sintered bearing is small, that is, when the density of the iron-based sintered alloy is high, the amount of the lubricating oil impregnated becomes small, which is good. The lubrication characteristics cannot be exhibited. On the other hand, if the amount of pores formed in the iron-based sintered alloy is excessive, that is, the density of the iron-based sintered alloy is low, the amount of bases of the iron-based sintered alloy decreases, and as a result, the iron-based sintered alloy is mechanically mechanical. The strength will decrease. From this point of view, the density of the iron-based sintered alloy is preferably 5.2 to 7.2 g / cm 3 . The density of this iron-based sintered alloy corresponds to about 10 to 25% in terms of porosity of the iron-based sintered alloy. The density ratio of the sintered body is measured by the sintering density test method for metal sintered materials specified in Japanese Industrial Standards (JIS) Z2505.

Cuは、軟質な銅相を形成して、相手材となる軸とのなじみ性を良好なものとするとともに、潤滑性に優れる硫化銅を形成して潤滑性を向上させることが可能な成分である。Cu量が乏しいと、基地中に分散する銅相が乏しくなり、上記効果が乏しくなる。一方、高価なCuが過大であると、その分、コストが増加することとなる。このため、Cu量は0.5〜3質量%とする。 Cu is a component capable of forming a soft copper phase to improve compatibility with a shaft as a mating material, and forming copper sulfide having excellent lubricity to improve lubricity. is there. If the amount of Cu is poor, the copper phase dispersed in the matrix will be poor, and the above effect will be poor. On the other hand, if the expensive Cu is excessive, the cost will increase accordingly. Therefore, the amount of Cu is set to 0.5 to 3% by mass.

Cuは、原料粉末中に銅粉末の形態で付与される。なお、銅粉末は、扁平状あるいは箔状の銅粉末を用いることが好ましい。Cu原料として扁平状の銅粉を用いると、ダイキャビティ内を原料粉末が落下する際に、コアロッドに扁平状の銅粉がまとわり付き、コアロッドに銅粉が張り付いた状態となるため、軸受内部と比較して摺動特性が求められる軸受内径面に露出する銅相の量が多くなる。従って、軸受内部のCu量を低減して全体組成中のCu量を削減しても、軸受内径面に露出する銅相の量を必要量に維持することができる。この点に関し、軸受内径面に分散する銅相および後述する硫化銅相の合計の適量を面積率で内径面の5〜20%とすることができ、軟質な銅相および銅相から析出する硫化銅によって、摺動特性をより向上させることができる。扁平状の銅粉は、粒径が20〜150μm程度のものを好適に用いることができる。粒径が小さい銅粉は、鉄粒子間の間隙に入り易く、過大な銅粉は、コアロッド周囲に遍在し難くなる。粒子径と厚さとの比は、2.5〜20程度であると好適である。 Cu is added in the raw material powder in the form of copper powder. As the copper powder, it is preferable to use a flat or foil-shaped copper powder. When flat copper powder is used as the Cu raw material, when the raw material powder falls into the die cavity, the flat copper powder clings to the core rod, and the copper powder sticks to the core rod. The amount of copper phase exposed on the inner diameter surface of the bearing, which requires sliding characteristics, is larger than that inside the bearing. Therefore, even if the amount of Cu inside the bearing is reduced to reduce the amount of Cu in the overall composition, the amount of copper phase exposed on the inner diameter surface of the bearing can be maintained at a required amount. In this regard, the total appropriate amount of the copper phase dispersed on the inner diameter surface of the bearing and the copper sulfide phase described later can be 5 to 20% of the inner diameter surface in terms of area ratio, and the sulfide precipitated from the soft copper phase and the copper phase. With copper, the sliding characteristics can be further improved. As the flat copper powder, those having a particle size of about 20 to 150 μm can be preferably used. Copper powder with a small particle size easily enters the gaps between iron particles, and excessive copper powder is less likely to be ubiquitous around the core rod. The ratio of the particle size to the thickness is preferably about 2.5 to 20.

