JPS5817251B2 - Sintered metal cylinder liner material - Google Patents

Sintered metal cylinder liner material

Info

Publication number
JPS5817251B2
JPS5817251B2 JP52085090A JP8509077A JPS5817251B2 JP S5817251 B2 JPS5817251 B2 JP S5817251B2 JP 52085090 A JP52085090 A JP 52085090A JP 8509077 A JP8509077 A JP 8509077A JP S5817251 B2 JPS5817251 B2 JP S5817251B2
Authority
JP
Japan
Prior art keywords
pores
examples
weight
sintered
cylinder liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52085090A
Other languages
Japanese (ja)
Other versions
JPS5420911A (en
Inventor
松田尊行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP52085090A priority Critical patent/JPS5817251B2/en
Publication of JPS5420911A publication Critical patent/JPS5420911A/en
Publication of JPS5817251B2 publication Critical patent/JPS5817251B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は内燃機関や圧縮機に用いられる高い気密性を有
し耐摩耗性にすぐれた焼結合金製シリンダライナ(シリ
ンダスリーブを含む)に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylinder liner (including a cylinder sleeve) made of a sintered alloy that has high airtightness and excellent wear resistance and is used in internal combustion engines and compressors.

従来のシリンダライナ及びスリーブは、そのほとんどが
鋳鉄材であって、溶解鋳造法で製造されている0この溶
解鋳造法によるシリンダライナの製造は、必然的に、加
工代が高くなり、昨今の省資源の要求に反し、さらに環
境汚染の問題も内在する上に、この方法で得られた材料
には偏析、鋳巣の発生などの問題が生じゃすい○さらに
昨今の傾向としてエンジンの高出力化、高回転化、排ガ
ス対策等から、鋳鉄材以上の品質を有するシリンダライ
ナ及びスリーブが要求される傾向にあり、この要求に応
するために鋳造された材料に高価なりロムメッキ等を施
して対処しているのが現状である。
Conventional cylinder liners and sleeves are mostly made of cast iron and manufactured using the melt-casting method.The production of cylinder liners using the melt-casting method inevitably results in high machining costs, which is difficult to achieve in recent years. In addition to meeting resource requirements and the inherent problem of environmental pollution, the materials obtained using this method also have problems such as segregation and formation of cavities.Furthermore, the recent trend is toward higher output engines. , high rotation speeds, exhaust gas countermeasures, etc., there is a tendency for cylinder liners and sleeves with higher quality than cast iron materials to be required. The current situation is that

本発明の目的は、上記に鑑み省資源を計り、製造費が安
価で、しかも均質な材料で高い気密性を有し、且つすぐ
れた耐摩耗性を有する焼結合金製シリンダライナ及びス
リーブ材を提供することにある。
In view of the above, an object of the present invention is to save resources and to provide a cylinder liner and sleeve material made of sintered alloy that is inexpensive to manufacture, is made of a homogeneous material, has high airtightness, and has excellent wear resistance. It is about providing.

一般に焼結材には多数の空孔が存在し、これら空孔が、
材料表面に開孔していて、この空孔が油だまりとなるた
め、焼結合金材は耐摩耗部材として好ましい効果を発揮
する。
Generally, there are many pores in sintered materials, and these pores
The sintered alloy material exhibits a favorable effect as a wear-resistant member because it has pores on the surface of the material and these pores become oil pools.

しかしながらシリンダライナやスリーブの如く高い爆発
圧力を受け、なおかつ高度のガスシール特性を必要とす
る材料においては、焼結材に内在する連続空孔が、ガス
通路となり、ブローバイガスの増加等の好ましくない結
果を生ずる。
However, in materials such as cylinder liners and sleeves that are subject to high explosion pressure and require advanced gas sealing properties, the continuous pores inherent in the sintered material become gas passages, resulting in undesirable effects such as an increase in blow-by gas. produce results.

これらの空孔を、例えば、焼結後の鍛造やCu溶浸処理
などで埋め、ガスをシールすることは可能であるが、こ
の方法は非経済的な上に、量産性に乏しく、しかも、か
かる処理を施すと表面に開孔した空孔も消滅するので前
述の油だまり効果が期待出来なくなるという欠点がある
Although it is possible to seal the gas by filling these pores by forging after sintering or Cu infiltration treatment, for example, this method is uneconomical and has poor mass productivity. When such a treatment is applied, the pores formed on the surface also disappear, so there is a drawback that the above-mentioned oil pool effect cannot be expected.

