JP5675090B2 - Sintered oil-impregnated bearing and manufacturing method thereof - Google Patents

Sintered oil-impregnated bearing and manufacturing method thereof Download PDF

Info

Publication number
JP5675090B2
JP5675090B2 JP2009289307A JP2009289307A JP5675090B2 JP 5675090 B2 JP5675090 B2 JP 5675090B2 JP 2009289307 A JP2009289307 A JP 2009289307A JP 2009289307 A JP2009289307 A JP 2009289307A JP 5675090 B2 JP5675090 B2 JP 5675090B2
Authority
JP
Japan
Prior art keywords
pores
iron powder
powder
oil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009289307A
Other languages
Japanese (ja)
Other versions
JP2011127742A (en
Inventor
佳樹 田村
佳樹 田村
丸山 恒夫
恒夫 丸山
石井 義成
義成 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2009289307A priority Critical patent/JP5675090B2/en
Publication of JP2011127742A publication Critical patent/JP2011127742A/en
Application granted granted Critical
Publication of JP5675090B2 publication Critical patent/JP5675090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内部に潤滑油を含浸させて潤滑を円滑に行わせることができる焼結含油軸受及びその製造方法に関する。   The present invention relates to a sintered oil-impregnated bearing that can be smoothly lubricated by impregnating a lubricating oil therein and a method for manufacturing the same.

焼結含油軸受は、気孔内に潤滑油を含浸させた状態で使用され、軸が起動すると、軸と軸受の摺動面との間に内部から潤滑油が浸み出し、軸の回転に伴って、その潤滑油に圧力が発生して軸が支持されるようになっている。このような潤滑特性により、無給油で長時間使用できることから、車載用モータの軸受など、広く軸受として利用されている。   Sintered oil-impregnated bearings are used in a state where the pores are impregnated with lubricating oil, and when the shaft starts, the lubricating oil oozes from the inside between the shaft and the sliding surface of the bearing, and as the shaft rotates Thus, pressure is generated in the lubricating oil so that the shaft is supported. Due to such a lubricating characteristic, it can be used for a long time without lubrication, and therefore, it is widely used as a bearing such as a bearing of an in-vehicle motor.

このような焼結含油軸受において、摺動面の潤滑油に適切に圧力を発生させるために、気孔の一部を封止したり、軸受内部の気孔を小さくして潤滑油の流路抵抗を増加させ、摺動面からの潤滑油のリークを少なくするなどの手段が採用されている。
例えば、特許文献1記載の焼結含油軸受では、サイジング金型のコアロッドにしごき部を形成しておき、軸受の摺動面をコアロッドがしごくことにより、摺動面の気孔を目潰ししている。
In such a sintered oil-impregnated bearing, in order to generate an appropriate pressure on the lubricating oil on the sliding surface, some of the pores are sealed or the pores inside the bearing are reduced to reduce the flow resistance of the lubricating oil. Means such as increasing and reducing leakage of lubricating oil from the sliding surface are adopted.
For example, in the sintered oil-impregnated bearing described in Patent Document 1, the iron rod is formed on the core rod of the sizing mold, and the core rod crushes the sliding surface of the bearing, thereby clogging the pores on the sliding surface.

特開平7−233817号公報JP-A-7-233817

しかしながら、摺動面の気孔を封止すると、起動時等において摺動面に供給されるべき油の量が著しく低下するおそれがある。また、軸受内部の気孔を小さくする場合には、気孔の壁面での流路抵抗が大きくなり、油の供給量が低下する要因になる。このように、摺動面への油の供給量が低下するということは、摺動面での軸と軸受の金属接触を誘発し易く、軸や軸受の摩耗を増加させる原因となる。
また、気孔を減少させたり微細化させることは、毛細管力増加によって、油の供給に対して不利となり、起動時や短時間作動など摺動面の油量が少ない場合は、油の供給が間に合わず、金属接触を誘発し易くなる。また、金属接触によって気孔が潰れ易くなり、潤滑油の供給源を絶たれるという悪循環になり易い。
金属接触の繰り返しにより軸や軸受の摩耗が進行すると、軸や軸受の異常摩耗や焼き付きなどが起こり得る。
However, if the pores on the sliding surface are sealed, the amount of oil to be supplied to the sliding surface at the time of startup or the like may be significantly reduced. Further, when the pores in the bearing are made small, the flow resistance at the pore wall surface increases, which causes a decrease in the amount of oil supplied. As described above, the reduction in the amount of oil supplied to the sliding surface easily induces metal contact between the shaft and the bearing on the sliding surface, which causes an increase in wear of the shaft and the bearing.
In addition, reducing or miniaturizing pores is disadvantageous for oil supply due to increased capillary force. If the amount of oil on the sliding surface is small, such as during startup or short-time operation, the oil supply will be in time. Therefore, it is easy to induce metal contact. In addition, the metal contact tends to collapse the pores, which tends to cause a vicious circle in which the supply source of the lubricating oil is cut off.
When wear of the shaft and the bearing progresses due to repeated metal contact, abnormal wear and seizure of the shaft and the bearing may occur.

一方、摺動面への油の供給量を増やすには、軸受内部に含浸される油量を増加させるため、軸受自体の多孔率を増やしたり、軸受内部の気孔を大きくして、気孔を通過する油の流路抵抗を減少させる方法が考えられる。しかし、過度の多孔率増加は、軸受自体の強度を低下する要因となるため、強度を保持するには適度な多孔率を設定する必要がある。また、軸受内部の気孔を大きくすると、摺動面において軸受内部にリークする油量が増加し、金属接触を誘発する可能性もある。   On the other hand, to increase the amount of oil supplied to the sliding surface, in order to increase the amount of oil impregnated inside the bearing, increase the porosity of the bearing itself or enlarge the pores inside the bearing and pass through the pores It is conceivable to reduce the flow path resistance of the oil. However, an excessive increase in the porosity causes a decrease in the strength of the bearing itself. Therefore, it is necessary to set an appropriate porosity in order to maintain the strength. Further, if the pores inside the bearing are enlarged, the amount of oil leaking inside the bearing on the sliding surface increases, and there is a possibility of inducing metal contact.