S(硫黄)は、基地を形成するFeと結合して硫化鉄を形成するとともに、銅相を形成するCuと結合して硫化銅を形成する。なお、主原料である鉄粉末は、製法に起因する不可避不純物として極微量(1質量%以下)のMnを含有する。このため、ごく一部に硫化マンガンも分散し得る。これらの硫化物は、潤滑性に富み、このような硫化物を基地中に析出分散させることで、金属接触が発生しやすい摺動条件の下でも、優れた潤滑特性を発揮する基地を形成できる。 S (sulfur) combines with Fe forming a matrix to form iron sulfide, and also combines with Cu forming a copper phase to form copper sulfide. The iron powder, which is the main raw material, contains a very small amount (1% by mass or less) of Mn as an unavoidable impurity due to the production method. Therefore, manganese sulfide can also be dispersed in a small part. These sulfides are highly lubricious, and by precipitating and dispersing such sulfides in the matrix, it is possible to form a matrix that exhibits excellent lubrication characteristics even under sliding conditions where metal contact is likely to occur. ..

Sは、硫化鉄粉末の形態で添加することで原料粉末に付与される。硫化鉄の形態で付与されたSは、焼結工程の昇温過程において988℃を超えるとFe−Sの共晶液相を発生し、液相焼結が進行して粉末粒子間のネックの成長を促進する。また、この共晶液相からSが鉄基地中に均一に拡散した後、基地の結晶粒界および結晶粒内から再度硫化鉄粒子として析出する。このため、基地の結晶粒界および結晶粒内に硫化鉄粒子が均一に分散し、これにより、硫化鉄粒子の固着性を高めることができる。また、Sの一部は、銅相に拡散して、銅相中のCuと結合して銅相の結晶粒界および結晶粒内に硫化銅粒子として析出し得る。硫化銅粒子も、このように銅相の結晶粒界および結晶粒内に析出して分散するので、固着性が高い。 S is added to the raw material powder by adding it in the form of iron sulfide powder. When S added in the form of iron sulfide exceeds 988 ° C. in the temperature raising process of the sintering step, a eutectic liquid phase of Fe-S is generated, and liquid phase sintering proceeds to cause a neck between powder particles. Promote growth. Further, after S is uniformly diffused into the iron matrix from this eutectic liquid phase, it is precipitated again as iron sulfide particles from the grain boundaries of the matrix and inside the crystal grains. Therefore, the iron sulfide particles are uniformly dispersed in the grain boundaries of the matrix and in the crystal grains, whereby the adhesiveness of the iron sulfide particles can be enhanced. Further, a part of S may diffuse into the copper phase, combine with Cu in the copper phase, and precipitate as copper sulfide particles in the grain boundaries of the copper phase and in the crystal grains. Copper sulfide particles are also highly adherent because they are precipitated and dispersed in the crystal grain boundaries and crystal grains of the copper phase in this way.

S量が乏しいと、基地中に分散する硫化物の量が乏しくなり、潤滑特性が乏しくなる。S量が過剰であると、析出する硫化物の量が過多となって基地の強度が低下し、その結果、鉄系焼結軸受を構成する鉄系焼結合金の機械的強さが低下する。このようなことから、S量は0.3〜2質量%とするよい。このとき、鉄系焼結合金の断面の金属組織における硫化物相は、金属組織の断面を観察した時に気孔を含む断面の面積に対する面積率で、0.9〜6%となる。 When the amount of S is poor, the amount of sulfide dispersed in the matrix is poor, and the lubrication characteristics are poor. If the amount of S is excessive, the amount of precipitated sulfide is excessive and the strength of the matrix is lowered, and as a result, the mechanical strength of the iron-based sintered alloy constituting the iron-based sintered bearing is lowered. .. For this reason, the amount of S may be 0.3 to 2% by mass. At this time, the sulfide phase in the metal structure of the cross section of the iron-based sintered alloy is 0.9 to 6% in terms of the area ratio with respect to the area of the cross section including the pores when observing the cross section of the metal structure.

硫化物は、金属組織中に粒状で分散することが好ましい。また、析出する硫化物粒子の大きさが粗大であると、硫化物粒子の存在箇所が偏在し、硫化物粒子の存在が乏しい箇所において、金属接触時に摩耗、凝着等が生じ易くなるので、最大粒子径で50μm以下の粒子として分散する状態が好ましい。 The sulfide is preferably dispersed in the metal structure in granular form. Further, if the size of the precipitated sulfide particles is coarse, the locations where the sulfide particles are present are unevenly distributed, and in the locations where the presence of the sulfide particles is scarce, wear, adhesion, etc. are likely to occur during metal contact. It is preferable that the particles are dispersed as particles having a maximum particle diameter of 50 μm or less.

