JPS61291954A - Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture - Google Patents

Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture

Info

Publication number
JPS61291954A
JPS61291954A JP13279385A JP13279385A JPS61291954A JP S61291954 A JPS61291954 A JP S61291954A JP 13279385 A JP13279385 A JP 13279385A JP 13279385 A JP13279385 A JP 13279385A JP S61291954 A JPS61291954 A JP S61291954A
Authority
JP
Japan
Prior art keywords
resistant
corrosion
matrix
ratio
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13279385A
Other languages
Japanese (ja)
Inventor
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13279385A priority Critical patent/JPS61291954A/en
Publication of JPS61291954A publication Critical patent/JPS61291954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintering material particularly improved in wear resistance at high temp. by allowing hard grains A of steel having a prescribed composition to be dispersedly retained in a specific weight ratio by a steel matrix B having a composition other than of the above steel and also to exist in the matrix B in a state unentered into solid solution. CONSTITUTION:The hard gains A consisting of, by weight, 1.1-3.95% C, 2.0-8.0% Cr, 20.0-35.0% (W+2Mo), 1.0-8.0% V and the balance essentially Fe are retained dispersedly by the matrix B consisting of, by weight, 0.3-2.5% C, 0.1-2.0% Si, 0.1-1.0% Mn, 2.5-14.0% Cr, 0.3-3.0 Mo, 0.5-1.5% V, 0.3-5.0% Ni and the balance essentially Fe. Further, as essential requirements, the hard grains A are dispersedly retained by the matrix B in the ratio satisfying (hard grains A)/(hard grains A + matrix B)(weight ratio)=5.0-25.0 and are allowed to exist in the state unentered into solid solution in the matrix B. The resulting sintering material material excellent in resistance to corrosion and wear at high temp. can be most suitably used for valve seats which is used under severe service conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に内燃機関のバルブシート用材料に適する
高温耐摩耐食焼結材料及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-temperature wear-resistant and corrosion-resistant sintered material particularly suitable as a material for valve seats of internal combustion engines, and a method for producing the same.

〔従来の技術〕[Conventional technology]

無鉛化ガソリンはもとより、近年内燃機関の高性能化の
要求が高まり、これに伴って、バルブシートに要求され
る条件も益々過酷化しつつある。
In recent years, there has been an increasing demand for high performance not only for unleaded gasoline but also for internal combustion engines, and as a result, the conditions required for valve seats are becoming increasingly severe.

バルブシートの材質について、ガソリンエンジンの吸気
側にCr−Mo鋳鉄、ディーゼルエンジン用に5KD1
級の溶製材が使用される以外は、近年はとんど焼結合金
化されている。
Regarding the material of the valve seat, Cr-Mo cast iron is used for the intake side of gasoline engines, and 5KD1 is used for diesel engines.
In recent years, most of the materials have been made into sintered alloys, except for the use of high grade ingot materials.

これに使用される焼結合金材料は、非常に多種類のもの
が開発されているが、大別すると、重量比で約Ni2%
、C1,2%を含有するFe基質中に、硬質粒子として
通常ステライトと称されるC−Cr−W−Go合金粉末
を10−15%分散した材料(特公昭57−45298
)、同様の考えで、Fe−Moの粒子を分散した材料(
特公昭5l−30843)、C−Cr−Mo−Co系粒
子を分散した材料(特公昭57−19747)、 JI
S 5KH9相当成分の粉末粒子を分散した材料(特公
昭55−29142)、Ni−Mo粒子を分散した材料
(特公昭58−10460)、高炭素Cr合金の分散材
料(特公昭52−43167)等に代表される一群の材
料がある。
A wide variety of sintered alloy materials have been developed for this purpose, but they can be roughly divided into approximately 2% Ni by weight.
A material in which 10-15% of C-Cr-W-Go alloy powder, usually called stellite, is dispersed as hard particles in a Fe matrix containing 1.2% of C (Japanese Patent Publication No. 57-45298)
), based on the same idea, a material in which Fe-Mo particles are dispersed (
JI
Materials in which powder particles of a component equivalent to S 5KH9 are dispersed (Japanese Patent Publication No. 55-29142), materials in which Ni-Mo particles are dispersed (Japanese Patent Publication No. 58-10460), materials in which high carbon Cr alloys are dispersed (Japanese Patent Publication No. 52-43167), etc. There is a group of materials represented by

これらの材料は、基質金属にNLCo、Cr、MO等を
適宜添加して耐食性と耐熱性を付与し。
These materials are provided with corrosion resistance and heat resistance by appropriately adding NLCo, Cr, MO, etc. to the base metal.