本発明は、このような事情に鑑みてなされたもので、摺動面への潤滑油の供給量を確保しつつ、この摺動面での油圧を保持し易くすることを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to make it easy to maintain the hydraulic pressure on the sliding surface while ensuring the supply amount of lubricating oil to the sliding surface.

本発明の焼結含油軸受は、銅を10〜50重量%、低融点金属を0.1〜5重量%含有する鉄銅系材料を用いた焼結含油軸受であって、気孔率は10〜30容量%とされるとともに、内部に微細気孔を有する多孔質鉄粉と、通常鉄粉とを含む原料粉末が焼結されており、内部に形成される気孔は、そのうちの45%以下が円換算径で0.003mm以下の気孔とされ、20%以上が円換算径で0.007mm以上の気孔とされていることを特徴とする。
The sintered oil-impregnated bearing of the present invention is a sintered oil-impregnated bearing using a ferrous copper-based material containing 10 to 50% by weight of copper and 0.1 to 5% by weight of a low melting point metal, and has a porosity of 10 to 10%. The raw material powder containing a porous iron powder having fine pores inside and a normal iron powder is sintered with a volume of 30% by volume, and 45% or less of the pores formed inside are circular. It is characterized by pores having a converted diameter of 0.003 mm or less, and 20% or more being pores having a circle-converted diameter of 0.007 mm or more.

すなわち、摺動面への潤滑油の供給量の確保と、摺動面での油圧の保持との二つの相反する機能を果たすために、内部の気孔を円換算径で0.003mm以下の微細な気孔にしつつも、すべてを微細な気孔とするのではなく、0.007mm以上の比較的大きい気孔も残存させ、この大きい気孔によって摺動面への潤滑油の供給量を確保し、その摺動面に供給された潤滑油に微細な気孔の作用によって圧力を発生させるようにしたものである。   In other words, in order to fulfill the two contradictory functions of securing the amount of lubricating oil supplied to the sliding surface and maintaining the hydraulic pressure on the sliding surface, the internal pores are finer with a circular conversion diameter of 0.003 mm or less. However, not all pores are made fine, but relatively large pores of 0.007 mm or more remain, and the large pores ensure the amount of lubricating oil supplied to the sliding surface. Pressure is generated by the action of fine pores in the lubricating oil supplied to the moving surface.

本発明の焼結含油軸受において、内部に微細気孔を有する多孔質鉄粉を含む原料粉末が焼結されている。
多孔質鉄粉は、微細な気孔を有する多孔質の鉄粉であり、比表面積が大きい。この多孔質鉄粉を用いて焼結することにより、多孔質鉄粉自体の微細気孔と、粉末どうしの焼結によって形成される比較的大きい気孔との二種類の気孔が存在する焼結体となる。したがって、鉄粉として、多孔質鉄粉と通常の還元鉄粉やアトマイズ鉄粉とを混合したものを用いて焼結することにより、微細気孔と比較的大きい気孔とが混在した多孔質体とすることができ、0.003mm以下の気孔を主として多孔質鉄粉の微細気孔により形成し、0・007mm以上の気孔を主として粉末どうしの隙間により形成するのである。
In the sintered oil-impregnated bearing of the present invention, raw material powder containing porous iron powder having fine pores therein is sintered.
The porous iron powder is a porous iron powder having fine pores and has a large specific surface area. By sintering using this porous iron powder, a sintered body having two kinds of pores, that is, fine pores of the porous iron powder itself and relatively large pores formed by sintering of the powders, Become. Therefore, by sintering using a mixture of porous iron powder and normal reduced iron powder or atomized iron powder as the iron powder, a porous body in which fine pores and relatively large pores are mixed is obtained. The pores of 0.003 mm or less are mainly formed by the fine pores of the porous iron powder, and the pores of 0.007 mm or more are mainly formed by the gap between the powders.

本発明の焼結含油軸受において、固体潤滑剤が0.2〜5重量%含有されているとよく、摺動特性がより向上する。固体潤滑剤としては、黒鉛、弗化カルシウム等が用いられる。   In the sintered oil-impregnated bearing of the present invention, the solid lubricant is preferably contained in an amount of 0.2 to 5% by weight, and the sliding characteristics are further improved. As the solid lubricant, graphite, calcium fluoride or the like is used.

本発明の焼結含油軸受の製造方法は、鉄銅系材料の原料粉末を成形して焼結することにより前記焼結含油軸受を製造する方法であって、前記原料粉末は、銅粉を10〜50重量%、低融点金属を0.1〜5重量%含有し、鉄粉は、内部に微細気孔を有する見掛け密度1〜2g/cmの多孔質鉄粉見掛け密度1.7〜3g/cmの通常鉄粉との混合粉であり、該混合粉のうち前記多孔質鉄粉の混合比率が15〜85重量%であり、焼結温度を、850〜1000℃(ただし、850℃及び1000℃を除く)とすることを特徴とする。
The method for producing a sintered oil-impregnated bearing according to the present invention is a method for producing the sintered oil-impregnated bearing by molding and sintering a raw material powder of an iron-copper-based material. -50% by weight, 0.1-5% by weight of low melting point metal, and iron powder has an apparent density of 1-2 g / cm 3 of porous iron powder having fine pores inside, and an apparent density of 1.7-3 g / It is a mixed powder with normal iron powder of cm 3 , the mixing ratio of the porous iron powder in the mixed powder is 15 to 85% by weight , and the sintering temperature is 850 to 1000 ° C. (however, 850 ° C. and 1000 ° C. is excluded) .

