JP7024291B2 - Iron-based sintered bearings and iron-based sintered oil-impregnated bearings - Google Patents

Iron-based sintered bearings and iron-based sintered oil-impregnated bearings Download PDF

Info

Publication number
JP7024291B2
JP7024291B2 JP2017189786A JP2017189786A JP7024291B2 JP 7024291 B2 JP7024291 B2 JP 7024291B2 JP 2017189786 A JP2017189786 A JP 2017189786A JP 2017189786 A JP2017189786 A JP 2017189786A JP 7024291 B2 JP7024291 B2 JP 7024291B2
Authority
JP
Japan
Prior art keywords
iron
based sintered
bearing
phase
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017189786A
Other languages
Japanese (ja)
Other versions
JP2019065323A (en
Inventor
亮一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017189786A priority Critical patent/JP7024291B2/en
Publication of JP2019065323A publication Critical patent/JP2019065323A/en
Application granted granted Critical
Publication of JP7024291B2 publication Critical patent/JP7024291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、軸の外周面を支持する軸受面を有する鉄系焼結軸受、及び、その気孔に潤滑油が含浸された鉄系焼結含油軸受に関する。 The present invention relates to an iron-based sintered oil bearing having a bearing surface that supports the outer peripheral surface of the shaft, and an iron-based sintered oil-impregnated bearing in which the pores thereof are impregnated with lubricating oil.

軸の外周面を支持する軸受面を有するすべり軸受には、従来から、焼結合金製の焼結含油軸受が多用されている。焼結含油軸受は、気孔を有する焼結合金製の焼結軸受の気孔中に潤滑油を含浸したものであり、含浸した潤滑油による自己潤滑性を付与できるため、耐焼付き性と耐摩耗性が良好で広く用いられている。 Conventionally, sintered oil-impregnated bearings made of sintered alloy have been widely used for sliding bearings having a bearing surface that supports the outer peripheral surface of the shaft. Sintered oil-impregnated bearings are made by impregnating the pores of a sintered bearing made of sintered alloy with pores with lubricating oil, and since self-lubricating property can be imparted by the impregnated lubricating oil, seizure resistance and wear resistance can be imparted. Is good and widely used.

焼結含油軸受の潤滑理論を、図1を参照して説明する。焼結含油軸受の本体である焼結軸受1を構成する焼結体は、金属基地中に気孔が分散する多孔質体であり、気孔中に潤滑油2が含浸されている。焼結軸受は略円管又は略円環に形成され、その内径面で軸3を支承する。ここで、軸が回転すると、軸との摩擦熱により気孔に含浸された潤滑油が熱膨張するとともに、気孔中に含浸された潤滑油が軸の回転によって吸い出され、図1に矢印4で示すように、油圧の低い上の部分から高い油圧を受ける摺動部に向かって潤滑油が流れる。この潤滑油の流れによって軸受の内径面から軸を持ち上げて、軸受内径面と軸との金属接触を防止する。また、軸と軸受内径面の間に入り込む潤滑油の流れによって、軸は回転方向に片寄せられ、軸受内径面での油圧分布5は、図1のようになる。一方、油圧が生じても気孔を通じて潤滑油が逃げるため、気孔を通じて潤滑油が焼結軸受内を循環して、再び内径面で効果的な潤滑作用を発揮する。軸の回転が停止すると、熱膨張していた潤滑油は収縮するとともに、潤滑油が気孔中に毛細管力により吸収されて初期状態に戻る。これを繰り返すことで、長期にわたり、無給油で良好な潤滑特性が発揮される。 The lubrication theory of sintered oil-impregnated bearings will be described with reference to FIG. The sintered body constituting the sintered bearing 1 which is the main body of the sintered oil-impregnated bearing is a porous body in which pores are dispersed in a metal matrix, and the pores are impregnated with lubricating oil 2. The sintered bearing is formed in a substantially circular tube or a substantially annular ring, and supports the shaft 3 on the inner diameter surface thereof. Here, when the shaft rotates, the lubricating oil impregnated in the pores thermally expands due to the frictional heat with the shaft, and the lubricating oil impregnated in the pores is sucked out by the rotation of the shaft. As shown, the lubricating oil flows from the upper part where the oil pressure is low toward the sliding part which receives the high oil pressure. This flow of lubricating oil lifts the shaft from the inner diameter surface of the bearing to prevent metal contact between the inner diameter surface of the bearing and the shaft. Further, the shaft is offset in the rotational direction by the flow of the lubricating oil that enters between the shaft and the inner diameter surface of the bearing, and the hydraulic pressure distribution 5 on the inner diameter surface of the bearing is as shown in FIG. On the other hand, even if hydraulic pressure is generated, the lubricating oil escapes through the pores, so that the lubricating oil circulates in the sintered bearing through the pores and exerts an effective lubricating action on the inner diameter surface again. When the rotation of the shaft is stopped, the thermally expanded lubricating oil contracts, and the lubricating oil is absorbed into the pores by the capillary force and returns to the initial state. By repeating this, good lubrication characteristics are exhibited without lubrication for a long period of time.

軸受が支持する軸は、一般に安価な鉄合金からなり、焼結軸受には、銅系の焼結合金が適用された銅系焼結軸受が多用されてきた。近年、銅の価格が高騰しているため、安価な鉄を主成分とする鉄系焼結合金を用いた鉄系焼結軸受に対するニーズが高まってきている。しかし、このような鉄を主成分とする軸受の場合には、焼付き易く、また、相手部品であるシャフトを傷付け易いという欠点がある。特に、熱処理を施していない硬さが低いシャフトと、鉄を主成分とする軸受とを組み合わせて用いると、上記の現象は顕著となる。 The shaft supported by the bearing is generally made of an inexpensive iron alloy, and a copper-based sintered bearing to which a copper-based sintered alloy is applied has been widely used for the sintered bearing. In recent years, as the price of copper has soared, there is an increasing need for iron-based sintered bearings using an inexpensive iron-based sintered alloy containing iron as a main component. However, such a bearing containing iron as a main component has the disadvantages that it is easily seized and the shaft, which is a mating component, is easily damaged. In particular, when a shaft having no heat treatment and having a low hardness and a bearing containing iron as a main component are used in combination, the above phenomenon becomes remarkable.

このような状況の下、特許文献1では、焼結合金の全体組成が、質量比で、Cu:2.0~9.0%、C:1.5~3.7%、残部:Feおよび不可避不純物からなる鉄系焼結軸受が提案されている。この軸受の内部は、面積率でフェライトが20~85%および残部がパーライトからなる鉄合金相中に、軸受の軸方向に対して交差する方向に延在する銅相と、黒鉛相および気孔が分散する金属組織を示し、軸受面に、銅相が8~40%の面積率で露出する。この軸受は、優れた耐摩耗性を有するとともに、鉄銅系焼結合金を用いた鉄銅系焼結軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有することが記載されている。 Under such circumstances, in Patent Document 1, the overall composition of the sintered alloy is Cu: 2.0 to 9.0%, C: 1.5 to 3.7%, the balance: Fe and the mass ratio. Iron-based sintered bearings made of unavoidable impurities have been proposed. Inside this bearing, a copper phase extending in a direction intersecting the axial direction of the bearing, a graphite phase and pores are contained in an iron alloy phase consisting of 20 to 85% ferrite in terms of area ratio and pearlite in the balance. It shows a dispersed metal structure, and the copper phase is exposed on the bearing surface at an area ratio of 8 to 40%. It is described that this bearing has excellent wear resistance, seizure resistance comparable to that of an iron-copper-based sintered bearing using an iron-copper-based sintered alloy, and resistance to attack on mating parts. ..

また、内径面に高い面圧が作用するような軸受に用いて好適である摺動部材用鉄基焼結合金として、全体組成が、質量比で、C:0.6~1.2%、Cu:3.5~9.0%、Mn:0.6~2.2%、S:0.4~1.3%、残部:Feおよび不可避不純物からなる摺動部材用鉄基焼結合金が提案(特許文献2)されている。この合金組織は、マルテンサイト基地中に、遊離したCu相及び遊離したCu-Fe合金相の少なくとも一方が分散しているとともに、MnS相が1.0~3.5質量%分散していることを特徴とする。 Further, as an iron-based sintered alloy for sliding members suitable for use in bearings in which a high surface pressure acts on the inner diameter surface, the overall composition is C: 0.6 to 1.2% in terms of mass ratio. Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3%, balance: Fe and iron-based sintered alloy for sliding members consisting of unavoidable impurities Has been proposed (Patent Document 2). In this alloy structure, at least one of the free Cu phase and the free Cu—Fe alloy phase is dispersed in the martensite matrix, and the MnS phase is dispersed in an amount of 1.0 to 3.5% by mass. It is characterized by.

特開2010-077474号公報Japanese Unexamined Patent Publication No. 2010-077744 特開2009-155696号公報Japanese Unexamined Patent Publication No. 2009-155696

上記のように、焼結含油軸受では、軸の回転により気孔中から引き出された潤滑油が、軸の回転につれて軸と軸受内径面と間に引き込まれ、軸と軸受の内径面の間に油膜を形成することで軸と軸受の内径面の金属接触を防止して良好な潤滑特性を示す。このため、各種用途への適用が進んでいるが、良好な油膜を形成しにくい用途に対しては、その適用が進んでいない。更なる用途拡大のためには、焼結軸受のさらなる改良が必要である。 As described above, in the sintered oil-impregnated bearing, the lubricating oil drawn out from the pores due to the rotation of the shaft is drawn between the shaft and the inner diameter surface of the bearing as the shaft rotates, and an oil film is formed between the shaft and the inner diameter surface of the bearing. By forming a metal contact between the shaft and the inner diameter surface of the bearing, metal contact is prevented and good lubrication characteristics are exhibited. For this reason, application to various applications is progressing, but application to applications where it is difficult to form a good oil film is not progressing. Further improvement of sintered bearings is necessary for further expansion of applications.