耐摩耗性は、硬質粒子の分散によって得ることが基本と
なっている。ただし、耐摩耗性については、硬質粒子の
分散のみでは、必ず゛しも十分ではなく、界面潤滑剤を
添加する方法が多数開示されている。
Abrasion resistance is basically obtained by dispersing hard particles. However, with regard to wear resistance, dispersion of hard particles alone is not necessarily sufficient, and many methods have been disclosed in which an interfacial lubricant is added.

例えばpbを残留空孔に浸含させる(特公昭55−36
242)、低融点ガラスを添加する(特公昭55−30
063) 。
For example, by impregnating PB into the residual pores (Special Publication Publication No. 55-36
242), adding low melting point glass (Japanese Patent Publication No. 55-30
063).

硫化物を分散させる(特公昭58−18342)等があ
り、またこれらの潤滑物質の添加と併せ、残留空孔内を
適度に酸化させ、耐酸化性を増進させることが提案され
ている。
It has been proposed to disperse sulfides (Japanese Patent Publication No. 58-18342), and to improve oxidation resistance by appropriately oxidizing the remaining pores in addition to adding these lubricating substances.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、これらの材料において、特に高温の耐摩耗性
を向上した材料を提供することを目的とする。
An object of the present invention is to provide a material with particularly improved high-temperature wear resistance among these materials.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、重量比で、C1,1−3,95%、 Cr 
2.0−8.0%、 W+2Mo 20.(1〜35.
0%、V 1.0−8.0%、Go 1゜0〜15.0
%、残部Fe及び不可避不純物からなる硬質粒子Aが、
重量比で、CO,3〜2.5%、Si 0.1〜2.0
%、 Mn 0.1−1.0%、Cr 2.5−14.
0%、 Mo 0.3−3.0%。
In the present invention, in weight ratio, C1,1-3,95%, Cr
2.0-8.0%, W+2Mo 20. (1-35.
0%, V 1.0-8.0%, Go 1°0-15.0
%, the balance is Fe and the hard particles A consisting of unavoidable impurities are
By weight, CO, 3-2.5%, Si 0.1-2.0
%, Mn 0.1-1.0%, Cr 2.5-14.
0%, Mo 0.3-3.0%.

V O,5−1,5%、Ni O,3−5,0%、残部
Fe及び不可避不純物からなる基質Bに、硬質粒子A十
基質Bに対し、重量比で、5.0〜25.0%の割合で
分散保持されており、基質Bに実質的に未固溶状態で゛
存在することを特徴とする高温耐摩耐食焼結材料、並び
に前記硬質粒子A及び基質Bとなる原料を、それぞれ予
備合金化された粉末材料として、これらを上記割合とな
るよう混合し、加圧成形した後、1100°C以上で焼
結することを特徴とする高温耐摩耐食焼結材料の製造方
法である。また、より一層の耐摩耗付与のためには、p
b又はpb金合金あるいはCu又はCu合金を溶浸する
ものである。
The weight ratio of hard particles A to substrate B is 5.0 to 25. A high-temperature wear-resistant and corrosion-resistant sintered material characterized by being dispersed and maintained at a ratio of 0% and existing in a substantially unsolid solution state in the substrate B, and the raw materials that will become the hard particles A and the substrate B, This is a method for producing a high-temperature wear-resistant and corrosion-resistant sintered material, which is characterized in that the pre-alloyed powder materials are mixed in the above proportions, pressure-molded, and then sintered at 1100°C or higher. . In addition, in order to provide further wear resistance, p
B or Pb gold alloy or Cu or Cu alloy is infiltrated.

〔作用〕[Effect]

本発明において硬質粒子Aは、高耐熱性、高硬度の炭化
物を多量に含有し、高温耐摩耗性を付与する。また、基
質Bは、それ自身、強度、靭性。
In the present invention, the hard particles A contain a large amount of carbide having high heat resistance and high hardness, and provide high temperature wear resistance. In addition, substrate B itself has strength and toughness.

耐酸化性、耐熱性に優れ、硬質粒子Aを強固に保持する
。特に、A、Bを予備合金化した粉末材料から得る場合
、粉末生成時の組織微細化効果により、高温耐摩耗性が
向上する。
It has excellent oxidation resistance and heat resistance, and firmly holds hard particles A. In particular, when A and B are obtained from prealloyed powder materials, high-temperature wear resistance is improved due to the microstructure effect during powder production.

以下に、A及びBの各合金成分の限定理由を述べる。The reason for limiting each alloy component of A and B will be described below.