多孔質鉄粉を含んで混合したものを用いて焼結することにより、微細気孔と比較的大きい気孔とが混在した多孔質体とすることができる。この場合、銅は、摺動特性を向上させる作用があり、10重量%未満では、その作用に所望の効果が得られず、50重量%を超えると、耐摩耗性が低下するおそれがあることから、10〜50重量%が好ましい。また、低融点金属は、焼結温度以下の温度で溶融する金属であり、例えば錫(Sn)、亜鉛(Zn)等の金属が用いられ、溶融して液相化することにより鉄粉や銅粉を結合し、強度を向上させる作用がある。さらに、これら鉄粉や銅粉の隙間に低融点金属が浸透することにより、気孔をより微細化する作用も有する。この低融点金属は、0.1重量%未満では、その作用の所望の効果が得られず、5重量%を超えると、マトリクス強度が増大し、摺動相手への攻撃性が増すことにより、0.1〜5重量%が好ましい。   By sintering using a mixture containing porous iron powder, a porous body in which fine pores and relatively large pores are mixed can be obtained. In this case, copper has an effect of improving sliding characteristics, and if it is less than 10% by weight, a desired effect cannot be obtained. If it exceeds 50% by weight, wear resistance may be lowered. From 10 to 50% by weight is preferable. The low melting point metal is a metal that melts at a temperature lower than the sintering temperature. For example, a metal such as tin (Sn) or zinc (Zn) is used. It has the effect of combining powder and improving strength. Furthermore, it has the effect | action which refines | miniaturizes a pore more by a low melting-point metal osmose | permeating the clearance gap between these iron powder and copper powder. If this low melting point metal is less than 0.1% by weight, the desired effect of its action cannot be obtained, and if it exceeds 5% by weight, the matrix strength increases, and the aggressiveness to the sliding partner increases. 0.1 to 5% by weight is preferred.

また、前述したように多孔質鉄粉は、微細な気孔を含有しており、その微細な気孔を有する多孔質鉄粉を15〜85%の重量比率で混在させることにより、気孔の分布を適切な状態とすることができる。多孔質鉄粉の比率が15%未満であると、微細な気孔が少なくなることから、摺動面での潤滑油が保持されにくくなる結果、摺動面の摩擦係数が増大し、また、85%を超えると、微細な気孔が多くなることから、摺動面への潤滑油の供給源が遮断され易くなって、耐焼き付き性が低下する。
また、焼結温度を、850〜1000℃とするのは、焼結温度が850℃未満では、焼結が不十分となって軸受としての十分な強度を確保することができず、1000℃を超えると、銅の拡散が促進され、銅による摺動特性向上の効果が低下してしまうためである。
Further, as described above, the porous iron powder contains fine pores, and the porous iron powder having the fine pores is mixed at a weight ratio of 15 to 85%, thereby appropriately distributing the pores. It can be in a state. If the ratio of the porous iron powder is less than 15%, the fine pores are reduced, so that the lubricating oil on the sliding surface becomes difficult to be retained. As a result, the friction coefficient of the sliding surface increases, and 85 If it exceeds 50%, fine pores increase, so that the supply source of the lubricating oil to the sliding surface is easily cut off, and the seizure resistance is lowered.
Further, the sintering temperature is set to 850 to 1000 ° C. If the sintering temperature is less than 850 ° C., the sintering is insufficient and sufficient strength as a bearing cannot be secured, and 1000 ° C. If it exceeds, the diffusion of copper is promoted, and the effect of improving the sliding properties by copper is reduced.

本発明の焼結含油軸受の製造方法において、前記原料粉末に固体潤滑剤を0.2〜5重量%含有するとよい。固体潤滑剤は摺動特性を向上させる効果があるが、0.2重量%未満では所望の効果が期待できず、5重量%を超えると強度低下を招くおそれがある。   In the method for producing a sintered oil-impregnated bearing of the present invention, the raw material powder may contain a solid lubricant in an amount of 0.2 to 5% by weight. The solid lubricant has the effect of improving the sliding characteristics, but if it is less than 0.2% by weight, the desired effect cannot be expected, and if it exceeds 5% by weight, the strength may be lowered.

本発明によれば、鉄粉として多孔質鉄粉と通常の還元鉄粉やアトマイズ鉄粉とを混合したことにより、多孔質鉄粉自体の微細気孔と、粉末どうしの焼結によって粉末間に形成される比較的大きい気孔との二種類の気孔が混在した焼結体となり、その比較的大きい気孔による摺動面への潤滑油の供給量の確保と、微細気孔による摺動面での油圧の保持との二つの相反する機能を果たすことができ、摺動特性及び耐焼き付き性を向上させることができる。   According to the present invention, by mixing porous iron powder with normal reduced iron powder or atomized iron powder as iron powder, the fine pores of the porous iron powder itself and the powder are formed between the powders by sintering. The sintered body is a mixture of two types of pores, the relatively large pores, ensuring the supply amount of lubricating oil to the sliding surface by the relatively large pores, and the hydraulic pressure at the sliding surface by the fine pores. Two contradictory functions with holding can be achieved, and sliding characteristics and seizure resistance can be improved.

以下、本発明に係る焼結含油軸受及びその製造方法の一実施形態を図面を参照しながら説明する。
この焼結含油軸受は、原料粉末として、鉄、銅、低融点金属、固体潤滑剤の粉体を混合し、その原料粉末を例えば円筒状に圧縮成形した後に、焼結、サイジングを行い、真空含油処理にて潤滑油を含浸させたものである。
その原料粉末としては、銅粉が10〜50重量%、低融点金属が0.1〜5重量%、固体潤滑剤が0.2〜5重量%、残りが鉄粉とされる。
Hereinafter, an embodiment of a sintered oil-impregnated bearing and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
This sintered oil-impregnated bearing is made by mixing iron, copper, low melting point metal, and solid lubricant powder as raw material powder, and compressing and molding the raw material powder into a cylindrical shape, followed by sintering, sizing, and vacuum It is impregnated with lubricating oil by oil impregnation treatment.
As the raw material powder, copper powder is 10 to 50% by weight, low melting point metal is 0.1 to 5% by weight, solid lubricant is 0.2 to 5% by weight, and the rest is iron powder.