このような焼結含油軸受の適用が難しいと考えられてきた分野として、例えば、複写機等の紙送りローラや、ヘッド駆動モータ等のような、正逆に回転する軸を支承するとともに、正転、逆転それぞれの駆動時間が短い用途のための軸受がある。このような用途の場合、図2(a)に示すように、良好な潤滑油膜が形成される前に回転が停止することから、軸と軸受の内径面との金属接触が発生しやすい。 In fields where it has been considered difficult to apply such sintered oil-impregnated bearings, for example, paper feed rollers such as copiers, head drive motors, and other shafts that rotate in the forward and reverse directions are supported and positive. There are bearings for applications where the drive time for rolling and reversing is short. In such an application, as shown in FIG. 2A, the rotation is stopped before a good lubricating oil film is formed, so that metal contact between the shaft and the inner diameter surface of the bearing is likely to occur.

また、スクロール式圧縮機等のような、固定子に対して偏心して回転する回転子の軸を支承する軸受としての用途においては、図2(b)に示すように、軸受内径面に対して軸の位置が偏心して移動することとなる。このような用途においても、良好な潤滑油膜を形成することが難しく、軸と軸受の内径面との金属接触が発生しやすい。 Further, in an application as a bearing that supports a rotor shaft that rotates eccentrically with respect to a stator, such as a scroll compressor, as shown in FIG. 2 (b), with respect to the inner diameter surface of the bearing. The position of the shaft will move eccentrically. Even in such an application, it is difficult to form a good lubricating oil film, and metal contact between the shaft and the inner diameter surface of the bearing is likely to occur.

これらの用途においては、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂で内径面を構成したすべり軸受が適用されているが、軟質なフッ素系樹脂は、摩耗が生じ易く、耐久性に問題がある。したがって、このような金属接触が発生しやすい用途であっても、良好な摺動特性を示す焼結軸受が提供できれば、焼結軸受の適用が拡大できることとなる。 In these applications, plain bearings whose inner diameter surface is made of a fluororesin such as polytetrafluoroethylene (PTFE) are applied, but soft fluororesins are prone to wear and have problems in durability. be. Therefore, even in applications where such metal contact is likely to occur, if a sintered bearing exhibiting good sliding characteristics can be provided, the application of the sintered bearing can be expanded.

この点について、特許文献1の鉄系焼結軸受は、良好な潤滑油膜が形成できる用途に対しては優れた耐摩耗性を有し、鉄銅系焼結含油軸受に匹敵する耐焼付き性および相手部品への攻撃緩和性を有する。しかし、金属接触が発生しやすい用途に対しては、さらなる改良が必要である。 In this respect, the iron-based sintered bearing of Patent Document 1 has excellent wear resistance for applications in which a good lubricating oil film can be formed, and has seizure resistance comparable to that of iron-copper-based sintered oil-impregnated bearings. Has the ability to mitigate attacks on mating parts. However, further improvements are needed for applications where metal contact is likely to occur.

一方、特許文献2の鉄基焼結摺動部材は、遊離したCu相またはCu-Fe合金相とMnS相によって潤滑を行い、摺動特性を発揮する。この点に関して、MnS相は、原料粉末に添加したMnS粉末がそのまま残留して形成されるので、MnS相は鉄粉末どうしの粒界(粉末粒界)のみに分散する。しかし、MnS粉末は、安定で、他の粉末と反応しないので、基地を形成する鉄粉末と反応せず、従って、基地への固着性が悪い。また、鉄粉末の粒界に存在して鉄粉末粒子どうしの結合を阻害するので、基地の強度が低下する虞がある。 On the other hand, the iron-based sintered sliding member of Patent Document 2 exhibits sliding characteristics by lubricating with a free Cu phase or a Cu—Fe alloy phase and an MnS phase. In this regard, since the MnS phase is formed by the MnS powder added to the raw material powder remaining as it is, the MnS phase is dispersed only at the grain boundaries (powder grain boundaries) between the iron powders. However, since the MnS powder is stable and does not react with other powders, it does not react with the iron powder forming the matrix, and therefore has poor adhesion to the matrix. Further, since it exists at the grain boundaries of the iron powder and inhibits the bonding between the iron powder particles, the strength of the matrix may decrease.

本発明は、固着性の乏しい特許文献2の手法によらず、鉄系焼結含油軸受に対して、よりいっそうの潤滑特性の向上を果たし、金属接触が発生しやすい用途においても良好な潤滑特性を示す鉄系焼結軸受およびその製造方法、並びに、気孔に潤滑油を含浸した鉄系焼結含油軸受を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention achieves further improvement in lubrication characteristics for iron-based sintered oil-impregnated bearings regardless of the method of Patent Document 2 having poor adhesiveness, and has good lubrication characteristics even in applications where metal contact is likely to occur. It is an object of the present invention to provide an iron-based sintered oil-impregnated bearing and a method for manufacturing the same, and an iron-based sintered oil-impregnated bearing in which pores are impregnated with lubricating oil.

本発明者らは、上記目的を達成する鉄系焼結軸受につき検討し、鉄系焼結軸受の本体を構成する鉄系焼結合金の基地中に硫化物を析出分散させることで、金属接触が発生しやすい用途においても良好な潤滑特性を示すことができ、二硫化モリブデンの利用が有用であることを見出した。
本発明の一態様によれば、鉄系焼結軸受は、軸の外周面を支持する軸受面を有し、潤滑油を含浸可能な気孔が分散する鉄系焼結合金によって構成される鉄系焼結軸受であって、記鉄系焼結合金の全体組成が、質量比で、Cu:0.5~3%、Mo:0.3~3.3%、C:1~5%、S:0.2~2.2%、残部:Fe及び不可避不純物からなり、前記鉄系焼結合金の密度が5.2~7.2Mg/mであり、前記鉄系焼結合金の金属組織は、前記気孔が分散する基地と、前記基地に分散する銅相及び黒鉛相と、前記基地及び前記銅相の少なくとも一方から析出して分散する硫化物相とを有し、前記基地は、ベイナイトの単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、及び、ベイナイトとパーライトとフェライトの混合組織のうちの1つの金属組織を呈することを要旨とする。
又、本発明の一態様によれば、鉄系焼結含油軸受は、前記鉄系焼結軸受と、前記鉄系焼結軸受の気孔に含浸される潤滑油とを有することを要旨とする。
The present inventors have studied an iron-based sintered bearing that achieves the above object, and metal contact is performed by precipitating and dispersing sulfide in the base of the iron-based sintered alloy constituting the main body of the iron-based sintered bearing. It has been found that the use of molybdenum disulfide is useful because it can exhibit good lubrication characteristics even in applications where calcination is likely to occur.
According to one aspect of the present invention, the iron-based sintered bearing has a bearing surface that supports the outer peripheral surface of the shaft, and is made of an iron-based sintered alloy in which pores that can be impregnated with lubricating oil are dispersed. It is a sintered bearing, and the overall composition of the iron-based sintered alloy is Cu: 0.5 to 3%, Mo: 0.3 to 3.3%, C: 1 to 5%, S in terms of mass ratio. : 0.2 to 2.2%, balance: Fe and unavoidable impurities, the density of the iron-based sintered alloy is 5.2 to 7.2 Mg / m 3 , and the metal structure of the iron-based sintered alloy. Has a base in which the pores are dispersed, a copper phase and a graphite phase dispersed in the base, and a sulfide phase which is precipitated and dispersed from at least one of the base and the copper phase, and the base is baynite. The gist is to exhibit one of a single-phase structure, a mixed structure of baynite and pearlite, a mixed structure of baynite and ferrite, and a mixed structure of baynite, pearlite and ferrite.
Further, according to one aspect of the present invention, the iron-based sintered oil-impregnated bearing has the iron-based sintered bearing and the lubricating oil impregnated in the pores of the iron-based sintered bearing.

上記鉄系焼結軸受において、前記硫化物相は、前記基地及び前記銅相の少なくとも一方における結晶粒界及び結晶粒内に析出して分散する。前記硫化物相は、硫化鉄及び硫化銅によって主に構成され、前記硫化物相は、前記鉄系焼結合金の断面において、気孔を含む断面の面積に対して0.9~6%の面積率で存在するように前記鉄系焼結合金に分散しているとよい。前記硫化物相は、粒状であり、最大粒径が50μm以下であると好適である。前記軸受面において、銅相、及び、硫化銅によって構成される硫化物相は、軸受面全体に対して5~20%の面積率で分散していると潤滑特性の点で好適である。前記基地の金属組織断面においてベイナイトが占める割合は、面積率で10%以上であるとよい。又、前記軸受面の気孔率は、面積率で15~30%であると含油軸受として好適である。 In the iron-based sintered bearing, the sulfide phase is precipitated and dispersed in the grain boundaries and crystal grains at at least one of the matrix and the copper phase. The sulfide phase is mainly composed of iron sulfide and copper sulfide, and the sulfide phase has an area of 0.9 to 6% of the area of the cross section including pores in the cross section of the iron-based sintered alloy. It is preferable that the iron-based sintered alloy is dispersed so as to be present at a rate. The sulfide phase is granular, and it is preferable that the maximum particle size is 50 μm or less. On the bearing surface, the copper phase and the sulfide phase composed of copper sulfide are preferably dispersed in an area ratio of 5 to 20% with respect to the entire bearing surface in terms of lubrication characteristics. The proportion of bainite in the cross section of the metal structure of the base is preferably 10% or more in terms of area ratio. Further, when the porosity of the bearing surface is 15 to 30% in area ratio, it is suitable for an oil-impregnated bearing.