本発明は、上記の従来の焼結材の欠陥を是正したもので
ある。
The present invention corrects the deficiencies of the conventional sintered materials described above.

即ち一般に焼結材中に存在する互に連続した多数の空孔
を、各々独立した空孔となるようにし、これによってガ
スの通路を遮断し表面には開孔した空孔を残して油だま
りとして作用させ、その効果を材料中に均一に分布する
硬質粒子によって一層発揮せしめたものである。
In other words, a large number of interconnected pores that generally exist in a sintered material are made to become independent pores, thereby blocking the gas passage and leaving open pores on the surface to form an oil pool. This effect is further enhanced by the hard particles uniformly distributed in the material.

即ち、本発明のシリンダライナ材は、重量比でC0,5
〜2.0係、MoおよびCrのいずれか一方もしくは双
方で0.1〜5.0 %、NiおよびCuのいずれか一
方もしくは双方でo、i〜3.0係と、硫黄粉末の使用
に由来する80.01〜0.5係を含有し、残部が実質
的に鉄からなる焼結合金からなり、この合金のマトリッ
クスは主としてパーライトからなりマルテンサイトを含
まず、このマトリックス中には硬質粒子と硫化物粒子と
が分散析出しており、かつ、前記焼結合金は内部に多数
の独立空孔を有し、その空孔率が5〜20係であること
を特徴とするものである。
That is, the cylinder liner material of the present invention has a weight ratio of C0.5.
~2.0%, Mo and Cr or both 0.1 to 5.0%, Ni and Cu or both o, i to 3.0%, and the use of sulfur powder. The matrix of this alloy is mainly made of pearlite, does not contain martensite, and contains hard particles in this matrix. and sulfide particles are dispersed and precipitated, and the sintered alloy has a large number of independent pores inside, and the porosity thereof is 5 to 20.

この焼結合金は、その密度が6.6〜7.3 g/C1
ft、であり、かつ空孔率が5〜20係であることが好
ましい。
This sintered alloy has a density of 6.6 to 7.3 g/C1
ft, and the porosity is preferably 5 to 20.

Cは、Feと結合してパーライトマトリックスを形成す
るに必要な元素であるが、Cの含有率が0.5係未満て
は、得られる合金中に、耐摩耗性に不利なフェライトの
残留が多くなり、好ましくない。
C is an element necessary to combine with Fe to form a pearlite matrix, but if the C content is less than 0.5%, ferrite remains in the resulting alloy, which is disadvantageous for wear resistance. It becomes too much, which is not desirable.

又、Cの含有率が2.0係を超えると、得られる合金中
にセメンタイトの析出が多くなると同時に、遊離黒鉛の
残留量も多くなり、これらはいずれも材料の脆化をもた
らすので、Cの含有率は、0.5〜2.0重量係に限定
される。
Furthermore, if the content of C exceeds 2.0, cementite precipitation increases in the resulting alloy, and at the same time, the amount of free graphite remaining increases, both of which cause embrittlement of the material. The content is limited to 0.5 to 2.0% by weight.

MoおよびCrは、いずれも得られる合金のマトリック
ス中に硬質粒子を析出し、この合金材料が実用されると
き、その摺動面において、マトリックスの第2次摺動面
に対して硬質粒子が第1次摺動面としてベアリング作用
を果し、摺動面に開孔した空孔の油だまり効果を一層助
長させ、材料の耐摩耗性を向上せしめるのに必要な元素
である。
Both Mo and Cr precipitate hard particles in the matrix of the obtained alloy, and when this alloy material is put into practical use, the hard particles are separated from the secondary sliding surface of the matrix on the sliding surface. It is a necessary element to perform a bearing action as a primary sliding surface, further promote the oil pooling effect of the holes opened in the sliding surface, and improve the wear resistance of the material.

MoおよびCrの少なくとも一種の含有率がo、 1%
未満のときは、前記の効果に乏しく、又、含有率が5.
0係を超えると、硬質粒子の析出が過多となり、材料の
脆化をもたらし、また、材料の成形性も低下する。
The content of at least one of Mo and Cr is o, 1%
If the content is less than 5.5%, the above effects will be poor, and if the content is less than 5.
When the coefficient exceeds 0, precipitation of hard particles becomes excessive, resulting in embrittlement of the material and also deterioration of formability of the material.