原料粉末のうち、鉄粉としては、還元鉄粉が用いられ、還元鉄粉としては、通常の還元鉄粉と、水素により還元した多孔質鉄粉との混合粉とされる。
通常の還元鉄粉は、鉄鉱石やミルスケールをコークス等の炭化材で還元し、破砕、分級した後に、水素雰囲気で仕上げ熱処理して製造された鉄粉であり、表面は凹凸を有する海綿状となっている。
一方、多孔質鉄粉は、ミルスケール等を粉砕して分級した後に、水素還元雰囲気で長時間還元し、その後、再度分級して得られた鉄粉であり、表面が凹凸を有する海綿状となっている点は通常の還元鉄粉と同様であるが、粒子内部に微細な気孔を有しているものである。
Among the raw material powders, reduced iron powder is used as the iron powder, and the reduced iron powder is a mixed powder of normal reduced iron powder and porous iron powder reduced by hydrogen.
Ordinary reduced iron powder is iron powder produced by reducing iron ore or mill scale with a carbonizing material such as coke, crushing and classifying, and then finishing heat treatment in a hydrogen atmosphere, and the surface is a sponge-like surface with irregularities. It has become.
On the other hand, the porous iron powder is an iron powder obtained by pulverizing and classifying a mill scale, etc., then reducing in a hydrogen reducing atmosphere for a long time, and then classifying again, and having a sponge-like surface with irregularities. This is the same as ordinary reduced iron powder, but has fine pores inside the particles.

これら還元鉄粉は、その見掛け密度は、通常の還元鉄粉が1.7〜3g/cm、多孔質鉄粉が1〜2g/cmとされる。
そして、これら多孔質鉄粉と通常の還元鉄粉との混合粉のうち、多孔質鉄粉の混合比率が15〜85重量%とされる。
These reduced iron powder, the apparent density is generally reduced iron powder 1.7~3g / cm 3, the porous iron powder are 1 to 2 g / cm 3.
And the mixing ratio of porous iron powder shall be 15 to 85 weight% among the mixed powder of these porous iron powder and normal reduced iron powder.

銅は、シャフトとの摺動特性を向上させることができる。この銅粉としては、電解銅粉等が用いられる。10〜50重量%としたのは、10重量%未満では、その作用に所望の効果が得られず、50重量%を超えると、機械的強度が下がり、耐摩耗性の低下につながり、また、銅の増加によりコストアップにもつながる。
また、この銅粉は、樹枝状粉もしくは/及び球状粉と、アスペクト比が10以上の偏平粉との混合粉とされ、銅粉のうちの15%以上が偏平粉とされる。また、この偏平粉は、成形金型内に充填される際に振動付与されることにより表面に集まり易く、軸受としては、表面側が銅の割合が高くなり、内部にいくに従って鉄の割合が高くなる濃度勾配のものを得ることができ、摺動表面を銅リッチにして摺動特性を高めるものである。
Copper can improve the sliding characteristics with the shaft. As this copper powder, electrolytic copper powder or the like is used. When the amount is 10 to 50% by weight, if the amount is less than 10% by weight, a desired effect cannot be obtained. When the amount exceeds 50% by weight, the mechanical strength decreases and the wear resistance decreases. Increased copper leads to cost increase.
The copper powder is a mixed powder of dendritic powder or / and spherical powder and flat powder having an aspect ratio of 10 or more, and 15% or more of the copper powder is flat powder. In addition, this flat powder is likely to gather on the surface by being given vibration when filled in the molding die, and as a bearing, the ratio of copper is high on the surface side and the ratio of iron is high as it goes inside. The concentration gradient can be obtained, and the sliding surface is enriched with copper to improve the sliding characteristics.

低融点金属は、焼結温度以下の温度で溶融する金属である。鉄銅系材料の場合、鉄粉や銅粉の融点未満で焼結温度が設定されるが、その焼結温度以下で溶融して液相化した金属が鉄粉や銅粉の間に介在してバインダとして作用し、焼結体の機械的強度を高めるものである。また、この低融点金属は、固体潤滑剤も強固に保持して、その脱落を防止する。この低融点金属の含有量を0.1〜5重量%としたのは、0.1重量%未満では、その作用の所望の効果が得られず、5重量%を超えると、封止される気孔が多くなってしまうことから、流路抵抗が増大して油の供給源が遮断されるからである。
この低融点金属としては、本実施形態の場合、焼結温度が850〜1000℃とされるので、その焼結温度以下の温度で溶融する金属であればよく、例えば錫(Sn)、亜鉛(Zn)等の金属が単体であるいは2種以上含んで使用される。
A low melting point metal is a metal that melts at a temperature below the sintering temperature. In the case of iron-copper materials, the sintering temperature is set below the melting point of iron powder or copper powder, but the metal melted and liquidated below the sintering temperature is interposed between the iron powder and copper powder. It acts as a binder and increases the mechanical strength of the sintered body. The low melting point metal also holds the solid lubricant firmly and prevents its falling off. The reason why the content of the low melting point metal is 0.1 to 5% by weight is that if it is less than 0.1% by weight, the desired effect of the action cannot be obtained, and if it exceeds 5% by weight, sealing is performed. This is because the pores increase and the flow resistance increases and the oil supply source is shut off.
As this low melting point metal, in the case of this embodiment, since the sintering temperature is 850 to 1000 ° C., any metal that melts at a temperature equal to or lower than the sintering temperature may be used. For example, tin (Sn), zinc ( A metal such as Zn) is used alone or in combination of two or more.