本発明の実施形態によれば、鉄系焼結軸受は、潤滑特性について優れた改善が施され、金属接触が発生しやすい用途においても良好な潤滑特性を示すものである。 According to the embodiment of the present invention, the iron-based sintered bearing is provided with excellent improvement in lubrication characteristics, and exhibits good lubrication characteristics even in applications where metal contact is likely to occur.

焼結含油軸受の潤滑作用を説明する模式図である。It is a schematic diagram explaining the lubrication action of a sintered oil-impregnated bearing. 良好な潤滑油膜が形成されない場合を説明する模式図である。It is a schematic diagram explaining the case where a good lubricating oil film is not formed.

以下、本発明における鉄系焼結含油軸受の本体である鉄系焼結軸受を構成する鉄系焼結合金の金属組織および数値特定の根拠を、本発明の作用とともに説明する。 Hereinafter, the metallographic structure of the iron-based sintered alloy constituting the iron-based sintered bearing, which is the main body of the iron-based sintered oil-impregnated bearing in the present invention, and the basis for specifying the numerical values will be described together with the operation of the present invention.

本発明において、鉄系焼結含油軸受の本体である鉄系焼結軸受は、軸の外周面を支持する軸受面を有し、Fe(鉄)を主成分とする鉄系焼結合金によって構成される。鉄系焼結合金には、潤滑油を含浸可能な気孔が分散し、気孔に潤滑油を含浸することによって、焼結含油軸受が構成される。Feは、Cu(銅)に比して安価であり、機械的強さに優れることから、鉄系焼結合金の主成分として好適な成分である。Feは、鉄粉末又は後述するFe-Mo合金粉末の形態で導入され、鉄粉末又はFe-Mo合金粉末を主成分とする原料粉末を用いることによって、鉄系焼結合金の基地が形成される。鉄系焼結合金の基地には、気孔が分散する。気孔は、粉末冶金法に起因して生じるものであり、原料粉末を圧粉成形した際の粉末粒子間の空隙が、原料粉末の結合によって形成された基地中に残留したものである。 In the present invention, the iron-based sintered bearing, which is the main body of the iron-based sintered oil-impregnated bearing, has a bearing surface that supports the outer peripheral surface of the shaft, and is composed of an iron-based sintered alloy containing Fe (iron) as a main component. Will be done. The iron-based sintered alloy has pores that can be impregnated with lubricating oil dispersed, and the pores are impregnated with lubricating oil to form a sintered oil-impregnated bearing. Fe is a component suitable as a main component of an iron-based sintered alloy because it is cheaper than Cu (copper) and has excellent mechanical strength. Fe is introduced in the form of iron powder or Fe-Mo alloy powder described later, and a base of an iron-based sintered alloy is formed by using a raw material powder containing iron powder or Fe-Mo alloy powder as a main component. .. Pore is dispersed in the base of the iron-based sintered alloy. The pores are generated by the powder metallurgy method, and the voids between the powder particles when the raw material powder is compacted remain in the matrix formed by the bonding of the raw material powder.

鉄系焼結軸受を構成する鉄系焼結合金の基地の金属組織は、ベイナイトの単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、ベイナイトとパーライトとフェライトの混合組織のうちの何れか1つであるとよい。つまり、ベイナイトを含む金属組織を呈する基地であるとよい。ベイナイトは、マルテンサイトに次いで硬く、且つ、粘り強さを有するので、機械的強さが高い組織要素である。本発明の鉄系焼結合金においては、このようなベイナイトを基地の組織に用い、鉄系焼結合金の機械的強さの向上を図るとともに、耐摩耗性の向上を図る。このため、本発明の鉄系焼結軸受においては、基地の金属組織においてベイナイトが占める割合は、金属組織断面における面積率で10%以上であることが好ましい。基地の残部は、パーライト及びフェライトのうちの一方又は両方であってよい。 The metal structure of the base of the iron-based sintered alloy that constitutes the iron-based sintered bearing is one of the single-phase structure of bainite, the mixed structure of bainite and pearlite, the mixed structure of bainite and ferrite, and the mixed structure of bainite and pearlite and ferrite. It is preferable that it is any one of them. That is, it is preferable that the base exhibits a metal structure containing bainite. Bainite is a tissue element with high mechanical strength because it is hard and has tenacity next to martensite. In the iron-based sintered alloy of the present invention, such bainite is used for the structure of the base to improve the mechanical strength of the iron-based sintered alloy and the wear resistance. Therefore, in the iron-based sintered bearing of the present invention, the ratio of bainite in the metal structure of the base is preferably 10% or more in terms of the area ratio in the cross section of the metal structure. The rest of the substrate may be one or both of pearlite and ferrite.

フェライトは、軟質であり、相手材となる軸とのなじみ性が良好であるが、機械的強さが低い。一方、パーライトは、基地硬さが高く、機械的強さが高いが、相手材となる軸を摩耗させる虞がある。このため、鉄系焼結合金の基地の金属組織は、鉄系焼結軸受の要求特性に応じて、ベイナイト単相の金属組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、ベイナイトとパーライトとフェライトの混合組織のいずれかになるように、黒鉛及びMoの配合量及び配合形態によって調整するとよい(詳細は後述する)。 Ferrite is soft and has good compatibility with the shaft as the mating material, but its mechanical strength is low. On the other hand, pearlite has a high base hardness and a high mechanical strength, but there is a risk of wearing the shaft that is the mating material. Therefore, the metal structure of the base of the iron-based sintered alloy may be a bainite single-phase metal structure, a mixed structure of bainite and pearlite, a mixed structure of bainite and ferrite, and bainite, depending on the required characteristics of the iron-based sintered bearing. It may be adjusted according to the blending amount and blending form of graphite and Mo so as to have either a mixed structure of pearlite and ferrite (details will be described later).

上述したように、焼結合金には製法に起因する気孔が形成されるため、焼結合金の密度(焼結体密度)は、理論密度よりも低くなる。つまり、焼結合金の密度が高いと、気孔量は少なくなり、焼結合金の密度が低いと、気孔量は多くなる。焼結軸受においては、このような気孔を利用し、鉄系焼結合金に形成される気孔に潤滑油を含浸することで焼結軸受に潤滑性を付与し、その潤滑特性は、無給油で長期にわたって発揮される。本発明において、鉄系焼結軸受を構成する鉄系焼結合金に形成される気孔量が乏しい、すなわち鉄系焼結合金の密度が高いと、含浸される潤滑油の量が乏しくなり、良好な潤滑特性が発揮できなくなる。逆に、鉄系焼結合金に形成される気孔量が過多、すなわち鉄系焼結合金の密度が低いと、鉄系焼結合金の基地の量が少なくなる結果、鉄系焼結合金の機械的強さが低下することとなる。この観点から、鉄系焼結合金の密度は5.2~7.2Mg/mであるとよい。この範囲の鉄系焼結合金の密度は、鉄系焼結合金の気孔率でおよそ10~25%に相当する。なお、焼結体の密度比は、日本工業規格(JIS)Z2505に規定の金属焼結材料の焼結密度試験方法により測定される。 As described above, since pores are formed in the sintered alloy due to the manufacturing method, the density of the sintered alloy (sintered body density) is lower than the theoretical density. That is, when the density of the sintered alloy is high, the amount of pores is small, and when the density of the sintered alloy is low, the amount of pores is large. In sintered bearings, such pores are used to impregnate the pores formed in the iron-based sintered alloy with lubricating oil to impart lubricity to the sintered bearing, and its lubricating characteristics are oil-free. Demonstrated for a long time. In the present invention, when the amount of pores formed in the iron-based sintered alloy constituting the iron-based sintered bearing is small, that is, when the density of the iron-based sintered alloy is high, the amount of the lubricating oil impregnated becomes small, which is good. It becomes impossible to exhibit good lubrication characteristics. On the contrary, if the amount of pores formed in the iron-based sintered alloy is excessive, that is, the density of the iron-based sintered alloy is low, the amount of bases of the iron-based sintered alloy decreases, and as a result, the machine of the iron-based sintered alloy. The target strength will decrease. From this point of view, the density of the iron-based sintered alloy is preferably 5.2 to 7.2 Mg / m 3 . The density of the iron-based sintered alloy in this range corresponds to about 10 to 25% in terms of porosity of the iron-based sintered alloy. The density ratio of the sintered body is measured by the sintering density test method of the metal sintered material specified in Japanese Industrial Standards (JIS) Z2505.

Cuは、軟質な銅相を形成して、相手材となる軸とのなじみ性を良好なものとするとともに、潤滑性に優れる硫化銅を形成して潤滑性を向上させることが可能な成分である。Cu量が乏しいと、基地中に分散する銅相が少なくなり、上記の効果が十分に得られない。一方、高価なCuが過大であると、その分、コストが増加する。このため、Cu量は全体組成の0.5~3質量%とする。 Cu is a component that can form a soft copper phase to improve compatibility with the shaft that is the mating material, and can form copper sulfide with excellent lubricity to improve lubricity. be. When the amount of Cu is scarce, the amount of copper phase dispersed in the substrate is small, and the above effect cannot be sufficiently obtained. On the other hand, if the expensive Cu is excessive, the cost will increase accordingly. Therefore, the amount of Cu is set to 0.5 to 3% by mass of the total composition.