このため、MoおよびCrのいずれか一方もしくは双方
の含有率は0.1〜5.0重量係の範囲になければなら
ない。
For this reason, the content of one or both of Mo and Cr must be in the range of 0.1 to 5.0% by weight.

NiおよびCuは、いずれもマトリックスに固溶し、材
料の靭性を向上させ耐熱性を付与する元素である。
Both Ni and Cu are elements that form a solid solution in the matrix, improve the toughness of the material, and impart heat resistance.

しかし、NiおよびC’uの少なくとも一種の含有率が
0.1 %未満では、上記の効果に乏しく、また含有率
が3.0係を超えると、Cuの場合には、一部未固溶粒
子が残存し、Niの場合には、Feの拡散が不均一とな
るのでいずれの場合も組織の均一性が低下し、さらに添
加の割りに効果が頭打ちとなり経済性を阻害する。
However, if the content of at least one of Ni and C'u is less than 0.1%, the above effects will be poor, and if the content exceeds 3.0%, some of the Cu will remain undissolved. Particles remain, and in the case of Ni, the diffusion of Fe becomes non-uniform, so the uniformity of the structure decreases in both cases, and furthermore, the effect reaches a ceiling compared to the amount of addition, impeding economic efficiency.

従ってNi又はCuのいずれか一方もしくは双方の含有
率は0.1〜3.0係の範囲内になければならない。
Therefore, the content of either or both of Ni and Cu must be within the range of 0.1 to 3.0.

S粉末の添加は材料部材内部で互に連続している空孔を
、互に独立したものにする作用を有し、またその他に、
Fe、MoやCrと結合してマトリックス中に、硫化物
粒子を分散析出し、この硫化物粒子は固体潤滑材として
、シリンダライナやスリーブの如く境界潤滑状態にさら
されやすい部材の耐摩耗性の向上に寄与し、さらに機械
加工時に、チップブレーカ−として被剛性を向上せしめ
るものである。
The addition of S powder has the effect of making the pores that are continuous inside the material member independent from each other, and in addition,
Combined with Fe, Mo and Cr, sulfide particles are dispersed and precipitated in the matrix, and these sulfide particles act as a solid lubricant and improve the wear resistance of parts that are easily exposed to boundary lubrication conditions, such as cylinder liners and sleeves. Furthermore, it serves as a chip breaker during machining to improve rigidity.

しかしその含有率が0.01%未満では、上記の諸効果
に乏しく、又含有率が0.5 %を超えると、材料の脆
化をもたらすとともに、焼結炉の損傷も助長するので、
Sの含有率は0.01〜0.5係の範囲内になければな
らない。
However, if the content is less than 0.01%, the above effects will be poor, and if the content exceeds 0.5%, it will cause embrittlement of the material and promote damage to the sintering furnace.
The content of S must be within the range of 0.01 to 0.5 parts.

本発明の焼結合金材料は、従来慣用の方法によって加圧
成形し、焼結することにより製造可能である。
The sintered alloy material of the present invention can be produced by pressure forming and sintering using conventional methods.

次に上述の成分組成を有する本発明に係るシリンダライ
ナやスリーブ材の密度と空孔率との関係は一義的なもの
であるが、その密度は6.6〜7.3g/〜の範囲内に
あることが好ましい。
Next, the relationship between the density and porosity of the cylinder liner or sleeve material according to the present invention having the above-mentioned component composition is unique, and the density is within the range of 6.6 to 7.3 g/~. It is preferable that the

焼結材の密度が6.6g/ff1未満の場合、材料の強
度が不足し、空孔を独立したものにしても主として空孔
の粗大化によってガスシールが不十分となる傾向があり
、密度が7.3 f! /cyytを超えると、摺動面
における空孔率が少なくなり、油の保油性が不十分とな
り、材料の摩耗を促進する傾向がある。
If the density of the sintered material is less than 6.6 g/ff1, the strength of the material is insufficient, and even if the pores are made independent, gas sealing tends to be insufficient mainly due to coarsening of the pores, and the density is 7.3 f! If it exceeds /cyyt, the porosity on the sliding surface decreases, the oil retention becomes insufficient, and there is a tendency to accelerate wear of the material.

一方焼結合金の空孔率は、5〜20係である。On the other hand, the porosity of the sintered alloy is between 5 and 20.