固体潤滑剤は、母材である鉄よりも硬度が低く、焼結では金属と結合しないために単体で存在する物質であり、金属接触を防止し、摺動特性をより高めるために添加される。この固体潤滑剤としては、黒鉛(グラファイト)、弗化カルシウム(CaF2)等が使用される。この固体潤滑剤の含有量を0.2〜5重量%としたのは、0.2重量%未満では所望の効果が期待できず、5重量%を超えると、金属との結合性に乏しい固体潤滑剤により焼結体としての強度低下を招くおそれがあるからである。   Solid lubricant is a substance that has a lower hardness than iron, which is a base material, and does not bond to metal during sintering, and is added to prevent metal contact and improve sliding characteristics. . As the solid lubricant, graphite (graphite), calcium fluoride (CaF2), or the like is used. The content of the solid lubricant is 0.2 to 5% by weight. If the content is less than 0.2% by weight, the desired effect cannot be expected. This is because the lubricant may cause a decrease in strength as a sintered body.

以上の各粉末を混合してなる原料粉末を軸受として例えば円筒状に成形して焼結するのであるが、その焼結温度としては、850〜1000℃とされる。焼結温度が850℃未満では、焼結が不十分となって軸受としての十分な強度を確保することができず、1000℃を超えると、銅の拡散が促進され、銅による摺動特性向上の効果が低下してしまうためである。
そして、このように焼結した後の気孔率は、10〜30容量%とされる。10容量%未満では、含浸された油の絶対量が少なく、油の供給が少なくなり、金属接触を誘発し易く、30容量%を超えると、軸受自体の機械的強度が低下し、耐荷重特性が低下するからである。
焼結後は、サイジングを行い、真空含油処理にて潤滑油を含浸される。
The raw material powder obtained by mixing the above powders is molded into a cylindrical shape, for example, as a bearing and sintered, and the sintering temperature is 850 to 1000 ° C. If the sintering temperature is less than 850 ° C., the sintering is insufficient and sufficient strength as a bearing cannot be ensured. If the sintering temperature exceeds 1000 ° C., the diffusion of copper is promoted and the sliding characteristics are improved by copper. This is because the effect of.
And the porosity after sintering in this way shall be 10-30 volume%. If the amount is less than 10% by volume, the absolute amount of the impregnated oil is small, the supply of oil is reduced, and metal contact is likely to be induced. This is because of a decrease.
After sintering, sizing is performed and the oil is impregnated with a vacuum oil impregnation treatment.

このようにして製造された焼結含油軸受は、鉄粉として、多孔質鉄粉と通常の還元鉄粉とが混合されていることにより、多孔質鉄粉自体の微細気孔と、粉末どうしの焼結によって粉末間に形成される比較的大きい気孔との二種類の気孔が混在した焼結体となる。この焼結体の断面から画像処理によって気孔を特定し、各気孔の面積を円相当直径に換算して気孔を分類すると、45%以下が円換算径で0.003mm以下の気孔とされ、20%以上が円換算径で0.007mm以上の気孔とされる。0.003mm以下の気孔が主として多孔質鉄粉の微細気孔により形成され、0.007mm以上の気孔が主として粉末どうしの隙間により形成される。   The sintered oil-impregnated bearing manufactured in this way is a mixture of porous iron powder and normal reduced iron powder as iron powder, so that the fine pores of the porous iron powder itself and the sintering of the powders are performed. A sintered body in which two kinds of pores, which are relatively large pores formed between the powders by mixing, is mixed. When pores are specified by image processing from the cross section of the sintered body, and the pores are classified by converting the area of each pore to a circle equivalent diameter, 45% or less is a pore having a circle-equivalent diameter of 0.003 mm or less. % Or more is defined as pores having a circular equivalent diameter of 0.007 mm or more. The pores of 0.003 mm or less are mainly formed by the fine pores of the porous iron powder, and the pores of 0.007 mm or more are mainly formed by the gaps between the powders.

そして、このように微細気孔と比較的大きい気孔とが混在することにより、摺動面への潤滑油の供給量の確保と、摺動面での油圧の保持との二つの相反する機能を果たすことができる。
すなわち、ポアズイユ流れの法則から、気孔内の油の流れは、気孔の径が大きいほど速度が大きくなり、気孔内の流路抵抗は、気孔の径が小さいほど大きくなる。したがって、気孔の径が大きいほど、内部の潤滑油が表面(摺動面)に出易くなり、気孔の径が小さいほど、表面(摺動面)での油圧のリークは少なくなる。
本実施形態の焼結含油軸受の場合は、0.003mm以下の微細な気孔は、潤滑油を摺動面に保持して(リークを少なくして)確実に油圧を発生させることができ、また、0.007mm以上の比較的大きい気孔は、摺動面への潤滑油の供給源を遮断することなく、潤滑油が摺動面に出易くなって適切な供給量を確保することができるものである。
In addition, the mixture of fine pores and relatively large pores thus fulfills two contradictory functions of securing the amount of lubricating oil supplied to the sliding surface and maintaining the hydraulic pressure on the sliding surface. be able to.
That is, from the Poiseuille flow law, the flow of oil in the pores increases as the pore diameter increases, and the flow resistance in the pores increases as the pore diameter decreases. Therefore, the larger the pore diameter, the easier it is for the internal lubricating oil to come out on the surface (sliding surface), and the smaller the pore diameter, the less hydraulic leak on the surface (sliding surface).
In the case of the sintered oil-impregnated bearing of this embodiment, fine pores of 0.003 mm or less can hold the lubricating oil on the sliding surface (reduce leakage) and reliably generate hydraulic pressure. The relatively large pores of 0.007 mm or more can ensure the appropriate supply amount because the lubricating oil can easily come out on the sliding surface without shutting off the supply source of the lubricating oil to the sliding surface. It is.