C(炭素)は、黒鉛粉末の形態で付与され、黒鉛相を形成して鉄系焼結合金に潤滑性を付与する。また、基地をパーライトの単相組織、または、フェライトとパーライトとの混合組織で構成する場合に、Cの一部が、基地を構成するFe粉末粒子に拡散して固溶し、パーライトを形成して基地の機械的強さの向上に寄与する。黒鉛相は、黒鉛粉末粒子が、未拡散の状態で鉄系焼結合金中に残留することで形成される。このため、黒鉛相は、気孔中に分散することになる。 C (carbon) is imparted in the form of graphite powder to form a graphite phase and impart lubricity to the iron-based sintered alloy. Further, when the matrix is composed of a single-phase structure of pearlite or a mixed structure of ferrite and pearlite, a part of C diffuses into Fe powder particles constituting the matrix and dissolves to form pearlite. Contributes to improving the mechanical strength of the base. The graphite phase is formed by the graphite powder particles remaining in the iron-based sintered alloy in an undiffused state. Therefore, the graphite phase will be dispersed in the pores.

C量が乏しいと、鉄系焼結合金中に分散する黒鉛相の量が乏しくなり、潤滑特性が乏しくなる。一方で、C量が過多となると、分散する黒鉛相の量が過多となって、基地の強度が低下する結果、鉄系焼結軸受の本体を構成する鉄系焼結合金の機械的強さが低下することとなる。このためC量を1〜5質量%とする。平均粒径が40〜80μm程度の黒鉛粉末を使用すると、基地への拡散や摺動特性等の点において好適である。 When the amount of C is poor, the amount of graphite phase dispersed in the iron-based sintered alloy is poor, and the lubrication characteristics are poor. On the other hand, if the amount of C is excessive, the amount of the graphite phase to be dispersed becomes excessive, and the strength of the matrix is lowered. As a result, the mechanical strength of the iron-based sintered alloy constituting the main body of the iron-based sintered bearing is reduced. Will decrease. Therefore, the amount of C is set to 1 to 5% by mass. It is preferable to use graphite powder having an average particle size of about 40 to 80 μm in terms of diffusion to a matrix, sliding characteristics, and the like.

以上より、本発明の好適な実施形態において、鉄系焼結軸受を構成する鉄系焼結合金は、全体組成が、質量比で、Cu:0.5〜3%、C:1〜5%、S:0.3〜2%、残部:Feおよび不可避不純物からなり、前記鉄系焼結合金の気孔率が10〜25%であり、前記鉄系焼結合金の金属組織が、フェライト組織、パーライト組織、及び、フェライトとパーライトとの混合組織のうちの1つであり、基地中に銅相及び黒鉛相が分散するとともに、硫化物相が前記基地及び/又は銅相から析出して分散した金属組織を呈する。 From the above, in a preferred embodiment of the present invention, the iron-based sintered alloy constituting the iron-based sintered bearing has an overall composition of Cu: 0.5 to 3% and C: 1 to 5% in terms of mass ratio. , S: 0.3 to 2%, balance: Fe and unavoidable impurities, the pore ratio of the iron-based sintered alloy is 10 to 25%, and the metal structure of the iron-based sintered alloy is the ferrite structure. It is one of a pearlite structure and a mixed structure of ferrite and pearlite. The copper phase and graphite phase are dispersed in the matrix, and the sulfide phase is precipitated and dispersed from the matrix and / or the copper phase. It exhibits a metallic structure.

なお、硫化物相の面積率は、鉄系焼結軸受(鉄系焼結合金)の断面または表面を金属顕微鏡、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)等によって観察した画像に基づいて、三谷商事株式会社製WinROOF等の画像分析ソフトウエアを用いて測定することができる。 The area ratio of the sulfide phase is based on an image obtained by observing the cross section or surface of an iron-based sintered bearing (iron-based sintered alloy) with a metallurgical microscope, an electron probe microanalyzer (EPMA), or the like. , Mitani Shoji Co., Ltd. Can be measured using image analysis software such as WinROOF.