焼結材の空孔率が5係未満のときは、摺動面での油だま
り効果による保油性が乏しくなる傾向があり、又空孔率
が20%を超えると、空孔の粗大化による材料の脆化、
及びガスシールが不十分となる傾向がある0 本発明の材料の内部構造および諸物性について、下記実
施例および比較例により更に詳しく説明する。
When the porosity of the sintered material is less than 5 coefficients, oil retention tends to be poor due to the oil pool effect on the sliding surface, and when the porosity exceeds 20%, the pores tend to become coarser. embrittlement of materials,
The internal structure and physical properties of the material of the present invention will be explained in more detail with reference to the following Examples and Comparative Examples.

実施例1〜6および比較例1および2 各実施例および比較例において第1表記載の量の噴霧鉄
粉に、第1表に示されている量の黒鉛粉、FeCr粉(
Cr含有量62%)、F eMcm(Mo含有量72係
)、Ni粉、Cu粉およびS粉を添加し、これに更に第
1表記載の量のステアリン酸亜鉛0.8係を添加して混
合し、5t/fflの成形圧で抗張力テストピース(8
,7X96.5X5、平行部5.7X25X8.7)、
摩耗試験片19.6φ×16φす×15、通気性試験片
(19,6φ×16φ×15)、加工性試験片36φ×
20φ×10およびシリンダースリーブを各々成形し、
還元性ガス雰囲気中1130℃で30分焼結し、焼結材
を作成した。
Examples 1 to 6 and Comparative Examples 1 and 2 In each of the Examples and Comparative Examples, the amount of atomized iron powder shown in Table 1 was added to the amount of graphite powder shown in Table 1, FeCr powder (
Cr content: 62%), FeMcm (Mo content: 72%), Ni powder, Cu powder, and S powder were added, and to this, 0.8% of zinc stearate was added in the amount listed in Table 1. Mixed and formed into a tensile strength test piece (8
, 7X96.5X5, parallel part 5.7X25X8.7),
Abrasion test piece 19.6φ x 16φ x 15, air permeability test piece (19.6φ x 16φ x 15), workability test piece 36φ x
Molding 20φ×10 and cylinder sleeves,
Sintering was performed at 1130° C. for 30 minutes in a reducing gas atmosphere to create a sintered material.

上記実施例1〜6および比較例1〜2で得られた焼結材
の成分組成および緒特性を第2表に示す。
Table 2 shows the composition and properties of the sintered materials obtained in Examples 1 to 6 and Comparative Examples 1 to 2.

次に本発明に係る実施例2、および比較例2において製
造したシリンダスリーブの顕微鏡写真を、第1図には本
発明に係る実施例2のもの、第2図には比較例2のもの
を示す。
Next, micrographs of cylinder sleeves manufactured in Example 2 according to the present invention and Comparative Example 2 are shown. show.

これより、第2図の従来の材料では多数の空孔が互に連
続しているが、第1図の本発明に係るシリンダライナ及
びスリーブでは、その内部に存在する多数の空孔が、丸
味を帯び、互に独立した空孔として存在していることが
わかる。
From this, in the conventional material shown in FIG. 2, many pores are continuous, but in the cylinder liner and sleeve according to the present invention shown in FIG. 1, the many pores existing inside are rounded. It can be seen that the pores exist as independent pores.

次に実施例1〜6および比較例1〜2で得られた摩耗試
験片を用いて銘木式摩耗試験機で面圧33 kg/cr
it、摩擦速度0.10、0.47、0.95m/S、
摩擦距離600m、乾式、相手材Crメッキの条件下で
摩耗試験を行い摩擦係数と摩耗量を求めた。
Next, using the wear test pieces obtained in Examples 1 to 6 and Comparative Examples 1 to 2, a surface pressure of 33 kg/cr was measured using a precious wood type abrasion tester.
it, friction speed 0.10, 0.47, 0.95 m/S,
A wear test was conducted under the conditions of a friction distance of 600 m, a dry method, and Cr plating of the mating material to determine the friction coefficient and amount of wear.

得られた摩擦係数の結果を第3図に、また摩耗量を第4
図に示す。
The results of the friction coefficient obtained are shown in Figure 3, and the amount of wear is shown in Figure 4.
As shown in the figure.

これから明らかな如く本発明に係る実施例1〜6の材料
は、比較例1及び2の材料に対して、摩擦係数も小さく
、又摩耗量も少ないことがわかる。
As is clear from this, the materials of Examples 1 to 6 according to the present invention have smaller coefficients of friction and less wear than the materials of Comparative Examples 1 and 2.