Cuは、銅粉末の形態で原料粉末に配合される。なお、銅粉末は、扁平状あるいは箔状の銅粉末を用いることが好ましい。Cu原料として扁平状の銅粉を用いると、ダイキャビティ内を原料粉末が落下する際に、コアロッドに扁平状の銅粉がまとわり付き、コアロッドに銅粉が張り付いた状態となるため、これを軸受に成形すると、摺動特性が求められる軸受内径面に露出する銅相の量が軸受内部と比較して多くなる。従って、全体組成中のCu量を削減して軸受内部のCu量が低下しても、軸受内径面に露出する銅相の量を必要量に維持することができる。この点に関し、軸受内径面に分散する銅相および硫化銅によって構成される硫化物相(後述する)の合計の適量を、面積率で軸受面全体の5~20%とすることができ、軟質な銅相および銅相から析出する硫化銅によって、摺動特性をより向上させることができる。扁平状の銅粉は、粒径が20~150μm程度のものを好適に用いることができる。粒径が小さい銅粉は、鉄粒子間の間隙に入り易く、過大な銅粉は、コアロッド周囲に遍在し難くなる。粒子径と厚さとの比は、2.5~20程度であると好適である。 Cu is blended with the raw material powder in the form of copper powder. As the copper powder, it is preferable to use a flat or foil-shaped copper powder. When flat copper powder is used as the Cu raw material, when the raw material powder falls in the die cavity, the flat copper powder clings to the core rod and the copper powder sticks to the core rod. When this is molded into a bearing, the amount of copper phase exposed on the inner diameter surface of the bearing, which is required to have sliding characteristics, is larger than that inside the bearing. Therefore, even if the amount of Cu in the overall composition is reduced and the amount of Cu inside the bearing is reduced, the amount of copper phase exposed on the inner diameter surface of the bearing can be maintained at a required amount. In this regard, the total appropriate amount of the copper phase dispersed on the inner diameter surface of the bearing and the sulfide phase composed of copper sulfide (described later) can be 5 to 20% of the entire bearing surface in terms of area ratio, and is soft. The sliding characteristics can be further improved by the copper phase and the copper sulfide precipitated from the copper phase. As the flat copper powder, those having a particle size of about 20 to 150 μm can be preferably used. Copper powder with a small particle size tends to enter the gaps between iron particles, and excessive copper powder is less likely to be ubiquitous around the core rod. The ratio of the particle size to the thickness is preferably about 2.5 to 20.

Mo(モリブデン)は、基地を形成するFe中に固溶して基地の強化に寄与する。また、Moは、鉄基地の焼入れ性を向上させる機能を有しており、焼結後の冷却過程で基地組織中にベイナイトを形成して鉄系焼結軸受の機械的強さの向上および耐摩耗性の向上に寄与する。Mo量が乏しいと上記の効果が乏しくなる。一方、高価なMoが過大となると、その分、コストが増加する。このため、Mo量は、全体組成の0.3~3.3質量%、好ましくは0.6~3.0質量%とする。 Mo (molybdenum) dissolves in Fe forming a matrix and contributes to strengthening the matrix. In addition, Mo has a function of improving the hardenability of the iron base, and forms bainite in the base structure in the cooling process after sintering to improve the mechanical strength and resistance of the iron-based sintered bearing. Contributes to improvement of wear resistance. If the amount of Mo is small, the above effect will be poor. On the other hand, if the expensive Mo becomes excessive, the cost will increase accordingly. Therefore, the amount of Mo is 0.3 to 3.3% by mass, preferably 0.6 to 3.0% by mass of the total composition.

Moは、主原料である鉄粉末に合金化させてFe-Mo合金粉末の形態で配合してよく、或いは、二硫化モリブデンとして配合してもよい。鉄粉末の代わりにFe-Mo合金粉末を用いると、Moが全体に均一に分散するので、Moの効果が基地中に均一に作用し、基地組織をベイナイト単相組織にすることができる。一方、二硫化モリブデン粉末を用いてMoを配合すると、焼結過程で二硫化モリブデンがMoとSに分解して生成したMoが基地中に拡散し、Moが拡散した部分の基地組織の焼入れ性を向上させてベイナイト相を形成する。従って、Moの拡散が乏しい部分はパーライトになる。故に、Moの配合形態を利用して、ベイナイトの生成割合を調整することが可能である。 Mo may be alloyed with iron powder as a main raw material and blended in the form of Fe—Mo alloy powder, or may be blended as molybdenum disulfide. When Fe-Mo alloy powder is used instead of iron powder, Mo is uniformly dispersed throughout, so that the effect of Mo acts uniformly in the matrix, and the matrix structure can be made into a bainite single-phase structure. On the other hand, when Mo is blended using molybdenum disulfide powder, molybdenum disulfide is decomposed into Mo and S in the sintering process, and the generated Mo is diffused into the matrix, and the hardenability of the matrix structure of the portion where Mo is diffused is diffused. To form a bainite phase. Therefore, the portion where the diffusion of Mo is poor becomes pearlite. Therefore, it is possible to adjust the production ratio of bainite by using the compounding form of Mo.

S(硫黄)は、基地を形成するFeと結合して硫化鉄を形成し、又、銅相を形成するCuと結合すると、硫化銅を形成する。なお、主原料である鉄粉末は、製法に起因する不可避不純物として極微量(1質量%以下)のMnを含有する。このため、ごく一部に硫化マンガンも分散し得る。これらの硫化物は、潤滑性に富むので、このような硫化物を基地中に析出分散させることで、金属接触が発生しやすい摺動条件の下でも優れた潤滑特性を発揮する基地を形成できる。本発明において、硫化物相は、具体的には上記の硫化物の全て、つまり、硫化鉄、硫化銅及び不可避不純物由来の硫化物(硫化マンガン)を含み得るものと見なされ、状況に応じて、上記硫化物の一種以上が硫化物相として焼結合金の金属組織に存在する。 S (sulfur) forms iron sulfide by combining with Fe forming a matrix, and forms copper sulfide when combined with Cu forming a copper phase. The iron powder, which is the main raw material, contains a very small amount (1% by mass or less) of Mn as an unavoidable impurity due to the production method. Therefore, manganese sulfide can also be dispersed in a small part. Since these sulfides are rich in lubricity, by precipitating and dispersing such sulfides in the matrix, it is possible to form a matrix that exhibits excellent lubrication characteristics even under sliding conditions where metal contact is likely to occur. .. In the present invention, the sulfide phase is considered to specifically include all of the above sulfides, that is, sulfides derived from iron sulfide, copper sulfide and unavoidable impurities (manganese sulfide), depending on the situation. , One or more of the above sulfides are present in the metal structure of the sintered alloy as a sulfide phase.

Sは、硫化鉄粉末及び二硫化モリブデン粉末のうち少なくとも一つの形態で原料粉末に配合することで導入される。硫化鉄粉末の形態で付与されるSは、焼結工程の昇温過程において988℃を超えると、Fe-Sの共晶液相を発生し、液相焼結が進行して粉末粒子間のネックの成長を促進する。一方、二硫化モリブデンの形態でSを導入すると、昇温過程でMoSの分解によって生成するSが鉄粉末中に拡散し、988℃を超えるとFe-Sの共晶液相を発生して、液相焼結が進行し粉末粒子間のネックの成長を促進する。このようにして発生した共晶液相からSが鉄基地中に均一に拡散した後、基地の結晶粒界および結晶粒内から再度硫化鉄粒子として析出する。従って、硫化鉄粒子は、基地の結晶粒界および結晶粒内に均一に分散し、析出する硫化鉄粒子の固着性は高い。また、Sの一部が銅相に拡散して銅相中のCuと結合することが可能であり、それにより、銅相の結晶粒界および結晶粒内に硫化銅粒子として析出し得る。従って、硫化銅粒子も、このように銅相の結晶粒界および結晶粒内に析出して分散するので、固着性が高い。尚、硫化物の形成し易さについて、Fe及びCuは同程度に硫化物を形成し易く、Moは、Fe及びCuより硫化物を形成し難いことから、基地中に分散する硫化物は、主として鉄硫化物および銅硫化物である。硫化物相は、基地及び銅相の少なくとも一方において析出し、結晶粒界及び結晶粒内に存在する。 S is introduced by blending with the raw material powder in at least one form of iron sulfide powder and molybdenum disulfide powder. When S added in the form of iron sulfide powder exceeds 988 ° C. in the heating process of the sintering step, a eutectic liquid phase of Fe—S is generated, and liquid phase sintering proceeds and the liquid phase sintering proceeds between the powder particles. Promotes neck growth. On the other hand, when S is introduced in the form of molybdenum disulfide, S generated by decomposition of MoS diffuses into the iron powder in the process of raising the temperature, and when the temperature exceeds 988 ° C, a eutectic liquid phase of Fe—S is generated. Liquid phase sintering progresses and promotes the growth of necks between powder particles. After S is uniformly diffused into the iron matrix from the eutectic liquid phase generated in this way, it is deposited again as iron sulfide particles from the grain boundaries of the matrix and the inside of the crystal grains. Therefore, the iron sulfide particles are uniformly dispersed in the crystal grain boundaries of the matrix and in the crystal grains, and the precipitated iron sulfide particles have high adhesion. Further, a part of S can be diffused into the copper phase and bonded to Cu in the copper phase, so that it can be precipitated as copper sulfide particles in the grain boundaries of the copper phase and in the crystal grains. Therefore, the copper sulfide particles are also precipitated and dispersed in the crystal grain boundaries and crystal grains of the copper phase in this way, and thus have high adhesiveness. Regarding the ease of forming sulfides, Fe and Cu are as easy to form sulfides, and Mo is more difficult to form sulfides than Fe and Cu. Mainly iron sulfide and copper sulfide. The sulfide phase precipitates at at least one of the matrix and the copper phase and is present at the grain boundaries and within the grain.