本発明における鉄系焼結軸受の製造方法において、鉄系焼結軸受を構成する鉄系焼結合金の原料粉末としては、鉄粉末に、銅粉末、黒鉛粉末、および、硫化鉄粉末を添加し混合して、質量比で、Cu:0.5〜3%、C:1〜5%、S:0.3〜2%、残部:Feおよび不可避不純物からなる組成に調製された混合粉末を用いることができる。 In the method for producing an iron-based sintered bearing in the present invention, copper powder, graphite powder, and iron sulfide powder are added to iron powder as the raw material powder of the iron-based sintered alloy constituting the iron-based sintered bearing. Mix and use a mixed powder prepared to have a composition of Cu: 0.5 to 3%, C: 1 to 5%, S: 0.3 to 2%, balance: Fe and unavoidable impurities in terms of mass ratio. be able to.

鉄系焼結軸受の製造方法は、上記の原料粉末を、軸受形状、すなわち、軸と摺動する内径面を備えた略円管又は略円環の形状に成形する工程と、得られた成形体を焼結する工程を有する。成形工程において、原料粉末の成形圧力を250〜650MPaとすることで、焼結後の鉄系焼結合金の密度が5.2〜7.2g/cmとなるように鉄系焼結軸受を製造することができる。The method for manufacturing an iron-based sintered bearing is a step of molding the above-mentioned raw material powder into a bearing shape, that is, a shape of a substantially circular tube or a substantially annular ring having an inner diameter surface that slides on a shaft, and the obtained molding. It has a step of sintering the body. In the molding process, by setting the molding pressure of the raw material powder to 250 to 650 MPa, the iron-based sintered bearing is provided so that the density of the iron-based sintered alloy after sintering becomes 5.2 to 7.2 g / cm 3. Can be manufactured.

焼結工程において、焼結温度が低すぎると、硫化鉄が溶融せず、鉄系焼結合金の基地中に硫化物を析出分散させることができなくなるので、焼結温度は990℃以上がよい。また、焼結温度が高すぎると、黒鉛が基地へ拡散して残留する黒鉛相が乏しくなるとともに、銅粉末が溶融して銅相が乏しくなるので、焼結温度は1080℃以下が適正である。なお、Sは、水素及び酸素と反応しやすいので、焼結雰囲気が酸化性のガスであると、原料粉末に導入したS成分が離脱して鉄系焼結合金中のS量が低下するため、焼結雰囲気は、非酸化性の雰囲気とする必要がある。また、露点が低い雰囲気を用いることが好ましい。
本発明において、鉄系焼結含油軸受の製造方法は、上述のような鉄系焼結軸受の製造方法に従って鉄系焼結軸受を調製する工程と、潤滑油を鉄系焼結軸受に含浸する含浸工程とを有し、必要に応じて、含浸前の鉄系焼結軸受にサイジング、コイニング等の最終圧縮加工を施してもよい。潤滑油は、用途及び動作環境を勘案して各種潤滑油から適宜選択して使用することができ、例えば、鉱物油、合成炭化水素油、エステル油などから1種又は2種以上を組み合わせて使用して良い。
In the sintering step, if the sintering temperature is too low, iron sulfide does not melt and sulfide cannot be precipitated and dispersed in the base of the iron-based sintered alloy. Therefore, the sintering temperature is preferably 990 ° C. or higher. .. Further, if the sintering temperature is too high, graphite diffuses to the matrix and the residual graphite phase becomes scarce, and the copper powder melts and the copper phase becomes scarce. Therefore, the sintering temperature should be 1080 ° C. or lower. .. Since S easily reacts with hydrogen and oxygen, if the sintering atmosphere is an oxidizing gas, the S component introduced into the raw material powder is separated and the amount of S in the iron-based sintered alloy decreases. , The sintering atmosphere needs to be a non-oxidizing atmosphere. Further, it is preferable to use an atmosphere having a low dew point.
In the present invention, the method for manufacturing an iron-based sintered oil-impregnated bearing includes a step of preparing an iron-based sintered bearing according to the above-mentioned manufacturing method for an iron-based sintered bearing and impregnating the iron-based sintered bearing with lubricating oil. It has an impregnation step, and if necessary, the iron-based sintered bearing before impregnation may be subjected to final compression processing such as sizing and coining. The lubricating oil can be appropriately selected and used from various lubricating oils in consideration of the application and operating environment. For example, one type or a combination of two or more types of mineral oil, synthetic hydrocarbon oil, ester oil, etc. is used. You can do it.