本発明に係る実施例1〜6の材料においては、S粉末の
添加によってMo又はCrの硫化物が形成され、これら
硫化物が自己潤滑作用を発揮するが、この作用はMo又
Crの硬質粒子がマトリックスの第2次摺動面に対して
第1次摺動面を形成することにより一層助長される。
In the materials of Examples 1 to 6 according to the present invention, Mo or Cr sulfides are formed by the addition of S powder, and these sulfides exhibit a self-lubricating effect, but this effect is due to the hard particles of Mo or Cr. is further promoted by forming the primary sliding surface relative to the secondary sliding surface of the matrix.

そしてこれらの相乗効果によって本発明の材料の摩擦係
数が小さく、摩耗量も少なく、耐摩耗性にすぐれている
ことがわかる。
It can be seen that due to these synergistic effects, the material of the present invention has a small friction coefficient, a small amount of wear, and excellent wear resistance.

次に実施例1〜6および比較例1〜2において得られた
通気性試験片を用いて、ガスシール性試験を行なった。
Next, a gas sealing property test was conducted using the air permeability test pieces obtained in Examples 1 to 6 and Comparative Examples 1 to 2.

テストピースの両端をシールし一方から圧力1kg/c
wtの空気を圧送し、該テストピースを水中に浸し発生
する気泡を採取し計量して各材料のガスシール性を判定
した。
Seal both ends of the test piece and apply a pressure of 1 kg/c from one side.
wt of air was pumped, the test piece was immersed in water, and the generated air bubbles were collected and weighed to determine the gas sealing properties of each material.

この結果を第3表に示す。The results are shown in Table 3.

これより明らかな如く本発明に係る実施例1〜6および
比較例1の材料の空気モレ量は、比較材の比較例2にく
らべて著しく少ない。
As is clear from this, the amount of air leakage of the materials of Examples 1 to 6 and Comparative Example 1 according to the present invention is significantly smaller than that of Comparative Example 2, which is a comparative material.

即ち第2図に示した如く、通常焼結材内部で連結し焼結
材のガスシール性を低下せしめる空孔がS所定量の粉末
添加により丸味を帯びた独立した空孔となりガスシール
性を向上せしめることがわかる0次に実施例1〜6およ
び比較例1〜2において得られた加工性試験片を用いて
、加工実験を行なった。
In other words, as shown in Fig. 2, the pores that normally connect inside the sintered material and reduce the gas sealing properties of the sintered material become rounded and independent pores by adding a predetermined amount of S powder, improving the gas sealing properties. Processing experiments were conducted using the workability test pieces obtained in Examples 1 to 6 and Comparative Examples 1 to 2, which were found to be improved.

旋盤を用いてテストピースの外径を、切削速度52m/
m1n1送り速度0.15 mrn7’ rev、切込
量2φ、工具超硬、乾式の条件で加工した時の工具の摩
耗状況を第5図に示す。
The outer diameter of the test piece was cut using a lathe at a cutting speed of 52 m/
Fig. 5 shows the state of wear of the tool when machining was performed under the following conditions: m1n1 feed rate 0.15 mrn7' rev, depth of cut 2φ, tool carbide, dry process.

これから明らかな如く本発明に係る実施例1〜6の材料
は、添加したSがFe、Mo、Crと硫化物を形成し、
これらがチップブレーカ−として働くことに加えて、特
にMoやC’rとの硫化物が潤滑性を有することが被削
性の向上にも作用しているのに対して、比較材の比較例
1の材料は、S粉末を添加しているが、潤滑性のある硫
化物を形成しないために、被剛性の著しい向上が認めら
れないことがわかる。
As is clear from this, in the materials of Examples 1 to 6 according to the present invention, the added S forms sulfides with Fe, Mo, and Cr,
In addition to working as a chip breaker, the sulfides, especially Mo and C'r, have lubricating properties, which also improves machinability. It can be seen that material No. 1 has S powder added, but because it does not form sulfides with lubricating properties, no significant improvement in rigidity is observed.

即ち、本発明に係る実施例1〜6においては耐摩耗性の
向上と同じようにMo又はCrとSとの相乗効果が被剛
性の向上にも作用していることがわかる。
That is, in Examples 1 to 6 according to the present invention, it can be seen that the synergistic effect of Mo or Cr and S acts to improve the rigidity as well as to improve the wear resistance.