先ず、A粒子について、Cは、炭化物形成元素と結合し
て、高耐熱、高硬度の炭化物形成に不可欠の元素である
。このCと各炭化物形成元素であるCr、W、Mo、V
との間には、Ctheo=0 、06 Cr+0.03
3W+0.063Mo+0.2V (7)関係が成立す
ることが望ましい。これは、Cが炭化物形成元素と結合
して、Cr2.Cs、 Fe4V/zC又は、W、C,
Fe4Mo2C又は、MozC,v4c、等の炭化物ヲ
化学量論的に生成するのに必要なC量を規定するもので
ある。
First, regarding A particles, C is an element essential for forming carbides with high heat resistance and high hardness by combining with carbide forming elements. This C and each carbide forming element Cr, W, Mo, V
Between, Ctheo=0, 06 Cr+0.03
3W+0.063Mo+0.2V (7) It is desirable that the relationship holds true. This is because C combines with carbide-forming elements and Cr2. Cs, Fe4V/zC or W, C,
It defines the amount of C required to stoichiometrically generate carbides such as Fe4Mo2C, MozC, v4c, etc.

Ctheoと実際のC含有量(Cact)との差、 C
act−Ctheoが、+0.4以上では、硬質粒子が
脆化し、衝撃繰返し応力下での割れや脱落が多くなり、
また逆に、−〇、4以下では、硬さが低下し、耐摩耗性
付与効果が不足する傾向にある。
Difference between Ctheo and actual C content (Cact), C
When act-Ctheo is +0.4 or more, the hard particles become brittle and crack and fall off more often under repeated impact stress.
Conversely, if it is -0,4 or less, the hardness tends to decrease and the effect of imparting wear resistance tends to be insufficient.

Orは、硬質粒子Aの耐食性及び焼入性を保持するのに
必要な元素であり、2.0%未満では、これらの特性が
不足となるが、8.0%を越えて添加してもこれらの特
性改善効果は、少なく、工業的意味がない。
Or is an element necessary to maintain the corrosion resistance and hardenability of hard particles A. If it is less than 2.0%, these properties will be insufficient, but if it is added in excess of 8.0%, These properties improvement effects are small and have no industrial significance.

W + 2 M oの添加量は、M、C型炭化物の生成
量を規定する重要な因子で、この炭化物は、Hv130
0〜2300の硬さを有し、耐摩耗性の付与効果を与え
る。
The amount of W + 2 Mo added is an important factor that determines the amount of M and C type carbides produced, and this carbide has Hv130
It has a hardness of 0 to 2300 and provides wear resistance.

炭化物の硬さの絶対値は、W/(2Mo)の比率で定ま
り、W/(2Mo)比が大きい程、炭化物粒子の硬さは
、上昇する。通常この比を0.5〜0.9とし、Hv1
500〜2000の範囲とすることが望ましい。
The absolute value of the hardness of carbide is determined by the ratio of W/(2Mo), and the larger the W/(2Mo) ratio, the higher the hardness of the carbide particles. Usually, this ratio is set to 0.5 to 0.9, and Hv1
It is desirable to set it as the range of 500-2000.

W + 2 M oが20%未満では、炭化物の生成量
が不足し、耐摩耗性付与効果が低下し、35%を越える
と逆に炭化物生成量が過剰となり、脆化が激しくなる。
When W + 2 Mo is less than 20%, the amount of carbides produced is insufficient and the effect of imparting wear resistance is reduced, and when it exceeds 35%, the amount of carbides produced is excessive and embrittlement becomes severe.

■は、Hv250(1〜3200の非常に硬いv4C1
又はVC炭化物を生成し、耐摩耗性付与効果が大きい元
素である。■が1%未満では、この効果が少なく、8%
を越えると被研削性を害するとともに接触相手材である
バルブ等の摩耗を増加する。
■ is Hv250 (very hard v4C1 from 1 to 3200)
Or it is an element that produces VC carbide and has a large effect of imparting wear resistance. If ■ is less than 1%, this effect is small and 8%
Exceeding this will impair grindability and increase wear on valves, etc., which are contacting materials.

COは、硬質粒子Aの基質に主として固溶し、耐熱性と
耐酸化性を向上させ、一部は、焼結中に基質粒子B中に
固溶し、この粒子の耐熱性と耐酸化性を向上する。Go
が1%未満では、これらの効果が不足し、15%を越え
ると添加量に見合う効果が得られない。
CO mainly dissolves in solid solution in the matrix of hard particles A to improve heat resistance and oxidation resistance, and some CO dissolves in solid solution in matrix particles B during sintering to improve the heat resistance and oxidation resistance of the particles. improve. Go
If it is less than 1%, these effects will be insufficient, and if it exceeds 15%, no effect commensurate with the amount added will be obtained.