[第1実施例]
還元鉄粉末、扁平状の銅粉末、硫化鉄粉末、および、黒鉛粉末を用意し、表1に示す割合で添加し混合した原料粉末を用いて、成形圧力300MPaで、外径16mm、内径10mm、高さ10mmの円管形状に成形し、非酸化性ガス雰囲気中、1000℃で焼結を行って試料番号01〜20の軸受試料を作製した。尚、各試料番号について、以下の測定用に複数の焼結軸受試料を作製した。
[First Example]
Using the raw material powder prepared by preparing reduced iron powder, flat copper powder, iron sulfide powder, and graphite powder, and adding and mixing them at the ratios shown in Table 1, the outer diameter is 16 mm and the inner diameter is 10 mm at a molding pressure of 300 MPa. It was formed into a circular tube shape with a height of 10 mm and sintered at 1000 ° C. in a non-oxidizing gas atmosphere to prepare bearing samples of sample numbers 01 to 20. For each sample number, a plurality of sintered bearing samples were prepared for the following measurements.

これらの軸受試料について、日本工業規格(JIS)Z2505に規定の金属焼結材料の焼結密度試験方法により測定した鉄系焼結合金の密度は、5.6〜6.0Mg/mの範囲であった。For these bearing samples, the density of iron-based sintered alloys measured by the sintering density test method for metal sintered materials specified in Japanese Industrial Standards (JIS) Z2505 is in the range of 5.6 to 6.0 Mg / m 3 . Met.

また、各試料番号の軸受試料について、日本工業規格(JIS)Z2507に規定の圧環強さ試験方法により各軸受試料の圧環強さを測定した。この結果を表1に併せて示す。 Further, for the bearing sample of each sample number, the annular strength of each bearing sample was measured by the annular strength test method specified in Japanese Industrial Standards (JIS) Z2507. The results are also shown in Table 1.

さらに、各試料番号の軸受試料について、潤滑油(鉱物油 粘度グレードISO VG56)を含浸し、焼結含有軸受の内径面における摩擦係数を測定した。摩擦係数の測定は、水平にしたモータの回転軸に炭素鋼S45C製のシャフトを取り付けた。このシャフトを、ハウジングに取り付けた軸受に隙間を持たせて挿入し、ハウジングに鉛直方向の荷重を与えた状態でシャフトを回転させて行った。この試験において、周囲の温度は25℃に保持し、シャフトの回転数を500rpm、負荷面圧を0.3MPaに設定した。これらの結果を表1に併せて示す。 Further, the bearing sample of each sample number was impregnated with lubricating oil (mineral oil viscosity grade ISO VG56), and the friction coefficient on the inner diameter surface of the sintered-containing bearing was measured. For the measurement of the coefficient of friction, a shaft made of carbon steel S45C was attached to the rotating shaft of the horizontal motor. This shaft was inserted into a bearing attached to the housing with a gap, and the shaft was rotated while a vertical load was applied to the housing. In this test, the ambient temperature was maintained at 25 ° C., the rotation speed of the shaft was set to 500 rpm, and the load surface pressure was set to 0.3 MPa. These results are also shown in Table 1.

表1の試料番号01〜07の軸受試料を比較することで、Cu量の影響を調べることができる。表1より、Cuを含まない試料番号01の軸受試料は、軟質な銅相が形成されないことから、摩擦係数が大きい値となっている。これに対し、Cuの添加量が0.5質量%の試料番号02の軸受試料は、軟質な銅相が形成され、摩擦係数が0.25まで低減できている。また、Cu量が増加するに従って摩擦係数が低減されることがわかる。これらのことから、Cu量が0.5〜3質量%の範囲において、良好な摺動特性が得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても対応可能であることを示す。 By comparing the bearing samples of sample numbers 01 to 07 in Table 1, the influence of the amount of Cu can be investigated. From Table 1, the bearing sample of sample number 01 containing no Cu has a large coefficient of friction because a soft copper phase is not formed. On the other hand, in the bearing sample of sample number 02 in which the amount of Cu added is 0.5% by mass, a soft copper phase is formed and the friction coefficient can be reduced to 0.25. It can also be seen that the coefficient of friction decreases as the amount of Cu increases. From these facts, it was confirmed that good sliding characteristics can be obtained in the range of Cu amount of 0.5 to 3% by mass. This result indicates that it is possible to cope with sliding conditions in which it is difficult to form a good lubricating oil film.