S量が乏しいと、基地中に分散する硫化物の量が減少して、潤滑特性が不十分になる。S量が過剰であると、析出する硫化物の量が過多となって基地の強度が低下し、その結果、鉄系焼結軸受を構成する鉄系焼結合金の機械的強さが低下する。このようなことから、S量は全体組成の0.2~2.2質量%、好ましくは0.4~2.0質量%であるとよい。このような割合である時、鉄系焼結合金の金属組織における硫化物相は、金属組織断面を観察した時の気孔を含む断面の面積に対する面積率で、0.9~6%となる。 When the amount of S is poor, the amount of sulfide dispersed in the substrate decreases, and the lubrication characteristics become insufficient. If the amount of S is excessive, the amount of precipitated sulfide is excessive and the strength of the matrix is lowered, and as a result, the mechanical strength of the iron-based sintered alloy constituting the iron-based sintered bearing is lowered. .. Therefore, the amount of S is preferably 0.2 to 2.2% by mass, preferably 0.4 to 2.0% by mass of the total composition. At such a ratio, the sulfide phase in the metal structure of the iron-based sintered alloy is 0.9 to 6% in terms of the area ratio with respect to the area of the cross section including the pores when observing the cross section of the metal structure.

硫化物は、金属組織中に粒状で分散することが好ましい。また、析出する硫化物粒子の大きさが粗大であると、硫化物粒子の存在箇所が偏在し、硫化物粒子の存在が乏しい箇所において、金属接触時に摩耗、凝着等が生じ易くなる。このため、硫化物相は最大粒径が50μm以下の粒子として分散する状態が好ましい。 The sulfide is preferably dispersed in the metal structure in a granular manner. Further, when the size of the precipitated sulfide particles is coarse, the locations where the sulfide particles are present are unevenly distributed, and in the locations where the presence of the sulfide particles is scarce, wear, adhesion, etc. are likely to occur at the time of metal contact. Therefore, the sulfide phase is preferably dispersed as particles having a maximum particle size of 50 μm or less.

C(炭素)は、黒鉛粉末の形態で配合される。黒鉛相は、黒鉛粉末粒子が未拡散の状態で鉄系焼結合金中に残留することで形成される。このため、黒鉛相は、鉄系焼結合金の気孔中に分散する。黒鉛相は、鉄系焼結合金に潤滑性を付与する。また、黒鉛粉末の一部は、基地を構成するFe粉末粒子中に拡散して固溶し、パーライトを形成して基地の機械的強さの向上に寄与する。これによって、パーライトの単相組織、または、フェライトとパーライトとの混合組織を示す基地が生成する。 C (carbon) is compounded in the form of graphite powder. The graphite phase is formed by the graphite powder particles remaining in the iron-based sintered alloy in an undiffused state. Therefore, the graphite phase is dispersed in the pores of the iron-based sintered alloy. The graphite phase imparts lubricity to the iron-based sintered alloy. Further, a part of the graphite powder diffuses and dissolves in the Fe powder particles constituting the matrix to form pearlite, which contributes to the improvement of the mechanical strength of the matrix. This creates a matrix showing a single-phase structure of pearlite or a mixed structure of ferrite and pearlite.

C量が乏しいと、鉄系焼結合金中に分散する黒鉛相の量が減少し、潤滑特性が低下する。一方、C量が過多であると、分散する黒鉛相の量が過剰になり、基地の強度が低下する。その結果、鉄系焼結軸受を構成する鉄系焼結合金の機械的強さが低下する。このため、C量は全体組成の1~5質量%であると好適である。平均粒径が40~80μm程度の黒鉛粉末を使用すると、基地への拡散や摺動特性等の点において好適である。 When the amount of C is poor, the amount of the graphite phase dispersed in the iron-based sintered alloy decreases, and the lubrication characteristics deteriorate. On the other hand, if the amount of C is excessive, the amount of the graphite phase to be dispersed becomes excessive, and the strength of the matrix decreases. As a result, the mechanical strength of the iron-based sintered alloy constituting the iron-based sintered bearing is reduced. Therefore, the amount of C is preferably 1 to 5% by mass of the total composition. It is preferable to use graphite powder having an average particle size of about 40 to 80 μm in terms of diffusion to a substrate, sliding characteristics, and the like.

以上より、本発明の好適な実施形態において、鉄系焼結軸受を構成する鉄系焼結合金は、全体組成が、質量比で、Cu:0.5~3%、Mo:0.3~3.3%、C:1~5%、S:0.2~2.2%、残部:Feおよび不可避不純物からなり、前記鉄系焼結合金の気孔率が10~25%である。鉄系焼結合金は、基地中に気孔、銅相及び黒鉛相が分散するとともに、硫化物相が基地及び/又は銅相から析出して分散する金属組織構造を有し、基地は、ベイナイト単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、及び、ベイナイトとパーライトとフェライトの混合組織のうちの1つの金属組織を呈する。 From the above, in a preferred embodiment of the present invention, the iron-based sintered alloy constituting the iron-based sintered bearing has an overall composition of Cu: 0.5 to 3% and Mo: 0.3 to mass ratio. It is composed of 3.3%, C: 1 to 5%, S: 0.2 to 2.2%, the balance: Fe and unavoidable impurities, and the pore ratio of the iron-based sintered alloy is 10 to 25%. The iron-based sintered alloy has a metal structure in which pores, a copper phase and a graphite phase are dispersed in the matrix, and a sulfide phase is precipitated and dispersed from the matrix and / or the copper phase, and the matrix is bainite simple. It exhibits a phase structure, a mixed structure of bainite and pearlite, a mixed structure of bainite and ferrite, and a metal structure of one of a mixed structure of bainite, pearlite and ferrite.

なお、硫化物相の面積率は、鉄系焼結軸受(鉄系焼結合金)の断面または表面を金属顕微鏡、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)等によって観察した画像に基づいて、三谷商事株式会社製WinROOF等の画像分析ソフトウエアを用いて測定することができる。 The area ratio of the sulfide phase is based on an image obtained by observing the cross section or surface of an iron-based sintered bearing (iron-based sintered alloy) with a metallurgical microscope, electron probe microanalyzer (EPMA), or the like. , Can be measured using image analysis software such as WinROOF manufactured by Mitani Shoji Co., Ltd.

本発明における鉄系焼結軸受の製造方法において、鉄系焼結軸受を構成する鉄系焼結合金の原料粉末としては、鉄粉末またはFe-Mo合金粉末に、銅粉末、黒鉛粉末、および、硫化鉄粉末及び二硫化モリブデン粉末の少なくとも一種の硫化物粉末を添加し混合して、質量比で、Cu:0.5~3%、Mo:0.3~3.3%、C:1~5%、S:0.2~2.2%、残部:Feおよび不可避不純物からなる組成に調製された混合粉末を用いることができる。 In the method for manufacturing an iron-based sintered bearing in the present invention, as the raw material powder of the iron-based sintered alloy constituting the iron-based sintered bearing, iron powder or Fe-Mo alloy powder, copper powder, graphite powder, and At least one kind of sulfide powder of iron sulfide powder and molybdenum disulfide powder is added and mixed, and by mass ratio, Cu: 0.5 to 3%, Mo: 0.3 to 3.3%, C: 1 to 1 to A mixed powder prepared to have a composition of 5%, S: 0.2 to 2.2%, balance: Fe and unavoidable impurities can be used.

鉄系焼結軸受の製造方法は、上記の原料粉末を、軸受形状(ネットシェイプ)、すなわち、軸と摺動する内径面を備えた略円管又は略円環の形状に成形する成形工程と、得られた成形体を焼結する焼結工程を有する。成形工程において、原料粉末の成形圧力を250~650MPaとすることで、焼結後の鉄系焼結合金の密度が5.2~7.2Mg/mとなるように鉄系焼結軸受を製造することができる。 The method for manufacturing an iron-based sintered bearing includes a molding step of forming the above-mentioned raw material powder into a bearing shape (net shape), that is, a shape of a substantially circular tube or a substantially annular ring having an inner diameter surface that slides on a shaft. It has a sintering step of sintering the obtained molded product. In the molding process, by setting the molding pressure of the raw material powder to 250 to 650 MPa, the iron-based sintered bearing is provided so that the density of the iron-based sintered alloy after sintering becomes 5.2 to 7.2 Mg / m 3 . Can be manufactured.