以上の元素を含む硬質粒子Aは、予備合金粉末の形で準
備され、重量比で5〜25%の範囲で後述の基質Bと均
一に混合、焼結され、焼結後、実質的に残存粒子の形で
材料中に存在し、主として耐摩耗性付与粒子として作用
する。この硬質粒子Aの割合が錦未満では、耐摩耗性が
低下し、25%を越えると脆化が大きくなる。
Hard particles A containing the above elements are prepared in the form of pre-alloyed powder, uniformly mixed with the substrate B described below in a weight ratio of 5 to 25%, and sintered, and substantially remaining after sintering. They are present in the material in the form of particles and act primarily as wear resistance imparting particles. If the proportion of hard particles A is less than brocade, the wear resistance will decrease, and if it exceeds 25%, embrittlement will increase.

次に基質材Bは、基本的には熱膨張係数がシリンダヘッ
ドのそれと類似することが必要で、この値を12〜15
 X 10−”とすることが必要で、これにより燃焼ガ
スの吹抜けを防止する。さらにこの材料は、強度、靭性
、耐酸化性、耐熱性等が要求される。
Next, the substrate material B basically needs to have a coefficient of thermal expansion similar to that of the cylinder head, and this value should be set to 12 to 15.
X 10-'', thereby preventing combustion gas from blowing through. Furthermore, this material is required to have strength, toughness, oxidation resistance, heat resistance, etc.

本発明の材料の基質材料は、Crを2.5〜14.0%
含有し、焼入れ焼もどしにより、焼もどしマルテンサイ
ト基質とし、これにM、C3、M2.C,型の初晶Cr
炭化物が分散した組織を有する。基質B層材料として水
アトマイズ、ガスアトマイズ粉末を使用すれば、この初
晶炭化物は1粒内で極めて微細に分散し、強靭性を与え
る。この基質材Bは、熱処理状態で)lRc35〜50
の硬さを有し、耐摩耗性、耐熱性とともに特に強靭性を
有し、硬質粒子を強固に保持し、全体の耐摩耗性保持を
向上させる。
The substrate material of the material of the present invention contains 2.5 to 14.0% Cr.
The matrix contains M, C3, M2. C, type primary Cr
It has a structure in which carbides are dispersed. If water atomized or gas atomized powder is used as the material for the substrate B layer, the primary carbides will be extremely finely dispersed within each grain, providing toughness. This substrate material B has a heat-treated condition of lRc35 to 50
It has hardness, wear resistance, heat resistance, and particularly toughness, and firmly holds hard particles, improving overall wear resistance retention.

Cは、0.3%未満では、熱処理後の硬さが低下し、2
.5%を越えると脆化を招く。
If C is less than 0.3%, the hardness after heat treatment decreases, and 2
.. If it exceeds 5%, it will cause embrittlement.

Siは、耐酸化向上に効果があり、また溶湯の脱酸剤と
して1通常の0.1%以上添加される。2.0%を越え
て添加すると焼結性が低下するので、焼結材に適しては
不適当である。
Si is effective in improving oxidation resistance and is added as a deoxidizing agent for molten metal in an amount of 0.1% or more. If it is added in excess of 2.0%, the sinterability will deteriorate, making it unsuitable for use as a sintered material.

Mnは、溶湯の脱酸剤として、また焼入性の補助元素と
して添加され、0.1%添加されるが、Crを含有する
本発明の基質材では、1.0%を越えて添加することは
あまり意味がない。
Mn is added as a deoxidizing agent for molten metal and as an auxiliary element for hardenability, and is added in an amount of 0.1%, but in the substrate material of the present invention containing Cr, it is added in an amount exceeding 1.0%. That doesn't make much sense.

Crは、前記のように焼入性付与に有効であり、また耐
熱、耐食性を向上する。Crが0.5%未満では、焼入
性、耐食性を劣化させ、 14.0%を越えると被削性
を低下させる。
As mentioned above, Cr is effective in imparting hardenability, and also improves heat resistance and corrosion resistance. If Cr is less than 0.5%, hardenability and corrosion resistance deteriorate, and if it exceeds 14.0%, machinability decreases.

Moは、耐熱性向上に大きな効果を有する。0.3%未
満では、この効果が少なく、3.0%を越えると添加量
に見合う効果が得られない。
Mo has a great effect on improving heat resistance. If it is less than 0.3%, this effect will be small, and if it exceeds 3.0%, no effect commensurate with the amount added will be obtained.

■は、硬質炭化物を形成して耐摩耗向上に効果を有する
。0.5%未満では、この効果が少なく、■。
(2) Forms hard carbides and is effective in improving wear resistance. If it is less than 0.5%, this effect is small, and ■.