次に、本発明の効果を実証するために行った試験結果について説明する。
試験に用いた原料粉末は、銅粉が20重量%、低融点金属が1重量%、固体潤滑剤が1重量%とし、残りを鉄粉とした。この組成は一定とし、鉄粉として、水素還元してなる多孔質鉄粉と通常の還元鉄粉との混合比率を調整することで軸受体内の気孔の径を制御した。
具体的には、多孔質鉄粉と通常の還元鉄粉との配合比について、実施例として、多孔質鉄粉:通常還元鉄粉が15:85(実施例1)、同50:50(実施例2)、同85:15(実施例3)の3種類用意し、比較例として、多孔質鉄粉を全く含まず全てが通常の還元鉄粉からなる0:100のもの(比較例1)、逆に全てが多孔質鉄粉からなる100:0のもの(比較例2)の2種類を用意し、それぞれの軸受特性を評価した。
上記配合組成の粉末を混合し、その混合した原料粉末を圧縮成形し、950℃の焼結温度で焼結した後、サイジングを行い、真空浸油処理にて軸受体内に油を含浸させた。軸受の気孔率は約22容量%とした。
Next, the test results conducted for verifying the effects of the present invention will be described.
The raw material powder used in the test was 20% by weight of copper powder, 1% by weight of low melting point metal, 1% by weight of solid lubricant, and the rest was iron powder. This composition was kept constant, and the diameter of the pores in the bearing body was controlled by adjusting the mixing ratio of porous iron powder obtained by hydrogen reduction and normal reduced iron powder as iron powder.
Specifically, with respect to the blending ratio of the porous iron powder and the normal reduced iron powder, as examples, porous iron powder: normal reduced iron powder is 15:85 (Example 1), and 50:50 (implemented). Examples 2) and 85:15 (Example 3) were prepared, and as a comparative example, no porous iron powder was contained at all and 0: 100 consisting of ordinary reduced iron powder (Comparative Example 1) On the contrary, two types of 100: 0 (comparative example 2), all made of porous iron powder, were prepared, and the bearing characteristics were evaluated.
After mixing the powders of the above composition, the mixed raw material powder was compression molded, sintered at a sintering temperature of 950 ° C., sizing was performed, and the bearing body was impregnated with oil by vacuum oil immersion treatment. The porosity of the bearing was about 22% by volume.

このようにして得られた各軸受において、内部の気孔を解析した。気孔の解析は、焼結体の断面から画像処理によって気孔を特定し、各気孔の面積を円相当直径に換算した。
表1は、気孔を0.003mm以下の径のもの、0.003mmを超え0.007mm未満の径のもの、0.007mm以上の径のものの3種類に分類し、気孔が占める総面積のうち、それぞれの径の気孔の比率を求めたものである。この表1によれば、多孔質鉄粉を増加すると、0.003mm以下の径の気孔の割合が多くなる傾向となった。逆に、通常還元鉄粉を増加すると、0.007mm以上の径の気孔の割合が増加する傾向となった。
In each bearing thus obtained, the internal pores were analyzed. In the analysis of the pores, the pores were identified by image processing from the cross section of the sintered body, and the area of each pore was converted to an equivalent circle diameter.
Table 1 classifies pores into three types, those having a diameter of 0.003 mm or less, those having a diameter of more than 0.003 mm and less than 0.007 mm, and those having a diameter of 0.007 mm or more, and out of the total area occupied by the pores The ratio of the pores of each diameter is obtained. According to Table 1, when the porous iron powder was increased, the ratio of pores having a diameter of 0.003 mm or less tended to increase. On the contrary, when the reduced iron powder was increased, the ratio of pores having a diameter of 0.007 mm or more tended to increase.

Figure 0005675090
Figure 0005675090

次に、これら各軸受に対して、通気度、耐焼き付き性、摩擦係数、表面への油の出方、表面での油膜保持性について測定した。
通気度は、軸受両端面を密閉し、軸孔に圧力空気を充填し、その際に軸受体内よりリークする流量と圧力を測定し、その関係より算出した。
耐焼き付き性は、軸受に100kg/cmの荷重を軸方向と直交する垂直方向に付与し、100m/minの周速でシャフトを回転させ、焼付き時間について評価を行った。焼付きまでの時間が3時間以上であったものを○、1時間を超え3時間未満であったものを△、1時間以下であったものを×とした。
摩擦係数は、軸受に5kg/cmの荷重を軸方向と直交する垂直方向に付与し、100m/minの周速でシャフトを回転させたときの軸受の回転トルクより摩擦係数を算出した。摩擦係数が0.10以下であったものを○、0.10を超え0.15未満であったものを△、0.15以上であったものを×とした。
Next, the air permeability, seizure resistance, coefficient of friction, how oil is discharged to the surface, and oil film retention on the surface were measured for each of these bearings.
The air permeability was calculated from the relationship between the both ends of the bearing sealed, the shaft hole filled with pressurized air, and the flow rate and pressure leaking from the bearing body at that time.
The seizure resistance was evaluated with respect to seizure time by applying a load of 100 kg / cm 2 to the bearing in the vertical direction perpendicular to the axial direction, rotating the shaft at a peripheral speed of 100 m / min. The case where the time until seizure was 3 hours or more was evaluated as ◯, the case where it was longer than 1 hour and less than 3 hours was Δ, and the case where it was 1 hour or less was rated as x.
The friction coefficient was calculated from the rotational torque of the bearing when a load of 5 kg / cm 2 was applied to the bearing in the vertical direction perpendicular to the axial direction and the shaft was rotated at a peripheral speed of 100 m / min. The case where the coefficient of friction was 0.10 or less was evaluated as ◯, the case where the coefficient of friction exceeded 0.10 and less than 0.15 was evaluated as Δ, and the case where the coefficient of friction was 0.15 or more was evaluated as ×.