焼結工程において、焼結温度が低すぎると、硫化鉄が溶融せず、鉄系焼結合金の基地中に硫化物を分散析出させることができなくなるので、焼結温度は990℃以上がよい。また、焼結温度が高すぎると、黒鉛が基地へ拡散して残留する黒鉛相が減少するとともに、銅粉末が溶融して残留する銅相が乏しくなるので、焼結温度は1080℃以下が適正である。尚、Sは、水素及び酸素と反応し易く、焼結雰囲気が酸化性のガスであると、原料粉末に導入したS成分が離脱して鉄系焼結合金中のS量が低下するので、焼結雰囲気は、非酸化性の雰囲気とする必要がある。また、露点が低い雰囲気を用いることが好ましい。本発明においては、モリブデンによる焼き入れ効果によってベイナイトが生じるので、特に焼き入れ処理を行う必要はない。 In the sintering step, if the sintering temperature is too low, iron sulfide does not melt and sulfide cannot be dispersed and precipitated in the base of the iron-based sintered alloy, so the sintering temperature should be 990 ° C or higher. .. Further, if the sintering temperature is too high, graphite diffuses to the matrix and the residual graphite phase decreases, and the copper powder melts and the residual copper phase becomes scarce. Therefore, the sintering temperature should be 1080 ° C. or lower. Is. It should be noted that S easily reacts with hydrogen and oxygen, and if the sintering atmosphere is an oxidizing gas, the S component introduced into the raw material powder is separated and the amount of S in the iron-based sintered alloy decreases. The sintered atmosphere needs to be a non-oxidizing atmosphere. Further, it is preferable to use an atmosphere having a low dew point. In the present invention, bainite is generated by the quenching effect of molybdenum, so that it is not necessary to perform quenching treatment in particular.

本発明において、鉄系焼結含油軸受の製造方法は、上述のような鉄系焼結軸受の製造方法に従って鉄系焼結軸受を調製する工程と、潤滑油を鉄系焼結軸受に含浸する含浸工程とを有し、必要に応じて、含浸前の鉄系焼結軸受にサイジング、コイニング等の最終圧縮加工を施してもよい。潤滑油は、用途及び動作環境を勘案して各種潤滑油から適宜選択して使用することができ、例えば、鉱物油、合成炭化水素油、エステル油などから1種又は2種以上を組み合わせて使用して良い。 In the present invention, the method for manufacturing an iron-based sintered oil-impregnated bearing includes a step of preparing an iron-based sintered bearing according to the above-mentioned manufacturing method for an iron-based sintered bearing and impregnating the iron-based sintered bearing with lubricating oil. It has an impregnation step, and if necessary, the iron-based sintered bearing before impregnation may be subjected to final compression processing such as sizing and coining. The lubricating oil can be appropriately selected from various lubricating oils in consideration of the application and operating environment, and is used, for example, one type or a combination of two or more types from mineral oil, synthetic hydrocarbon oil, ester oil and the like. You can do it.

[第1実施例]
還元鉄粉末、扁平状の銅粉末、二硫化モリブデン粉末、および、黒鉛粉末を用意し、表1に示す割合で添加し混合した原料粉末を用いて、成形圧力300MPaで、外径16mm、内径10mm、高さ10mmの円管形状に成形し、非酸化性ガス雰囲気中、1000℃で焼結を行って試料番号1~21の軸受試料を作製した。尚、以下の測定を行うために、各試料番号について複数の焼結軸受試料を作製した。
[First Example]
Using reduced iron powder, flat copper powder, molybdenum disulfide powder, and graphite powder, and using the raw material powder added and mixed at the ratios shown in Table 1, the outer diameter is 16 mm and the inner diameter is 10 mm at a molding pressure of 300 MPa. It was formed into a circular tube shape with a height of 10 mm and sintered at 1000 ° C. in a non-oxidizing gas atmosphere to prepare bearing samples of sample numbers 1 to 21. In addition, in order to perform the following measurements, a plurality of sintered bearing samples were prepared for each sample number.

これらの軸受試料について、日本工業規格(JIS)Z2505に規定の金属焼結材料の焼結密度試験方法により測定した鉄系焼結合金の密度は、5.6~6.0Mg/mの範囲であった。 For these bearing samples, the density of the iron-based sintered alloy measured by the sintering density test method for metal sintered materials specified in Japanese Industrial Standards (JIS) Z2505 is in the range of 5.6 to 6.0 Mg / m 3 . Met.

また、各試料番号の軸受試料について、日本工業規格(JIS)Z2507に規定の圧環強さ試験方法により各軸受試料の圧環強さを測定した。この結果を表1に併せて示す。 Further, for the bearing sample of each sample number, the annular strength of each bearing sample was measured by the annular strength test method specified in Japanese Industrial Standards (JIS) Z2507. The results are also shown in Table 1.

さらに、各試料番号の軸受試料について、焼結含油軸受の内径面における摩擦係数を測定した。摩擦係数の測定は、水平にしたモータの回転軸に炭素鋼S45C製のシャフトを取り付けた。このシャフトを、ハウジングに取り付けた軸受に隙間を持たせて挿入し、ハウジングに鉛直方向の荷重を与えた状態でシャフトを回転させて行った。この試験において、周囲の温度は25℃に保持し、シャフトの回転数を500rpm、負荷面圧を0.3MPaに設定した。これらの結果を表1に併せて示す。 Further, for the bearing sample of each sample number, the friction coefficient on the inner diameter surface of the sintered oil-impregnated bearing was measured. For the measurement of the coefficient of friction, a shaft made of carbon steel S45C was attached to the rotating shaft of the horizontal motor. This shaft was inserted into the bearing attached to the housing with a gap, and the shaft was rotated with a vertical load applied to the housing. In this test, the ambient temperature was maintained at 25 ° C., the rotation speed of the shaft was set to 500 rpm, and the load surface pressure was set to 0.3 MPa. These results are also shown in Table 1.

又、上記と同様に潤滑油を含浸した各試料番号の軸受試料を用いて摩耗試験を行った。摩耗試験においては、上述の摩擦係数の測定と同じ条件で、ハウジングに取り付けた軸受試料にシャフトを挿入してハウジングに負荷を与え、120分間シャフトを回転させた後の軸受面の摺動位置における摩耗量を測定した。摩耗量の測定においては、各軸受試料について、シャフトの摺動位置を含む鉛直方向の内径を試験前に予め測定し、試験後に再度測定して、試験前後の変動量として摩耗量を算出した。結果を表1に示す。 Further, a wear test was performed using a bearing sample of each sample number impregnated with lubricating oil in the same manner as described above. In the wear test, under the same conditions as the measurement of the friction coefficient described above, the shaft is inserted into the bearing sample attached to the housing, a load is applied to the housing, and the shaft is rotated for 120 minutes at the sliding position of the bearing surface. The amount of wear was measured. In the measurement of the amount of wear, the inner diameter in the vertical direction including the sliding position of the shaft was measured in advance for each bearing sample before the test, and the measurement was performed again after the test to calculate the amount of wear as the amount of fluctuation before and after the test. The results are shown in Table 1.

Figure 0007024291000001
Figure 0007024291000001

表1の試料番号1~7の軸受試料を比較することで、Cu量の影響を調べることができる。表1より、Cuを含まない試料番号1の軸受試料は、軟質な銅相が形成されないことから、摩擦係数の値が大きい。Cuの添加量が0.5質量%の試料番号2の軸受試料では、軟質な銅相が形成され、摩擦係数が0.25まで低減される。また、Cu量が増加するに従って摩擦係数が低減されることがわかる。但し、Cuの添加量が増加するにつれて、圧環強さが低下し、3質量%を超える試料番号7では、圧環強さが150MPa未満になり、摩耗量も20μmを超える。これらのことから、Cu量が0.5~3質量%の範囲において、良好な摺動特性が得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても、Cu量が0.5~3質量%の軸受は対応可能であることを示す。 By comparing the bearing samples of sample numbers 1 to 7 in Table 1, the influence of the amount of Cu can be investigated. From Table 1, the bearing sample of sample No. 1 containing no Cu has a large value of friction coefficient because a soft copper phase is not formed. In the bearing sample of sample number 2 in which the amount of Cu added is 0.5% by mass, a soft copper phase is formed and the friction coefficient is reduced to 0.25. It can also be seen that the coefficient of friction decreases as the amount of Cu increases. However, as the amount of Cu added increases, the annular strength decreases, and in sample number 7 exceeding 3% by mass, the annular strength becomes less than 150 MPa and the amount of wear also exceeds 20 μm. From these facts, it was confirmed that good sliding characteristics can be obtained in the range of Cu amount of 0.5 to 3% by mass. This result indicates that a bearing having a Cu content of 0.5 to 3% by mass can be used even under sliding conditions in which it is difficult to form a good lubricating oil film.

一方、試料番号3,16~21の軸受試料を比較することで、C量の影響を調べることができる。C量が0.5質量%である試料番号16の軸受試料は、黒鉛相が乏しいことから、摩擦係数の値が大きい。Cの添加量が1質量%の試料番号17の軸受試料は、充分な量の黒鉛相が形成され、摩擦係数が0.24まで低減される。また、C量が増加するに従って摩擦係数が低減することがわかる。しかし、C量が増加するに従って圧環強さは低下し、C量が5質量%を超える試料番号21の軸受試料では圧環強さが140MPaまで低下し、摩耗量の値も20μmに近い値に増加する。これらのことから、C量が0.5~5質量%の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても、C量が0.5~5質量%の軸受は対応可能であることを示す。 On the other hand, the influence of the amount of C can be investigated by comparing the bearing samples of sample numbers 3, 16 to 21. The bearing sample of sample number 16 in which the amount of C is 0.5% by mass has a large value of friction coefficient because the graphite phase is scarce. In the bearing sample of sample number 17 in which the amount of C added is 1% by mass, a sufficient amount of graphite phase is formed and the friction coefficient is reduced to 0.24. Further, it can be seen that the coefficient of friction decreases as the amount of C increases. However, as the amount of C increases, the annular strength decreases, and in the bearing sample of sample number 21 in which the amount of C exceeds 5% by mass, the annular strength decreases to 140 MPa, and the value of the amount of wear also increases to a value close to 20 μm. do. From these facts, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained in the range of C content of 0.5 to 5% by mass. This result indicates that a bearing having a C content of 0.5 to 5% by mass can be used even under sliding conditions in which it is difficult to form a good lubricating oil film.