錦を越えると前記Siと同様、焼結性を低下する。If the content exceeds brocade, the sinterability will decrease, similar to the above-mentioned Si.

Niは、耐酸化性向上効果が大きい。0.3%未満では
、この効果が低く、5.0%を越えると変態温度が低下
し、また被剛性を低下させる。
Ni has a large effect of improving oxidation resistance. If it is less than 0.3%, this effect will be low, and if it exceeds 5.0%, the transformation temperature will decrease and the stiffness will also decrease.

次に本発明の方法において、焼結温度は、1100℃以
上とする。本発明の方法において、A粉末は、予備合金
化した粉末を用いる。B粉末は、必ずしも予備合金化し
た粉末であることを要しないが、成分調整された溶湯か
らアトマイズすれば比較的粗大な粒径の粉末が使用でき
る。B粉末は、成形性の優れた不規則形状の粉末を用い
ることが望ましい。A粉末は平均粒径で、−60メツシ
ユ、B粉末はアトマイズにより、予備合金化されたもの
では、−100メツシユが好ましい。
Next, in the method of the present invention, the sintering temperature is 1100°C or higher. In the method of the present invention, a prealloyed powder is used as the A powder. The B powder does not necessarily need to be a prealloyed powder, but if it is atomized from a molten metal whose composition has been adjusted, a powder with a relatively coarse particle size can be used. As the powder B, it is desirable to use an irregularly shaped powder with excellent moldability. The average particle size of the A powder is preferably -60 mesh, and the B powder is preferably -100 mesh if prealloyed by atomization.

以下に、実施例で本発明を詳述する。The present invention will be explained in detail in Examples below.

(実施例〕 使用した粉末は、表1に示す化学成分の溶湯を水アトマ
イズ法により製造し、いずれもlOOメツシュの篩で篩
分した篩下である。
(Example) The powders used were produced by water atomization of molten metals having the chemical components shown in Table 1, and all powders were sieved through a lOO mesh sieve.

表1 (%1t%) 実施例1 表1のA1及びB1粉末を使用し、A1粉末をそれぞれ
6.12.24及び36%となるよう配合し、ステアリ
ン酸亜鉛を全体に対し、0.7%配合して、V型混合機
で混合し、6ton/ aiTの成形圧力でプレス成形
し、1170℃で焼結した。各焼結体は、概略、外径4
4.5mm、内径37.5m、厚さ7.5mとほぼ一定
であり、密度比も約94%であった。
Table 1 (%1t%) Example 1 Using the A1 and B1 powders in Table 1, A1 powder was blended at 6.12.24% and 36%, respectively, and zinc stearate was added at 0.7% of the total. %, mixed in a V-type mixer, press-molded at a molding pressure of 6 tons/aiT, and sintered at 1170°C. Each sintered body has an approximate outer diameter of 4
The diameter was 4.5 mm, the inner diameter was 37.5 m, and the thickness was 7.5 m, which were almost constant, and the density ratio was also about 94%.

表2 該試験片から所定サイズのバルブシートを削り出し、1
000℃で焼入れ後、550℃xihの焼きもどしを行
った。この試験片をエンジンの実装ベンチテスト及び圧
環強度試験を行った。エンジンは。
Table 2 A valve seat of a predetermined size was cut out from the test piece, and 1
After quenching at 000°C, tempering was performed at 550°C xih. This test piece was subjected to an engine mounting bench test and a radial crushing strength test. As for the engine.

’JP a Ji 2000cc ノブイーゼルエンジ
ンであり、試験片は、排気弁座に使用し、4000r、
p、m、150hの全負荷運転後のバルブの沈み量で評
価した。なお。
'JP a Ji 2000cc knob easel engine, the test piece was used for the exhaust valve seat, 4000r,
Evaluation was made based on the amount of valve sinking after full load operation for 150 hours. In addition.

バルブは、ステライトN006を肉盛り溶接したもので
ある。この結果を表2に比較例として、粉末B1とほぼ
同成分の粉末を単独で焼結したもの(試料No、100
)及び同成分の鋳造材(試料No、110)と対比して
示す。
The bulb is made of Stellite N006 welded overlay. The results are shown in Table 2 as a comparative example, in which a powder having almost the same composition as powder B1 was sintered alone (sample No. 100
) and a cast material of the same composition (sample No. 110).