油の出方は、VG68相当の含浸油に蛍光塗料を混合して軸受に含浸させ、軸受に5kg/cmの荷重を軸方向と直交する垂直方向に付与し、100m/minの周速でシャフトを短時間回転させたときのシャフトに付着した油を、紫外線照射により観察した。油の付着面積が、軸受に挿入されていた部分の面積の80%以上であったものを○、80%未満で50%以上を△、50%未満を×とした。
油膜保持性は、軸受に5kg/cmの荷重を軸方向と直交する垂直方向に付与し、150m/minの周速でシャフトを回転させたときのシャフトと軸受の電気的導通をシャフトと軸受の接触有無と置き換え、評価した。作動後、10秒〜11秒の間に電気的導通が非接触を示す割合が40%以上を○、40%未満で20%以上を△、20%未満を×とした。
The oil is dispensed by mixing the impregnated oil equivalent to VG68 with a fluorescent paint and impregnating the bearing, applying a load of 5 kg / cm 2 to the bearing in the direction perpendicular to the axial direction, and at a peripheral speed of 100 m / min. The oil adhering to the shaft when the shaft was rotated for a short time was observed by ultraviolet irradiation. The oil adhesion area was 80% or more of the area of the portion inserted into the bearing, ○ was less than 80%, 50% or more was Δ, and less than 50% was x.
The oil film retainability provides electrical continuity between the shaft and the bearing when a load of 5 kg / cm 2 is applied to the bearing in the vertical direction perpendicular to the axial direction and the shaft is rotated at a peripheral speed of 150 m / min. It was replaced with the presence or absence of contact and evaluated. The ratio of electrical continuity indicating non-contact between 10 seconds and 11 seconds after operation was 40% or more, ○ less than 40%, 20% or more Δ, and less than 20% ×.

Figure 0005675090
Figure 0005675090

この表2に示される通り、通気度は、多孔質鉄粉を増加するほど低下している。これは、微細な気孔の増加によるものである。
耐焼付き性の評価では、多孔質鉄粉が増加すると耐焼き付き性が低下する傾向となった。これは、金属接触による摩耗が発生し、摺動面の気孔の減少による潤滑油供給源の減少によるものと考えられる。逆に、通常還元鉄粉が増加すると耐焼付き性が向上する傾向となった。
摩擦係数は、通常還元鉄粉が増加するとやや増加傾向が見られた。これは、円換算直径で0.007mm以上の気孔が増加することにより、摺動時の軸受体内に油がリークすることが原因と考えられる。
油の出方と油膜保持性とは相反する特性であり、多孔質鉄粉が少ないほど、油は出易くなるが、油膜保持性は低下し、逆に、多孔質鉄粉が多くなるほど、油は出にくくなり、油膜保持性が高くなる。
As shown in Table 2, the air permeability decreases as the porous iron powder increases. This is due to an increase in fine pores.
In the evaluation of seizure resistance, seizure resistance tended to decrease as the amount of porous iron powder increased. This is considered to be due to the occurrence of wear due to metal contact and a decrease in the lubricant supply source due to a decrease in pores on the sliding surface. On the contrary, when the reduced iron powder is increased, the seizure resistance tends to be improved.
The coefficient of friction usually showed a slight increase when the reduced iron powder increased. This is considered to be caused by oil leaking into the bearing body during sliding due to an increase in pores having a diameter in terms of a circle of 0.007 mm or more.
Oil flow and oil film retention are contradictory properties. The less porous iron powder, the easier the oil comes out, but the oil film retention decreases, and conversely, the more porous iron powder, the more oil Is less likely to occur, and the oil film retainability is increased.

以上の評価結果より、気孔が微細化することは、通気度を下げ、軸を支える油圧が向上することから、油が十分に存在する条件化では摩擦係数を低減することが可能となるが、気孔が微細なため、軸との摺動により、摺動面の気孔の減少を引き起こし易くなり、油の供給源を遮断され易くなることから、耐焼付き性が低下する。
また、気孔が粗大化することは、気孔が大きいために軸との摺動によっても気孔の減少を引き起こし難く、耐焼付き性が良好である反面、通気度が高いため、油が供給されても軸受体内にリークし易く、軸を支える油圧が低下することから、摩擦係数がやや上がる傾向にある。
これらの結果を総合すると、焼結含油軸受としては、多孔質鉄粉と通常還元鉄粉との混合比率が15:85(実施例1)、同50:50(実施例2)、同85:15(実施例3)が良好である。
From the above evaluation results, the finer pores lower the air permeability and improve the hydraulic pressure that supports the shaft, so it is possible to reduce the friction coefficient under conditions where oil is sufficiently present, Since the pores are fine, sliding with the shaft tends to cause a reduction in pores on the sliding surface, and the oil supply source is easily shut off, resulting in a reduction in seizure resistance.
In addition, the coarsening of the pores means that the pores are large, and it is difficult for the pores to decrease even by sliding with the shaft, and although seizure resistance is good, the air permeability is high, so even if oil is supplied. It tends to leak into the bearing body and the hydraulic pressure supporting the shaft decreases, so the friction coefficient tends to increase slightly.
When these results are put together, as a sintered oil-impregnated bearing, the mixing ratio of porous iron powder and normal reduced iron powder is 15:85 (Example 1), 50:50 (Example 2), 85: 15 (Example 3) is good.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記実施形態では、固体潤滑剤を用いて摺動特性を向上させるようにしたが、必ずしも必須のものではない。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention. For example, in the above embodiment, the sliding characteristics are improved by using a solid lubricant, but this is not always essential.