表1の試料番号03、08〜15の軸受試料を比較することで、S量の影響を調べることができる。表1より、Sを含まない試料番号08の軸受試料は、硫化物相が形成されないことから、摩擦係数が大きい値となっている。これに対し、Sの添加量が0.3質量%の試料番号09の軸受試料は、硫化物相が形成され、摩擦係数が0.25まで低減できている。また、S量が増加するに従って摩擦係数が低減されていることがわかる。その一方で、S量が増加するに従って圧環強さは低下し、S量が2質量%を超える試料番号15の軸受試料では圧環強さが120MPaまで低下している。これらのことから、S量が0.3〜2質量%の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても対応可能であることを示す。 By comparing the bearing samples of sample numbers 03 and 08 to 15 in Table 1, the effect of the amount of S can be investigated. From Table 1, the bearing sample of sample number 08 not containing S has a large friction coefficient because the sulfide phase is not formed. On the other hand, in the bearing sample of sample number 09 in which the amount of S added is 0.3% by mass, a sulfide phase is formed and the friction coefficient can be reduced to 0.25. It can also be seen that the coefficient of friction decreases as the amount of S increases. On the other hand, as the amount of S increases, the annular strength decreases, and in the bearing sample of sample number 15 in which the amount of S exceeds 2% by mass, the annular strength decreases to 120 MPa. From these facts, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained in the range of S amount of 0.3 to 2% by mass. This result indicates that it is possible to cope with sliding conditions in which it is difficult to form a good lubricating oil film.

表1の試料番号03、16〜21の軸受試料を比較することで、C量の影響を調べることができる。表1より、C量が0.5質量%である試料番号16の軸受試料は、黒鉛相が乏しいことから、摩擦係数が大きい値となっている。これに対し、Cの添加量が1質量%の試料番号17の軸受試料は、充分な量の黒鉛相が形成され、摩擦係数が0.24まで低減できている。また、C量が増加するに従って摩擦係数が低減されていることがわかる。その一方で、C量が増加するに従って圧環強さは低下し、C量が5質量%を超える試料番号21の軸受試料では圧環強さが140MPaまで低下している。これらのことから、C量が0.5〜5質量%の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても対応可能であることを示す。 The effect of the amount of C can be investigated by comparing the bearing samples of sample numbers 03 and 16 to 21 in Table 1. From Table 1, the bearing sample of sample No. 16 having a C amount of 0.5% by mass has a large friction coefficient because the graphite phase is scarce. On the other hand, in the bearing sample of sample No. 17 in which the amount of C added was 1% by mass, a sufficient amount of graphite phase was formed, and the friction coefficient could be reduced to 0.24. It can also be seen that the coefficient of friction decreases as the amount of C increases. On the other hand, as the amount of C increases, the annular strength decreases, and in the bearing sample of sample number 21 in which the amount of C exceeds 5% by mass, the annular strength decreases to 140 MPa. From these facts, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained in the range of C content of 0.5 to 5% by mass. This result indicates that it is possible to cope with sliding conditions in which it is difficult to form a good lubricating oil film.

[第2実施例]
第1実施例の試料番号03の原料粉末を用い、成形圧力を変えて成形を行い、第1実施例と同様の焼結条件で焼結を行って、試料番号22〜29の軸受試料を作製した。これらの軸受試料につき、第1実施例と同様にして、各軸受試料の鉄系焼結合金の密度、圧環強さ、および摩擦係数を測定した。これらの結果、及び、第1実施例の試料番号03における結果を併せて表2に示す。
[Second Example]
Using the raw material powder of sample number 03 of the first example, molding was performed by changing the molding pressure, and sintering was performed under the same sintering conditions as in the first example to prepare bearing samples of sample numbers 22 to 29. did. For these bearing samples, the density, annular strength, and friction coefficient of the iron-based sintered alloy of each bearing sample were measured in the same manner as in the first embodiment. Table 2 shows these results and the results of Sample No. 03 of the first example.