表2から、比較例100は、110に比し、圧環強度及
び耐摩耗性がわずかに向上することが判るが、この比較
例100に硬質粒子Aを配合した本発明品は、硬質粒子
の配合比の増加とともに沈み量が急激に低下しており、
耐摩耗性が向上することが判る。しかし、試料No、1
3(Al粉未配合比36%)は。
From Table 2, it can be seen that comparative example 100 has slightly improved radial crushing strength and abrasion resistance compared to 110, but the product of the present invention in which hard particles A are blended with comparative example 100 has a hard particle blend. As the ratio increases, the amount of sinking decreases rapidly.
It can be seen that the wear resistance is improved. However, sample No. 1
3 (36% ratio without Al powder).

一部チッピングを発生した。試料No、11(A 1粉
未配合比12%)程度が、耐摩耗性と圧環強度のバラン
スから最も優れていると思われる。
Some chipping occurred. Sample No. 11 (A1 powder-free ratio: 12%) is considered to be the most excellent in terms of the balance between wear resistance and radial crushing strength.

実施例2 前記表1のA1粉末及びB2粉末を使用して、実施例1
と同様の試験を行った。その結果を前記の表2の比較例
110と対比して表3に示す。
Example 2 Using A1 powder and B2 powder in Table 1 above, Example 1
A similar test was conducted. The results are shown in Table 3 in comparison with Comparative Example 110 in Table 2 above.

本実施例は、実施例1に比し、基質の強度及び靭性を向
上したものである。
In this example, the strength and toughness of the substrate were improved compared to Example 1.

なお、本実施例でも試料No、23(Al粉未配合比3
6%)で一部チッピングが発生した。
In addition, in this example, sample No. 23 (Al powder non-blending ratio 3)
6%), some chipping occurred.

表3 実施例3 前記表1のA2粉末及びB2粉末を使用して、実施例1
と同様の試験を行った。その結果を前記の表2の比較例
110と対比して表4に示す。
Table 3 Example 3 Using A2 powder and B2 powder in Table 1 above, Example 1
A similar test was conducted. The results are shown in Table 4 in comparison with Comparative Example 110 in Table 2 above.

実施例1,2と同様に硬質粒子が36%添加されている
ものは、チッピングを生じたが、その他は、いずれも良
好な耐摩耗性、圧環強度を示した。
As in Examples 1 and 2, the one in which 36% of hard particles were added caused chipping, but the others all showed good abrasion resistance and radial crushing strength.

表4 実施例4 実施例2で製作した試料N o 、 21を1150℃
真空中で焼結し、密度比を86%としたのに、溶融塩中
に浸漬し、空孔内にPb、Cuを溶浸した後、実施例1
と同様の試験を行った。
Table 4 Example 4 Sample No. 21 produced in Example 2 was heated to 1150°C.
After sintering in vacuum and making the density ratio 86%, it was immersed in molten salt to infiltrate Pb and Cu into the pores.
A similar test was conducted.

表5に試験の結果を示す。Pb、Cuの溶浸により、摩
耗量が半減する効果が得られた。
Table 5 shows the test results. Infiltration of Pb and Cu had the effect of reducing the amount of wear by half.

以上の如く、本願発明材は、従来材対比バルブシート用
材料として、優れた耐摩耗性と圧環強度を示し、実施例
1〜4におけるベンチテスト後の試験片llt察でも腐
食摩耗は、観察されなかった。
As described above, the material of the present invention exhibits superior wear resistance and radial crushing strength as a material for valve seats compared to conventional materials, and no corrosion wear was observed even in the inspection of test pieces after the bench tests in Examples 1 to 4. There wasn't.