更に、実施例1〜6及び比較例2において得られたシリ
ンダスリーブを用いて、4ストロークデイーゼルエンジ
ン(6気筒、600に、1ボアー108とストローク1
13)を用いて、エンジンテストを実施した。
Furthermore, using the cylinder sleeves obtained in Examples 1 to 6 and Comparative Example 2, a 4-stroke diesel engine (6 cylinders, 600, 1 bore 108 and 1 stroke
13) was used to conduct an engine test.

実験条件は、2000 rpm、全負荷で100 Hr
の耐久テストであった。
Experimental conditions were 2000 rpm, 100 Hr at full load.
It was an endurance test.

なおこの実験に先立って現在組付けられている鋳鉄製ス
リーブでも同様のテストをしたのでこの結果も加えて第
4表に実験結果を示す。
Prior to this experiment, a similar test was conducted on the currently assembled cast iron sleeve, and the results are also shown in Table 4.

0(※印 6気筒の平均値) これより本発明に係る実施例1〜6の材料は、S粉末の
添加によって焼結材内部で連結する空孔を独立したもの
にしてガスシール性を改善した結果、実エンジンにおけ
るブローパイが従来の鋳鉄製スリーブでの結果と同水準
に改善され、さらにMo又はCrとSとの硫化物がMo
又はCrの硬質粒子によるベアリング作用と相乗効果を
発揮しシリンダスリーブ1体の摩耗は勿論のこと相手ピ
ストンリングの摩耗をも大幅に低減させていることがわ
かる。
0 (*marked average value for 6 cylinders) From this, the materials of Examples 1 to 6 according to the present invention have improved gas sealing properties by making the pores connected inside the sintered material independent by adding S powder. As a result, the blow pie in an actual engine was improved to the same level as the result with a conventional cast iron sleeve, and the sulfide of Mo or Cr and S was improved.
It can also be seen that a synergistic effect is exerted with the bearing action of the hard Cr particles, significantly reducing not only the wear of the single cylinder sleeve but also the wear of the mating piston ring.

以上のように本発明に係るシリンダライナ及びスリーブ
は溶製材と同等のすぐれたガスシール性を有し、かつ耐
摩耗性にすぐれている上に、相手材の摩耗を軽減せしめ
て機関寿命の延長を可能にするものであり、機械加工性
にもすぐれており、従って省資源を計り安定した品質の
製品を経済的に提供出来るものである0
As described above, the cylinder liner and sleeve according to the present invention have excellent gas sealing properties equivalent to those of cast material, have excellent wear resistance, and also reduce wear of the mating material and extend the life of the engine. It also has excellent machinability, so it can save resources and provide products of stable quality economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例2の材料の100倍の顕微
鏡組織写真、第2図は比較付比較例2の材料の100倍
の顕微鏡組織写真である。 第3図は本発明に係る実施例1〜6、比較付比較例1お
よび2の銘木式摩耗試験機での摩擦係数を示すグラフで
あり、第4図はその時の摩耗量を示すグラフである。 さらに第5図は本発明に係る実施例1〜6、比較材1お
よび2の加工実験で得られた工具の摩耗を示すグラフで
ある。
FIG. 1 is a 100 times larger microscopic structure photograph of the material of Example 2 according to the present invention, and FIG. 2 is a 100 times larger microscopic structure photograph of the material of Comparative Example 2 with comparison. Fig. 3 is a graph showing the friction coefficient of Examples 1 to 6 according to the present invention and Comparative Examples 1 and 2 with a precious wood type abrasion tester, and Fig. 4 is a graph showing the amount of wear at that time. . Furthermore, FIG. 5 is a graph showing tool wear obtained in processing experiments of Examples 1 to 6 and Comparative Materials 1 and 2 according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 10.5〜2.0重量%の炭素と、1〜5.0重量%の
モリブデンおよびクロムの少なくとも一種と、0.1〜
3.0重量%のニッケルおよび銅の少なくとも一種と、
硫黄供給源として硫黄粉末を使用して得られた0、01
〜0.5重量係の硫黄を含有し、残部が、実質的に鉄か
らなる焼結合金からなり、この合金のマトリックスは、
主としてパーライトからなりマルテンサイトを含まず、
このマトリックス中には、硬質粒子と硫化物粒子とが分
散析出しており、かつ、前記焼結合金は内部に多数の独
立空孔を有し、その空孔率が5〜20係であるシリンダ
ライナ材02 前記焼結合金が6.6〜7.3g/iの
密度を有する特許請求の範囲第1項記載のシリンダライ
ナ材0
10.5 to 2.0% by weight of carbon, 1 to 5.0% by weight of at least one of molybdenum and chromium, and 0.1 to 2.0% by weight of carbon.
3.0% by weight of at least one of nickel and copper;
0,01 obtained using sulfur powder as sulfur source
The matrix of this alloy consists of a sintered alloy containing ~0.5% by weight of sulfur, with the remainder consisting essentially of iron.
It is mainly composed of pearlite and does not contain martensite.
In this matrix, hard particles and sulfide particles are dispersed and precipitated, and the sintered alloy has a large number of independent pores inside, and the porosity is 5 to 20. Liner material 02 The cylinder liner material 0 according to claim 1, wherein the sintered alloy has a density of 6.6 to 7.3 g/i.
JP52085090A 1977-07-18 1977-07-18 Sintered metal cylinder liner material Expired JPS5817251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52085090A JPS5817251B2 (en) 1977-07-18 1977-07-18 Sintered metal cylinder liner material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52085090A JPS5817251B2 (en) 1977-07-18 1977-07-18 Sintered metal cylinder liner material