Claims (4)

銅を10〜50重量%、低融点金属を0.1〜5重量%含有する鉄銅系材料を用いた焼結含油軸受であって、
気孔率は10〜30容量%とされるとともに、内部に微細気孔を有する多孔質鉄粉と、通常鉄粉とを含む原料粉末が焼結されており、内部に形成される気孔は、そのうちの45%以下が円換算径で0.003mm以下の気孔とされ、20%以上が円換算径で0.007mm以上の気孔とされていることを特徴とする焼結含油軸受。
A sintered oil-impregnated bearing using an iron-copper material containing 10 to 50% by weight of copper and 0.1 to 5% by weight of a low melting point metal,
The porosity is set to 10 to 30% by volume, and the raw material powder containing the porous iron powder having fine pores inside and the normal iron powder is sintered, and the pores formed inside are A sintered oil-impregnated bearing characterized in that 45% or less has pores with a circle-converted diameter of 0.003 mm or less, and 20% or more has pores with a circle-converted diameter of 0.007 mm or more.
固体潤滑剤が0.2〜5重量%含有されていることを特徴とする請求項1記載の焼結含油軸受。   2. The sintered oil-impregnated bearing according to claim 1, wherein the solid lubricant is contained in an amount of 0.2 to 5% by weight. 鉄銅系材料の原料粉末を成形して焼結することにより請求項1記載の焼結含油軸受を製造する方法であって、
前記原料粉末は、銅粉を10〜50重量%、低融点金属を0.1〜5重量%含有し、
鉄粉は、内部に微細気孔を有する見掛け密度1〜2g/cmの多孔質鉄粉と、見掛け密度1.7〜3g/cmの通常鉄粉との混合粉であり、該混合粉のうち前記多孔質鉄粉の混合比率が15〜85重量%であり、
焼結温度を、850〜1000℃(ただし、850℃及び1000℃を除く)とすることを特徴とする焼結含油軸受の製造方法。
A method for producing a sintered oil-impregnated bearing according to claim 1 by forming and sintering a raw material powder of an iron-copper material,
The raw material powder contains 10 to 50% by weight of copper powder and 0.1 to 5% by weight of low melting point metal,
The iron powder is a mixed powder of a porous iron powder having an apparent density of 1 to 2 g / cm 3 having fine pores therein and a normal iron powder having an apparent density of 1.7 to 3 g / cm 3 . Among them, the mixing ratio of the porous iron powder is 15 to 85% by weight ,
A method for producing a sintered oil-impregnated bearing, wherein the sintering temperature is 850 to 1000 ° C (excluding 850 ° C and 1000 ° C) .
前記原料粉末に固体潤滑剤を0.2〜5重量%含有することを特徴とする請求項3記載の焼結含油軸受の製造方法。
The method for producing a sintered oil-impregnated bearing according to claim 3, wherein the raw material powder contains a solid lubricant in an amount of 0.2 to 5% by weight.
JP2009289307A 2009-12-21 2009-12-21 Sintered oil-impregnated bearing and manufacturing method thereof Active JP5675090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289307A JP5675090B2 (en) 2009-12-21 2009-12-21 Sintered oil-impregnated bearing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289307A JP5675090B2 (en) 2009-12-21 2009-12-21 Sintered oil-impregnated bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011127742A JP2011127742A (en) 2011-06-30
JP5675090B2 true JP5675090B2 (en) 2015-02-25

Family

ID=44290529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289307A Active JP5675090B2 (en) 2009-12-21 2009-12-21 Sintered oil-impregnated bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5675090B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043818A (en) * 2013-03-11 2014-09-17 欣兴电子股份有限公司 Processing method of metallic powder
CN110043564B (en) * 2013-03-25 2021-03-12 Ntn株式会社 Method for manufacturing sintered bearing, and vibration motor
JP6412315B2 (en) * 2013-03-25 2018-10-24 Ntn株式会社 Vibration motor
JP6412314B2 (en) * 2013-04-09 2018-10-24 Ntn株式会社 Manufacturing method of sintered bearing
WO2015050200A1 (en) * 2013-10-03 2015-04-09 Ntn株式会社 Sintered bearing and manufacturing process therefor
JP6302259B2 (en) * 2014-01-20 2018-03-28 Ntn株式会社 Manufacturing method of sintered bearing
JP6389038B2 (en) * 2013-10-03 2018-09-12 Ntn株式会社 Sintered bearing and manufacturing method thereof
CN105593543B (en) * 2013-10-03 2019-09-17 Ntn株式会社 Sintered bearing and its manufacturing method
US20190186532A1 (en) * 2016-09-08 2019-06-20 Ntn Corporation Sintered bearing and process for producing same
CN111085685B (en) * 2019-12-26 2021-01-29 中国科学院兰州化学物理研究所 Porous high-entropy alloy material and preparation method and application thereof
CN115106533A (en) * 2022-06-27 2022-09-27 武汉理工大学 Organic/inorganic gradient composite material for oil-retaining bearing and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303217A (en) * 2000-04-28 2001-10-31 Mitsubishi Materials Corp Fe BASED SINTERED ALLOY BEARING EXCELLENT IN SEIZURE RESISTANCE AND CRACKING RESISTANCE
JP4380274B2 (en) * 2003-09-10 2009-12-09 日立粉末冶金株式会社 Method for producing ferrous copper-based sintered oil-impregnated bearing alloy
JP4886545B2 (en) * 2007-02-22 2012-02-29 日立粉末冶金株式会社 Sintered oil-impregnated bearing and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011127742A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5675090B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP5772498B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
US11248653B2 (en) Sintered bearing
CN110043564B (en) Method for manufacturing sintered bearing, and vibration motor
JP6816079B2 (en) Vibration motor
JP6011805B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP6302259B2 (en) Manufacturing method of sintered bearing
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JP2021099134A (en) Sintered oil-impregnated bearing and manufacturing method of the same
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
JP7068885B2 (en) Sintered bearings and their manufacturing methods
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
CN109890539B (en) Sintered bearing and method for manufacturing same
JP6571230B2 (en) Sintered bearing
WO2018181706A1 (en) Sintered bearing and method for manufacturing same
JP2631146B2 (en) Sintered metal body and method for producing the same
JPS6254175B2 (en)
JP2021060077A (en) Sintered oil-containing bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R150 Certificate of patent or registration of utility model

Ref document number: 5675090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250