表5 本願発明材は、バルブシート用材料として開発されたも
のであるが、これ以外の高温耐摩耐食用材料として用い
られることは、言うまでもない。
Table 5 The material of the present invention was developed as a material for valve seats, but it goes without saying that it can also be used as a material for high temperature wear and corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように5本発明材は、過酷な条件で用いら
れるバルブシートに最適であり、工業上非常に有益であ
る。
As explained above, the material of the present invention is most suitable for valve seats used under severe conditions and is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1 重量比で、C1.1〜3.95% Cr2.0〜8.0% W+2Mo20.0〜35.0% V1.0〜8.0% Co1.0〜15.0% 残部Fe及び不可避不純物からなる硬質粒子Aが、重量
比で、C0.3〜2.5% Si0.1〜2.0% Mn0.1〜1.0% Cr2.5〜14.0% Mo0.3〜3.0% V0.5〜1.5% Ni0.3〜5.0% 残部Fe及び不可避不純物からなる基質Bに、前記硬質
粒子A+前記基質Bに対し、重量比で、5.0〜25.
0%の割合で分散保持されており、前記基質Bに実質的
に未固溶状態で存在することを特徴とする高温耐摩耐食
焼結材料。 2 重量比で、C1.1〜3.95% Cr2.0〜8.0% W+2Mo20.0〜35.0% V1.0〜8.0% Co1.0〜15.0% 残部Fe及び不可避不純物からなる予備合金化された硬
質粒子Aが、重量比で、 C0.3〜2.5% Si0.1〜2.0% Mn0.1〜1.0% Cr2.5〜14.0% Mo0.3〜3.0% V0.5〜1.5% Ni0.3〜5.0% 残部Fe及び不可避不純物からなる基質Bに、前記硬質
粒子A+前記基質Bに対し、重量比で、5.0〜25.
0%の割合で分散保持されており、前記基質Bに実質的
に未固溶状態で存在しており、更に耐摩耗性付与のため
、溶浸材を溶浸せしめていることを特徴とする高温耐摩
耐食焼結材料。 3 溶浸材が、Pb又はPb合金、あるいはCu又はC
u合金である特許請求の範囲第2項記載の高温耐摩耐食
焼結材料。 4 重量比で、C1.1〜3.95% Cr2.0〜8.0% W+2Mo20.0〜35.0% V1.0〜8.0% Co1.0〜15.0% 残部Fe及び不可避不純物からなる予備合金化された硬
質粒子Aと、重量比で、 C0.3〜2.5% Si0.1〜2.0% Mn0.1〜1.0% Cr2.5〜14.0% Mo0.3〜3.0% V0.5〜1.5% Ni0.3〜5.0% 残部Fe及び不可避不純物からなる粉末Bとを前記粉末
Aが、該粉末A+前記粉末Bに対し、重量比で、5.0
〜25.0%の割合となるように混合し、加圧成形した
後、1100℃以上で焼結することを特徴とする高温耐
摩耐食焼結材料の製造方法。 5 重量比で、C1.1〜3.95% Cr2.0〜8.0% W+2Mo20.0〜35.0% V1.0〜8.0% Co1.0〜15.0% 残部Fe及び不可避不純物からなる予備合金化された硬
質粒子Aと、重量比で、 C0.3〜2.5% Si0.1〜2.0% Mn0.1〜1.0% Cr2.5〜14.0% Mo0.3〜3.0% V0.5〜1.5% Ni0.3〜5.0% 残部Fe及び不可避不純物からなる粉末Bとを前記粉末
Aが、該粉末A+前記粉末Bに対し、重量比で、5.0
〜25.0%の割合となるように混合し、加圧成形した
のち、1100℃以上で焼結し、その後更に、耐摩耗付
与のため溶浸材を溶浸せしめることを特徴とする高温耐
摩耐食焼結材料の製造方法。 6 溶浸材がPb又はPb合金、あるいはCu又はCu
合金である特許請求の範囲第5項記載の高温耐摩耐食焼
結材料。
[Claims] 1 By weight: C1.1-3.95% Cr2.0-8.0% W+2Mo20.0-35.0% V1.0-8.0% Co1.0-15.0 % The hard particles A consisting of the balance Fe and unavoidable impurities are: C0.3-2.5% Si0.1-2.0% Mn0.1-1.0% Cr2.5-14.0% Mo0 .3 to 3.0% V0.5 to 1.5% Ni 0.3 to 5.0% The balance is Fe and unavoidable impurities, and the weight ratio of the hard particles A to the substrate B is 5. 0-25.
A high-temperature wear-resistant and corrosion-resistant sintered material characterized in that it is dispersed and maintained at a ratio of 0% and exists in the substrate B in a substantially undissolved state. 2 Weight ratio: C1.1-3.95% Cr2.0-8.0% W+2Mo20.0-35.0% V1.0-8.0% Co1.0-15.0% Remaining Fe and unavoidable impurities The prealloyed hard particles A are composed of: C0.3-2.5% Si0.1-2.0% Mn0.1-1.0% Cr2.5-14.0% Mo0. 3 to 3.0% V0.5 to 1.5% Ni 0.3 to 5.0% The balance is Fe and unavoidable impurities, and the weight ratio of the hard particles A to the substrate B is 5.0. ~25.
It is dispersed and held at a ratio of 0%, exists in the substrate B in a substantially undissolved state, and is further infiltrated with an infiltrant material to impart wear resistance. High temperature wear and corrosion resistant sintered material. 3 The infiltrant is Pb or Pb alloy, or Cu or C
The high-temperature wear-resistant and corrosion-resistant sintered material according to claim 2, which is a u-alloy. 4 Weight ratio: C1.1-3.95% Cr2.0-8.0% W+2Mo20.0-35.0% V1.0-8.0% Co1.0-15.0% Remaining Fe and unavoidable impurities Prealloyed hard particles A consisting of: C0.3-2.5% Si0.1-2.0% Mn0.1-1.0% Cr2.5-14.0% Mo0. 3-3.0% V0.5-1.5% Ni 0.3-5.0% The balance is Fe and unavoidable impurities. , 5.0
A method for producing a high-temperature wear-resistant and corrosion-resistant sintered material, which comprises mixing the materials at a ratio of ~25.0%, press-forming, and then sintering at 1100°C or higher. 5 By weight, C1.1-3.95% Cr2.0-8.0% W+2Mo20.0-35.0% V1.0-8.0% Co1.0-15.0% The remainder Fe and inevitable impurities Prealloyed hard particles A consisting of: C0.3-2.5% Si0.1-2.0% Mn0.1-1.0% Cr2.5-14.0% Mo0. 3 to 3.0% V0.5 to 1.5% Ni 0.3 to 5.0% The balance is Fe and unavoidable impurities. , 5.0
A high-temperature wear-resistant product characterized by being mixed at a ratio of ~25.0%, press-formed, sintered at 1100°C or higher, and then further infiltrated with an infiltrant to provide wear resistance. Method for producing corrosion-resistant sintered material. 6 If the infiltrant is Pb or Pb alloy, or Cu or Cu
The high-temperature wear-resistant and corrosion-resistant sintered material according to claim 5, which is an alloy.
JP13279385A 1985-06-18 1985-06-18 Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture Pending JPS61291954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13279385A JPS61291954A (en) 1985-06-18 1985-06-18 Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13279385A JPS61291954A (en) 1985-06-18 1985-06-18 Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture

Publications (1)

Publication Number Publication Date
JPS61291954A true JPS61291954A (en) 1986-12-22

Family

ID=15089684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13279385A Pending JPS61291954A (en) 1985-06-18 1985-06-18 Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture

Country Status (1)

Country Link
JP (1) JPS61291954A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101428A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Copper infiltration iron system sintered alloy made valve seat for internal combustion engine
JPH06101426A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Iron group sintered alloy made valve seat for internal combustion engine
JPH06101430A (en) * 1992-09-24 1994-04-12 Mitsubishi Materials Corp Lead impregnated iron system sintered alloy made valve seat for internal combustion engine
JPH06101427A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Iron group sintered alloy made valve seat for internal combustion engine
JPH06101429A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Lead impregnated iron system sintered alloy made valve seat for internal combustion engine
JP2009209410A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Mixed powder for powder metallurgy, and iron powder sintered compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101428A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Copper infiltration iron system sintered alloy made valve seat for internal combustion engine
JPH06101426A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Iron group sintered alloy made valve seat for internal combustion engine
JPH06101427A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Iron group sintered alloy made valve seat for internal combustion engine
JPH06101429A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Lead impregnated iron system sintered alloy made valve seat for internal combustion engine
JPH06101430A (en) * 1992-09-24 1994-04-12 Mitsubishi Materials Corp Lead impregnated iron system sintered alloy made valve seat for internal combustion engine
JP2009209410A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Mixed powder for powder metallurgy, and iron powder sintered compact

Similar Documents

Publication Publication Date Title
US8733313B2 (en) Iron-based sintered alloy for valve seat, and valve seat for internal combustion engine
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
US4422875A (en) Ferro-sintered alloys
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
US10233793B2 (en) Valve seat of sintered iron-based alloy
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
US4268309A (en) Wear-resisting sintered alloy
EP3358156A1 (en) Sintered valve seat
JP2005248234A (en) Iron-based sintered alloy for valve seat
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
EP1347067B1 (en) Iron-based sintered alloy for use as valve seat
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
US6783568B1 (en) Sintered steel material
KR20030021916A (en) A compound of wear-resistant sintered alloy for valve seat and its manufacturing method
JP2017133046A (en) Manufacturing method of abrasion resistant iron-based sintered alloy, molded body for sintered alloy and abrasion resistant iron-based sintered alloy
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP6392530B2 (en) Ferrous sintered alloy valve seat
JP3434527B2 (en) Sintered alloy for valve seat
WO2022185758A1 (en) Valve seat made of iron-based sintered alloy
JPH06299284A (en) High strength nitrided sintered member excellent in wear resistance and its production
WO2024154811A1 (en) Valve seat formed of iron-based sintered alloy for internal combustion engines and method for producing same
WO2023002986A1 (en) Iron-based sintered alloy valve seat for internal combustion engine
KR102185874B1 (en) Iron based sintered alloy for dispersion with strengthening materials with shortened sintering process and manufacturing method of the same
JP3763605B2 (en) Sintered alloy material for valve seats