又、試料番号3,08~15の軸受試料を比較することで、S量の影響を調べることができる。Sを含まない試料番号8の軸受試料は、硫化物相が形成されないことから、摩擦係数及び摩耗量が大きい値となっている。これに対し、S量が0.2質量%の試料番号9の軸受試料は、硫化物相が形成され、摩擦係数が0.25に低下し、摩耗量も16μmに低減している。試料番号3,10~13の値を考慮すると、S量が増加するに従って摩擦係数及び摩耗量が低減されることが明らかであり、Sの割合が0.2質量%以上において、摩擦係数及び摩耗量は低い値を示すので好ましい。但し、S量が増加するに従って圧環強さは低下し、S量が2.2質量%を超える試料番号15の軸受試料では圧環強さが120MPaまで低下している。これらのことから、S量が0.2~2.2質量%の範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが解る。好ましくは、S量が0.4~2.0質量%になるように原料粉末を調製すると良い。上記の結果に対応して、Mo量についても0.3~3.3質量%の範囲が好適であり、0.6~3.0質量%の範囲が好ましいことが明らかである。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても、S量が0.2~2.2質量%、Mo量が0.3~3.3質量%である軸受は対応可能であることを示す。 Further, by comparing the bearing samples of sample numbers 3, 08 to 15, the influence of the amount of S can be investigated. In the bearing sample of sample number 8 which does not contain S, since the sulfide phase is not formed, the friction coefficient and the amount of wear are large values. On the other hand, in the bearing sample of sample number 9 having an S amount of 0.2% by mass, a sulfide phase is formed, the friction coefficient is reduced to 0.25, and the wear amount is also reduced to 16 μm. Considering the values of sample numbers 3, 10 to 13, it is clear that the friction coefficient and the amount of wear decrease as the amount of S increases, and the coefficient of friction and the amount of wear are reduced when the proportion of S is 0.2% by mass or more. The amount is preferable because it shows a low value. However, as the amount of S increases, the annular strength decreases, and in the bearing sample of sample number 15 in which the amount of S exceeds 2.2% by mass, the annular strength decreases to 120 MPa. From these facts, it can be seen that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained in the range of S amount of 0.2 to 2.2% by mass. Preferably, the raw material powder is prepared so that the amount of S is 0.4 to 2.0% by mass. Corresponding to the above results, it is clear that the Mo amount is preferably in the range of 0.3 to 3.3% by mass, and preferably in the range of 0.6 to 3.0% by mass. This result shows that bearings with an S amount of 0.2 to 2.2% by mass and a Mo amount of 0.3 to 3.3% by mass are compatible even under sliding conditions where it is difficult to form a good lubricating oil film. Show that it is possible.

配合割合と摺動特性との相関関係において、上述したように、銅粉末及び黒鉛粉末については、配合割合の増加に従って、圧環強さが低下して摩耗量が増加する。これに対し、二硫化モリブデン粉末については、配合割合の増加に従って圧環強さは同様に低下するが、摩耗量は増加せず、逆に減少する。これは、Moの導入に起因する効果であり、Moは、Fe中に固溶して基地の強化に寄与し、鉄基地の焼き入れ性を向上させてベイナイト相を形成するので、これによって基地に粘り強さが付与されて耐摩耗性が向上すると考えられる。この点は、二硫化モリブデン粉末の代わりに硫化鉄粉末を用いてS量が同じであるように原料粉末を配合した場合に得られる鉄系焼結含油軸受において、摩耗量が相対的に多くなることによって確認されている。例えば、Moを含有しない点以外は試料番号3と同じ全体組成を有する鉄系焼結軸受(二硫化モリブデン粉末に代えて硫化鉄粉末3.3質量%を使用)において、金属組織にベイナイトは見られず、上述の摩耗試験における摩耗量の測定値は19μm程度であった。 In the correlation between the blending ratio and the sliding characteristics, as described above, for the copper powder and the graphite powder, the annular strength decreases and the wear amount increases as the blending ratio increases. On the other hand, for molybdenum disulfide powder, the annular strength decreases as the blending ratio increases, but the amount of wear does not increase, but conversely decreases. This is an effect caused by the introduction of Mo, which dissolves in Fe and contributes to the strengthening of the base, improves the hardenability of the iron base and forms the bainite phase. It is considered that the toughness is imparted to the material and the wear resistance is improved. In this respect, the amount of wear is relatively large in the iron-based sintered oil-impregnated bearing obtained when the raw material powder is blended so that the amount of S is the same by using iron sulfide powder instead of molybdenum disulfide powder. It has been confirmed by that. For example, in an iron-based sintered bearing (using 3.3% by mass of iron sulfide powder instead of molybdenum disulfide powder) having the same overall composition as sample number 3 except that it does not contain Mo, baynite is seen in the metal structure. However, the measured value of the amount of wear in the above-mentioned wear test was about 19 μm.

試料番号3,8,9及び15の鉄系焼結軸受について、電子線マイクロアナライザを用いて軸受の断面を観察し、観察画像に基づいてベイナイト組織の面積を測定し、基地中のベイナイト組織の面積率を算出した。尚、測定においては、画像分析ソフトウエア(WinROOF、三谷商事株式会社製)を使用した。その結果、ベイナイト相の割合は、モリブデンを含まない試料番号8においては0%であり、試料番号9、試料番号3、試料番号15の順にベイナイト相の割合は、3%から40%へ増加していた。又、基地のベイナイト組織以外の部分は、何れもフェライト及びパーライトから構成されていた。 For the iron-based sintered bearings of sample numbers 3, 8, 9 and 15, the cross section of the bearing was observed using an electron probe microanalyzer, the area of the bainite structure was measured based on the observed image, and the bainite structure in the substrate was measured. The area ratio was calculated. In the measurement, image analysis software (WinROOF, manufactured by Mitani Corporation) was used. As a result, the ratio of the bainite phase was 0% in the sample number 8 containing no molybdenum, and the ratio of the bainite phase increased from 3% to 40% in the order of sample number 9, sample number 3, and sample number 15. Was there. In addition, the parts other than the bainite structure of the base were all composed of ferrite and pearlite.

[第2実施例]
第1実施例の試料番号3の原料粉末を用い、成形圧力を変えて成形を行い、第1実施例と同様の焼結条件で焼結を行って、試料番号22~29の軸受試料を作製した。これらの軸受試料について、第1実施例と同様にして、各軸受試料の鉄系焼結合金の密度、圧環強さ、摩擦係数及び摩耗量を測定した。これらの結果、及び、第1実施例の試料番号3における結果を併せて表2に示す。
[Second Example]
Using the raw material powder of sample No. 3 of the first example, molding was performed by changing the molding pressure, and sintering was performed under the same sintering conditions as in the first example to prepare bearing samples of sample numbers 22 to 29. did. For these bearing samples, the density, annular strength, friction coefficient and wear amount of the iron-based sintered alloy of each bearing sample were measured in the same manner as in the first embodiment. Table 2 shows these results and the results of Sample No. 3 of the first example.

Figure 0007024291000002
Figure 0007024291000002

表2における試料番号3,22~29を比較することで、鉄系焼結合金の密度の影響を調べることができる。摩擦係数は、密度5.0~7.2Mg/mの範囲において0.25以下に低減できている。気孔率が増加するに従って、軸受とシャフトの接触面積が低下して摩擦係数が低減されることが分かる。一方、圧環強さは、密度が減少するに従って低下し、密度が5.0Mg/mの試料番号22の試料では150MPaまで低下している。摩耗量については、密度が低下するに従って減少し、摩耗量を20μm程度以下に抑制するには、5.2Mg/m以上の密度に成形することが必要である。このことから、密度が5.2~7.2Mg/mの範囲において、摺動特性が良好で、且つ、機械的特性が高い鉄系焼結含油軸受を得られることが確認された。この結果は、良好な潤滑油膜を形成しにくい摺動条件であっても対応可能であることを示す。 By comparing sample numbers 3, 22 to 29 in Table 2, the influence of the density of the iron-based sintered alloy can be investigated. The coefficient of friction can be reduced to 0.25 or less in the range of density 5.0 to 7.2 Mg / m 3 . It can be seen that as the porosity increases, the contact area between the bearing and the shaft decreases and the friction coefficient decreases. On the other hand, the annular strength decreases as the density decreases, and decreases to 150 MPa in the sample of sample number 22 having a density of 5.0 Mg / m 3 . The amount of wear decreases as the density decreases, and in order to suppress the amount of wear to about 20 μm or less, it is necessary to mold to a density of 5.2 Mg / m 3 or more. From this, it was confirmed that an iron-based sintered oil-impregnated bearing having good sliding characteristics and high mechanical characteristics can be obtained in the range of density of 5.2 to 7.2 Mg / m 3 . This result shows that it is possible to cope with sliding conditions where it is difficult to form a good lubricating oil film.