表2における試料番号03、22〜27を比較することで、鉄系焼結合金の密度の影響を調べることができる。摩擦係数は、密度5.0〜7.2g/cmの範囲において0.25以下に低減できている。気孔率が増加するに従って、軸受とシャフトの接触面積が低下して摩擦係数が低減されることが分かる。一方、圧環強さは、密度が低下するに従って低下し、密度5.0g/cmの試料番号22の試料では150MPaまで低下している。このことから、密度が5.2〜7.2g/cmの範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても対応可能であることを示す。By comparing sample numbers 03 and 22 to 27 in Table 2, the influence of the density of the iron-based sintered alloy can be investigated. The coefficient of friction can be reduced to 0.25 or less in the range of density 5.0 to 7.2 g / cm 3 . It can be seen that as the porosity increases, the contact area between the bearing and the shaft decreases and the friction coefficient decreases. On the other hand, the annular strength decreases as the density decreases, and decreases to 150 MPa in the sample of sample number 22 having a density of 5.0 g / cm 3 . From this, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained in the range of density of 5.2 to 7.2 g / cm 3 . This result indicates that it is possible to cope with sliding conditions in which it is difficult to form a good lubricating oil film.

本発明における鉄系焼結含油軸受は、良好な潤滑油膜を形成しにくく、金属接触が発生しやすい摺動条件の下でも、良好な潤滑特性を発揮できる。複写機等の紙送りローラや、ヘッド駆動モータ等のような、正逆に回転する軸を支承し、正転、逆転それぞれの駆動時間が短い用途のための軸受として好適であり、又、スクロール式圧縮機等のような、固定子に対して偏心して回転する回転子の軸を支承する軸受等に好適である。 The iron-based sintered oil-impregnated bearing in the present invention is difficult to form a good lubricating oil film, and can exhibit good lubricating characteristics even under sliding conditions where metal contact is likely to occur. It supports a shaft that rotates in the forward and reverse directions, such as a paper feed roller for a copying machine and a head drive motor, and is suitable as a bearing for applications in which the drive times for forward rotation and reverse rotation are short. It is suitable for bearings that support the shaft of a rotor that rotates eccentrically with respect to the stator, such as a type compressor.

Claims (6)

軸の外周面を支持する軸受面を有し、気孔が分散する鉄系焼結合金で構成される鉄系焼結軸受と、前記気孔に含浸された潤滑油とを有する鉄系焼結含油軸受であって、
前記鉄系焼結合金の全体組成が、質量比で、Cu:0.5〜3%、C:1〜5%、S:0.3〜2%、残部:Feおよび不可避不純物からなり、
前記鉄系焼結合金の密度が5.2〜7.2g/cmであり、
前記鉄系焼結合金は、フェライト組織、パーライト組織、及び、フェライトとパーライトとの混合組織のうちの1つの金属組織を有する基地と、前記基地中に分散する銅相及び黒鉛相と、前記基地および前記銅相の少なくとも一方から析出して分散する硫化物相とを有する鉄系焼結含油軸受。
An iron-based sintered oil-impregnated bearing having a bearing surface that supports the outer peripheral surface of the shaft and having an iron-based sintered alloy in which pores are dispersed and a lubricating oil impregnated in the pores. And
The overall composition of the iron-based sintered alloy is composed of Cu: 0.5 to 3%, C: 1 to 5%, S: 0.3 to 2%, the balance: Fe and unavoidable impurities in terms of mass ratio.
The density of the iron-based sintered alloy is 5.2 to 7.2 g / cm 3 .
The iron-based sintered alloy has a matrix having one metal structure of a ferrite structure, a pearlite structure, and a mixed structure of ferrite and pearlite, a copper phase and a graphite phase dispersed in the matrix, and the matrix. An iron-based sintered oil-impregnated bearing having a sulfide phase that precipitates and disperses from at least one of the copper phases.
前記硫化物相が、前記基地および前記銅相の結晶粒界および結晶粒内に析出して分散する請求項1に記載の鉄系焼結含油軸受。 The iron-based sintered oil-impregnated bearing according to claim 1, wherein the sulfide phase is precipitated and dispersed in the grain boundaries and grain boundaries of the matrix and the copper phase. 前記硫化物は、硫化鉄および硫化銅が主体である請求項1または2に記載の鉄系焼結含油軸受。 The iron-based sintered oil-impregnated bearing according to claim 1 or 2, wherein the sulfide is mainly iron sulfide and copper sulfide. 前記金属組織において、前記硫化物相が、金属組織の断面を観察した時に気孔を含む断面の面積に対して0.9〜6%の面積率で前記金属組織に分散している請求項1〜3のいずれか一項に記載の鉄系焼結含油軸受。 In the metal structure, the sulfide phase is dispersed in the metal structure at an area ratio of 0.9 to 6% with respect to the area of the cross section including pores when observing the cross section of the metal structure. The iron-based sintered oil-impregnated bearing according to any one of 3. 前記硫化物相は、最大粒径が50μm以下の粒状である請求項1〜4のいずれか一項に記載の鉄系焼結含油軸受。 The iron-based sintered oil-impregnated bearing according to any one of claims 1 to 4, wherein the sulfide phase is granular with a maximum particle size of 50 μm or less. 前記軸受面に分散する銅相および硫化銅相は、軸受面全体に対して5〜20%の面積率で分散している請求項1〜5のいずれか一項に記載の鉄系焼結含油軸受。 The iron-based sintered oil-containing oil according to any one of claims 1 to 5, wherein the copper phase and the copper sulfide phase dispersed on the bearing surface are dispersed at an area ratio of 5 to 20% with respect to the entire bearing surface. bearing.
JP2018553563A 2016-11-30 2016-11-30 Iron-based sintered oil-impregnated bearing Expired - Fee Related JP6819696B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085507 WO2018100660A1 (en) 2016-11-30 2016-11-30 Ferrous sinter oil-containing bearing