Publications (2)

Publication Number Publication Date
JPS5420911A JPS5420911A (en) 1979-02-16
JPS5817251B2 true JPS5817251B2 (en) 1983-04-06

Family

ID=13848896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52085090A Expired JPS5817251B2 (en) 1977-07-18 1977-07-18 Sintered metal cylinder liner material

Country Status (1)

Country Link
JP (1) JPS5817251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147723U (en) * 1988-03-28 1989-10-12

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164057A (en) * 1979-05-09 1980-12-20 Nippon Piston Ring Co Ltd Abrasion resistant iron based sintered alloy material
JPH02277704A (en) * 1989-04-19 1990-11-14 Nippon Steel Corp Closed-cell foamed iron base porous body and manufacture thereof
JPH11153091A (en) * 1997-09-18 1999-06-08 Matsushita Electric Ind Co Ltd Slide member and refrigeration compressor using the slide member
JP5113783B2 (en) * 2009-02-20 2013-01-09 本田技研工業株式会社 Cylinder liner
JP7024291B2 (en) * 2017-09-29 2022-02-24 昭和電工マテリアルズ株式会社 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075510A (en) * 1973-11-09 1975-06-20
JPS53147608A (en) * 1977-05-30 1978-12-22 Riken Piston Ring Ind Co Ltd Production of abrasion resistant iron based alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075510A (en) * 1973-11-09 1975-06-20
JPS53147608A (en) * 1977-05-30 1978-12-22 Riken Piston Ring Ind Co Ltd Production of abrasion resistant iron based alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147723U (en) * 1988-03-28 1989-10-12

Also Published As

Publication number Publication date
JPS5420911A (en) 1979-02-16

Similar Documents

Publication Publication Date Title
US4422875A (en) Ferro-sintered alloys
KR0127658B1 (en) VALVE GUIDE MEMBER FORMED OF Fe-BASED SINTERED ALLOY HAVING EXCELLENT WEAR AND ABRASION
KR20030028722A (en) Powder metal valve guide
WO2003060173A1 (en) Valve guide for internal combustion engine made from iron base sintered alloy
JPS5817251B2 (en) Sintered metal cylinder liner material
JPH11264468A (en) Piston ring and its combination
JP2000145542A (en) Piston ring for direct injection diesel engine and combination
GB2153488A (en) Nitrided steel piston ring
JPS6164851A (en) Cylinder sleeve material made of sintered alloy having high rigidity
US3669461A (en) Piston ring
EP0356615A1 (en) Piston ring material and piston ring
JPS6033343A (en) Wear resistance sintered alloy
WO2019208621A1 (en) Piston ring
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2000008132A (en) Valve guide made of high silicon aluminum alloy for internal combustion engine
KR101790051B1 (en) spheroidal graphite cast iron alloy for manufacturing piston ring
JPS58117896A (en) Sliding member
JP2000080451A (en) Sintered body for wear resistant ring and wear resistant ring
JPH0116905B2 (en)
JP3143835B2 (en) Combination of piston rings
JPH0468373B2 (en)
JPH03265761A (en) Cylinder liner
JPS5827862A (en) Piston ring
JP2594505B2 (en) Rocker arm
JP3816203B2 (en) piston ring