本発明の鉄系焼結軸受は、基地の粘り強さを有し、潤滑油を含浸して鉄系焼結含油軸受として使用する際に、良好な潤滑油膜を形成し難く金属接触が発生し易い摺動条件の下でも、良好な潤滑特性を発揮できる。複写機等の紙送りローラや、ヘッド駆動モータ等のような、正逆に回転する軸を支承し、正転、逆転それぞれの駆動時間が短い用途のための軸受として好適であり、又、スクロール式圧縮機等のような、固定子に対して偏心して回転する回転子の軸を支承する軸受等に好適である。 The iron-based sintered bearing of the present invention has the tenacity of the base, and when used as an iron-based sintered oil-impregnated bearing impregnated with lubricating oil, it is difficult to form a good lubricating oil film and metal contact is likely to occur. Good lubrication characteristics can be exhibited even under sliding conditions. It supports a shaft that rotates in the forward and reverse directions, such as a paper feed roller for a copying machine and a head drive motor, and is suitable as a bearing for applications where the drive time for forward rotation and reverse rotation is short. It is suitable for bearings that support the shaft of a rotor that rotates eccentrically with respect to the stator, such as a type compressor.

1 焼結軸受
2 潤滑油
3 軸
5 油圧分布
1 Sintered bearing 2 Lubricating oil 3 Shaft 5 Hydraulic distribution

Claims (6)

軸の外周面を支持する軸受面を有し、潤滑油を含浸可能な気孔が分散する鉄系焼結合金によって構成される鉄系焼結軸受であって、 前記鉄系焼結合金の全体組成が、質量比で、Cu:0.5~3%、Mo:0.3~3.3%、C:1~5%、S:0.2~2.2%、残部:Fe及び不可避不純物からなり、
前記鉄系焼結合金の密度が5.2~7.2Mg/mであり、 前記鉄系焼結合金の金属組織は、前記気孔が分散する基地と、前記基地に分散する銅相及び黒鉛相と、前記基地及び前記銅相の少なくとも一方から析出して分散する硫化物相とを有し、
前記基地は、ベイナイトの単相組織、ベイナイトとパーライトの混合組織、ベイナイトとフェライトの混合組織、及び、ベイナイトとパーライトとフェライトの混合組織のうちの1つの金属組織を呈する鉄系焼結軸受。
An iron-based sintered bearing composed of an iron-based sintered alloy having a bearing surface that supports the outer peripheral surface of the shaft and having pores impregnated with lubricating oil dispersed, and the overall composition of the iron-based sintered alloy. However, in terms of mass ratio, Cu: 0.5 to 3%, Mo: 0.3 to 3.3%, C: 1 to 5%, S: 0.2 to 2.2%, balance: Fe and unavoidable impurities. Consists of
The density of the iron-based sintered alloy is 5.2 to 7.2 Mg / m 3 , and the metal structure of the iron-based sintered alloy consists of a base in which the pores are dispersed and a copper phase and graphite dispersed in the base. It has a phase and a sulfide phase that precipitates and disperses from at least one of the matrix and the copper phase.
The base is an iron-based sintered bearing exhibiting a single-phase structure of bainite, a mixed structure of bainite and pearlite, a mixed structure of bainite and ferrite, and a mixed structure of bainite, pearlite and ferrite.
前記硫化物相は、前記基地及び前記銅相の少なくとも一方における結晶粒界及び結晶粒内に析出して分散する請求項1に記載の鉄系焼結軸受。 The iron-based sintered bearing according to claim 1, wherein the sulfide phase is precipitated and dispersed in crystal grain boundaries and crystal grains at at least one of the matrix and the copper phase. 前記硫化物相は、硫化鉄及び硫化銅によって構成される請求項1又は2に記載の鉄系焼結軸受。 The iron-based sintered bearing according to claim 1 or 2, wherein the sulfide phase is composed of iron sulfide and copper sulfide. 前記硫化物相は、前記鉄系焼結合金の断面において、気孔を含む断面の面積に対して0.9~6%の面積率で存在するように前記鉄系焼結合金に分散している請求項1~3のいずれか一項に記載の鉄系焼結軸受。 The sulfide phase is dispersed in the iron-based sintered alloy so that it is present in the cross section of the iron-based sintered alloy at an area ratio of 0.9 to 6% with respect to the area of the cross section including pores. The iron-based sintered bearing according to any one of claims 1 to 3. 前記軸受面の気孔率は、面積率で1025%である請求項1~のいずれか一項に記載の鉄系焼結軸受。 The iron-based sintered bearing according to any one of claims 1 to 4 , wherein the bearing surface has a porosity of 10 to 25 % in terms of area ratio. 請求項1~の何れか一項に記載の鉄系焼結軸受と、前記鉄系焼結軸受の気孔に含浸される潤滑油とを有する鉄系焼結含油軸受。 An iron-based sintered oil-impregnated bearing comprising the iron-based sintered bearing according to any one of claims 1 to 5 and a lubricating oil impregnated in the pores of the iron-based sintered bearing.
JP2017189786A 2017-09-29 2017-09-29 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings Active JP7024291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017189786A JP7024291B2 (en) 2017-09-29 2017-09-29 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017189786A JP7024291B2 (en) 2017-09-29 2017-09-29 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings

Publications (2)

Publication Number Publication Date
JP2019065323A JP2019065323A (en) 2019-04-25
JP7024291B2 true JP7024291B2 (en) 2022-02-24

Family

ID=66339104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017189786A Active JP7024291B2 (en) 2017-09-29 2017-09-29 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings

Country Status (1)

Country Link
JP (1) JP7024291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001813B (en) * 2019-12-28 2022-02-18 合肥波林新材料股份有限公司 High-antifriction iron-based vulcanized powder metallurgy oil-retaining bearing material and preparation method and application thereof
CN111139427B (en) * 2020-01-14 2022-03-11 合肥波林新材料股份有限公司 Iron-based sintered sulfur vapor material, shaft sleeve and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316780A (en) 2000-05-02 2001-11-16 Hitachi Powdered Metals Co Ltd Valve seat for internal combustion engine and its production method
JP2009215630A (en) 2008-03-12 2009-09-24 Toyota Motor Corp Sintered connecting rod and method for production thereof
JP2010077474A (en) 2008-09-25 2010-04-08 Hitachi Powdered Metals Co Ltd Iron-based sintered bearing, and method for manufacturing the same
JP2013076152A (en) 2011-09-30 2013-04-25 Hitachi Powdered Metals Co Ltd Iron-based sintered sliding member and method for producing the same
JP2014177658A (en) 2013-03-13 2014-09-25 Hitachi Chemical Co Ltd Iron-based sintered sliding member and production method thereof
JP2014209023A (en) 2013-03-25 2014-11-06 Ntn株式会社 Vibrating motor
WO2018100660A1 (en) 2016-11-30 2018-06-07 日立化成株式会社 Ferrous sinter oil-containing bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817251B2 (en) * 1977-07-18 1983-04-06 帝国ピストンリング株式会社 Sintered metal cylinder liner material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316780A (en) 2000-05-02 2001-11-16 Hitachi Powdered Metals Co Ltd Valve seat for internal combustion engine and its production method
JP2009215630A (en) 2008-03-12 2009-09-24 Toyota Motor Corp Sintered connecting rod and method for production thereof
JP2010077474A (en) 2008-09-25 2010-04-08 Hitachi Powdered Metals Co Ltd Iron-based sintered bearing, and method for manufacturing the same
JP2013076152A (en) 2011-09-30 2013-04-25 Hitachi Powdered Metals Co Ltd Iron-based sintered sliding member and method for producing the same
JP2014177658A (en) 2013-03-13 2014-09-25 Hitachi Chemical Co Ltd Iron-based sintered sliding member and production method thereof
JP2014209023A (en) 2013-03-25 2014-11-06 Ntn株式会社 Vibrating motor
WO2018100660A1 (en) 2016-11-30 2018-06-07 日立化成株式会社 Ferrous sinter oil-containing bearing

Also Published As

Publication number Publication date
JP2019065323A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
KR100961459B1 (en) Sintered oil-containing bearing and its manufacturing method
JP5378530B2 (en) Sliding bearing with improved wear resistance and method for manufacturing the same
KR101101078B1 (en) Iron based sintered bearing and method for producing the same
US20090311129A1 (en) Abrasion resistant sintered copper base cu-ni-sn alloy and bearing made from the same
US8216338B2 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
EP2918693B1 (en) Sintered alloy superior in wear resistance
JP7024291B2 (en) Iron-based sintered bearings and iron-based sintered oil-impregnated bearings
JP2008019929A (en) Oil-impregnated sintered bearing
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
JP6620391B2 (en) Cu-based sintered sliding material and manufacturing method thereof
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP2006111975A (en) Self-lubricating sintered sliding material and its production method
JP6536866B1 (en) Sintered bearing, sintered bearing device and rotating device
JP3254830B2 (en) Sintered sliding member
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member
JP5424121B2 (en) Sliding material
JP2019207030A (en) Sintered bearing and manufacturing method thereof
JP2020183568A (en) Joint bushing of construction machine
JPH06192783A (en) Sintered sliding member and its production
JPH10259462A (en) Sliding member made of free graphite-precipitated ferrous sintering material excellent in seizuring resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R151 Written notification of patent or utility model registration

Ref document number: 7024291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350