Publications (2)

Publication Number Publication Date
JPWO2018100660A1 JPWO2018100660A1 (en) 2019-11-07
JP6819696B2 true JP6819696B2 (en) 2021-01-27

Family

ID=62242516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018553563A Expired - Fee Related JP6819696B2 (en) 2016-11-30 2016-11-30 Iron-based sintered oil-impregnated bearing

Country Status (2)

Country Link
JP (1) JP6819696B2 (en)
WO (1) WO2018100660A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024291B2 (en) * 2017-09-29 2022-02-24 昭和電工マテリアルズ株式会社 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings
CN111139427B (en) * 2020-01-14 2022-03-11 合肥波林新材料股份有限公司 Iron-based sintered sulfur vapor material, shaft sleeve and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773267B2 (en) * 2011-09-30 2015-09-02 日立化成株式会社 Iron-based sintered sliding member and manufacturing method thereof
JP2014066271A (en) * 2012-09-25 2014-04-17 Hitachi Powdered Metals Co Ltd Plain bearing assembly
JP6112473B2 (en) * 2013-03-13 2017-04-12 日立化成株式会社 Iron-based sintered sliding member

Also Published As

Publication number Publication date
WO2018100660A1 (en) 2018-06-07
JPWO2018100660A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
KR101101078B1 (en) Iron based sintered bearing and method for producing the same
KR100961459B1 (en) Sintered oil-containing bearing and its manufacturing method
JP6817094B2 (en) Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
JP5675090B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
KR20100045203A (en) Sliding bearing having improved consume resistivity and manufacturing method thereof
JP6921046B2 (en) Manufacturing method of sintered bearing
JP2011094167A (en) Iron-copper based sintered sliding member, and method for producing the same
WO2008062987A1 (en) Bearing having improved consume resistivity and manufacturing method thereof
EP2918693B1 (en) Sintered alloy superior in wear resistance
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP2008019929A (en) Oil-impregnated sintered bearing
JP6302259B2 (en) Manufacturing method of sintered bearing
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
JP7024291B2 (en) Iron-based sintered bearings and iron-based sintered oil-impregnated bearings
JP3774614B2 (en) Sintered oil-impregnated bearing material using copper-coated iron powder and manufacturing method thereof
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP2006111975A (en) Self-lubricating sintered sliding material and its production method
JP3254830B2 (en) Sintered sliding member
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
JP2001003123A (en) Sintered alloy for oilless bearing, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R151 Written notification of patent or utility model registration

Ref document number: 6819696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees