WO2015050200A1 - Sintered bearing and manufacturing process therefor - Google Patents

Sintered bearing and manufacturing process therefor Download PDF

Info

Publication number
WO2015050200A1
WO2015050200A1 PCT/JP2014/076399 JP2014076399W WO2015050200A1 WO 2015050200 A1 WO2015050200 A1 WO 2015050200A1 JP 2014076399 W JP2014076399 W JP 2014076399W WO 2015050200 A1 WO2015050200 A1 WO 2015050200A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
copper
iron
bearing
sintered
Prior art date
Application number
PCT/JP2014/076399
Other languages
French (fr)
Japanese (ja)
Inventor
容敬 伊藤
山下 智典
Original Assignee
Ntn株式会社
容敬 伊藤
山下 智典
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014007911A external-priority patent/JP6302259B2/en
Priority claimed from JP2014008892A external-priority patent/JP6389038B2/en
Application filed by Ntn株式会社, 容敬 伊藤, 山下 智典 filed Critical Ntn株式会社
Priority to EP14850756.9A priority Critical patent/EP3054185B1/en
Priority to CN201480053495.2A priority patent/CN105593543B/en
Priority to US15/026,134 priority patent/US20160223016A1/en
Publication of WO2015050200A1 publication Critical patent/WO2015050200A1/en
Priority to US16/402,698 priority patent/US10907685B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1095Construction relative to lubrication with solids as lubricant, e.g. dry coatings, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/50Lubricating properties
    • F16C2202/52Graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying

Definitions

  • the present invention relates to a sintered bearing made of sintered metal and a method for manufacturing the same.
  • Sintered bearings are porous bodies having innumerable internal pores, and are usually used in a state in which internal pores are impregnated with a lubricating fluid (for example, lubricating oil).
  • a lubricating fluid for example, lubricating oil
  • the lubricating oil retained in the internal pores of the sintered bearing oozes into the inner peripheral surface (bearing surface) of the sintered bearing as the temperature rises. put out.
  • the oozed lubricating oil forms an oil film in the bearing gap between the bearing surface of the sintered bearing and the outer peripheral surface of the shaft, and the shaft is supported so as to be relatively rotatable.
  • Patent Document 1 copper and iron-based sintered bearings mainly composed of iron and copper are coated with 10% by mass or more and less than 30% by mass of copper, and the particle size is 80%.
  • a powdered and sintered copper-coated iron powder having a mesh or less is described.
  • Patent Document 2 it is known to use a slide bearing as a bearing that rotatably supports a motor shaft in an automobile starter.
  • an automobile starter in order to obtain a large torque necessary for starting an engine, it is usual to reduce the motor output via a reduction gear having a large reduction ratio, for example, a planetary gear mechanism.
  • a reduction gear having a large reduction ratio for example, a planetary gear mechanism.
  • a copper-based sintered bearing If a copper-based sintered bearing is used, oxidation is less likely to occur, so fretting wear can be prevented.
  • copper-based sintered bearings tend to have insufficient bearing strength because copper itself is soft. Therefore, when the shaft contacts the bearing surface due to engine vibration, the bearing surface is deformed, or when the sintered bearing is press-fitted into the inner periphery of the housing, the effect of the reduced diameter deformation of the sintered bearing due to the press-fitting is Also, the accuracy of the bearing surface may be reduced.
  • copper-based sintered bearings are advantageous in terms of sliding characteristics such as initial conformability and quietness, but are difficult in terms of bearing strength.
  • sintered iron bearings with high iron content and copper-iron alloys are advantageous in terms of bearing strength, but have difficulty in terms of sliding characteristics (as described above, depending on the operating conditions Ting wear is also a concern).
  • An object of the present invention is to provide a sintered bearing that has good sliding characteristics, can achieve both wear resistance and bearing strength of the bearing surface, and can reduce costs, and a method for manufacturing the same. To do.
  • a sintered bearing according to the present invention is a sintered bearing mainly composed of iron, copper, a metal having a lower melting point than copper, and a solid lubricant, and has an iron structure and a copper structure.
  • ⁇ Flat copper powder has the property of adhering to the mold molding surface during molding of the raw powder, so that the compact after molding contains a large amount of copper in the surface layer. Therefore, a surface layer having a high copper content is formed in the sintered body after sintering (preferably a copper structure having an area ratio of 60% or more is formed on the surface of the surface layer). In this way, by increasing the copper content in the surface layer, it is possible to improve initial conformability and quietness, and in combination with the action of a solid lubricant such as graphite, the sliding characteristics are good. It will be something. In addition, since the aggression against the shaft is reduced, the durability life is improved. In addition, since a copper-rich bearing surface that is not easily oxidized is formed, fretting wear of the bearing surface can be prevented.
  • the copper structure in contact with the iron structure of the base layer is basically a low melting point metal diffused into the copper powder.
  • the low melting point metal wets the surface of copper and advances liquid phase sintering, so that the bonding force between the metal particles can be strengthened particularly in the base portion.
  • the base part is basically formed of partially diffused alloy powder in which part of copper powder is diffused into iron powder, the sintered copper structure (structure containing copper as a main component) and iron structure (iron) High neck strength can be obtained between the main components). From the above, it is possible to prevent the copper structure and the iron structure from falling off the bearing surface and to improve the wear resistance of the bearing surface.
  • the bearing strength can be increased. Therefore, even when a sintered bearing is press-fitted and fixed to the inner periphery of the housing, the bearing surface is not deformed following the shape of the inner peripheral surface of the housing. Can be achieved. Further, since the foundation of the bearing surface is reinforced, deformation of the bearing surface when the shaft contacts the bearing surface due to vibration or the like can be suppressed. Accordingly, it is possible to provide a sintered bearing suitable for use in a starter for starting an engine (including a speed reducer incorporated in the starter) and a vibration motor used in a portable terminal or the like. .
  • the proportion of copper in the partial diffusion alloy powder is preferably 10 wt% or more and 30 wt% or less.
  • the flat copper powder may be spheroidized.
  • the partial diffusion alloy powder which diffused a part of copper powder to iron powder since the partial diffusion alloy powder which diffused a part of copper powder to iron powder is used, many copper powder exists around a low melting-point metal at the time of sintering. In this case, the low melting point metal melted as the temperature of sintering diffuses into the copper powder of the partial diffusion alloy powder prior to the flat copper powder, so the influence of the low melting point metal powder on the flat copper powder of the surface layer is affected. Can be suppressed. Therefore, spheroidization of the flat copper powder in the surface layer can be prevented, and the copper concentration on the surface of the surface layer can be increased.
  • the iron structure and copper structure of the base layer are either partially diffused alloy powder, simple iron powder and simple copper powder or It can be formed with both.
  • the content of the low melting point metal relative to the flat copper powder should be less than 10 wt% in order to minimize the effect of spheroidization. Is the common technical knowledge so far.
  • the content of the low melting point metal in the bearing can be increased. As the content of the low melting point metal increases in this way, the bonding force between the metal particles is further strengthened, which is effective in improving the bearing strength.
  • the low melting point metal can be contained in a weight ratio of 10 wt% to 30 wt% with respect to the flat copper powder.
  • the iron structure can be formed of a ferrite phase (only), or can be formed of a ferrite phase and a pearlite phase present at the grain boundary of the ferrite phase.
  • the iron structure is mainly composed of a ferrite phase, so that the aggression against the shaft is weakened even if the copper content is small. Increase durability.
  • the hard pearlite phase supplements the wear resistance of the ferrite phase, the wear on the bearing surface can be suppressed.
  • the pearlite content is excessive, the aggression against the shaft increases and the shaft tends to wear.
  • the sintered bearing is preferably impregnated with a lubricating oil having a kinematic viscosity of 30 mm 2 / sec or more and 200 mm 2 / sec or less.
  • the sintered bearing described above is a mixture of partially diffused alloy powder obtained by partially diffusing copper powder in iron powder, flat copper powder, metal powder having a melting point lower than that of copper, and solid lubricant powder. After the green compact is formed with the mixed powder, it can be manufactured by sintering the green compact at a temperature lower than the melting point of copper.
  • FIG. 7 is an enlarged cross-sectional view of a region Q in FIG. 6. It is an enlarged view in the radial cross section of a sintered bearing (area
  • tissue It is an enlarged view explaining spheroidization of flat copper powder, and shows before sintering. It is an enlarged view explaining spheroidization of flat copper powder, and shows after sintering. It is an enlarged view which shows notionally the compact structure before sintering of this invention. It is sectional drawing which shows other embodiment of the sintered bearing concerning this invention. It is sectional drawing which shows other embodiment of the sintered bearing concerning this invention. It is a principal part schematic sectional drawing of a vibration motor. It is sectional drawing in the AA line shown in FIG. It is a microscope picture of the cross section containing a bearing surface. It is a figure which shows a part of powder compact notionally. It is a microscope picture of the cross section containing the bearing surface of the sintered bearing concerning a prior art.
  • the sintered bearing 1 is formed in a cylindrical shape having a bearing surface 1a on the inner periphery.
  • the sintered bearing 1 of this embodiment is used by impregnating lubricating oil in the internal pores of a porous sintered body (also called a sintered oil-impregnated bearing).
  • a porous sintered body also called a sintered oil-impregnated bearing.
  • FIG. 2 shows a simplified representative configuration of a starter ST used for starting an automobile engine.
  • the starter ST includes a housing 3, a motor unit 4 having a motor shaft 2a, a reduction gear 5 having an output shaft 2b, an overrunning clutch 6 having an output shaft 2c, a pinion gear 7, a shift lever. 8 and the electromagnetic switch 9 are main components.
  • the shift lever 8 is rotatable around a fulcrum O, and the tip thereof is disposed behind the overrunning clutch 6 (input side).
  • the overrunning clutch 6 is a one-way clutch, and an output shaft 2b of the reduction gear 5 is connected to an input side of the overrunning clutch 6 via a spline or the like so as to be slidable in the axial direction.
  • a pinion gear 7 is attached to the output shaft 2 c of the overrunning clutch 6, and the overrunning clutch 6 can move in the axial direction integrally with the output shaft 2 c and the pinion gear 7.
  • the motor unit 4 When the ignition is turned on, the motor unit 4 is driven, and the torque of the motor shaft 2a is transmitted to the pinion gear 7 via the speed reduction device 5 and the overrunning clutch 6. Further, the electromagnetic switch 9 is turned on and a rotational force in the direction of the arrow in the figure is applied to the shift lever 8, so that the overrunning clutch 6 and the pinion gear 7 move forward together. As a result, the pinion gear 7 meshes with the ring gear 10 coupled to the crankshaft, the torque of the motor unit 4 is transmitted to the crankshaft, and the engine is started. After the engine is started, the electromagnetic switch 9 is turned off, the overrunning clutch 6 and the pinion gear 7 are retracted, and the pinion gear 7 is separated from the ring gear 10. Since the engine torque immediately after engine startup is interrupted by the overrunning clutch 8, it is not transmitted to the motor unit 4.
  • the sintered bearing 1 of the present invention is press-fitted and fixed to the inner periphery of the housing 3 or the like of the starter ST described above and supports the various shafts 2 (2a to 2c) in the starter ST (in FIG. 2, the motor shaft 2a and The case where the output shaft 2c of the overrunning clutch 6 is supported by the sintered bearing 1 is illustrated).
  • the sintered bearing 1 can also be used for supporting the gear of the reduction gear 5.
  • the speed reducer 5 is constituted by a planetary gear mechanism
  • the planetary gear is rotatably supported with respect to the shaft by press-fitting the sintered bearing 1 of the present invention into the inner periphery of the planetary gear rotating with respect to the shaft. can do.
  • the sintered bearing 1 described above is formed by filling raw material powder mixed with various powders into a mold, compressing this to form a green compact, and then sintering the green compact.
  • the raw material powder is a mixed powder mainly composed of partially diffused alloy powder, flat copper powder, low melting point metal powder, and solid lubricant powder.
  • various molding aids for example, a lubricant (metal soap or the like) for improving releasability are added as necessary.
  • a lubricant metal soap or the like
  • Part diffusion alloy powder As the partial diffusion alloy powder, as shown in FIG. 3, Fe—Cu partial diffusion alloy powder 11 in which a large number of copper powders 13 are partially diffused on the surface of iron powder 12 is used.
  • the diffusion part of the partial diffusion alloy powder 11 forms an Fe—Cu alloy, and as shown in the enlarged partial view in FIG. 3, the alloy part is formed by bonding iron atoms 12a and copper atoms 13a to each other. It has a crystal structure.
  • the partial diffusion alloy powder 11 one having an average particle diameter of 75 ⁇ m to 212 ⁇ m is preferably used.
  • the iron powder 12 constituting the partial diffusion alloy powder 11 known iron powders such as reduced iron powder and atomized iron powder can be used, but reduced iron powder is used in this embodiment.
  • the reduced iron powder has an irregular shape that approximates a spherical shape and has a sponge shape (porous shape) having internal pores, and is also referred to as sponge iron powder.
  • the iron powder 12 used preferably has an average particle size of 45 ⁇ m to 150 ⁇ m, and more preferably an average particle size of 63 ⁇ m to 106 ⁇ m.
  • the average particle size is determined by irradiating a particle group with laser light and calculating the particle size distribution by calculating from the intensity distribution pattern of diffraction / scattered light emitted from the particle group. (The average particle size of each powder described below can also be measured by the same method).
  • the copper powder 13 constituting the partial diffusion alloy powder 11 a widely used irregular shape or dendritic copper powder can be widely used.
  • electrolytic copper powder, atomized copper powder, or the like is used.
  • an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used.
  • the copper powder 13 to be used has a smaller particle diameter than the iron powder 12, and specifically, one having an average particle diameter of 5 ⁇ m to 45 ⁇ m is used.
  • the proportion of Cu in the partial diffusion alloy powder 11 is 10 to 30 wt% (preferably 22 to 26 wt%).
  • the flat copper powder is flattened by stamping raw material copper powder made of water atomized powder or the like.
  • “length” and “thickness” refer to the geometric maximum dimension of each flat copper powder 3 as shown in FIG.
  • the apparent density of the flat copper powder is 1.0 g / cm 3 or less. If the flat copper powder has the above size and apparent density, the adhesion of the flat copper powder to the mold forming surface is increased, so that a large amount of flat copper powder can be attached to the mold forming surface.
  • Fluid lubricant In order to attach the flat copper powder to the molding surface, a fluid lubricant is previously attached to the flat copper powder. This fluid lubricant only needs to be attached to the flat copper powder before filling the raw material powder into the mold, preferably before mixing the raw material powder, more preferably to the raw material copper powder at the stage of crushing the raw material copper powder. Let The fluid lubricant may be attached to the flat copper powder by means such as supplying the fluid lubricant to the flat copper powder and stirring it after mixing and before mixing with other raw material powders.
  • the blending ratio of the fluid lubricant to the flat copper powder should be 0.1% by weight or more, and aggregation due to the adhesion of the flat copper powders In order to prevent this, the blending ratio is 0.8% by weight or less. Desirably, the lower limit of the blending ratio is 0.2% by weight or more, and the upper limit is 0.7% by weight.
  • the fluid lubricant fatty acids, particularly linear saturated fatty acids are preferred. This type of fatty acid is represented by the general formula C n-1 H 2n-1 COOH. This fatty acid has a Cn in the range of 12 to 22, and for example, stearic acid can be used as a specific example.
  • the low melting point metal powder is a metal powder having a melting point lower than that of copper.
  • a metal powder having a melting point of 700 ° C. or lower for example, a powder of tin, zinc, phosphorus or the like is used. Of these, tin is preferred because it causes less transpiration during sintering.
  • the average particle diameter of the low-melting metal powder is preferably 5 ⁇ m to 45 ⁇ m, and is preferably smaller than the average particle diameter of the partial diffusion alloy powder 11.
  • the low melting point metal powder By blending the low melting point metal powder with the raw material powder, the low melting point metal powder is first melted at the time of sintering to wet the surface of the copper powder and diffused into the copper to melt the copper. Liquid phase sintering proceeds by the molten alloy of copper and low melting point metal, and the bond strength between iron particles, between iron particles and copper particles, and between copper particles is strengthened.
  • Solid lubricant powder The solid lubricant powder is added to reduce friction at the time of metal contact due to sliding with the shaft 2, and for example, graphite is used. At this time, as the graphite powder, it is desirable to use scaly graphite powder so that adhesion to the flat copper powder can be obtained.
  • molybdenum disulfide powder can be used in addition to graphite powder. Molybdenum disulfide powder has a layered crystal structure and peels into layers, and thus adheres to flat copper powder in the same manner as scale graphite.
  • flat copper powder is adhered to the mold in layers when the raw powder is filled into the mold. If the blending ratio of flat copper in the raw material powder is less than 8% by weight, the amount of flat copper adhering to the mold becomes insufficient, and the effect of the present invention cannot be expected. Moreover, the adhesion amount of the flat copper powder to the mold is saturated at about 20 wt%, and even if the blending amount is further increased, the cost increase due to the use of the high-cost flat copper powder becomes a problem.
  • the ratio of the low melting point metal powder is less than 0.8 wt%, the strength of the bearing cannot be ensured, and if it exceeds 6.0 wt%, the influence of spheroidizing the flat copper powder cannot be ignored. Further, if the ratio of the solid lubricant powder is less than 0.5% by weight, the effect of reducing friction on the bearing surface cannot be obtained, and if it exceeds 2.0% by weight, the strength is reduced.
  • the flat copper powder 15 and the graphite powder 14 adhere to each other and overlap each other due to the fluid lubricant or the like attached to the flat copper powder, and the apparent density of the flat copper powder increases. Therefore, it becomes possible to uniformly disperse the flat copper powder in the raw material powder during the secondary mixing. If a lubricant is added separately during the primary mixing, the adhesion between the flat copper powder and the graphite powder is further promoted, so that the flat copper powder can be more uniformly dispersed during the secondary mixing.
  • a powdery lubricant can be used in addition to the same or different fluid lubricant as the fluid lubricant.
  • the above-mentioned forming aid such as metal soap is generally powdery and has a certain degree of adhesion, which can be promoted by adhesion of flat copper powder and graphite powder.
  • the mold 20 includes a core 21, a die 22, an upper punch 23, and a lower punch 24, and a raw material powder is filled in a cavity partitioned by these.
  • the raw material powder is formed by the molding surface formed by the outer peripheral surface of the core 21, the inner peripheral surface of the die 22, the end surface of the upper punch 23, and the end surface of the lower punch 24.
  • a cylindrical green compact 25 is obtained by molding.
  • the flat copper powder has the smallest apparent density. Further, the flat copper powder is a foil having the length L and the thickness t, and the area of the wide surface per unit weight is large. Therefore, the flat copper powder 15 is easily affected by the adhesion force of the fluid lubricant adhered to the surface thereof, and further by the Coulomb force, etc.
  • FIG. 7 (in FIG. 6) As shown in an enlarged view of the region Q), the flat copper powder 15 has a layer state in which a wide surface is directed to the molding surface 20a of the mold 20 and a plurality of layers (about 1 to 3 layers) overlap. And adheres to the entire area of the molding surface 20a.
  • the green compact 25 is sintered in a sintering furnace.
  • the sintering conditions are determined so that the iron structure becomes a two-phase structure of a ferrite phase and a pearlite phase.
  • the hard pearlite phase contributes to the improvement of wear resistance and suppresses the wear of the bearing surface under high surface pressure, thereby improving the bearing life. Can be made.
  • the abundance of pearlite ( ⁇ Fe) becomes excessive, and when the proportion is equal to or higher than that of ferrite ( ⁇ Fe), the aggression of the pearlite against the shaft is remarkably increased and the shaft is easily worn.
  • the pearlite phase ( ⁇ Fe) is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase ( ⁇ Fe) (see FIG. 9).
  • the “grain boundary” here means both the grain boundary formed between the powder particles and the crystal grain boundary 18 formed in the powder particle.
  • the iron structure is formed of a two-phase structure of a ferrite phase ( ⁇ Fe) and a pearlite phase ( ⁇ Fe)
  • the growth rate of pearlite mainly depends on the sintering temperature. Therefore, in order to allow the pearlite phase to exist at the grain boundary of the ferrite phase in the above-described manner, the sintering temperature (furnace atmosphere temperature) is about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, for example, Sintering using natural gas or endothermic gas (RX gas). Thereby, carbon contained in the gas diffuses into iron during sintering, and a pearlite phase ( ⁇ Fe) can be formed. Sintering at a temperature exceeding 900 ° C. is not preferable because carbon in the graphite powder reacts with iron and the pearlite phase increases more than necessary. With the sintering, the fluid lubricant, other lubricants, and various molding aids burn inside the sintered body or vaporize from inside the sintered body.
  • the sintered body 1 sintered oil-impregnated bearing shown in FIG. 1 is completed by sizing the sintered body and further impregnating it with lubricating oil or liquid grease by a method such as vacuum impregnation.
  • the lubricating oil impregnated in the sintered body is held not only in the pores formed between the particles of the sintered structure, but also in the pores of the reduced iron powder of the partial diffusion alloy powder.
  • the lubricating oil impregnated into the sintered body one having a kinematic viscosity of 30 mm 2 / sec or more and 200 mm 2 / sec or less is preferable.
  • the impregnation process of lubricating oil can be abbreviate
  • FIG. 8 schematically shows the microstructure near the surface of the sintered bearing 1 (region P in FIG. 1) that has undergone the above manufacturing steps.
  • the green compact 25 is formed in a state where the flat copper powder 15 is adhered in a layered manner to the mold forming surface 20a (see FIG. 7). Since the powder 15 is sintered, a surface layer S1 having a higher copper concentration than the others is formed on the entire surface including the bearing surface 1a of the bearing 1. In addition, the wide surface of the flat copper powder 15 may have adhered to the molding surface 20a, so that most of the copper structure 31a of the surface layer S1 has a flat shape in which the thickness direction of the surface layer S1 is thinned.
  • the thickness of the surface layer S1 corresponds to the thickness of the flat copper powder layer adhering to the mold forming surface 20a in layers, and is about 1 ⁇ m to 6 ⁇ m.
  • the surface of the surface layer S1 is mainly composed of free graphite 32 (shown in black) in addition to the copper structure 31a, and the remainder is a pore opening or an iron structure described later.
  • the area of the copper structure 31a is the largest, specifically, 60% or more of the surface becomes the copper structure 31a.
  • One copper structure 31b (first copper structure) is formed from the flat copper powder 15 contained in the green compact 25, and has a flat shape corresponding to the flat copper powder.
  • the other copper structure 31 c (second copper structure) is formed by diffusing a low-melting-point metal into the copper powder 13 constituting the partial diffusion alloy powder 11, and is formed in contact with the iron structure 33. .
  • the second copper structure 31c plays a role of increasing the bonding force between the particles.
  • FIG. 9 shows an enlarged view of the sintered iron structure 33 and its surrounding structure shown in FIG.
  • tin as a low melting point metal is first melted during sintering and diffused into copper powder 13 constituting partial diffusion alloy powder 11 (see FIG. 3), and bronze phase 16 (Cu—Sn). ).
  • Liquid phase sintering proceeds by this bronze layer 16, and iron particles, iron particles and copper particles, or copper particles are firmly bonded.
  • the molten tin is diffused into the part where the part of the copper powder 13 is diffused to form the Fe—Cu alloy, and the Fe—Cu—Sn alloy (alloy phase 17 ) Is formed.
  • a combination of the bronze layer 16 and the alloy phase 17 becomes the second copper structure 31c.
  • the ferrite phase ( ⁇ Fe), the pearlite phase ( ⁇ Fe), and the like are represented by shades of color. Specifically, the colors are darkened in the order of ferrite phase ( ⁇ Fe) ⁇ bronze phase 16 ⁇ alloy phase 17 (Fe—Cu—Sn alloy) ⁇ pearlite phase ( ⁇ Fe).
  • the partial diffusion alloy powder 11 in which substantially the entire circumference of the iron powder 12 is covered with the copper powder 13 is used as the raw material powder.
  • a large number of copper powders 13 are present in the vicinity of.
  • the low melting point metal powder 16 melted with the sintering diffuses into the copper powder 13 of the partial diffusion alloy powder 11 before the flat copper powder 15.
  • the fluid lubricant remains on the surface of the flat copper powder 15, and this phenomenon is promoted.
  • the influence which the low melting metal powder 16 has on the flat copper powder 15 of the surface layer S1 can be suppressed (even if the low melting metal powder 16 exists directly under the flat copper powder 15, the flat copper powder The surface tension acting on 15 is reduced). Therefore, the spheroidization of the flat copper powder 15 in the surface layer can be suppressed, the ratio of the copper structure on the bearing surface including the bearing surface 1a can be increased, and good sliding characteristics can be obtained.
  • the blending ratio of the low melting point metal powder 16 in the bearing can be increased. That is, in the conventional technical common sense, in order to suppress the influence of the spheroidization of the flat copper powder 15, the blending ratio (weight ratio) of the low melting point metal to the flat copper powder 15 should be suppressed to less than 10 wt%. According to the present invention, this ratio can be increased to 10 wt% to 30 wt%.
  • the area ratio of the copper structure to the iron structure can be 60% or more over the entire surface of the surface layer S1 including the bearing surface 1a, and the copper-rich bearing surface 1a that is not easily oxidized is stably obtained. be able to. Even if the surface layer S1 is worn, the copper structure 31c derived from the copper powder 13 adhered to the partial diffusion alloy powder 11 appears on the bearing surface 1a. Therefore, even when the sintered bearing 1 is used for the starter ST, it is possible to prevent fretting wear of the bearing surface 1a. In addition, the sliding characteristics of the bearing surface 1a including initial conformability and quietness can be improved.
  • the base portion S2 inside the surface layer S1 has a hard structure with a small amount of copper and a large amount of iron compared to the surface phase S1.
  • the content of Fe is the maximum in the base portion S2, and the content of Cu is 20 to 40 wt%.
  • the iron content increases in the base portion S2 that occupies most of the bearing 1, the amount of copper used in the entire bearing 1 can be reduced, and cost reduction can be achieved. Further, since the iron content is large, the strength of the entire bearing can be increased.
  • a predetermined amount of a metal having a melting point lower than that of copper is blended, and the bonding force between metal particles (between iron particles, between iron particles and copper particles, or between copper particles) is improved by liquid phase sintering.
  • high neck strength can be obtained between the copper structure 31c and the iron structure 33 derived from the partial diffusion alloy powder 11. From the above, it is possible to prevent the copper structure and the iron structure from falling off the bearing surface 1a, and to improve the wear resistance of the bearing surface.
  • the bearing strength can be increased, and specifically, it is possible to achieve a crushing strength (300 MPa or more) that is twice or more that of an existing copper-iron-based sintered body.
  • the bearing surface 1a is not deformed following the shape of the inner peripheral surface of the housing 3, and the bearing surface even after the mounting.
  • the roundness and cylindricity of 1a can be stably maintained. Therefore, after press-fitting and fixing the sintered bearing 1 to the inner periphery of the housing 3, a desired roundness (for example, sizing) is additionally performed without finishing processing (for example, sizing) for finishing the bearing surface 1a to an appropriate shape and accuracy. For example, a roundness of 3 ⁇ m or less can be ensured. Further, deformation of the bearing surface 1a can be prevented even when the shaft 2 contacts the bearing surface 1a due to engine vibration.
  • the iron structure is a two-layer structure of a ferrite phase and a pearlite phase, but the pearlite phase ( ⁇ Fe) is a hard structure (HV300 or higher) and has a strong attacking property against the counterpart material. For this reason, depending on the use conditions of the bearing, there is a possibility that the wear of the shaft 2 may proceed. In order to prevent this, the entire iron structure 33 can be formed of a ferrite phase ( ⁇ Fe).
  • the sintering atmosphere is a gas atmosphere (hydrogen gas, nitrogen gas, argon gas, etc.) not containing carbon or a vacuum.
  • the raw material powder does not react with carbon and iron, and therefore the iron structure after sintering is all soft (HV200 or less) and a ferrite phase ( ⁇ Fe).
  • HV200 or less a gas atmosphere
  • ⁇ Fe ferrite phase
  • tapered surfaces 1b1 and 1b2 whose opening side has a large diameter may be formed on both axial sides of the cylindrical bearing surface 1a of the sintered bearing 1 having the surface layer S1 and the base portion S2. it can.
  • the tapered surfaces 1b1 and 1b2 at both ends in the axial direction of the sintered bearing 1 in this way, even when the shaft 2 is bent, the outer peripheral surface of the shaft 2 is locally applied to the end of the sintered bearing 1. It is possible to prevent contact, and it is possible to prevent local wear of the bearing surface 1a due to stress concentration, a decrease in bearing strength, and the generation of abnormal noise.
  • the ratio X (X X) of the maximum value ⁇ of the radial drop amount with respect to the axial lengths b1 and b2 (both not including the chamfers at the axial ends) of the tapered surfaces 1b1 and 1b2.
  • the ratio of the sum of the axial lengths of the two tapered surfaces 1b1 and 1b2 to the total axial length a of the sintered bearing 1 is set in a range of 0.2 ⁇ (b1 + b2) /a ⁇ 0.8. Is preferred.
  • the sintered bearing 1 shown in FIG. 12 can be used, for example, for a power window drive mechanism or a power seat drive mechanism of an automobile.
  • a tapered surface 1b1 having a large diameter on the opening side can be formed only on one side in the axial direction of the cylindrical bearing surface 1a of the sintered bearing 1, and this is also shown in FIG. The same effect as the embodiment can be obtained.
  • the ratio of the axial length of the tapered surface 1b1 to the total axial length a of the sintered bearing 1 is preferably set in the range of 0.2 ⁇ b / a ⁇ 0.8.
  • the sintered bearing 1 shown in FIG. 13 can be used, for example, for a power window drive mechanism or a power seat drive mechanism of an automobile.
  • the sintered bearing 1 shown in FIG. 1 can be used in a vibration motor that functions as a vibrator for notifying incoming calls or emails in mobile terminals such as mobile phones and smartphones.
  • the vibration motor is configured by rotating a weight (eccentric weight) W attached to one end of the shaft 3 as shown in FIG. It is the structure which generates a vibration in the whole portable terminal.
  • FIG. 1 conceptually shows a main part of a vibration motor 1 when two sintered bearings 1 (101, 102) are used.
  • a shaft 2 protruded on both sides in the axial direction of the motor unit 4. Both sides are supported by the sintered bearing 1 (101, 102) so as to be rotatable.
  • the sintered bearing 101 on the weight W side is disposed between the weight W and the motor unit 4.
  • the sintered bearing 101 on the weight W side is thicker than the sintered bearing 102 on the opposite side of the weight W. And it is formed in a large diameter.
  • Each of the two sintered bearings 1 has a bearing surface 1a on the inner periphery, and is fixed to the inner periphery of the housing 3 made of, for example, a metal material by means such as press fitting.
  • the shaft 2 is driven at a rotational speed of 10,000 rpm or more.
  • the shaft 2 rotates under the influence of the weight W while swinging along the entire surface of the bearing surface 1a.
  • the shaft 2 rotates while maintaining an eccentric state in the direction of gravity.
  • the sintered bearing 1 for a vibration motor as shown in FIG. The shaft 2 rotates in a state where the center Oa is decentered not only in the direction of gravity but also in all directions.
  • the shaft 2 swings around the entire bearing surface, and the bearing surface is frequently hit by the shaft due to an unbalanced load (the shaft frequently comes into sliding contact with the bearing surface).
  • the bearing surface is more easily worn than a sintered bearing for normal use.
  • the sintered bearing is press-fitted into the inner periphery of the housing 3, if the bearing surface is slightly deformed following the shape of the inner peripheral surface of the housing, the rotational accuracy of the shaft 2 is greatly affected.
  • the sintered bearing 1 for a vibration motor it is preferable to use a powder having an average particle size of 145 mesh or less (average particle size of 106 ⁇ m or less) as the partial diffusion alloy powder.
  • the porous structure of the bearing can be made uniform to prevent the formation of rough air holes, so that the bearing 1 can be densified to obtain the crushing strength and wear resistance that can withstand use as a vibration motor bearing. It becomes possible.
  • the proportion of the partial diffusion alloy powder having an average particle size of 350 mesh (average particle size 45 ⁇ m) or less is preferably less than 25% by mass.
  • the sintered bearing 1 for the vibration motor the sintered bearing 1 described in any one of FIG. 12 and FIG. 13 may be used.
  • the ratio X of the maximum value ⁇ of the radial drop amount to the axial length of the tapered surface in both figures can be set in the same range as described above.
  • the proportion of the partial diffusion alloy powder in the raw material powder is preferably 50% by mass or more.
  • the raw material powder includes 8 to 20 wt% of flat copper powder, 0.8 to 6.0 wt% of low melting point metal powder (eg, tin powder), and 0.5 to 6.0 wt.
  • solid lubricant powder eg, graphite powder
  • 2.0 wt% is blended, and the balance is made into simple iron powder or simple copper powder (or both simple powders).
  • the bearing amount is maintained while maintaining the wear resistance, high strength, and good sliding characteristics obtained by using the partial diffusion alloy powder by changing the blending amount of the single iron powder and the single copper powder.
  • the characteristics can be adjusted. For example, by adding simple iron powder, it is possible to increase the wear resistance and strength of the bearing while reducing the cost by reducing the amount of partially diffused alloy powder, and by adding simple copper powder, the sliding characteristics are further improved. can do. As a result, the development cost of sintered bearings suitable for various applications can be reduced, and it is possible to cope with the production of various types of sintered bearings in small quantities.
  • the copper structure of the bearing surface 1a is formed of flat copper powder, but the copper structure of the bearing surface 1a is copper powder contained in the partial diffusion alloy powder. It can also be formed.
  • the details of the sintered bearing 1 will be described as a second embodiment, taking as an example the case of use in a vibration motor (FIG. 14).
  • the raw material powder in the second embodiment is a mixture in which a partial diffusion alloy powder, a low melting point metal powder, a solid lubricant powder, and an additive powder composed of either one or both of a simple iron powder and a simple copper powder are mixed. It becomes powder.
  • the mass ratio of each powder in the raw material powder is the largest for the partially diffused alloy powder.
  • Various molding lubricants for example, a lubricant for improving releasability may be added to the raw material powder as necessary.
  • the proportion of particles having an average particle size of 145 mesh or less (average particle size of 106 ⁇ m or less) and an average particle size of 350 mesh (average particle size of 45 ⁇ m) or less is less than 25 mass as described above. It is preferable to use the above.
  • iron powder 12 constituting the partially diffused alloy powder 11 known iron powder such as reduced iron powder and atomized iron powder can be used. In this embodiment, reduced iron powder is used.
  • the iron powder 12 used preferably has an average particle size of 20 ⁇ m to 106 ⁇ m, and more preferably an average particle size of 38 ⁇ m to 75 ⁇ m.
  • the irregular shape and dendritic copper powder which are generally used can be widely used, for example, electrolytic copper powder, atomized copper powder, etc. are used.
  • an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used.
  • the copper powder 13 to be used has a smaller particle diameter than the iron powder 12, and specifically, an average particle diameter of 5 ⁇ m to 20 ⁇ m (preferably less than 20 ⁇ m) is used.
  • the proportion of Cu in the partial diffusion alloy powder 11 is 10 to 30% by mass (preferably 22 to 26% by mass).
  • the low melting point metal powder a metal powder having a melting point of 700 ° C. or less, for example, a powder of tin, zinc, phosphorus or the like is used.
  • tin powder that can easily diffuse into copper and iron and can be used as a single powder, particularly atomized tin powder, is used.
  • tin powder those having an average particle diameter of 5 to 63 ⁇ m are preferably used, and those having an average particle diameter of 20 to 45 ⁇ m are more preferably used.
  • one or more powders such as graphite and molybdenum disulfide can be used.
  • graphite powder particularly scaly graphite powder is used in consideration of cost.
  • the soot-added powder is composed of one or both of simple iron powder and simple copper powder.
  • simple iron powder either reduced iron powder or atomized iron powder can be used, and the iron powder to be used is selected according to the application of the bearing.
  • the mixture of reduced iron powder and atomized iron powder can also be used as a single-piece iron powder.
  • both the electrolytic copper powder and the atomized copper powder can be used as the single copper powder, and the copper powder to be used is selected according to the application of the bearing.
  • the mixture of electrolytic copper powder and atomized copper powder can also be used as a simple substance copper powder.
  • the average particle size of the simple iron powder and the simple copper powder can be widely selected according to the application of the bearing.
  • the average particle size is in the range of 45 to 200 ⁇ m (preferably 100 to 150 ⁇ m)
  • a single copper powder having an average particle diameter of 45 to 150 ⁇ m preferably 80 to 125 ⁇ m
  • the raw material powder is compression-molded using a molding die set in a die set of a cam-type molding press, for example, to form a compact.
  • the partial diffusion alloy powder 11, the tin powder 16, the graphite powder (not shown) and the additive powder are uniformly dispersed. Since the partial diffusion alloy powder 11 used in the present embodiment uses reduced iron powder as the iron powder 12, the powder is softer than the partial diffusion alloy powder using atomized iron powder, and the compression moldability is improved. Excellent. Therefore, the strength of the green compact 25 can be increased even at a low density, and chipping or cracking of the green compact 25 can be prevented.
  • the green compact 25 is sintered to obtain a sintered body.
  • the sintering conditions are such that graphite (graphite powder) does not react with iron (no carbon diffusion occurs).
  • iron-carbon equilibrium state there is a transformation point at 723 ° C., and beyond this, the reaction between iron and carbon is initiated and a pearlite phase ( ⁇ Fe) is generated in the iron structure.
  • ⁇ Fe pearlite phase
  • the pearlite phase ( ⁇ Fe) has high hardness (HV300 or higher) and is highly aggressive against the mating material, if the pearlite phase ( ⁇ Fe) is excessively present in the iron structure of the sintered bearing 4, the wear of the shaft 3 may be advanced.
  • endothermic gas RX gas
  • endothermic gas carbon may diffuse and the surface of the green compact may be cured, and the same problem as described above is likely to occur.
  • the green compact 25 is heated at 900 ° C. or lower, specifically 800 ° C. (preferably 820 ° C.) or higher and 880 ° C. or lower (low temperature sintering).
  • the sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. Under such sintering conditions, the reaction between carbon and iron does not occur in the raw material powder, and therefore the iron structure after sintering becomes a soft ferrite phase (HV200 or less).
  • various molding lubricants such as a fluid lubricant are included in the raw material powder, the molding lubricant volatilizes with sintering.
  • the pig iron structure can be a two-phase structure of ferrite phase ⁇ Fe and pearlite phase ⁇ Fe.
  • the pearlite phase ⁇ Fe harder than the ferrite phase ⁇ Fe contributes to the improvement of the wear resistance of the bearing surface, and the wear of the bearing surface under high surface pressure can be suppressed to improve the bearing life.
  • the pearlite phase ⁇ Fe is present in an excessive proportion and becomes equal to the ferrite phase ⁇ Fe, the aggressiveness of the pearlite against the shaft 3 increases and the shaft 3 is likely to wear. In order to prevent this, as shown in FIG.
  • the pearlite phase ⁇ Fe is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase ⁇ Fe.
  • the term “grain boundary” as used herein means both a grain boundary formed between powder particles and a crystal grain boundary formed in the powder particle.
  • the amount of precipitation of the pearlite phase ⁇ Fe mainly depends on the sintering temperature and the atmospheric gas. Therefore, in order to allow the pearlite phase ⁇ Fe to be present at the grain boundary of the ferrite phase ⁇ Fe in the above-described manner, the sintering temperature is raised to about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, such as natural gas, Sintering is performed using an endothermic gas (RX gas). As a result, carbon contained in the gas diffuses into iron during sintering, and pearlite phase ⁇ Fe can be formed. As described above, when the green compact 25 is sintered at a temperature exceeding 900 ° C., the carbon in the graphite powder reacts with iron to form a pearlite phase ⁇ Fe. Sintering is preferred.
  • Lubricating oil impregnated in the internal pores of the sintered body is low viscosity, specifically, kinematic viscosity at 40 ° C. is 10 to 50 mm 2 / s (for example, synthetic hydrocarbon lubricating oil). This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap.
  • the internal pores of the sintered body may be impregnated with grease based on a lubricating oil having a kinematic viscosity at 40 ° C. of 10 to 50 mm 2 / s. Further, sizing is sufficient if necessary, and it is not always necessary. In addition, depending on the application, the step of impregnating the lubricating oil can be omitted, and a sintered bearing used without oil supply can be obtained.
  • the sintering temperature of the green compact 25 is 900 ° C. or lower, which is much lower than the melting point of copper (1083 ° C.)
  • the partial diffusion alloy powder 11 contained in the green compact 25 is obtained.
  • the constituent copper powder 13 does not melt, and therefore copper does not diffuse into iron (iron structure) with sintering. Therefore, an appropriate amount of copper structure is formed on the surface (bearing surface 1a) of the sintered body. Moreover, free graphite is also exposed on the surface of the sintered body. Therefore, it is possible to obtain a sintered bearing 1 having good initial conformability with the shaft 2 and a small friction coefficient of the bearing surface 1a.
  • an iron structure mainly composed of iron and a copper structure mainly composed of copper are formed. Although most of the iron structure and copper structure of the sintered body are formed of the partial diffusion alloy powder 11, in the partial diffusion alloy powder, a part of the copper powder is diffused into the iron powder. High neck strength can be obtained between the copper structure and the copper structure. Further, at the time of sintering, the tin powder 16 in the green compact 25 melts and wets the surface of the copper powder 13 constituting the partial diffusion alloy powder 11. Along with this, liquid phase sintering proceeds between tin (Sn) and copper (Cu), and as shown in FIG.
  • the iron structure and copper structure of adjacent partial diffusion alloy powders 11, or between copper structures A bronze phase (Cu-Sn) 16 is formed.
  • molten Sn is diffused and Fe—Cu is diffused in a part where a part of the copper powder 13 is diffused on the surface of the iron powder 12 to form an Fe—Cu alloy.
  • the Sn alloy (alloy phase) 17 is formed, the neck strength between the iron structure and the copper structure is further increased. Therefore, a high crushing strength, specifically, a crushing strength of 300 MPa or more can be obtained even at the low temperature sintering as described above.
  • the bearing surface 1a can be hardened to improve the wear resistance of the bearing surface 1a.
  • the additive powder which consists of a single-piece
  • the diffusion amount of the copper powder in the partial diffusion alloy powder is limited to about 30% by mass. Therefore, when the copper structure is formed only with the partial diffusion alloy powder, it becomes difficult to increase the ratio of copper in the bearing further. .
  • the ratio of the copper in a bearing can be made larger than 30 mass% by mix
  • the blending ratio of the partial diffusion alloy powder in the raw material powder is preferably 50% by mass or more (desirably 75% by mass or more). Further, if the amount of the solid lubricant powder is too small, the sliding characteristics will be impaired, and if it is too large, the crushing strength will be lowered. Therefore, the blending ratio in the raw material powder is set to 0.3 to 1.5 mass%. If the amount of the low melting point metal powder is small, the progress of liquid phase sintering becomes insufficient and the strength is lowered.
  • the blending ratio of the low melting point metal powder should be about 10% by mass of the total mass of the copper powder in the raw material powder (the sum of the copper powder in the partial diffusion alloy powder and the single copper powder added as the additive powder). preferable. Specifically, the blending ratio of the low melting point metal in the raw material powder is set to 0.5 to 5.0 mass%. The balance of the raw material powder consists of additive powder and inevitable impurities. The blending ratio of the additive powder is preferably at least 1.0% by mass or more of the raw material powder, considering the merit of blending it.
  • the ratio of copper in the sintered bearing 1 is at least 10% by mass (preferably 15% by mass or more).
  • the porous structure of the sintered body can be made uniform to prevent the formation of rough atmospheric pores. . Therefore, the density of the sintered body can be increased to further improve the crushing strength and the wear resistance of the bearing surface 1a.
  • the sintered body of the present embodiment has a crushing strength of 300 MPa or more, and the value of this crushing strength is more than twice that of an existing copper-iron-based sintered body. is there.
  • the density of the sintered body of the present embodiment is 6.8 ⁇ 0.3 g / cm 3 , which is higher than the density of the existing iron-copper-based sintered body (about 6.6 g / cm 3 ).
  • Even existing iron-copper-based sintered bodies can be densified by high compression in the green compact molding process, but this will prevent the internal fluid lubricant from burning during sintering. Because of gasification, the pores in the surface layer portion become coarse. In the present invention, it is not necessary to perform high compression at the time of forming the green compact, and such a problem can be prevented.
  • the oil content can be increased to 15 vol% or more, and the oil content comparable to that of existing iron-copper sintered bearings can be ensured.
  • This is mainly due to the use of reduced iron powder having a spongy shape and excellent oil retention as the iron powder 12 constituting the partial diffusion alloy powder 11.
  • the lubricating oil impregnated in the sintered body is reduced not only in the pores formed between the particles of the sintered structure, but also reduced iron powder (in addition to the reduced iron powder constituting the partial diffusion alloy powder, as additive powder) When iron powder is used, the reduced iron powder is also contained).
  • the surface layer portion of the sintered body region from the sintered body surface to a depth of 100 ⁇ m.
  • the surface layer is formed as described above. It is possible to increase the density of the surface layer portion by preventing the generation of rough atmospheric holes in the portion.
  • the porosity of the surface layer portion can be 5 to 20%. This porosity can be obtained, for example, by image analysis of the area ratio of the pores in an arbitrary cross section of the sintered body.
  • the surface area ratio of the bearing surface 1a is also reduced. Specifically, the surface area ratio of the bearing surface 1a is set within a range of 5% to 20%. can do. When the surface area ratio is less than 5%, it becomes difficult to exude a necessary and sufficient amount of lubricating oil into the bearing gap (insufficient oil film forming ability), and a merit as a sintered bearing can be obtained. Can not.
  • the raw material powder for obtaining this sintered body since the main raw material is partially diffused alloy powder 11 in which copper powder 13 is partially diffused on the surface of iron powder 12, existing iron copper is used. It is possible to prevent the segregation of copper, which is a problem in the sintered sintered bearing. Further, with this sintered body, the mechanical strength can be improved without using expensive metal powder such as Ni or Mo, so that the cost of the sintered bearing 4 can be reduced.
  • the sintered bearing 1 according to the second embodiment has high crushing strength (crushing strength of 300 MPa or more), even when press-fitted and fixed to the inner periphery of the housing 3 as shown in FIG.
  • the bearing surface 1a is not deformed following the shape of the inner peripheral surface of the housing 3, and the roundness, cylindricity, and the like of the bearing surface 1a can be stably maintained even after the mounting. Therefore, after press-fitting and fixing the sintered bearing 1 to the inner periphery of the housing 3, a desired roundness (for example, sizing) is additionally performed without finishing processing (for example, sizing) for finishing the bearing surface 1a to an appropriate shape and accuracy. For example, a roundness of 3 ⁇ m or less can be ensured.
  • the sintered bearing 1 has a crushing strength of 300 MPa or more, a vibration motor incorporating this sintered bearing 4 (and thus a portable terminal equipped with this vibration motor) will drop, etc., thereby causing a bearing surface 1a. Even when a large impact load is applied, the deformation of the bearing surface 1a is prevented as much as possible. Further, since the bearing surface 1a is hardened and has high wear resistance, even if the shaft 2 swings around the entire surface of the bearing surface 1a or the shaft 2 frequently collides with the bearing surface 1a, the bearing surface 1a. Wear and damage can be suppressed. Therefore, according to the present invention, the sintered bearing 1 suitable for supporting the vibration motor can be provided at low cost.
  • FIG. 14 a micrograph of a surface layer portion of a sintered bearing (hereinafter referred to as “copper-coated iron powder bearing”) according to the technical means described in Patent Document 1 is shown in FIG. Comparing FIG. 18 with a micrograph (see FIG. 16) of the surface layer portion of the sintered bearing 1 according to the second embodiment, the sintered bearing 1 according to the second embodiment is a copper-coated iron powder bearing.
  • the porous structure of the surface layer is uniform and dense.
  • the porosity of the surface layer portion of the sintered bearing 1 according to the second embodiment was 13.6%, whereas the porosity of the surface layer portion of the copper-coated iron powder bearing was about 25.5%. there were.
  • the copper-coated iron powder only the copper film is in close contact with the iron powder, and the neck strength between the iron phase and the copper phase is insufficient.
  • a sintered bearing having a bearing surface on the inner periphery that forms a bearing gap between the shaft to be supported, a partial diffusion alloy powder obtained by partially diffusing copper powder into iron powder, a low melting point metal powder, It is characterized by comprising a sintered body obtained by molding and sintering a raw material powder containing a solid lubricant powder and an additive powder composed of one or both of simple iron powder and simple copper powder.
  • the partially diffused alloy powder since a part of the copper powder is diffused into the iron powder, a higher neck strength is obtained between the sintered iron structure and the copper structure than when the copper-coated iron powder is used. Moreover, the low melting point metal powder contained in the green compact is melted by sintering after the raw material powder is molded (compressed). Since the low melting point metal has high wettability with respect to copper, the iron structure and the copper structure of adjacent partial diffusion alloy powders, or the copper structures can be firmly bonded by liquid phase sintering. Furthermore, among the individual partial diffusion alloy powders, the molten low melting point metal diffuses into the part where a part of the copper powder is diffused on the surface of the iron powder and the Fe—Cu alloy is formed.
  • the neck strength between the structure and the copper structure can be further increased. From these facts, it becomes possible to obtain a high-strength sintered bearing having excellent bearing surface wear resistance even at low-temperature sintering. In addition, since the partial diffusion alloy powder contains a considerable amount of copper powder, a large amount of copper structure can be formed on the bearing surface, and therefore good sliding characteristics (low torque, initial conformability, quietness, etc.) ) Can be obtained.
  • the additive powder consisting of one or both of single iron powder and single copper powder is blended into the raw material powder, high wear resistance can be achieved by changing the blending amount of single iron powder and single copper powder. It is possible to adjust the bearing characteristics according to the application while satisfying the properties and strength and the good sliding characteristics. For example, if single iron powder is added, wear resistance and bearing strength can be further increased, and if single copper powder is added, sliding characteristics can be improved. In order to ensure the minimum wear resistance, strength, and sliding characteristics, the proportion of the partial diffusion alloy powder in the raw material powder is preferably 50 wt% or more.
  • This sintered bearing preferably has a crushing strength of 300 MPa or more.
  • the partial diffusion alloy powder As a main raw material, it is easy to ensure the crushing strength.
  • the partial diffusion alloy powder included in the raw material powder copper powder having an average particle size of 5 ⁇ m or more and less than 20 ⁇ m partially diffuses on the surface of the iron powder, and in the alloy powder It is preferable to use a material containing 10 to 30% by mass of Cu.
  • the raw material powder contains a partially diffused alloy powder having a large particle size exceeding the average particle size of 106 ⁇ m, rough air holes are likely to be formed inside the sintered body, and as a result, the required bearing surface wear resistance is required. It has been found that there are cases where it is not possible to ensure properties and crushing strength. Accordingly, it is preferable to use a partially diffused alloy powder having an average particle size of 145 mesh or less (average particle size of 106 ⁇ m or less). By using such an alloy powder, it is possible to stably obtain a sintered body in which the sintered metal structure (porous structure) is made uniform and the generation of rough atmospheric pores in the metal structure is suppressed. it can. Thereby, it becomes possible to stably obtain a sintered bearing in which the wear resistance of the bearing surface and the crushing strength of the bearing are further improved.
  • tin powder can be used as the low melting point metal powder
  • graphite powder can be used as the solid lubricant powder
  • the iron structure of the sintered body mainly composed of a soft ferrite phase By making the iron structure of the sintered body mainly composed of a soft ferrite phase, the aggressiveness of the bearing surface against the shaft can be weakened, and the shaft wear can be suppressed.
  • An iron structure mainly composed of a ferrite phase can be obtained, for example, by sintering a green compact at a temperature of 900 ° C. or less at which iron and graphite do not react.
  • the iron structure mainly composed of a ferrite phase includes an iron structure in which a pearlite phase harder than a ferrite phase is present at the grain boundary of the ferrite phase in addition to a structure in which all of the ferrite phase is a ferrite phase.
  • a pearlite phase at the grain boundary of the ferrite phase, it is possible to improve the wear resistance of the bearing surface as compared with the case where the iron structure is composed only of the ferrite phase.
  • the proportions of ferrite phase ( ⁇ Fe) and pearlite phase ( ⁇ Fe) in the iron structure are 80 to 95% and 5 to 20%, respectively.
  • Reduced iron powder can be used as the iron powder constituting the partially diffused alloy powder (Fe—Cu partially diffused alloy powder).
  • the iron powder for example, atomized iron powder can be used in addition to the reduced iron powder.
  • the reduced iron powder has a spongy shape (porous shape) having internal pores, it is compared with the atomized iron powder.
  • the powder is soft and excellent in compression moldability. Therefore, the green compact strength can be increased even at low density, and chipping and cracking of the green compact can be prevented.
  • reduced iron powder makes a spongy shape as described above, it also has an advantage of superior oil retention as compared with atomized iron powder.
  • the porosity of the surface layer portion is preferably 5 to 20%.
  • the surface layer portion is a region from the surface to a depth of 100 ⁇ m.
  • the sintered body (internal pores) can be impregnated with a lubricating oil, and a lubricating oil having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s is preferably used. This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap.
  • the oil impregnated in the sintered body may be a liquid grease based on an oil (lubricating oil) having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s.
  • the present invention is not limited to a perfect circle bearing, and the outer circumference of the bearing surface 1a and the shaft 2 is exemplified.
  • the present invention can be similarly applied to a fluid dynamic pressure bearing in which a dynamic pressure generating portion such as a herringbone groove or a spiral groove is provided on the surface.
  • a dynamic pressure generating portion such as a herringbone groove or a spiral groove is provided on the surface.
  • the vibration motor etc. which are used for the starter for vehicles, a portable terminal, etc. were illustrated as a use, the use of the sintered bearing 1 concerning this invention is not limited to these, It applies widely also to other uses other than illustrated Is possible.
  • the green compact 25 When the green compact 25 is compression-molded, a so-called warm molding method in which the green compact 25 is compression-molded in a state where at least one of the molding die 20 and the raw material powder is heated, A die lubrication molding method may be employed in which the green compact 25 is compression molded in a state where a lubricant is applied to the molding surface. By adopting such a method, the green compact 25 can be molded with higher accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

A sintered bearing (1) comprises iron, copper, a metal having a melting temperature lower than that of copper, and a solid lubricant as the main components. This sintered bearing (1) is composed of a surface layer (S1) and a base part (S2). The surface layer (S1) is formed mainly from flat copper powder particles which are arranged in such a state that the flat copper powder particles are thinner in the thickness direction of the surface layer (S1). In the base layer (S2), the iron structures (33) and the copper structures (31c) present in contact with the iron structures (33) are formed from a partial diffusion alloy powder in which copper powder is partially diffused in iron powder. Thus, an uncostly sintered bearing which combines high wear resistance of a bearing surface and high strength of a bearing can be provided.

Description

焼結軸受、およびその製造方法Sintered bearing and manufacturing method thereof
 本発明は、焼結金属からなる焼結軸受、およびその製造方法に関する。 The present invention relates to a sintered bearing made of sintered metal and a method for manufacturing the same.
 焼結軸受は、無数の内部気孔を有する多孔質体であり、通常は、内部気孔に潤滑流体(例えば、潤滑油)を含浸させた状態で使用される。この場合、焼結軸受およびその内周に挿入した軸の相対回転時には、焼結軸受の内部気孔に保持された潤滑油が温度上昇に伴って焼結軸受の内周面(軸受面)に滲み出す。そして、この滲み出した潤滑油によって、焼結軸受の軸受面と軸の外周面との間の軸受隙間に油膜が形成され、軸が相対回転自在に支持される。 Sintered bearings are porous bodies having innumerable internal pores, and are usually used in a state in which internal pores are impregnated with a lubricating fluid (for example, lubricating oil). In this case, during relative rotation of the sintered bearing and the shaft inserted into the inner periphery thereof, the lubricating oil retained in the internal pores of the sintered bearing oozes into the inner peripheral surface (bearing surface) of the sintered bearing as the temperature rises. put out. The oozed lubricating oil forms an oil film in the bearing gap between the bearing surface of the sintered bearing and the outer peripheral surface of the shaft, and the shaft is supported so as to be relatively rotatable.
 例えば、下記の特許文献1には、鉄および銅を主成分とする銅鉄系の焼結軸受として、鉄粉に対し10質量%以上30質量%未満の銅を被覆してなり、粒度を80メッシュ以下とした銅被覆鉄粉を圧粉・焼結したものが記載されている。 For example, in Patent Document 1 below, copper and iron-based sintered bearings mainly composed of iron and copper are coated with 10% by mass or more and less than 30% by mass of copper, and the particle size is 80%. A powdered and sintered copper-coated iron powder having a mesh or less is described.
特許第3613569号公報Japanese Patent No. 3613569 実開平2-57251号公報Japanese Utility Model Publication No. 2-57251 特開2012-26504号公報JP 2012-26504 A
 しかしながら、特許文献1の構成では、鉄相(鉄組織)と銅相(銅組織)のネック強度が低いため、軸受面が早期に摩耗する等の点が問題となる。 However, in the configuration of Patent Document 1, since the neck strength of the iron phase (iron structure) and the copper phase (copper structure) is low, there is a problem in that the bearing surface wears quickly.
 特許文献1の焼結軸受を振動モータに使用した場合、長期間使用時に回転変動が大きくなることが明らかになった。これは鉄組織と銅組織間のネック強度不足により軸受面が早期に摩耗することによる。 It has been clarified that when the sintered bearing of Patent Document 1 is used for a vibration motor, the rotational fluctuation becomes large during long-term use. This is due to the early wear of the bearing surface due to insufficient neck strength between the iron and copper structures.
 また、自動車用スタータにおけるモータ軸を回転自在に支持する軸受としてすべり軸受を使用することが知られている(特許文献2)。自動車用スタータでは、エンジン始動時に必要な大トルクを得るため、減速比の大きい減速装置、例えば遊星歯車機構を介してモータ出力を減速させるのが通例である。この遊星歯車機構を構成する遊星ギヤの内周に銅系、鉄系、あるいは銅鉄系等の焼結軸受を圧入し、軸に対して遊星ギヤを回転自在に支持することが既に提案されている(特許文献3)。 Also, it is known to use a slide bearing as a bearing that rotatably supports a motor shaft in an automobile starter (Patent Document 2). In an automobile starter, in order to obtain a large torque necessary for starting an engine, it is usual to reduce the motor output via a reduction gear having a large reduction ratio, for example, a planetary gear mechanism. It has already been proposed to press-fit a sintered bearing made of copper, iron, or copper iron to the inner periphery of the planetary gear that constitutes the planetary gear mechanism, and to support the planetary gear rotatably with respect to the shaft. (Patent Document 3).
 ところで、エンジンの回転中はスタータが停止状態にあるため、軸と軸受との間に相対回転は生じない。従って、エンジンの回転中に焼結軸受の軸受面やこれに対向する軸の表面が摩耗するとは考え難い。しかしながら、本発明者らの検証によれば、長時間エンジンを駆動させた際に、焼結軸受の軸受面や軸の表面にフレッティング摩耗を生じることが判明した。これは、エンジンの回転中はスタータにエンジンの振動が伝わるため、この振動により軸受面と軸の表面とが接触して微少滑りを生じ、これを契機として軸受面や軸の表面が酸化し、表面組織が脱落し易くなるためと考えられる。この場合、鉄組織と銅組織間のネック強度が不足していれば、表面組織の脱落が助長されることになる。このフレッティング摩耗は、焼結軸受におけるFeの含有量が増すほど顕著であるため、鉄系の焼結軸受、あるいはFe量の多い銅鉄系の焼結軸受を使用する場合に特に問題となる。 By the way, since the starter is in a stopped state while the engine is rotating, there is no relative rotation between the shaft and the bearing. Therefore, it is unlikely that the bearing surface of the sintered bearing or the surface of the shaft facing the wear will wear during the rotation of the engine. However, according to the verification by the present inventors, it has been found that fretting wear occurs on the bearing surface and shaft surface of the sintered bearing when the engine is driven for a long time. This is because the vibration of the engine is transmitted to the starter during the rotation of the engine, the bearing surface and the surface of the shaft come into contact with each other due to this vibration, and this causes the bearing surface and the shaft surface to oxidize, This is thought to be because the surface texture is easily removed. In this case, if the neck strength between the iron structure and the copper structure is insufficient, the removal of the surface structure is promoted. Since this fretting wear becomes more prominent as the Fe content in the sintered bearing increases, this fretting wear is particularly problematic when using iron-based sintered bearings or copper-iron-based sintered bearings with a large amount of Fe. .
 銅系の焼結軸受を使用すれば、酸化を生じにくくなるので、フレッティング摩耗を防止することができる。しかしながら、銅系の焼結軸受は、銅自体が軟質であるために軸受強度が不足する傾向にある。そのため、エンジンの振動により軸が軸受面に接触した際に軸受面が変形し、あるいは焼結軸受をハウジングの内周に圧入した際に、圧入に伴う焼結軸受の縮径変形の影響が軸受面にもおよび、軸受面の精度が低下するおそれがある。 If a copper-based sintered bearing is used, oxidation is less likely to occur, so fretting wear can be prevented. However, copper-based sintered bearings tend to have insufficient bearing strength because copper itself is soft. Therefore, when the shaft contacts the bearing surface due to engine vibration, the bearing surface is deformed, or when the sintered bearing is press-fitted into the inner periphery of the housing, the effect of the reduced diameter deformation of the sintered bearing due to the press-fitting is Also, the accuracy of the bearing surface may be reduced.
 このように銅系の焼結軸受は、初期なじみ性や静粛性といった摺動特性の面では有利であるが、軸受強度の面で難がある。反対に、鉄系やFe量の多い銅鉄系の焼結軸受は、軸受強度の面では有利であるが、摺動特性の面で難がある(既に述べたように、使用条件によってはフレッティング摩耗も懸念される)。このように既存の焼結軸受では、摺動特性、軸受強度、耐摩耗性等を全て満足することは困難であり、焼結軸受の用途拡大のためにもこれらの要求特性を高次元で満足する焼結軸受の提供が望まれる。 Thus, copper-based sintered bearings are advantageous in terms of sliding characteristics such as initial conformability and quietness, but are difficult in terms of bearing strength. On the other hand, sintered iron bearings with high iron content and copper-iron alloys are advantageous in terms of bearing strength, but have difficulty in terms of sliding characteristics (as described above, depending on the operating conditions Ting wear is also a concern). Thus, it is difficult for existing sintered bearings to satisfy all of the sliding characteristics, bearing strength, wear resistance, etc., and these required characteristics are satisfied at a high level in order to expand the use of sintered bearings. It would be desirable to provide a sintered bearing.
 そこで、本発明は、良好な摺動特性を有すると共に、軸受面の耐摩耗性と軸受強度とを両立でき、かつコスト低減を図ることができる焼結軸受およびその製造方法を提供することを目的する。 SUMMARY OF THE INVENTION An object of the present invention is to provide a sintered bearing that has good sliding characteristics, can achieve both wear resistance and bearing strength of the bearing surface, and can reduce costs, and a method for manufacturing the same. To do.
 上記目的を達成するため、本発明にかかる焼結軸受は、鉄、銅、銅よりも低融点の金属、および固体潤滑剤を主成分とする焼結軸受であって、鉄組織および銅組織を含むベース部と、ベース部の表面を覆う表面層とを有し、表面層が、その厚さ方向が薄くなるように配置された扁平銅粉を主体として形成され、かつベース層の鉄組織および銅組織の少なくとも一部が、鉄粉に銅粉を部分拡散させた部分拡散合金粉で形成された鉄組織および銅組織を有することを特徴とするものである。 In order to achieve the above object, a sintered bearing according to the present invention is a sintered bearing mainly composed of iron, copper, a metal having a lower melting point than copper, and a solid lubricant, and has an iron structure and a copper structure. Including a base part and a surface layer covering the surface of the base part, the surface layer being formed mainly of flat copper powder arranged so that the thickness direction thereof is thin, and the iron structure of the base layer and At least a part of the copper structure has an iron structure and a copper structure formed of a partially diffused alloy powder obtained by partially diffusing copper powder into iron powder.
 扁平銅粉は原料粉の成形時に金型成形面に付着する性質を有し、そのため成形後の圧粉体は表層に多くの銅が含まれる。従って、焼結後の焼結体には、銅の含有量の多い表面層が形成される(好ましくは表面層の表面に面積比で60%以上の銅組織が形成される)。このように表面層での銅の含有量を多くすることで、初期なじみ性および静粛性の向上を図ることができ、黒鉛等の固体潤滑剤の作用と相俟って、摺動特性が良好なものとなる。また、軸に対する攻撃性も低くなるので、耐久寿命が向上する。加えて、酸化されにくい銅リッチの軸受面が形成されるため、軸受面のフレッティング摩耗を防止することができる。 扁 Flat copper powder has the property of adhering to the mold molding surface during molding of the raw powder, so that the compact after molding contains a large amount of copper in the surface layer. Therefore, a surface layer having a high copper content is formed in the sintered body after sintering (preferably a copper structure having an area ratio of 60% or more is formed on the surface of the surface layer). In this way, by increasing the copper content in the surface layer, it is possible to improve initial conformability and quietness, and in combination with the action of a solid lubricant such as graphite, the sliding characteristics are good. It will be something. In addition, since the aggression against the shaft is reduced, the durability life is improved. In addition, since a copper-rich bearing surface that is not easily oxidized is formed, fretting wear of the bearing surface can be prevented.
 この焼結軸受は低融点金属を含有するため、ベース層の鉄組織に接する銅組織は、基本的に銅粉に低融点金属を拡散させたものとなる。焼結時には低融点金属が銅の表面をぬらして液相焼結を進行させるため、特にベース部において金属粒子間の結合力を強化することができる。また、ベース部が基本的に鉄粉に銅粉の一部を拡散させた部分拡散合金粉で形成されるため、焼結後の銅組織(銅を主成分とする組織)と鉄組織(鉄を主成分とする組織)間で高いネック強度が得られる。以上から、軸受面からの銅組織や鉄組織の脱落を防止し、軸受面の耐摩耗性を高めることができる。また、軸受強度を高めることができ、そのためにハウジングの内周に焼結軸受を圧入固定した場合でも、軸受面がハウジングの内周面形状に倣って変形することがなく、軸受面の高精度化を図ることができる。また、軸受面の下地が強化されるため、振動等により軸が軸受面と接触した際の軸受面の変形を抑えることができる。従って、エンジンを始動するためのスタータ(スタータ内部に組み込まれる減速装置等も含まれる)での使用や携帯端末等に使用される振動モータでの使用に適合する焼結軸受を提供することができる。部分拡散合金粉における銅の割合は10wt%以上、30wt%以下とするのが好ましい。 Since this sintered bearing contains a low melting point metal, the copper structure in contact with the iron structure of the base layer is basically a low melting point metal diffused into the copper powder. At the time of sintering, the low melting point metal wets the surface of copper and advances liquid phase sintering, so that the bonding force between the metal particles can be strengthened particularly in the base portion. In addition, since the base part is basically formed of partially diffused alloy powder in which part of copper powder is diffused into iron powder, the sintered copper structure (structure containing copper as a main component) and iron structure (iron) High neck strength can be obtained between the main components). From the above, it is possible to prevent the copper structure and the iron structure from falling off the bearing surface and to improve the wear resistance of the bearing surface. In addition, the bearing strength can be increased. Therefore, even when a sintered bearing is press-fitted and fixed to the inner periphery of the housing, the bearing surface is not deformed following the shape of the inner peripheral surface of the housing. Can be achieved. Further, since the foundation of the bearing surface is reinforced, deformation of the bearing surface when the shaft contacts the bearing surface due to vibration or the like can be suppressed. Accordingly, it is possible to provide a sintered bearing suitable for use in a starter for starting an engine (including a speed reducer incorporated in the starter) and a vibration motor used in a portable terminal or the like. . The proportion of copper in the partial diffusion alloy powder is preferably 10 wt% or more and 30 wt% or less.
 扁平銅粉と低融点金属とを含む圧粉体を焼結すると、扁平銅粉の球状化が懸念される。本発明では、鉄粉に銅粉の一部を拡散させた部分拡散合金粉を使用しているため、焼結時に低融点金属の周囲には多数の銅粉が存在する。この場合、焼結の昇温に伴って溶融した低融点金属が扁平銅粉より先に部分拡散合金粉の銅粉に拡散するため、低融点金属粉が表面層の扁平銅粉に与える影響を抑えることができる。従って、表面層の扁平銅粉の球状化を防止することができ、表面層の表面における銅濃度を高めることができる。 When sintering a green compact containing flat copper powder and a low melting point metal, there is a concern that the flat copper powder may be spheroidized. In this invention, since the partial diffusion alloy powder which diffused a part of copper powder to iron powder is used, many copper powder exists around a low melting-point metal at the time of sintering. In this case, the low melting point metal melted as the temperature of sintering diffuses into the copper powder of the partial diffusion alloy powder prior to the flat copper powder, so the influence of the low melting point metal powder on the flat copper powder of the surface layer is affected. Can be suppressed. Therefore, spheroidization of the flat copper powder in the surface layer can be prevented, and the copper concentration on the surface of the surface layer can be increased.
 ベース層の鉄組織および銅組織を、全て部分拡散合金粉で形成する他、ベース層の鉄組織および銅組織を、部分拡散合金粉と、単体鉄粉および単体銅粉のうち、どちらか一方または双方とで形成することができる。 In addition to forming the iron structure and copper structure of the base layer entirely with partially diffused alloy powder, the iron structure and copper structure of the base layer are either partially diffused alloy powder, simple iron powder and simple copper powder or It can be formed with both.
 扁平銅粉と低融点金属を組み合わせて使用する場合、球状化の影響を最小限にするためにも、扁平銅粉に対する低融点金属の含有量を10wt%よりも小さくすべきである、というのがこれまでの技術常識である。これに対し、本発明では、上記のとおり低融点金属による表面層の扁平銅粉の球状化を抑制することができるので、軸受中の低融点金属の含有量を増加させることができる。このように低融点金属の含有量が増えることで、金属粒子間の結合力がさらに強化されるので、軸受強度の向上に有効となる。具体的には、低融点金属を扁平銅粉に対する重量比で10wt%以上、30wt%以下含有させることができる。 When using a combination of flat copper powder and a low melting point metal, the content of the low melting point metal relative to the flat copper powder should be less than 10 wt% in order to minimize the effect of spheroidization. Is the common technical knowledge so far. On the other hand, in this invention, since the spheroidization of the flat copper powder of the surface layer by the low melting point metal can be suppressed as described above, the content of the low melting point metal in the bearing can be increased. As the content of the low melting point metal increases in this way, the bonding force between the metal particles is further strengthened, which is effective in improving the bearing strength. Specifically, the low melting point metal can be contained in a weight ratio of 10 wt% to 30 wt% with respect to the flat copper powder.
 鉄組織はフェライト相(だけ)で形成し、あるいはフェライト相と、フェライト相の粒界に存在するパーライト相とで形成することができる。前者であれば、表面層の摩耗により鉄組織を多く含むベース部が露出した際にも、鉄組織がフェライト相を主体とするため、銅の含有量が少なくても軸に対する攻撃性を弱くすることができ、耐久性が増す。後者であれば、硬質のパーライト相がフェライト相の耐摩耗性を補うため、軸受面の摩耗を抑制することができる。後者の場合、パーライトの存在割合が過剰になると、軸に対する攻撃性が増して軸が摩耗しやすくなる。かかる観点から、パーライト相はフェライト相の粒界に存在(点在)する程度とする(図9参照)。焼結軸受には、動粘度が30mm/sec以上、200mm/sec以下の潤滑油を含浸させるのが好ましい。 The iron structure can be formed of a ferrite phase (only), or can be formed of a ferrite phase and a pearlite phase present at the grain boundary of the ferrite phase. In the former case, even when the base part containing a large amount of iron structure is exposed due to wear of the surface layer, the iron structure is mainly composed of a ferrite phase, so that the aggression against the shaft is weakened even if the copper content is small. Increase durability. In the latter case, since the hard pearlite phase supplements the wear resistance of the ferrite phase, the wear on the bearing surface can be suppressed. In the latter case, if the pearlite content is excessive, the aggression against the shaft increases and the shaft tends to wear. From this point of view, the pearlite phase is present at the grain boundaries of the ferrite phase (see FIG. 9). The sintered bearing is preferably impregnated with a lubricating oil having a kinematic viscosity of 30 mm 2 / sec or more and 200 mm 2 / sec or less.
 以上に述べた焼結軸受は、鉄粉に銅粉を部分拡散させた部分拡散合金粉と、扁平銅粉と、銅よりも低融点の金属粉と、固体潤滑剤粉とを混合し、この混合粉末で圧粉体を成形した後、圧粉体を銅の融点よりも低い温度で焼結することで製造することができる。 The sintered bearing described above is a mixture of partially diffused alloy powder obtained by partially diffusing copper powder in iron powder, flat copper powder, metal powder having a melting point lower than that of copper, and solid lubricant powder. After the green compact is formed with the mixed powder, it can be manufactured by sintering the green compact at a temperature lower than the melting point of copper.
 本発明によれば、良好な摺動特性を有すると共に、軸受面の耐摩耗性と軸受強度とを両立した低コストの焼結軸受を提供することが可能となる。 According to the present invention, it is possible to provide a low-cost sintered bearing having good sliding characteristics and having both bearing surface wear resistance and bearing strength.
本発明にかかる焼結軸受の断面図である。It is sectional drawing of the sintered bearing concerning this invention. スタータの代表的構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the typical structure of a starter. 部分拡散合金粉を模式的に示す拡大図である。It is an enlarged view which shows a partial diffusion alloy powder typically. 上段は扁平銅粉の側面図、下段は扁平銅粉の平面図である。The upper part is a side view of the flat copper powder, and the lower part is a plan view of the flat copper powder. 互いに付着した扁平銅粉と鱗状黒鉛を示す側面図である。It is a side view which shows the flat copper powder and scaly graphite which mutually adhered. 金型による圧粉体の成形工程を示す断面図である。It is sectional drawing which shows the formation process of the green compact by a metal mold | die. 図6中の領域Qの拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a region Q in FIG. 6. 焼結軸受(図1の領域P)の半径方向断面における拡大図である。It is an enlarged view in the radial cross section of a sintered bearing (area | region P of FIG. 1). 図8の鉄組織およびその周辺組織を示す拡大図である。It is an enlarged view which shows the iron structure | tissue of FIG. 8, and its surrounding structure | tissue. 扁平銅粉の球状化を説明する拡大図で、焼結前を示す。It is an enlarged view explaining spheroidization of flat copper powder, and shows before sintering. 扁平銅粉の球状化を説明する拡大図で、焼結後を示す。It is an enlarged view explaining spheroidization of flat copper powder, and shows after sintering. 本願発明の焼結前の圧粉体組織を概念的に示す拡大図である。It is an enlarged view which shows notionally the compact structure before sintering of this invention. 本発明にかかる焼結軸受のその他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the sintered bearing concerning this invention. 本発明にかかる焼結軸受のその他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the sintered bearing concerning this invention. 振動モータの要部概略断面図である。It is a principal part schematic sectional drawing of a vibration motor. 図13中に示すA-A線での断面図である。It is sectional drawing in the AA line shown in FIG. 軸受面を含む断面の顕微鏡写真である。It is a microscope picture of the cross section containing a bearing surface. 圧紛体の一部を概念的に示す図である。It is a figure which shows a part of powder compact notionally. 従来技術にかかる焼結軸受の軸受面を含む断面の顕微鏡写真である。It is a microscope picture of the cross section containing the bearing surface of the sintered bearing concerning a prior art.
 以下、本発明の第一の実施の形態を添付図面に基づいて説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.
 図1に示すように、焼結軸受1は、内周に軸受面1aを有する円筒状に形成される。この実施形態の焼結軸受1は多孔質の焼結体の内部空孔に潤滑油を含浸させて使用される(焼結含油軸受とも呼ばれる)。焼結軸受1の内周にステンレス鋼等からなる軸2を挿入し、その状態で軸を回転させ、あるいは軸受1を回転させると、焼結軸受1の無数の空孔に保持された潤滑油が温度上昇に伴って軸受面1aに滲み出す。この滲み出した潤滑油によって、軸の外周面と軸受面1aの間の軸受隙間に油膜が形成され、軸2が軸受1によって相対回転可能に支持される。 As shown in FIG. 1, the sintered bearing 1 is formed in a cylindrical shape having a bearing surface 1a on the inner periphery. The sintered bearing 1 of this embodiment is used by impregnating lubricating oil in the internal pores of a porous sintered body (also called a sintered oil-impregnated bearing). When the shaft 2 made of stainless steel or the like is inserted into the inner periphery of the sintered bearing 1 and the shaft is rotated in this state, or the bearing 1 is rotated, the lubricating oil retained in the countless holes of the sintered bearing 1 Oozes out to the bearing surface 1a as the temperature rises. The oil that has oozed out forms an oil film in the bearing gap between the outer peripheral surface of the shaft and the bearing surface 1 a, and the shaft 2 is supported by the bearing 1 so as to be relatively rotatable.
 図2に、自動車用エンジンの始動のために用いられるスタータSTの代表的構成を簡略化して示す。図2に示すように示すように、スタータSTは、ハウジング3、モータ軸2aを有するモータ部4、出力軸2bを有する減速装置5、出力軸2cを有するオーバーランニングクラッチ6、ピニオンギヤ7、シフトレバー8、および電磁スイッチ9を主要な構成要素とする。シフトレバー8は支点Oを中心として回転可能であり、その先端はオーバーランニングクラッチ6の背後(入力側)に配置されている。オーバーランニングクラッチ6はワンウェイクラッチであり、その入力側には、減速装置5の出力軸2bがスプライン等を介して軸方向に摺動可能に連結されている。オーバーランニングクラッチ6の出力軸2cにピニオンギヤ7が取り付けられ、オーバーランニングクラッチ6は、その出力軸2cおよびピニオンギヤ7と一体となって軸方向に移動可能である。 FIG. 2 shows a simplified representative configuration of a starter ST used for starting an automobile engine. As shown in FIG. 2, the starter ST includes a housing 3, a motor unit 4 having a motor shaft 2a, a reduction gear 5 having an output shaft 2b, an overrunning clutch 6 having an output shaft 2c, a pinion gear 7, a shift lever. 8 and the electromagnetic switch 9 are main components. The shift lever 8 is rotatable around a fulcrum O, and the tip thereof is disposed behind the overrunning clutch 6 (input side). The overrunning clutch 6 is a one-way clutch, and an output shaft 2b of the reduction gear 5 is connected to an input side of the overrunning clutch 6 via a spline or the like so as to be slidable in the axial direction. A pinion gear 7 is attached to the output shaft 2 c of the overrunning clutch 6, and the overrunning clutch 6 can move in the axial direction integrally with the output shaft 2 c and the pinion gear 7.
 イグニッションをオンにすると、モータ部4が駆動され、モータ軸2aのトルクが減速装置5、およびオーバーランニングクラッチ6を介してピニオンギヤ7に伝達される。また電磁スイッチ9がオンとなってシフトレバー8に図中の矢印方向の回転力が与えられ、オーバーランニングクラッチ6およびピニオンギヤ7が一体に前進する。これにより、クランクシャフトと結合されたリングギヤ10にピニオンギヤ7が噛み合い、モータ部4のトルクがクランクシャフトに伝達されてエンジンが始動する。エンジンの始動後は、電磁スイッチ9がオフとなり、オーバーランニングクラッチ6およびピニオンギヤ7が後退して、ピニオンギヤ7がリングギヤ10から離れる。エンジン始動直後のエンジントルクはオーバーランニングクラッチ8で遮断されるため、モータ部4に伝達されない。 When the ignition is turned on, the motor unit 4 is driven, and the torque of the motor shaft 2a is transmitted to the pinion gear 7 via the speed reduction device 5 and the overrunning clutch 6. Further, the electromagnetic switch 9 is turned on and a rotational force in the direction of the arrow in the figure is applied to the shift lever 8, so that the overrunning clutch 6 and the pinion gear 7 move forward together. As a result, the pinion gear 7 meshes with the ring gear 10 coupled to the crankshaft, the torque of the motor unit 4 is transmitted to the crankshaft, and the engine is started. After the engine is started, the electromagnetic switch 9 is turned off, the overrunning clutch 6 and the pinion gear 7 are retracted, and the pinion gear 7 is separated from the ring gear 10. Since the engine torque immediately after engine startup is interrupted by the overrunning clutch 8, it is not transmitted to the motor unit 4.
 本発明の焼結軸受1は、以上に述べたスタータSTのハウジング3等の内周に圧入固定され、スタータST内の各種軸2(2a~2c)を支持する(図2ではモータ軸2aおよびオーバーランニングクラッチ6の出力軸2cを焼結軸受1で支持する場合を例示している)。詳細な図示は省略するが、減速装置5のギヤの支持にも焼結軸受1を使用することができる。例えば減速装置5を遊星歯車機構で構成する場合は、軸に対して回転する遊星ギヤの内周に本発明の焼結軸受1を圧入することで、遊星ギヤを軸に対して回転自在に支持することができる。 The sintered bearing 1 of the present invention is press-fitted and fixed to the inner periphery of the housing 3 or the like of the starter ST described above and supports the various shafts 2 (2a to 2c) in the starter ST (in FIG. 2, the motor shaft 2a and The case where the output shaft 2c of the overrunning clutch 6 is supported by the sintered bearing 1 is illustrated). Although detailed illustration is omitted, the sintered bearing 1 can also be used for supporting the gear of the reduction gear 5. For example, when the speed reducer 5 is constituted by a planetary gear mechanism, the planetary gear is rotatably supported with respect to the shaft by press-fitting the sintered bearing 1 of the present invention into the inner periphery of the planetary gear rotating with respect to the shaft. can do.
 以上に述べた焼結軸受1は、各種粉末を混合した原料粉を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。 The sintered bearing 1 described above is formed by filling raw material powder mixed with various powders into a mold, compressing this to form a green compact, and then sintering the green compact.
 原料粉は、部分拡散合金粉、扁平銅粉、低融点金属粉、および固体潤滑剤粉を主成分とする混合粉末である。この混合粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。以下、焼結軸受1の第一の実施形態について、その原料粉末および製造手順を詳細に述べる。 The raw material powder is a mixed powder mainly composed of partially diffused alloy powder, flat copper powder, low melting point metal powder, and solid lubricant powder. To this mixed powder, various molding aids, for example, a lubricant (metal soap or the like) for improving releasability are added as necessary. Hereinafter, the raw material powder and the manufacturing procedure will be described in detail for the first embodiment of the sintered bearing 1.
[部分拡散合金粉]
 部分拡散合金粉としては、図3に示すように、鉄粉12の表面に多数の銅粉13を部分拡散させたFe-Cu部分拡散合金粉11が使用される。部分拡散合金粉11の拡散部分はFe-Cu合金を形成しており、図3中の部分拡大図に示すように、合金部分は鉄原子12aと銅原子13aとが相互に結合し、配列した結晶構造を有する。部分拡散合金粉11としては平均粒径が75μm~212μmのものを使用するのが好ましい。
[Partial diffusion alloy powder]
As the partial diffusion alloy powder, as shown in FIG. 3, Fe—Cu partial diffusion alloy powder 11 in which a large number of copper powders 13 are partially diffused on the surface of iron powder 12 is used. The diffusion part of the partial diffusion alloy powder 11 forms an Fe—Cu alloy, and as shown in the enlarged partial view in FIG. 3, the alloy part is formed by bonding iron atoms 12a and copper atoms 13a to each other. It has a crystal structure. As the partial diffusion alloy powder 11, one having an average particle diameter of 75 μm to 212 μm is preferably used.
 上記の部分拡散合金粉11を構成する鉄粉12としては、還元鉄粉、アトマイズ鉄粉等、公知の鉄粉を使用することができるが、本実施形態では還元鉄粉を使用する。還元鉄粉は、球形に近似した不規則形状で、かつ内部気孔を有する海綿状(多孔質状)であるから、海綿鉄粉とも称される。使用する鉄粉12は、平均粒径45μm~150μmのものが好ましく、平均粒径63μm~106μmのものがより一層好ましい。 As the iron powder 12 constituting the partial diffusion alloy powder 11, known iron powders such as reduced iron powder and atomized iron powder can be used, but reduced iron powder is used in this embodiment. The reduced iron powder has an irregular shape that approximates a spherical shape and has a sponge shape (porous shape) having internal pores, and is also referred to as sponge iron powder. The iron powder 12 used preferably has an average particle size of 45 μm to 150 μm, and more preferably an average particle size of 63 μm to 106 μm.
 なお、平均粒径は、粒子群にレーザ光を照射し、そこから発せられる回析・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるレーザ回析散乱法(例えば株式会社島津製作所製のSALD31000を用いる)により測定することができる(以下に述べる各粉末の平均粒径も同様の方法で測定することができる) The average particle size is determined by irradiating a particle group with laser light and calculating the particle size distribution by calculating from the intensity distribution pattern of diffraction / scattered light emitted from the particle group. (The average particle size of each powder described below can also be measured by the same method).
 また、部分拡散合金粉11を構成する銅粉13としては、汎用されている不規則形状や樹枝状の銅粉が広く使用可能であり、例えば、電解銅粉、アトマイズ銅粉等が用いられる。本実施形態では、表面に多数の凹凸を有すると共に、粒子全体として球形に近似した不規則形状をなし、成形性に優れたアトマイズ銅粉を使用している。使用する銅粉13は、鉄粉12よりも小粒径のものが使用され、具体的には平均粒径5μm以上45μm以下のものが使用される。なお、部分拡散合金粉11におけるCuの割合は10~30wt%(好ましくは22~26wt%)とする。 Further, as the copper powder 13 constituting the partial diffusion alloy powder 11, a widely used irregular shape or dendritic copper powder can be widely used. For example, electrolytic copper powder, atomized copper powder, or the like is used. In the present embodiment, an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used. The copper powder 13 to be used has a smaller particle diameter than the iron powder 12, and specifically, one having an average particle diameter of 5 μm to 45 μm is used. The proportion of Cu in the partial diffusion alloy powder 11 is 10 to 30 wt% (preferably 22 to 26 wt%).
[扁平銅粉]
 扁平銅粉は、水アトマイズ粉等からなる原料銅粉を搗砕(Stamping)することで扁平化させたものである。扁平銅粉としては、長さLが20μm~80μm、厚さtが0.5μm~1.5μm(アスペクト比L/t=13.3~160)のものが主に用いられる。ここでいう「長さ」および「厚さ」は、図4に示すように個々の扁平銅粉3の幾何学的な最大寸法をいう。扁平銅粉の見かけ密度は1.0g/cm以下とする。以上のサイズ、及び見かけ密度の扁平銅粉であれば、金型成形面に対する扁平銅粉の付着力が高まるため、金型成形面に多量の扁平銅粉を付着させることができる。
[Flat copper powder]
The flat copper powder is flattened by stamping raw material copper powder made of water atomized powder or the like. As the flat copper powder, one having a length L of 20 μm to 80 μm and a thickness t of 0.5 μm to 1.5 μm (aspect ratio L / t = 13.3 to 160) is mainly used. Here, “length” and “thickness” refer to the geometric maximum dimension of each flat copper powder 3 as shown in FIG. The apparent density of the flat copper powder is 1.0 g / cm 3 or less. If the flat copper powder has the above size and apparent density, the adhesion of the flat copper powder to the mold forming surface is increased, so that a large amount of flat copper powder can be attached to the mold forming surface.
 [流体潤滑剤]
 金型成形面に扁平銅粉を付着させるため、扁平銅粉には予め流体潤滑剤を付着させておく。この流体潤滑剤は、原料粉末の金型充填前に扁平銅粉に付着させていればよく、好ましくは原料粉の混合前、さらに好ましくは原料銅粉を搗砕する段階で原料銅粉に付着させる。搗砕後、他の原料粉体と混合するまでの間に扁平銅粉に流体潤滑剤を供給し、攪拌する等の手段で扁平銅粉に流体潤滑剤を付着させてもよい。金型成形面上の扁平銅粉の付着量を確保するため、扁平銅粉に対する流体潤滑剤の配合割合は、重量比で0.1重量%以上とし、また扁平銅粉同士の付着による凝集を防止するため、配合割合は0.8重量%以下とする。望ましくは配合割合の下限は0.2重量%以上とし、上限は0.7重量%とする。流体潤滑剤としては、脂肪酸、特に直鎖飽和脂肪酸が好ましい。この種の脂肪酸は、Cn-12n-1COOHの一般式で表される。この脂肪酸としては、Cnが12~22の範囲のもので、具体例として例えばステアリン酸を使用することができる。
[Fluid lubricant]
In order to attach the flat copper powder to the molding surface, a fluid lubricant is previously attached to the flat copper powder. This fluid lubricant only needs to be attached to the flat copper powder before filling the raw material powder into the mold, preferably before mixing the raw material powder, more preferably to the raw material copper powder at the stage of crushing the raw material copper powder. Let The fluid lubricant may be attached to the flat copper powder by means such as supplying the fluid lubricant to the flat copper powder and stirring it after mixing and before mixing with other raw material powders. In order to secure the adhesion amount of the flat copper powder on the molding surface, the blending ratio of the fluid lubricant to the flat copper powder should be 0.1% by weight or more, and aggregation due to the adhesion of the flat copper powders In order to prevent this, the blending ratio is 0.8% by weight or less. Desirably, the lower limit of the blending ratio is 0.2% by weight or more, and the upper limit is 0.7% by weight. As the fluid lubricant, fatty acids, particularly linear saturated fatty acids are preferred. This type of fatty acid is represented by the general formula C n-1 H 2n-1 COOH. This fatty acid has a Cn in the range of 12 to 22, and for example, stearic acid can be used as a specific example.
 [低融点金属粉]
 低融点金属粉は、銅よりも低融点の金属粉であり、本発明では、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。この中でも焼結時の蒸散が少ない錫が好ましい。低融点金属粉の平均粒径は5μm~45μmとし、部分拡散合金粉11の平均粒径よりも小さくするのが好ましい。これら低融点金属粉は銅に対して高いぬれ性を持つ。原料粉に低融点金属粉を配合することで、焼結時には先ず低融点金属粉が溶融して銅粉の表面をぬらし、銅に拡散して銅を溶融させる。溶融した銅と低融点金属の合金により液相焼結が進行し、鉄粒子同士の間、鉄粒子と銅粒子の間、および銅粒子同士の間の結合強度が強化される。
[Low melting point metal powder]
The low melting point metal powder is a metal powder having a melting point lower than that of copper. In the present invention, a metal powder having a melting point of 700 ° C. or lower, for example, a powder of tin, zinc, phosphorus or the like is used. Of these, tin is preferred because it causes less transpiration during sintering. The average particle diameter of the low-melting metal powder is preferably 5 μm to 45 μm, and is preferably smaller than the average particle diameter of the partial diffusion alloy powder 11. These low melting point metal powders have high wettability with respect to copper. By blending the low melting point metal powder with the raw material powder, the low melting point metal powder is first melted at the time of sintering to wet the surface of the copper powder and diffused into the copper to melt the copper. Liquid phase sintering proceeds by the molten alloy of copper and low melting point metal, and the bond strength between iron particles, between iron particles and copper particles, and between copper particles is strengthened.
 [固体潤滑剤粉]
 固体潤滑剤粉は、軸2との摺動による金属接触時の摩擦低減のために添加され、例えば黒鉛が使用される。この時、黒鉛粉としては、扁平銅粉に対する付着性が得られるように、鱗状黒鉛粉を使用するのが望ましい。固体潤滑剤粉としては、黒鉛粉の他に二硫化モリブデン粉も使用することができる。二硫化モリブデン粉は層状結晶構造を有していて層状に剥離するため、鱗状黒鉛と同様に扁平銅粉に対する付着性が得られる。
[Solid lubricant powder]
The solid lubricant powder is added to reduce friction at the time of metal contact due to sliding with the shaft 2, and for example, graphite is used. At this time, as the graphite powder, it is desirable to use scaly graphite powder so that adhesion to the flat copper powder can be obtained. As solid lubricant powder, molybdenum disulfide powder can be used in addition to graphite powder. Molybdenum disulfide powder has a layered crystal structure and peels into layers, and thus adheres to flat copper powder in the same manner as scale graphite.
 [配合比]
 上記各粉末を配合した原料粉では、部分拡散合金粉を75~90wt%、扁平銅粉を8~20wt%、低融点金属粉(例えば錫粉)を0.8~6.0wt% 、固体潤滑剤粉(例えば黒鉛粉)を0.5~2.0wt%配合するのが好ましい。この配合比としたのは以下の理由による。
[Combination ratio]
In the raw material powder blended with the above powders, 75 to 90 wt% of partially diffused alloy powder, 8 to 20 wt% of flat copper powder, 0.8 to 6.0 wt% of low melting point metal powder (for example, tin powder), solid lubrication It is preferable to mix 0.5 to 2.0 wt% of agent powder (eg, graphite powder). The reason for this blending ratio is as follows.
 本発明では、後述のように、原料粉の金型への充填時に扁平銅粉を金型に層状に付着させている。原料粉における扁平銅の配合割合が8重量%を下回ると、金型への扁平銅の付着量が不十分となって本願発明の作用効果が期待できない。また、扁平銅粉の金型への付着量は20wt%程度で飽和し、これ以上配合量を増しても、高コストの扁平銅粉を使用することによるコストアップが問題となる。低融点金属粉の割合が0.8wt%を下回ると軸受の強度を確保できず、6.0wt%を超えると、扁平銅粉の球形化の影響が無視できなくなる。また、固体潤滑剤粉の割合が0.5重量%を下回ると、軸受面における摩擦低減効果が得られず、2.0wt%を超えると強度低下等を招く。 In the present invention, as will be described later, flat copper powder is adhered to the mold in layers when the raw powder is filled into the mold. If the blending ratio of flat copper in the raw material powder is less than 8% by weight, the amount of flat copper adhering to the mold becomes insufficient, and the effect of the present invention cannot be expected. Moreover, the adhesion amount of the flat copper powder to the mold is saturated at about 20 wt%, and even if the blending amount is further increased, the cost increase due to the use of the high-cost flat copper powder becomes a problem. If the ratio of the low melting point metal powder is less than 0.8 wt%, the strength of the bearing cannot be ensured, and if it exceeds 6.0 wt%, the influence of spheroidizing the flat copper powder cannot be ignored. Further, if the ratio of the solid lubricant powder is less than 0.5% by weight, the effect of reducing friction on the bearing surface cannot be obtained, and if it exceeds 2.0% by weight, the strength is reduced.
 [混合]
 以上に述べた各粉末の混合は、2回に分けて行うのが望ましい。先ず、一次混合として、鱗状黒鉛粉および予め流体潤滑剤を付着させた扁平銅粉を公知の混合機で混合する。次いで、二次混合として、一次混合粉に部分拡散合金粉、および低融点金属粉を添加して混合し、さらに必要に応じて黒鉛粉も添加・混合する。扁平銅粉は、各種原料粉末の中でも見かけ密度が低いため、原料粉中に均一に分散させるのが難しいが、一次混合で見かけ密度が同レベルの扁平銅粉と黒鉛粉とを予め混合しておくと、扁平銅粉に付着した流体潤滑剤等により、図5に示すように、扁平銅粉15と黒鉛粉14が互いに付着して層状に重なり、扁平銅粉の見かけ密度が高まる。そのため、二次混合時に原料粉末中に扁平銅粉を均一に分散させることが可能となる。一次混合時に、別途潤滑剤を添加すれば、扁平銅粉と黒鉛粉の付着がさらに促進されるため、二次混合時に扁平銅粉をより均一に分散させることが可能となる。ここで添加する潤滑剤としては、上記流体潤滑剤と同種または異種の流体状潤滑剤の他、粉末状のものも使用可能である。例えば上述した金属セッケン等の成形助剤は一般に粉状でありながら、ある程度の付着力を有するので、扁平銅粉と黒鉛粉の付着より促進させることができる。
[mixture]
It is desirable to mix the powders described above in two steps. First, as primary mixing, scaly graphite powder and flat copper powder to which a fluid lubricant is previously attached are mixed with a known mixer. Next, as the secondary mixing, the partial diffusion alloy powder and the low melting point metal powder are added to and mixed with the primary mixed powder, and further, the graphite powder is added and mixed as necessary. Flat copper powder has a low apparent density among various raw material powders, so it is difficult to disperse uniformly in the raw material powder, but it is premixed with flat copper powder and graphite powder that have the same apparent density in the primary mixing. As shown in FIG. 5, the flat copper powder 15 and the graphite powder 14 adhere to each other and overlap each other due to the fluid lubricant or the like attached to the flat copper powder, and the apparent density of the flat copper powder increases. Therefore, it becomes possible to uniformly disperse the flat copper powder in the raw material powder during the secondary mixing. If a lubricant is added separately during the primary mixing, the adhesion between the flat copper powder and the graphite powder is further promoted, so that the flat copper powder can be more uniformly dispersed during the secondary mixing. As the lubricant to be added, a powdery lubricant can be used in addition to the same or different fluid lubricant as the fluid lubricant. For example, the above-mentioned forming aid such as metal soap is generally powdery and has a certain degree of adhesion, which can be promoted by adhesion of flat copper powder and graphite powder.
 図5に示す扁平銅粉15と鱗状黒鉛粉14との付着状態は、二次混合後もある程度保持されるため、原料粉末を金型に充填した際には、金型表面に扁平銅粉と共に多くの黒鉛粉が付着することとなる。 Since the adhesion state of the flat copper powder 15 and the scaly graphite powder 14 shown in FIG. 5 is maintained to some extent even after the secondary mixing, when the raw material powder is filled in the mold, the flat copper powder is put on the mold surface. A lot of graphite powder will adhere.
 [成形]
 二次混合後の原料粉末は成形機の金型20に供給される。図6に示すように、金型20は、コア21、ダイ22、上パンチ23、および下パンチ24からなり、これらによって区画されたキャビティに原料粉末が充填される。上下パンチ23,24を接近させて原料粉体を圧縮すると、原料粉末が、コア21の外周面、ダイ22の内周面、上パンチ23の端面、および下パンチ24の端面からなる成形面によって成形され、円筒状の圧粉体25が得られる。
[Molding]
The raw material powder after the secondary mixing is supplied to the mold 20 of the molding machine. As shown in FIG. 6, the mold 20 includes a core 21, a die 22, an upper punch 23, and a lower punch 24, and a raw material powder is filled in a cavity partitioned by these. When the upper and lower punches 23 and 24 are brought close to each other and the raw material powder is compressed, the raw material powder is formed by the molding surface formed by the outer peripheral surface of the core 21, the inner peripheral surface of the die 22, the end surface of the upper punch 23, and the end surface of the lower punch 24. A cylindrical green compact 25 is obtained by molding.
 原料粉体における金属粉の中では、扁平銅粉の見かけ密度が最も小さい。また、扁平銅粉は、上記長さLおよび厚さtを有する箔状であり、単位重量あたりの幅広面の面積が大きい。そのため、扁平銅粉15は、その表面に付着した流体潤滑剤による付着力、さらにはクーロン力等の影響を受けやすくなり、原料粉の金型20への充填後は、図7(図6中の領域Qの拡大図)に拡大して示すように、扁平銅粉15がその幅広面を金型20の成形面20aに向け、かつ複数層(1層~3層程度)重なった層状態となって成形面20aの全域に付着する。この際、扁平銅粉15に付着した鱗状黒鉛も扁平銅粉15に付随して金型の成形面20aに付着する(図7では黒鉛の図示を省略)。その一方で、扁平銅15の層状組織の内側領域(キャビティ中心側となる領域)では、部分拡散合金粉11、扁平銅粉15、低融点金属粉16、および黒鉛粉の分散状態が全体で均一化している。成形後の圧粉体25は、このような各粉末の分布状態をほぼそのまま保持している。 Among the metal powders in the raw powder, the flat copper powder has the smallest apparent density. Further, the flat copper powder is a foil having the length L and the thickness t, and the area of the wide surface per unit weight is large. Therefore, the flat copper powder 15 is easily affected by the adhesion force of the fluid lubricant adhered to the surface thereof, and further by the Coulomb force, etc. After filling the raw material powder into the mold 20, FIG. 7 (in FIG. 6) As shown in an enlarged view of the region Q), the flat copper powder 15 has a layer state in which a wide surface is directed to the molding surface 20a of the mold 20 and a plurality of layers (about 1 to 3 layers) overlap. And adheres to the entire area of the molding surface 20a. At this time, scaly graphite adhering to the flat copper powder 15 also adheres to the flat copper powder 15 and adheres to the molding surface 20a of the mold (illustration of graphite is omitted in FIG. 7). On the other hand, in the inner region (region on the cavity center side) of the layered structure of the flat copper 15, the dispersion state of the partial diffusion alloy powder 11, the flat copper powder 15, the low melting point metal powder 16, and the graphite powder is uniform throughout. It has become. The green compact 25 after the molding holds the distribution state of each powder almost as it is.
 [焼結]
 その後、圧粉体25は焼結炉にて焼結される。本実施形態では、鉄組織が、フェライト相とパーライト相の二相組織となるように焼結条件が決定される。このように鉄組織をフェライト相とパーライト相の二相組織とすれば、硬質のパーライト相が耐摩耗性の向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる。
[Sintering]
Thereafter, the green compact 25 is sintered in a sintering furnace. In the present embodiment, the sintering conditions are determined so that the iron structure becomes a two-phase structure of a ferrite phase and a pearlite phase. In this way, if the iron structure is a two-phase structure of ferrite phase and pearlite phase, the hard pearlite phase contributes to the improvement of wear resistance and suppresses the wear of the bearing surface under high surface pressure, thereby improving the bearing life. Can be made.
 炭素が拡散することにより、パーライト(γFe)の存在割合が過剰となり、フェライト(αFe)と同等レベル以上の割合になると、パーライトによる軸に対する攻撃性が著しく増して軸が摩耗しやすくなる。これを防止するため、パーライト相(γFe)はフェライト相(αFe)の粒界に存在(点在)する程度に抑える(図9参照)。ここでいう「粒界」は、粉末粒子間に形成される粒界の他、粉末粒子中に形成される結晶粒界18の双方を意味する。このように鉄組織をフェライト相(αFe)とパーライト相(γFe)の二相組織で形成する場合、鉄組織に占めるフェライト相(αFe)およびパーライト相(γFe)の割合は、後述するベース部S2の任意断面における面積比で、それぞれ、80~95%および5~20%(αFe:γFe=80~95%:5~20%)程度とするのが望ましい。これにより、軸2の摩耗抑制と軸受面1aの耐摩耗性向上とを両立させることができる。 When carbon diffuses, the abundance of pearlite (γFe) becomes excessive, and when the proportion is equal to or higher than that of ferrite (αFe), the aggression of the pearlite against the shaft is remarkably increased and the shaft is easily worn. In order to prevent this, the pearlite phase (γFe) is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase (αFe) (see FIG. 9). The “grain boundary” here means both the grain boundary formed between the powder particles and the crystal grain boundary 18 formed in the powder particle. In this way, when the iron structure is formed of a two-phase structure of a ferrite phase (αFe) and a pearlite phase (γFe), the proportion of the ferrite phase (αFe) and the pearlite phase (γFe) in the iron structure depends on the base portion S2 described later. It is desirable that the area ratios in the arbitrary cross sections are about 80 to 95% and 5 to 20% (αFe: γFe = 80 to 95%: 5 to 20%), respectively. Thereby, it is possible to achieve both suppression of wear of the shaft 2 and improvement of wear resistance of the bearing surface 1a.
 パーライトの成長速度は、主に焼結温度に依存する。従って、上記の態様でパーライト相をフェライト相の粒界に存在させるためには、焼結温度(炉内雰囲気温度)を820℃~900℃程度とし、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相(γFe)を形成することができる。なお、900℃を越える温度で焼結すると、黒鉛粉中の炭素が鉄と反応し、パーライト相が必要以上に増えるので好ましくない。焼結に伴い、上記流体潤滑剤、その他の潤滑剤、各種成形助剤は焼結体内部で燃焼し、あるいは焼結体内部からベーパする。 The growth rate of pearlite mainly depends on the sintering temperature. Therefore, in order to allow the pearlite phase to exist at the grain boundary of the ferrite phase in the above-described manner, the sintering temperature (furnace atmosphere temperature) is about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, for example, Sintering using natural gas or endothermic gas (RX gas). Thereby, carbon contained in the gas diffuses into iron during sintering, and a pearlite phase (γFe) can be formed. Sintering at a temperature exceeding 900 ° C. is not preferable because carbon in the graphite powder reacts with iron and the pearlite phase increases more than necessary. With the sintering, the fluid lubricant, other lubricants, and various molding aids burn inside the sintered body or vaporize from inside the sintered body.
 以上に述べた焼結工程を経ることで、多孔質の焼結体が得られる。この焼結体にサイジングを施し、さらに真空含浸等の手法で潤滑油あるいは液状グリースを含浸させることにより、図1に示す焼結軸受1(焼結含油軸受)が完成する。焼結体に含浸させた潤滑油は、焼結組織の粒子間に形成された気孔だけでなく、部分拡散合金粉の還元鉄粉が有する気孔にも保持される。焼結体に含浸させる潤滑油としては、動粘度が30mm/sec以上、200mm/sec以下のものが好ましい。なお、用途によっては、潤滑油の含浸工程を省略し、無給油下で使用する焼結軸受1とすることもできる。 By passing through the sintering step described above, a porous sintered body can be obtained. The sintered body 1 (sintered oil-impregnated bearing) shown in FIG. 1 is completed by sizing the sintered body and further impregnating it with lubricating oil or liquid grease by a method such as vacuum impregnation. The lubricating oil impregnated in the sintered body is held not only in the pores formed between the particles of the sintered structure, but also in the pores of the reduced iron powder of the partial diffusion alloy powder. As the lubricating oil impregnated into the sintered body, one having a kinematic viscosity of 30 mm 2 / sec or more and 200 mm 2 / sec or less is preferable. In addition, depending on a use, the impregnation process of lubricating oil can be abbreviate | omitted and it can also be set as the sintered bearing 1 used under oil-free.
 以上の製作工程を経た焼結軸受1の表面付近(図1中の領域P)のミクロ組織を図8に概略図示する。 FIG. 8 schematically shows the microstructure near the surface of the sintered bearing 1 (region P in FIG. 1) that has undergone the above manufacturing steps.
 図8に示すように、本発明の焼結軸受1では、金型成形面20aに扁平銅粉15を層状に付着させた状態で圧粉体25が成形され(図7参照)、この扁平銅粉15が焼結されていることに由来して、軸受1の軸受面1aを含む表面全体に銅濃度が他よりも高い表面層S1が形成される。しかも、扁平銅粉15の幅広面が成形面20aに付着していたこともあり、表面層S1の銅組織31aの多くが表面層S1の厚さ方向を薄くした扁平状になる。表面層S1の厚さは金型成形面20aに層状に付着した扁平銅粉層の厚さに相当し、概ね1μm~6μm程度である。表面層S1の表面は、銅組織31aの他に遊離黒鉛32(黒塗りで示す)を主体として形成され、残りが気孔の開口部や後述の鉄組織となる。この中では、銅組織31aの面積が最大であり、具体的には表面の60%以上が銅組織31aとなる。 As shown in FIG. 8, in the sintered bearing 1 of the present invention, the green compact 25 is formed in a state where the flat copper powder 15 is adhered in a layered manner to the mold forming surface 20a (see FIG. 7). Since the powder 15 is sintered, a surface layer S1 having a higher copper concentration than the others is formed on the entire surface including the bearing surface 1a of the bearing 1. In addition, the wide surface of the flat copper powder 15 may have adhered to the molding surface 20a, so that most of the copper structure 31a of the surface layer S1 has a flat shape in which the thickness direction of the surface layer S1 is thinned. The thickness of the surface layer S1 corresponds to the thickness of the flat copper powder layer adhering to the mold forming surface 20a in layers, and is about 1 μm to 6 μm. The surface of the surface layer S1 is mainly composed of free graphite 32 (shown in black) in addition to the copper structure 31a, and the remainder is a pore opening or an iron structure described later. In this, the area of the copper structure 31a is the largest, specifically, 60% or more of the surface becomes the copper structure 31a.
 一方、表面層S1で覆われた内側のベース部S2は、二種類の銅組織(31b,31c)、鉄組織33、遊離黒鉛32、および気孔が形成される。一方の銅組織31b(第一の銅組織)は圧粉体25の内部に含まれていた扁平銅粉15に由来して形成されたもので、扁平銅粉に対応した扁平形状をなしている。他方の銅組織31c(第二の銅組織)は、部分拡散合金粉11を構成する銅粉13に低融点金属が拡散して形成されたものであり、鉄組織33と接して形成されている。この第二の銅組織31cは、後述のように、粒子同士の結合力を高める役割を担う。 On the other hand, two types of copper structures (31b, 31c), iron structure 33, free graphite 32, and pores are formed in the inner base part S2 covered with the surface layer S1. One copper structure 31b (first copper structure) is formed from the flat copper powder 15 contained in the green compact 25, and has a flat shape corresponding to the flat copper powder. . The other copper structure 31 c (second copper structure) is formed by diffusing a low-melting-point metal into the copper powder 13 constituting the partial diffusion alloy powder 11, and is formed in contact with the iron structure 33. . As will be described later, the second copper structure 31c plays a role of increasing the bonding force between the particles.
 図9は、図8に示す焼結後の鉄組織33およびその周辺組織を拡大して示すものである。図9に示すように、低融点金属としての錫は、焼結時に最初に溶融して部分拡散合金粉11(図3参照)を構成する銅粉13に拡散し、青銅相16(Cu-Sn)を形成する。この青銅層16により液相焼結が進行し、鉄粒子同士、鉄粒子と銅粒子、あるいは銅粒子同士が強固に結合される。また、個々の部分拡散合金粉11のうち、銅粉13の一部が拡散してFe-Cu合金が形成された部分にも溶融した錫が拡散してFe-Cu-Sn合金(合金相17)が形成される。青銅層16と合金相17を合わせたものが第二の銅組織31cとなる。このように第二の銅組織31cは、その一部が鉄組織33に拡散しているため、第二の銅組織31cと鉄組織33の間で高いネック強度を得ることができる。なお、図9においては、フェライト相(αFe)やパーライト相(γFe)などを色の濃淡で表現している。具体的には、フェライト相(αFe)→青銅相16→合金相17(Fe-Cu-Sn合金)→パーライト相(γFe)の順に色を濃くしている。 FIG. 9 shows an enlarged view of the sintered iron structure 33 and its surrounding structure shown in FIG. As shown in FIG. 9, tin as a low melting point metal is first melted during sintering and diffused into copper powder 13 constituting partial diffusion alloy powder 11 (see FIG. 3), and bronze phase 16 (Cu—Sn). ). Liquid phase sintering proceeds by this bronze layer 16, and iron particles, iron particles and copper particles, or copper particles are firmly bonded. Further, among the individual partial diffusion alloy powders 11, the molten tin is diffused into the part where the part of the copper powder 13 is diffused to form the Fe—Cu alloy, and the Fe—Cu—Sn alloy (alloy phase 17 ) Is formed. A combination of the bronze layer 16 and the alloy phase 17 becomes the second copper structure 31c. As described above, since the second copper structure 31 c is partially diffused in the iron structure 33, high neck strength can be obtained between the second copper structure 31 c and the iron structure 33. In FIG. 9, the ferrite phase (αFe), the pearlite phase (γFe), and the like are represented by shades of color. Specifically, the colors are darkened in the order of ferrite phase (αFe) → bronze phase 16 → alloy phase 17 (Fe—Cu—Sn alloy) → pearlite phase (γFe).
 部分拡散合金粉11に代えて通常の鉄粉19を使用した場合、図10(a)に示すように、低融点金属粉16の一部が扁平銅粉15と通常鉄粉19の間に存在することになる。この状態で焼結すると、溶融した低融点金属粉16の表面張力によって扁平銅粉15が低融点金属粉16に引き込まれ、低融点金属粉16を核として丸くなる、いわゆる扁平銅粉15の球状化の問題を生じる。扁平銅粉15の球状化を放置すると、表面層S1における銅組織31a(図9参照)の面積が減少し、軸受面1aの摺動性に大きな影響を与える。 When normal iron powder 19 is used instead of the partial diffusion alloy powder 11, a part of the low melting point metal powder 16 exists between the flat copper powder 15 and the normal iron powder 19 as shown in FIG. Will do. When sintered in this state, the flat copper powder 15 is drawn into the low melting point metal powder 16 by the surface tension of the molten low melting point metal powder 16 and rounds around the low melting point metal powder 16 as a core. Cause problems. If the spheroidization of the flat copper powder 15 is allowed to stand, the area of the copper structure 31a (see FIG. 9) in the surface layer S1 is reduced, which greatly affects the slidability of the bearing surface 1a.
 これに対し、本発明では、図11に示すように、原料粉末として鉄粉12の略全周が銅粉13で覆われた部分拡散合金粉11を使用しているため、低融点金属粉16の周辺には多数の銅粉13が存在することになる。この場合、焼結に伴って溶融した低融点金属粉16が扁平銅粉15より先に部分拡散合金粉11の銅粉13に拡散する。特に焼結の初期段階では、扁平銅粉15の表面に流体潤滑剤が残存しているため、この現象が助長される。これにより、低融点金属粉16が表面層S1の扁平銅粉15に与える影響を抑えることができる(仮に扁平銅粉15の直下に低融点金属粉16が存在していたとしても、扁平銅粉15に作用する表面張力が減少する)。従って、表面層における扁平銅粉15の球状化を抑制することができ、軸受面1aをはじめとする軸受表面における銅組織の割合を高め、良好な摺動特性を得ることが可能となる。以上の特徴を活かすため、原料粉末には極力単体の鉄粉を添加しないのが好ましい。すなわち、鉄組織33は全て部分拡散合金粉由来のものとするのが好ましい。 On the other hand, in the present invention, as shown in FIG. 11, the partial diffusion alloy powder 11 in which substantially the entire circumference of the iron powder 12 is covered with the copper powder 13 is used as the raw material powder. A large number of copper powders 13 are present in the vicinity of. In this case, the low melting point metal powder 16 melted with the sintering diffuses into the copper powder 13 of the partial diffusion alloy powder 11 before the flat copper powder 15. In particular, at the initial stage of sintering, the fluid lubricant remains on the surface of the flat copper powder 15, and this phenomenon is promoted. Thereby, the influence which the low melting metal powder 16 has on the flat copper powder 15 of the surface layer S1 can be suppressed (even if the low melting metal powder 16 exists directly under the flat copper powder 15, the flat copper powder The surface tension acting on 15 is reduced). Therefore, the spheroidization of the flat copper powder 15 in the surface layer can be suppressed, the ratio of the copper structure on the bearing surface including the bearing surface 1a can be increased, and good sliding characteristics can be obtained. In order to take advantage of the above characteristics, it is preferable not to add as much iron powder as possible to the raw material powder. That is, it is preferable that all the iron structures 33 are derived from the partially diffused alloy powder.
 このように本発明では、表面層S1における扁平銅粉15の球状化を回避できるので、軸受における低融点金属粉16の配合割合を増やすことができる。すなわち、これまでの技術常識では、扁平銅粉15の球状化の影響を抑えるために、扁平銅粉15に対する低融点金属の配合配合(重量比)は10wt%未満に抑えるべきとされているが、本発明によれば、この割合を10wt%~30wt%にまで高めることができる。このように低融点金属の配合割合を増すことで、液相焼結による金属粒子間の結合を促進させる効果がさらに高まるため、焼結軸受1の高強度化により有効となる。 Thus, in the present invention, since the spheroidization of the flat copper powder 15 in the surface layer S1 can be avoided, the blending ratio of the low melting point metal powder 16 in the bearing can be increased. That is, in the conventional technical common sense, in order to suppress the influence of the spheroidization of the flat copper powder 15, the blending ratio (weight ratio) of the low melting point metal to the flat copper powder 15 should be suppressed to less than 10 wt%. According to the present invention, this ratio can be increased to 10 wt% to 30 wt%. By increasing the blending ratio of the low melting point metal as described above, the effect of promoting the bonding between the metal particles by the liquid phase sintering is further enhanced. Therefore, the strength of the sintered bearing 1 is increased.
 以上の構成から、軸受面1aを含む表面層S1の表面全体で、鉄組織に対する銅組織の面積比を60%以上にすることができ、酸化されにくい銅リッチの軸受面1aを安定的に得ることができる。また、表面層S1が摩耗したとしても、部分拡散合金粉11に付着した銅粉13に由来する銅組織31cが軸受面1aに現れる。従って、焼結軸受1をスタータSTに使用した場合でも、軸受面1aのフレッティング摩耗を防止することが可能となる。また、初期なじみ性および静粛性をはじめとする軸受面1aの摺動特性も向上させることができる。 From the above configuration, the area ratio of the copper structure to the iron structure can be 60% or more over the entire surface of the surface layer S1 including the bearing surface 1a, and the copper-rich bearing surface 1a that is not easily oxidized is stably obtained. be able to. Even if the surface layer S1 is worn, the copper structure 31c derived from the copper powder 13 adhered to the partial diffusion alloy powder 11 appears on the bearing surface 1a. Therefore, even when the sintered bearing 1 is used for the starter ST, it is possible to prevent fretting wear of the bearing surface 1a. In addition, the sliding characteristics of the bearing surface 1a including initial conformability and quietness can be improved.
 その一方で、表面層S1の内側のベース部S2は、表面相S1に比べて銅の含有量が少なく、かつ鉄の含有量が多い硬質組織となっている。具体的には、ベース部S2ではFeの含有量が最大であり、Cuの含有量は20~40wt%となる。このように軸受1のほとんどの部分を占めるベース部S2で鉄の含有量が多くなるため、軸受1全体での銅の使用量を削減することができ、低コスト化を達成することができる。また、鉄の含有量が多いために軸受全体の強度を高めることができる。 On the other hand, the base portion S2 inside the surface layer S1 has a hard structure with a small amount of copper and a large amount of iron compared to the surface phase S1. Specifically, the content of Fe is the maximum in the base portion S2, and the content of Cu is 20 to 40 wt%. As described above, since the iron content increases in the base portion S2 that occupies most of the bearing 1, the amount of copper used in the entire bearing 1 can be reduced, and cost reduction can be achieved. Further, since the iron content is large, the strength of the entire bearing can be increased.
 特に本発明では、銅よりも低融点の金属を所定量配合し、その液相焼結により金属粒子間(鉄粒子間、鉄粒子と銅粒子、あるいは銅粒子同士)の結合力が向上しており、しかも部分拡散合金粉11に由来する銅組織31cと鉄組織間33の間で高いネック強度が得られる。以上から、軸受面1aからの銅組織や鉄組織の脱落を防止し、軸受面の耐摩耗性を向上させることができる。また、軸受強度を高めることができ、具体的には、既存の銅鉄系焼結体に比べて2倍以上の圧環強度(300MPa以上)を達成することが可能となる。そのため、図2に示すようにハウジング3の内周に焼結軸受1を圧入固定した場合でも、軸受面1aがハウジング3の内周面形状に倣って変形することがなく、取り付け後も軸受面1aの真円度や円筒度等を安定的に維持することができる。従って、ハウジング3の内周に焼結軸受1を圧入固定した後、軸受面1aを適正形状・精度に仕上げるための加工(例えばサイジング)を追加的に実行することなく、所望の真円度(例えば3μm以下の真円度)を確保することができる。また、エンジンの振動により、軸2が軸受面1aに接触した際にも軸受面1aの変形を防止することができる。 In particular, in the present invention, a predetermined amount of a metal having a melting point lower than that of copper is blended, and the bonding force between metal particles (between iron particles, between iron particles and copper particles, or between copper particles) is improved by liquid phase sintering. In addition, high neck strength can be obtained between the copper structure 31c and the iron structure 33 derived from the partial diffusion alloy powder 11. From the above, it is possible to prevent the copper structure and the iron structure from falling off the bearing surface 1a, and to improve the wear resistance of the bearing surface. In addition, the bearing strength can be increased, and specifically, it is possible to achieve a crushing strength (300 MPa or more) that is twice or more that of an existing copper-iron-based sintered body. Therefore, even when the sintered bearing 1 is press-fitted and fixed to the inner periphery of the housing 3 as shown in FIG. 2, the bearing surface 1a is not deformed following the shape of the inner peripheral surface of the housing 3, and the bearing surface even after the mounting. The roundness and cylindricity of 1a can be stably maintained. Therefore, after press-fitting and fixing the sintered bearing 1 to the inner periphery of the housing 3, a desired roundness (for example, sizing) is additionally performed without finishing processing (for example, sizing) for finishing the bearing surface 1a to an appropriate shape and accuracy. For example, a roundness of 3 μm or less can be ensured. Further, deformation of the bearing surface 1a can be prevented even when the shaft 2 contacts the bearing surface 1a due to engine vibration.
 加えて、軸受面1aを含む表面全体に遊離黒鉛が析出しており、しかも扁平銅粉3に付随する形で金型成形面61に鱗状黒鉛を付着させているため、表面層S1における黒鉛の含有率がベース部S2での黒鉛の含有率よりも大きくなる。そのため、軸受面1aを低摩擦化することができ、軸受1の耐久性を増すことができる。 In addition, free graphite is deposited on the entire surface including the bearing surface 1a, and the scaly graphite is attached to the mold forming surface 61 in a form accompanying the flat copper powder 3. Therefore, the graphite in the surface layer S1 The content rate becomes larger than the content rate of graphite in the base portion S2. Therefore, the bearing surface 1a can be reduced in friction, and the durability of the bearing 1 can be increased.
 以上に述べた第一の実施形態では、鉄組織をフェライト相とパーライト相の二層組織としているが、パーライト相(γFe)は硬い組織(HV300以上)であって、相手材に対する攻撃性が強いため、軸受の使用条件によっては、軸2の摩耗を進行させるおそれがある。これを防止するため、鉄組織33の全てをフェライト相(αFe)で形成することもできる。 In the first embodiment described above, the iron structure is a two-layer structure of a ferrite phase and a pearlite phase, but the pearlite phase (γFe) is a hard structure (HV300 or higher) and has a strong attacking property against the counterpart material. For this reason, depending on the use conditions of the bearing, there is a possibility that the wear of the shaft 2 may proceed. In order to prevent this, the entire iron structure 33 can be formed of a ferrite phase (αFe).
 このように鉄組織33の全てをフェライト相で形成するため、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。これらの対策により、原料粉では炭素と鉄の反応が生じず、従って焼結後の鉄組織は全て軟らかい(HV200以下)フェライト相(αFe)となる。かかる構成であれば、仮に表面層S1が摩耗してベース部S2の鉄組織33が表面に現れていても、軸受面1aを軟質化することができ、軸2に対する攻撃性を弱めることができる。これ以外の構成、例えば原料粉体の組成や製造手順等は、第一の実施形態と共通であるので、重複説明を省略する。 Thus, in order to form all of the iron structure 33 with the ferrite phase, the sintering atmosphere is a gas atmosphere (hydrogen gas, nitrogen gas, argon gas, etc.) not containing carbon or a vacuum. By these measures, the raw material powder does not react with carbon and iron, and therefore the iron structure after sintering is all soft (HV200 or less) and a ferrite phase (αFe). With such a configuration, even if the surface layer S1 is worn and the iron structure 33 of the base portion S2 appears on the surface, the bearing surface 1a can be softened and the aggressiveness against the shaft 2 can be weakened. . Other configurations, such as the composition of the raw material powder and the manufacturing procedure, are the same as those in the first embodiment, and a duplicate description is omitted.
 図12に示すように、表面層S1とベース部S2を有する焼結軸受1の円筒面状の軸受面1aの軸方向両側に、開口側が大径となるテーパ面1b1,1b2を形成することもできる。このように焼結軸受1の軸方向両端にテーパ面1b1,1b2を形成することで、軸2にたわみが生じた場合でも軸2の外周面が焼結軸受1の端部に局所的に当接することを防止でき、応力集中による軸受面1aの局部摩耗や軸受強度の低下、異常音の発生等を防止することができる。 As shown in FIG. 12, tapered surfaces 1b1 and 1b2 whose opening side has a large diameter may be formed on both axial sides of the cylindrical bearing surface 1a of the sintered bearing 1 having the surface layer S1 and the base portion S2. it can. By forming the tapered surfaces 1b1 and 1b2 at both ends in the axial direction of the sintered bearing 1 in this way, even when the shaft 2 is bent, the outer peripheral surface of the shaft 2 is locally applied to the end of the sintered bearing 1. It is possible to prevent contact, and it is possible to prevent local wear of the bearing surface 1a due to stress concentration, a decrease in bearing strength, and the generation of abnormal noise.
 以上の効果を得るため、両テーパ面1b1,1b2の各軸方向長さb1,b2(何れも軸方向端部のチャンファは含まない)に対する半径方向ドロップ量の最大値γの比X(X=γ/b1もしくはX=γ/b2)は、1.75×10-3≦X≦5.2×10-2の範囲内(テーパ面の傾斜角が0.1°~3°となる範囲内)に設定するのが好ましい。なお、この場合、焼結軸受1の軸方向全長aに対する両テーパ面1b1,1b2の軸方向長さの和の比は、0.2≦(b1+b2)/a≦0.8の範囲に設定するのが好ましい。図12に示す焼結軸受1は、例えば自動車のパワーウィンド用駆動機構やパワーシート用駆動機構に用いることができる。 In order to obtain the above effect, the ratio X (X = X) of the maximum value γ of the radial drop amount with respect to the axial lengths b1 and b2 (both not including the chamfers at the axial ends) of the tapered surfaces 1b1 and 1b2. γ / b1 or X = γ / b2) is in the range of 1.75 × 10 −3 ≦ X ≦ 5.2 × 10 −2 (in the range where the inclination angle of the tapered surface is 0.1 ° to 3 °) ) Is preferable. In this case, the ratio of the sum of the axial lengths of the two tapered surfaces 1b1 and 1b2 to the total axial length a of the sintered bearing 1 is set in a range of 0.2 ≦ (b1 + b2) /a≦0.8. Is preferred. The sintered bearing 1 shown in FIG. 12 can be used, for example, for a power window drive mechanism or a power seat drive mechanism of an automobile.
 図13に示すように、焼結軸受1の円筒面状の軸受面1aの軸方向一方側にだけ、開口側が大径となるテーパ面1b1を形成することもでき、これによっても図12に示す実施形態と同様の作用効果を得ることができる。図12に示す実施形態と同様に、テーパ面1b1に対する半径方向ドロップ量の最大値γの比X(X=γ/b1)は、1.75×10-3≦X≦5.2×10-2の範囲内(テーパ面の傾斜角が0.1°~3°となる範囲内)に設定するのが好ましい。なお、この場合、焼結軸受1の軸方向全長aに対するテーパ面1b1の軸方向長さの比は、0.2≦b/a≦0.8の範囲に設定するのが好ましい。図13に示す焼結軸受1は、例えば自動車のパワーウィンド用駆動機構やパワーシート用駆動機構に用いることができる。 As shown in FIG. 13, a tapered surface 1b1 having a large diameter on the opening side can be formed only on one side in the axial direction of the cylindrical bearing surface 1a of the sintered bearing 1, and this is also shown in FIG. The same effect as the embodiment can be obtained. Similarly to the embodiment shown in FIG. 12, the ratio X (X = γ / b1) of the maximum value γ of the radial drop amount with respect to the tapered surface 1b1 is 1.75 × 10 −3 ≦ X ≦ 5.2 × 10 −. It is preferable to set within the range of 2 (in the range where the inclination angle of the tapered surface is 0.1 ° to 3 °). In this case, the ratio of the axial length of the tapered surface 1b1 to the total axial length a of the sintered bearing 1 is preferably set in the range of 0.2 ≦ b / a ≦ 0.8. The sintered bearing 1 shown in FIG. 13 can be used, for example, for a power window drive mechanism or a power seat drive mechanism of an automobile.
 図1に示す焼結軸受1は、携帯電話やスマートフォンをはじめとする携帯端末等において、電話の着信やメールの受信等を報知するバイブレータとして機能する振動モータに使用することができる。この振動モータは、図14に示すように、図1に示すように軸3の一端に取り付けた錘(偏芯錘)Wをモータ部4で回転させることにより、振動モータのハウジング3、さらには携帯端末全体に振動を発生させる構成になっている。図1は、二つの焼結軸受1(101,102)を使用した場合の振動モータ1の要部を概念的に示すもので、図示例ではモータ部4の軸方向両側に突出させた軸2の両側を焼結軸受1(101,102)により回転自在に支持している。錘W側の焼結軸受101は、錘Wとモータ部4の間に配置されており、この錘W側の焼結軸受101は、錘Wと反対側の焼結軸受102よりも厚肉でかつ大径に形成されている。二つの焼結軸受1は、何れも内周に軸受面1aを有し、例えば金属材料で形成されたハウジング3の内周に圧入等の手段で固定されている。 The sintered bearing 1 shown in FIG. 1 can be used in a vibration motor that functions as a vibrator for notifying incoming calls or emails in mobile terminals such as mobile phones and smartphones. As shown in FIG. 14, the vibration motor is configured by rotating a weight (eccentric weight) W attached to one end of the shaft 3 as shown in FIG. It is the structure which generates a vibration in the whole portable terminal. FIG. 1 conceptually shows a main part of a vibration motor 1 when two sintered bearings 1 (101, 102) are used. In the illustrated example, a shaft 2 protruded on both sides in the axial direction of the motor unit 4. Both sides are supported by the sintered bearing 1 (101, 102) so as to be rotatable. The sintered bearing 101 on the weight W side is disposed between the weight W and the motor unit 4. The sintered bearing 101 on the weight W side is thicker than the sintered bearing 102 on the opposite side of the weight W. And it is formed in a large diameter. Each of the two sintered bearings 1 has a bearing surface 1a on the inner periphery, and is fixed to the inner periphery of the housing 3 made of, for example, a metal material by means such as press fitting.
 この振動モータにおいて、軸2は10000rpm以上の回転数で駆動される。軸2が回転すると、錘Wの影響を受けて軸2が軸受面1aの全面に沿って振れ回りながら回転する。通常用途の焼結軸受では、軸2は重力方向に偏芯した状態を保持して回転するが、振動モータ用の焼結軸受1では、図15に示すように、軸受中心Obに対して軸中心Oaを重力方向だけでなくあらゆる方向に偏芯させた状態で軸2が回転することになる。 In this vibration motor, the shaft 2 is driven at a rotational speed of 10,000 rpm or more. When the shaft 2 rotates, the shaft 2 rotates under the influence of the weight W while swinging along the entire surface of the bearing surface 1a. In a sintered bearing for normal use, the shaft 2 rotates while maintaining an eccentric state in the direction of gravity. However, in the sintered bearing 1 for a vibration motor, as shown in FIG. The shaft 2 rotates in a state where the center Oa is decentered not only in the direction of gravity but also in all directions.
 このように振動モータ用の軸受では、軸2が軸受面全面にわたって振れ回り、さらにアンバランス荷重により軸受面が軸によって頻繁に叩かれる(軸受面に対して軸が頻繁に摺動接触する)ため、軸受面が通常用途の焼結軸受よりも摩耗し易くなる。また、焼結軸受をハウジング3内周に圧入した際に、軸受面がハウジングの内周面形状に倣って僅かでも変形すると、軸2の回転精度に大きな影響を与えることになる。本発明の焼結軸受1を振動モータに使用することで、これらの問題を解消することができる。 As described above, in the bearing for a vibration motor, the shaft 2 swings around the entire bearing surface, and the bearing surface is frequently hit by the shaft due to an unbalanced load (the shaft frequently comes into sliding contact with the bearing surface). The bearing surface is more easily worn than a sintered bearing for normal use. Further, when the sintered bearing is press-fitted into the inner periphery of the housing 3, if the bearing surface is slightly deformed following the shape of the inner peripheral surface of the housing, the rotational accuracy of the shaft 2 is greatly affected. These problems can be solved by using the sintered bearing 1 of the present invention in a vibration motor.
 なお、振動モータ用の焼結軸受1では、部分拡散合金粉として、平均粒度145メッシュ以下(平均粒径106μm以下)の粉末を使用するのが好ましい。これにより、軸受の多孔質組織を均一化して粗大気孔の生成を防止することができるので、軸受1を高密度化し、振動モータ用軸受としての使用にも耐え得る圧環強度や耐摩耗性を得ることが可能となる。圧粉工程における粉末充填性が低下するのを防止するため、平均粒度350メッシュ(平均粒径45μm)以下の部分拡散合金粉の割合は、25質量%未満とするのが好ましい。また、例えば振動モータ用の焼結軸受1として、図12あるいは図13の何れか一方に記載した焼結軸受1を用いてもよい。この場合、両図におけるテーパ面の軸方向長さに対する半径方向ドロップ量の最大値δの比Xは、上記と同様の範囲に設定することができる。 In the sintered bearing 1 for a vibration motor, it is preferable to use a powder having an average particle size of 145 mesh or less (average particle size of 106 μm or less) as the partial diffusion alloy powder. As a result, the porous structure of the bearing can be made uniform to prevent the formation of rough air holes, so that the bearing 1 can be densified to obtain the crushing strength and wear resistance that can withstand use as a vibration motor bearing. It becomes possible. In order to prevent the powder filling property in the compacting process from being lowered, the proportion of the partial diffusion alloy powder having an average particle size of 350 mesh (average particle size 45 μm) or less is preferably less than 25% by mass. Further, for example, as the sintered bearing 1 for the vibration motor, the sintered bearing 1 described in any one of FIG. 12 and FIG. 13 may be used. In this case, the ratio X of the maximum value δ of the radial drop amount to the axial length of the tapered surface in both figures can be set in the same range as described above.
 これまでは、焼結軸受1の鉄組織や銅組織の全てを部分拡散合金粉だけで形成する場合を説明したが、原料粉末に単体鉄粉および単体銅粉のうちどちらか一方または双方を添加し、ベース部S2における鉄組織や銅組織の一部を単体鉄粉や単体銅粉で形成することもできる。この場合、最低限の耐摩耗性、強度、および摺動特性を確保するため、原料粉末における部分拡散合金粉の割合は50質量%以上にするのが好ましい。この場合の原料粉末には、扁平銅粉を8~20wt%、低融点金属粉(例えば錫粉)を0.8~6.0wt%、固体潤滑剤粉(例えば黒鉛粉)を0.5~2.0wt%配合し、残部を単体鉄粉もしくは単体銅粉(あるいは双方の単体粉)とする。 So far, the explanation has been given of the case where all of the iron structure and copper structure of the sintered bearing 1 are formed only by the partial diffusion alloy powder, but either one or both of the simple iron powder and the simple copper powder are added to the raw material powder. And a part of iron structure and copper structure in base part S2 can also be formed with a simple iron powder or a simple copper powder. In this case, in order to ensure the minimum wear resistance, strength, and sliding characteristics, the proportion of the partial diffusion alloy powder in the raw material powder is preferably 50% by mass or more. In this case, the raw material powder includes 8 to 20 wt% of flat copper powder, 0.8 to 6.0 wt% of low melting point metal powder (eg, tin powder), and 0.5 to 6.0 wt. Of solid lubricant powder (eg, graphite powder). 2.0 wt% is blended, and the balance is made into simple iron powder or simple copper powder (or both simple powders).
 かかる構成では、単体鉄粉や単体銅粉の配合量を変更することにより、部分拡散合金粉を使用することで得られる耐摩耗性、高強度、および良好な摺動特性を維持しつつ、軸受特性を調整することが可能となる。例えば単体鉄粉を添加すれば、部分拡散合金粉の使用量減による低コスト化を図りつつ軸受の耐摩耗性や強度を高めることができ、単体銅粉を添加すれば摺動特性をさらに改善することができる。そのため、各種用途に適合した焼結軸受の開発コストを低廉化することができ、焼結軸受の多品種少量生産にも対応可能となる。 In such a configuration, the bearing amount is maintained while maintaining the wear resistance, high strength, and good sliding characteristics obtained by using the partial diffusion alloy powder by changing the blending amount of the single iron powder and the single copper powder. The characteristics can be adjusted. For example, by adding simple iron powder, it is possible to increase the wear resistance and strength of the bearing while reducing the cost by reducing the amount of partially diffused alloy powder, and by adding simple copper powder, the sliding characteristics are further improved. can do. As a result, the development cost of sintered bearings suitable for various applications can be reduced, and it is possible to cope with the production of various types of sintered bearings in small quantities.
[第二の実施形態]
  以上に述べた第一の実施形態の焼結軸受1では、軸受面1aの銅組織を扁平銅粉で形成しているが、軸受面1aの銅組織は部分拡散合金粉に含まれる銅粉で形成することもできる。以下、かかる焼結軸受1の詳細を、振動モータ(図14)に用いる場合を例に挙げて第二の実施形態として説明する。
[Second Embodiment]
In the sintered bearing 1 of the first embodiment described above, the copper structure of the bearing surface 1a is formed of flat copper powder, but the copper structure of the bearing surface 1a is copper powder contained in the partial diffusion alloy powder. It can also be formed. Hereinafter, the details of the sintered bearing 1 will be described as a second embodiment, taking as an example the case of use in a vibration motor (FIG. 14).
  第二の実施形態における原料粉末は、部分拡散合金粉と、低融点金属粉と、固体潤滑剤粉と、単体鉄粉および単体銅粉の何れか一方または双方からなる添加粉とを配合した混合粉末となる。原料粉末における各粉末の質量比は、部分拡散合金粉が最も多い。この原料粉末には、必要に応じて各種成形潤滑剤(例えば、離型性向上のための潤滑剤)を添加しても良い。 The raw material powder in the second embodiment is a mixture in which a partial diffusion alloy powder, a low melting point metal powder, a solid lubricant powder, and an additive powder composed of either one or both of a simple iron powder and a simple copper powder are mixed. It becomes powder. The mass ratio of each powder in the raw material powder is the largest for the partially diffused alloy powder. Various molding lubricants (for example, a lubricant for improving releasability) may be added to the raw material powder as necessary.
  部分拡散合金粉末11(図3参照)としては、上記のとおり平均粒度145メッシュ以下(平均粒径106μm以下)で、かつ平均粒度350メッシュ(平均粒径45μm)以下の粒子の割合を25質量未満としたものを使用するのが好ましい。 As the partial diffusion alloy powder 11 (see FIG. 3), the proportion of particles having an average particle size of 145 mesh or less (average particle size of 106 μm or less) and an average particle size of 350 mesh (average particle size of 45 μm) or less is less than 25 mass as described above. It is preferable to use the above.
  部分拡散合金粉11を構成する鉄粉12としては、還元鉄粉、アトマイズ鉄粉等、公知の鉄粉を使用することができるが、本実施形態では還元鉄粉を使用する。使用する鉄粉12は、平均粒径20μm~106μmのものが好ましく、平均粒径38μm~75μmのものが一層好ましい。 As the iron powder 12 constituting the partially diffused alloy powder 11, known iron powder such as reduced iron powder and atomized iron powder can be used. In this embodiment, reduced iron powder is used. The iron powder 12 used preferably has an average particle size of 20 μm to 106 μm, and more preferably an average particle size of 38 μm to 75 μm.
  また、部分拡散合金粉11を構成する銅粉13としては、汎用されている不規則形状や樹枝状の銅粉が広く使用可能であり、例えば、電解銅粉、アトマイズ銅粉等が用いられる。本実施形態では、表面に多数の凹凸を有すると共に、粒子全体として球形に近似した不規則形状をなし、成形性に優れたアトマイズ銅粉を使用している。使用する銅粉13は、鉄粉12よりも小粒径のものが使用され、具体的には平均粒径5μm以上20μm以下(好ましくは20μm未満)のものが使用される。なお、部分拡散合金粉11におけるCuの割合は10~30質量%(好ましくは22~26質量%)である。 Moreover, as the copper powder 13 which comprises the partial diffusion alloy powder 11, the irregular shape and dendritic copper powder which are generally used can be widely used, for example, electrolytic copper powder, atomized copper powder, etc. are used. In the present embodiment, an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used. The copper powder 13 to be used has a smaller particle diameter than the iron powder 12, and specifically, an average particle diameter of 5 μm to 20 μm (preferably less than 20 μm) is used. The proportion of Cu in the partial diffusion alloy powder 11 is 10 to 30% by mass (preferably 22 to 26% by mass).
  低融点金属粉としては、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。本実施形態では、これらの中でも銅と鉄に拡散し易く、単粉が使用できる錫粉、特にアトマイズ錫粉を使用する。錫粉(アトマイズ錫粉)としては、平均粒径5~63μmのものが好ましく使用され、平均粒径20~45μmのものが一層好ましく使用される。 As the low melting point metal powder, a metal powder having a melting point of 700 ° C. or less, for example, a powder of tin, zinc, phosphorus or the like is used. In the present embodiment, among these, tin powder that can easily diffuse into copper and iron and can be used as a single powder, particularly atomized tin powder, is used. As the tin powder (atomized tin powder), those having an average particle diameter of 5 to 63 μm are preferably used, and those having an average particle diameter of 20 to 45 μm are more preferably used.
  固体潤滑剤としては、黒鉛、二硫化モリブデン等の粉末を一種又は二種以上使用することができる。本実施形態では、コストを考えて黒鉛粉、特に鱗片状黒鉛粉を使用する。 As the solid lubricant, one or more powders such as graphite and molybdenum disulfide can be used. In the present embodiment, graphite powder, particularly scaly graphite powder is used in consideration of cost.
  添加粉は、単体鉄粉および単体銅粉の何れか一方または双方で構成される。単体鉄粉としては、還元鉄粉およびアトマイズ鉄粉のどちらも使用可能であり、軸受の用途に応じて使用する鉄粉が選定される。なお、還元鉄粉とアトマイズ鉄粉の混合物を単体鉄粉として使用することもできる。また、単体銅粉としても、電解銅粉およびアトマイズ銅粉のどちらも使用可能であり、軸受の用途に応じて使用する銅粉が選定される。なお、電解銅粉とアトマイズ銅粉の混合物を単体銅粉として使用することもできる。単体鉄粉や単体銅粉の平均粒径は、軸受の用途に応じて広く選択することができ、例えば単体鉄粉として平均粒径45~200μm(好ましくは100~150μm)の範囲内のもの、単体銅粉として平均粒径45~150μm(好ましくは80~125μm)の範囲内のものが使用可能である。 The soot-added powder is composed of one or both of simple iron powder and simple copper powder. As the simple iron powder, either reduced iron powder or atomized iron powder can be used, and the iron powder to be used is selected according to the application of the bearing. In addition, the mixture of reduced iron powder and atomized iron powder can also be used as a single-piece iron powder. Moreover, both the electrolytic copper powder and the atomized copper powder can be used as the single copper powder, and the copper powder to be used is selected according to the application of the bearing. In addition, the mixture of electrolytic copper powder and atomized copper powder can also be used as a simple substance copper powder. The average particle size of the simple iron powder and the simple copper powder can be widely selected according to the application of the bearing. For example, as the simple iron powder, the average particle size is in the range of 45 to 200 μm (preferably 100 to 150 μm), A single copper powder having an average particle diameter of 45 to 150 μm (preferably 80 to 125 μm) can be used.
  その後、原料粉末を、例えばカム式成形プレス機のダイセットにセットした成形金型を用いて圧縮成形して圧紛体を成形する。図17に模式的に示すように、圧粉体25では、部分拡散合金粉11、錫粉16、図示しない黒鉛粉および添加粉が均一に分散している。本実施形態で使用している部分拡散合金粉11は、鉄粉12として還元鉄粉を使用しているため、アトマイズ鉄粉を使用した部分拡散合金粉に比べて粉末が柔らかく、圧縮成形性に優れる。そのため、低密度でも圧粉体25の強度を高めることができ、圧粉体25の欠けや割れの発生を防止することができる。 Thereafter, the raw material powder is compression-molded using a molding die set in a die set of a cam-type molding press, for example, to form a compact. As schematically shown in FIG. 17, in the green compact 25, the partial diffusion alloy powder 11, the tin powder 16, the graphite powder (not shown) and the additive powder are uniformly dispersed. Since the partial diffusion alloy powder 11 used in the present embodiment uses reduced iron powder as the iron powder 12, the powder is softer than the partial diffusion alloy powder using atomized iron powder, and the compression moldability is improved. Excellent. Therefore, the strength of the green compact 25 can be increased even at a low density, and chipping or cracking of the green compact 25 can be prevented.
  次に圧粉体25を焼結し、焼結体を得る。焼結条件は、黒鉛(黒鉛粉)が鉄と反応しない(炭素の拡散が生じない)条件とする。鉄-炭素の平衡状態では、723℃に変態点があり、これを超えると鉄と炭素の反応が開始されて鉄組織中にパーライト相(γFe)が生成されるが、焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相(γFe)が生成される。パーライト相(γFe)は高硬度(HV300以上)で相手材に対する攻撃性が強いため、焼結軸受4の鉄組織中に過剰にパーライト相(γFe)が存在すると、軸3の摩耗を進行させるおそれがある。また、一般的な焼結軸受の製造工程では、ブタン、プロパン等の液化石油ガスと空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)の雰囲気下で圧粉体を加熱・焼結させる場合が多い。しかしながら、吸熱型ガスでは炭素が拡散して圧粉体の表面を硬化させるおそれがあり、上記同様の問題が生じ易くなる。 Next, the green compact 25 is sintered to obtain a sintered body. The sintering conditions are such that graphite (graphite powder) does not react with iron (no carbon diffusion occurs). In the iron-carbon equilibrium state, there is a transformation point at 723 ° C., and beyond this, the reaction between iron and carbon is initiated and a pearlite phase (γFe) is generated in the iron structure. After that, the reaction between carbon (graphite) and iron begins, and a pearlite phase (γFe) is generated. Since the pearlite phase (γFe) has high hardness (HV300 or higher) and is highly aggressive against the mating material, if the pearlite phase (γFe) is excessively present in the iron structure of the sintered bearing 4, the wear of the shaft 3 may be advanced. There is. In a general sintered bearing manufacturing process, green compacts are heated in an atmosphere of endothermic gas (RX gas), which is a mixture of liquefied petroleum gas such as butane and propane and air, and pyrolyzed with Ni catalyst.・ It is often sintered. However, in the endothermic gas, carbon may diffuse and the surface of the green compact may be cured, and the same problem as described above is likely to occur.
  以上の観点から、圧粉体25は900℃以下、具体的には800℃(好ましくは820℃)以上880℃以下で加熱する(低温焼結)。また、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。このような焼結条件であれば、原料粉末で炭素と鉄の反応が生じず、従って、焼結後の鉄組織は全て軟質のフェライト相(HV200以下)となる。原料粉末に流体潤滑剤等の各種成形潤滑剤を含めていた場合、成形潤滑剤は、焼結に伴って揮散する。 From the above viewpoint, the green compact 25 is heated at 900 ° C. or lower, specifically 800 ° C. (preferably 820 ° C.) or higher and 880 ° C. or lower (low temperature sintering). The sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. Under such sintering conditions, the reaction between carbon and iron does not occur in the raw material powder, and therefore the iron structure after sintering becomes a soft ferrite phase (HV200 or less). In the case where various molding lubricants such as a fluid lubricant are included in the raw material powder, the molding lubricant volatilizes with sintering.
  鉄組織は、その全てをフェライト相(αFe)で形成する他、図9に示すように、フェライト相αFeとパーライト相γFeの二相組織にすることもできる。これにより、フェライト相αFeよりも硬質のパーライト相γFeが軸受面の耐摩耗性向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる。但し、パーライト相γFeの存在割合が過剰となり、フェライト相αFeと同等の割合になると、パーライトによる軸3に対する攻撃性が増して軸3が摩耗しやすくなる。これを防止するため、図7に示すように、パーライト相γFeはフェライト相αFeの粒界に存在(点在)する程度に抑える。ここでいう「粒界」は、粉末粒子間に形成される粒界の他、粉末粒子中に形成される結晶粒界の双方を意味する。鉄組織をフェライト相αFeとパーライト相γFeの二相組織で形成する場合、鉄組織に占めるフェライト相αFeおよびパーライト相γFeの割合は、焼結体の任意断面における面積比で、それぞれ、80~95%および5~20%(αFe:γFe=80~95%:5~20%)程度とするのが望ましい。これにより、軸2の摩耗抑制と軸受面1aの耐摩耗性向上とを両立させることができる。 As shown in FIG. 9, the pig iron structure can be a two-phase structure of ferrite phase αFe and pearlite phase γFe. Thereby, the pearlite phase γFe harder than the ferrite phase αFe contributes to the improvement of the wear resistance of the bearing surface, and the wear of the bearing surface under high surface pressure can be suppressed to improve the bearing life. However, if the pearlite phase γFe is present in an excessive proportion and becomes equal to the ferrite phase αFe, the aggressiveness of the pearlite against the shaft 3 increases and the shaft 3 is likely to wear. In order to prevent this, as shown in FIG. 7, the pearlite phase γFe is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase αFe. The term “grain boundary” as used herein means both a grain boundary formed between powder particles and a crystal grain boundary formed in the powder particle. When the iron structure is formed of a two-phase structure of a ferrite phase αFe and a pearlite phase γFe, the ratio of the ferrite phase αFe and the pearlite phase γFe in the iron structure is an area ratio in an arbitrary cross section of the sintered body. % And 5 to 20% (αFe: γFe = 80 to 95%: 5 to 20%) are desirable. Thereby, it is possible to achieve both suppression of wear of the shaft 2 and improvement of wear resistance of the bearing surface 1a.
  パーライト相γFeの析出量は、主に焼結温度と雰囲気ガスに依存する。従って、上記の態様でパーライト相γFeをフェライト相αFeの粒界に存在させるためには、焼結温度を820℃~900℃程度に上げ、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相γFeを形成することができる。なお、上記のとおり、900℃を超える温度で圧粉体25を焼結すると、黒鉛粉中の炭素が鉄と反応してパーライト相γFeが形成されるので、圧粉体25は900℃以下で焼結するのが好ましい。 The amount of precipitation of the pearlite phase γFe mainly depends on the sintering temperature and the atmospheric gas. Therefore, in order to allow the pearlite phase γFe to be present at the grain boundary of the ferrite phase αFe in the above-described manner, the sintering temperature is raised to about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, such as natural gas, Sintering is performed using an endothermic gas (RX gas). As a result, carbon contained in the gas diffuses into iron during sintering, and pearlite phase γFe can be formed. As described above, when the green compact 25 is sintered at a temperature exceeding 900 ° C., the carbon in the graphite powder reacts with iron to form a pearlite phase γFe. Sintering is preferred.
 焼結後、焼結体にサイジングを施し、焼結体を仕上がり形状・寸法に仕上げた後、この焼結体の内部気孔に真空含浸等の手法で潤滑油を含浸させると、図14に示す焼結軸受1が完成する。焼結体の内部気孔に含浸させる潤滑油は低粘度のもの、具体的には40℃の動粘度が10~50mm/sのもの(例えば合成炭化水素系潤滑油)が使用される。軸受隙間に形成される油膜の剛性を確保しつつ、回転トルクの上昇を抑えるためである。なお、焼結体の内部気孔には、40℃の動粘度が10~50mm/sの潤滑油を基油としたグリースを含浸させても良い。また、サイジングは必要に応じて施せば足り、必ずしも施す必要はない。また、用途によっては潤滑油の含浸工程を省略し、無給油下で使用する焼結軸受とすることもできる。 After sintering, sizing the sintered body, finishing the sintered body into a finished shape and dimensions, and then impregnating the internal pores of this sintered body with a lubricating oil by a method such as vacuum impregnation, as shown in FIG. The sintered bearing 1 is completed. Lubricating oil impregnated in the internal pores of the sintered body is low viscosity, specifically, kinematic viscosity at 40 ° C. is 10 to 50 mm 2 / s (for example, synthetic hydrocarbon lubricating oil). This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap. The internal pores of the sintered body may be impregnated with grease based on a lubricating oil having a kinematic viscosity at 40 ° C. of 10 to 50 mm 2 / s. Further, sizing is sufficient if necessary, and it is not always necessary. In addition, depending on the application, the step of impregnating the lubricating oil can be omitted, and a sintered bearing used without oil supply can be obtained.
  圧粉体25の焼結温度を銅の融点(1083℃)よりも遥かに低温の900℃以下とした上記の焼結条件であれば、圧粉体25に含まれる、部分拡散合金粉11を構成する銅粉13は溶融せず、従って、焼結に伴って銅が鉄(鉄組織)中に拡散しない。そのため、この焼結体の表面(軸受面1a)には適量の銅組織が形成されている。また、焼結体の表面には遊離黒鉛も露出している。そのため、軸2との初期なじみ性が良好で、軸受面1aの摩擦係数も小さい焼結軸受1を得ることができる。 If the sintering temperature of the green compact 25 is 900 ° C. or lower, which is much lower than the melting point of copper (1083 ° C.), the partial diffusion alloy powder 11 contained in the green compact 25 is obtained. The constituent copper powder 13 does not melt, and therefore copper does not diffuse into iron (iron structure) with sintering. Therefore, an appropriate amount of copper structure is formed on the surface (bearing surface 1a) of the sintered body. Moreover, free graphite is also exposed on the surface of the sintered body. Therefore, it is possible to obtain a sintered bearing 1 having good initial conformability with the shaft 2 and a small friction coefficient of the bearing surface 1a.
  焼結体には、鉄を主成分とする鉄組織および銅を主成分とする銅組織が形成される。焼結体の鉄組織および銅組織の多くは部分拡散合金粉11で形成されるが、部分拡散合金粉では、銅粉の一部が鉄粉に拡散しているため、焼結後の鉄組織と銅組織の間で高いネック強度を得ることができる。また、焼結時には、圧粉体25中の錫粉16は溶融し、部分拡散合金粉11を構成する銅粉13の表面を濡らす。これに伴い、錫(Sn)と銅(Cu)との間で液相焼結が進行し、図9に示すように、隣り合う部分拡散合金粉11の鉄組織と銅組織、あるいは銅組織同士を結合する青銅相(Cu-Sn)16が形成される。また、個々の部分拡散合金粉11のうち、鉄粉12の表面に銅粉13の一部が拡散してFe-Cu合金が形成された部分には、溶融したSnが拡散してFe-Cu-Sn合金(合金相)17が形成されるため、鉄組織と銅組織の間のネック強度が一層高くなる。そのため、上述したような低温焼結でも高い圧環強度、具体的には300MPa以上の圧環強度を得ることができる。また、軸受面1aを硬くして軸受面1aの耐摩耗性を向上させることもできる。 In the fired sintered body, an iron structure mainly composed of iron and a copper structure mainly composed of copper are formed. Although most of the iron structure and copper structure of the sintered body are formed of the partial diffusion alloy powder 11, in the partial diffusion alloy powder, a part of the copper powder is diffused into the iron powder. High neck strength can be obtained between the copper structure and the copper structure. Further, at the time of sintering, the tin powder 16 in the green compact 25 melts and wets the surface of the copper powder 13 constituting the partial diffusion alloy powder 11. Along with this, liquid phase sintering proceeds between tin (Sn) and copper (Cu), and as shown in FIG. 9, the iron structure and copper structure of adjacent partial diffusion alloy powders 11, or between copper structures A bronze phase (Cu-Sn) 16 is formed. In addition, in each of the partial diffusion alloy powders 11, molten Sn is diffused and Fe—Cu is diffused in a part where a part of the copper powder 13 is diffused on the surface of the iron powder 12 to form an Fe—Cu alloy. Since the Sn alloy (alloy phase) 17 is formed, the neck strength between the iron structure and the copper structure is further increased. Therefore, a high crushing strength, specifically, a crushing strength of 300 MPa or more can be obtained even at the low temperature sintering as described above. Further, the bearing surface 1a can be hardened to improve the wear resistance of the bearing surface 1a.
  また、第二の実施形態では、原料粉末に単体鉄粉や単体銅粉からなる添加粉を配合している。従って、単体鉄粉や単体銅粉の配合量を変更することにより、部分拡散合金粉を使用することで得られる耐摩耗性、高強度、および良好な摺動特性を維持しつつ、軸受特性を調整することが可能となる。例えば添加粉として単体鉄粉を使用すれば、軸受の耐摩耗性や強度をさらに高めることができ、添加粉として単体銅粉を使用すれば摺動特性をさらに改善することができる。そのため、各用途に適合した焼結軸受の開発コストを低廉化することができ、焼結軸受の多品種少量生産にも対応可能となる。例えば部分拡散合金粉における銅粉の拡散量は30質量%程度が限界となるので、部分拡散合金粉だけで銅組織を形成すると、軸受中における銅の割合をそれ以上多くすることが困難となる。これに対し、添加粉として単体銅粉を配合することで、軸受中における銅の割合を30質量%よりも大きくすることができる。 Moreover, in 2nd embodiment, the additive powder which consists of a single-piece | unit iron powder and a single-piece | unit copper powder is mix | blended with raw material powder. Therefore, by changing the blending amount of single iron powder and single copper powder, bearing characteristics are maintained while maintaining the wear resistance, high strength, and good sliding characteristics obtained by using the partial diffusion alloy powder. It becomes possible to adjust. For example, if a single iron powder is used as the additive powder, the wear resistance and strength of the bearing can be further increased, and if a single copper powder is used as the additive powder, the sliding characteristics can be further improved. Therefore, it is possible to reduce the development cost of the sintered bearing suitable for each application, and it is possible to cope with the production of various types of sintered bearings in small quantities. For example, the diffusion amount of the copper powder in the partial diffusion alloy powder is limited to about 30% by mass. Therefore, when the copper structure is formed only with the partial diffusion alloy powder, it becomes difficult to increase the ratio of copper in the bearing further. . On the other hand, the ratio of the copper in a bearing can be made larger than 30 mass% by mix | blending single-piece | unit copper powder as an additional powder.
  原料粉末における部分拡散合金粉の配合割合が少なすぎると、部分拡散合金粉を使用したことによるメリットが減殺され、耐摩耗性、強度、および摺動特性を満足することが困難となる。従って、原料粉末における部分拡散合金粉の配合割合は、50質量%以上(望ましくは75質量%以上)とするのが好ましい。また、固体潤滑剤粉は、これが少なすぎると摺動特性を害し、多すぎると圧環強度の低下を招くので、原料粉末中の配合割合は0.3~1.5質量%とする。低融点金属粉は、これが少ないと液相焼結の進行が不十分となるために強度低下を招き、これが多いと焼結体の機械的強度が高まるものの粗大気孔が増える問題がある。従って、低融点金属粉の配合割合は、原料粉末中における銅粉の総質量(部分拡散合金粉中の銅粉と添加粉として添加した単体銅粉の和)の10質量%程度にするのが好ましい。具体的には、原料粉末における低融点金属の配合割合を0.5~5.0質量%に設定する。原料粉末の残部は添加粉および不可避的不純物からなる。添加粉の配合割合は、これを配合することによるメリットを考えれば、少なくも原料粉末の1.0質量%以上配合するのが好ましい。 If the blending ratio of the partial diffusion alloy powder in the raw material powder is too small, the merit of using the partial diffusion alloy powder is diminished and it becomes difficult to satisfy the wear resistance, strength, and sliding characteristics. Therefore, the blending ratio of the partial diffusion alloy powder in the raw material powder is preferably 50% by mass or more (desirably 75% by mass or more). Further, if the amount of the solid lubricant powder is too small, the sliding characteristics will be impaired, and if it is too large, the crushing strength will be lowered. Therefore, the blending ratio in the raw material powder is set to 0.3 to 1.5 mass%. If the amount of the low melting point metal powder is small, the progress of liquid phase sintering becomes insufficient and the strength is lowered. If the amount of the low melting point metal powder is large, the mechanical strength of the sintered body increases, but there is a problem that the number of rough air holes increases. Therefore, the blending ratio of the low melting point metal powder should be about 10% by mass of the total mass of the copper powder in the raw material powder (the sum of the copper powder in the partial diffusion alloy powder and the single copper powder added as the additive powder). preferable. Specifically, the blending ratio of the low melting point metal in the raw material powder is set to 0.5 to 5.0 mass%. The balance of the raw material powder consists of additive powder and inevitable impurities. The blending ratio of the additive powder is preferably at least 1.0% by mass or more of the raw material powder, considering the merit of blending it.
  なお、軸受面1aに必要とされる摺動特性を満足するため、焼結軸受1における銅の割合は少なくとも10質量%以上(好ましくは15質量%以上)とする。 In addition, in order to satisfy the sliding characteristics required for the bearing surface 1a, the ratio of copper in the sintered bearing 1 is at least 10% by mass (preferably 15% by mass or more).
  また、部分拡散合金粉11として、平均粒度145メッシュ以下(平均粒径106μm以下)の粉末を使用することにより、焼結体の多孔質組織を均一化して粗大気孔の生成を防止することができる。そのため、焼結体を高密度化して圧環強度や軸受面1aの耐摩耗性をさらに高めることができる。 Further, by using a powder having an average particle size of 145 mesh or less (average particle size of 106 μm or less) as the partial diffusion alloy powder 11, the porous structure of the sintered body can be made uniform to prevent the formation of rough atmospheric pores. . Therefore, the density of the sintered body can be increased to further improve the crushing strength and the wear resistance of the bearing surface 1a.
  以上に示すように、本実施形態の焼結体は300MPa以上の圧環強度を有しており、この圧環強度の値は、既存の銅鉄系焼結体のそれに比べて2倍以上の値である。また、本実施形態の焼結体の密度は6.8±0.3g/cmとなり、既存の鉄銅系焼結体の密度(6.6g/cm程度)よりも高密度となる。既存の鉄銅系焼結体でも圧粉体の成形工程で高圧縮することで高密度化することは可能であるが、このようにすると、内部の流体潤滑剤が焼結時に燃焼できずにガス化するため、表層部の気孔が粗大化してしまう。本発明では圧粉体の成形時に高圧縮する必要はなく、そのような不具合を防止することができる。 As described above, the sintered body of the present embodiment has a crushing strength of 300 MPa or more, and the value of this crushing strength is more than twice that of an existing copper-iron-based sintered body. is there. Moreover, the density of the sintered body of the present embodiment is 6.8 ± 0.3 g / cm 3 , which is higher than the density of the existing iron-copper-based sintered body (about 6.6 g / cm 3 ). Even existing iron-copper-based sintered bodies can be densified by high compression in the green compact molding process, but this will prevent the internal fluid lubricant from burning during sintering. Because of gasification, the pores in the surface layer portion become coarse. In the present invention, it is not necessary to perform high compression at the time of forming the green compact, and such a problem can be prevented.
  このように焼結体を高密度化させる一方で、含油率を15vol%以上にすることができ、既存の鉄銅系焼結軸受と同程度の含油率を確保できる。これは、主に部分拡散合金粉11を構成する鉄粉12として、海綿状をなし、保油性に優れた還元鉄粉を使用していることに由来する。この場合、焼結体に含浸させた潤滑油は、焼結組織の粒子間に形成された気孔だけでなく、還元鉄粉(部分拡散合金粉を構成する還元鉄粉の他、添加粉として還元鉄粉を使用した場合には当該還元鉄粉も含まれる)が有する気孔にも保持される。 一方 で While increasing the density of the sintered body in this way, the oil content can be increased to 15 vol% or more, and the oil content comparable to that of existing iron-copper sintered bearings can be ensured. This is mainly due to the use of reduced iron powder having a spongy shape and excellent oil retention as the iron powder 12 constituting the partial diffusion alloy powder 11. In this case, the lubricating oil impregnated in the sintered body is reduced not only in the pores formed between the particles of the sintered structure, but also reduced iron powder (in addition to the reduced iron powder constituting the partial diffusion alloy powder, as additive powder) When iron powder is used, the reduced iron powder is also contained).
  粗大気孔は特に焼結体の表層部(焼結体表面から深さ100μmに至るまでの領域)で生じやすいが、以上のようにして得られた焼結体であれば、上記のように表層部における粗大気孔の発生を防止して表層部の高密度化を図ることができる。具体的には、表層部の気孔率を、5~20%にすることができる。この気孔率は、例えば焼結体の任意断面における気孔部の面積比率を画像解析することで求めることができる。 Rough air holes are likely to occur particularly in the surface layer portion of the sintered body (region from the sintered body surface to a depth of 100 μm). However, if the sintered body is obtained as described above, the surface layer is formed as described above. It is possible to increase the density of the surface layer portion by preventing the generation of rough atmospheric holes in the portion. Specifically, the porosity of the surface layer portion can be 5 to 20%. This porosity can be obtained, for example, by image analysis of the area ratio of the pores in an arbitrary cross section of the sintered body.
  このように表層部が高密度化されることで軸受面1aの表面開孔率も小さくなり、具体的には、軸受面1aの表面開孔率を5%以上20%以下の範囲内に設定することができる。なお、表面開孔率が5%を下回ると、軸受隙間に必要十分量の潤滑油を滲み出させることが難しくなり(油膜形成能力が不十分となり)、焼結軸受としてのメリットを得ることができない。 By increasing the density of the surface layer portion in this way, the surface area ratio of the bearing surface 1a is also reduced. Specifically, the surface area ratio of the bearing surface 1a is set within a range of 5% to 20%. can do. When the surface area ratio is less than 5%, it becomes difficult to exude a necessary and sufficient amount of lubricating oil into the bearing gap (insufficient oil film forming ability), and a merit as a sintered bearing can be obtained. Can not.
  また、この焼結体を得るための原料粉末として、鉄粉12の表面に銅粉13を部分拡散させた部分拡散合金粉11を主原料としたものを使用しているため、既存の鉄銅系焼結軸受で問題となる銅の偏析を防止することができる。また、この焼結体であれば、NiやMo等の高価な金属粉末を使用することなく機械的強度を向上させることができるので、焼結軸受4の低コスト化も達成される。 In addition, as the raw material powder for obtaining this sintered body, since the main raw material is partially diffused alloy powder 11 in which copper powder 13 is partially diffused on the surface of iron powder 12, existing iron copper is used. It is possible to prevent the segregation of copper, which is a problem in the sintered sintered bearing. Further, with this sintered body, the mechanical strength can be improved without using expensive metal powder such as Ni or Mo, so that the cost of the sintered bearing 4 can be reduced.
  以上で説明したように、第二実施形態に係る焼結軸受1は高い圧環強度(300MPa以上の圧環強度)を有するため、図14に示すようにハウジング3の内周に圧入固定した場合でも、軸受面1aがハウジング3の内周面形状に倣って変形することがなく、取り付け後も軸受面1aの真円度や円筒度等を安定的に維持することができる。そのため、ハウジング3の内周に焼結軸受1を圧入固定した後、軸受面1aを適正形状・精度に仕上げるための加工(例えばサイジング)を追加的に実行することなく、所望の真円度(例えば3μm以下の真円度)を確保することができる。また、焼結軸受1が300MPa以上の圧環強度を有していれば、この焼結軸受4を組み込んだ振動モータ(ひいてはこの振動モータを備えた携帯端末等)が落下等することにより軸受面1aに大きな衝撃加重が付加された場合でも、軸受面1aの変形が可及的に防止される。さらに、軸受面1aが高硬度化されて高い耐摩耗性を有するため、たとえ軸受面1aの全面を軸2が振れ回り、あるいは軸2が軸受面1aに頻繁に衝突したとしても、軸受面1aの摩耗や損傷が抑えられる。従って、本発明によれば、振動モータの支持に適合した焼結軸受1を低コストに提供することができる。 As described above, since the sintered bearing 1 according to the second embodiment has high crushing strength (crushing strength of 300 MPa or more), even when press-fitted and fixed to the inner periphery of the housing 3 as shown in FIG. The bearing surface 1a is not deformed following the shape of the inner peripheral surface of the housing 3, and the roundness, cylindricity, and the like of the bearing surface 1a can be stably maintained even after the mounting. Therefore, after press-fitting and fixing the sintered bearing 1 to the inner periphery of the housing 3, a desired roundness (for example, sizing) is additionally performed without finishing processing (for example, sizing) for finishing the bearing surface 1a to an appropriate shape and accuracy. For example, a roundness of 3 μm or less can be ensured. Further, if the sintered bearing 1 has a crushing strength of 300 MPa or more, a vibration motor incorporating this sintered bearing 4 (and thus a portable terminal equipped with this vibration motor) will drop, etc., thereby causing a bearing surface 1a. Even when a large impact load is applied, the deformation of the bearing surface 1a is prevented as much as possible. Further, since the bearing surface 1a is hardened and has high wear resistance, even if the shaft 2 swings around the entire surface of the bearing surface 1a or the shaft 2 frequently collides with the bearing surface 1a, the bearing surface 1a. Wear and damage can be suppressed. Therefore, according to the present invention, the sintered bearing 1 suitable for supporting the vibration motor can be provided at low cost.
  ここで、参考までに、特許文献1に記載の技術手段に係る焼結軸受(以下、「銅被覆鉄粉軸受」という)の表層部の顕微鏡写真を図18に示す。図18と、第二の実施形態に係る焼結軸受1の表層部の顕微鏡写真(図16参照)とを比較すると、第二の実施形態に係る焼結軸受1は、銅被覆鉄粉軸受に比べて表層部の多孔質組織が均一化され、緻密であることが理解される。実際、第二の実施形態に係る焼結軸受1の表層部の気孔率は、13.6%だったのに対し、銅被覆鉄粉軸受の表層部の気孔率は、25.5%程度であった。このような差を生じた要因として、銅被覆鉄粉では鉄粉に銅膜が密着しているにすぎず、鉄相と銅相の間のネック強度が不足していることが挙げられる。 顕 微鏡 Here, for reference, a micrograph of a surface layer portion of a sintered bearing (hereinafter referred to as “copper-coated iron powder bearing”) according to the technical means described in Patent Document 1 is shown in FIG. Comparing FIG. 18 with a micrograph (see FIG. 16) of the surface layer portion of the sintered bearing 1 according to the second embodiment, the sintered bearing 1 according to the second embodiment is a copper-coated iron powder bearing. In comparison, it is understood that the porous structure of the surface layer is uniform and dense. Actually, the porosity of the surface layer portion of the sintered bearing 1 according to the second embodiment was 13.6%, whereas the porosity of the surface layer portion of the copper-coated iron powder bearing was about 25.5%. there were. As a factor causing such a difference, in the copper-coated iron powder, only the copper film is in close contact with the iron powder, and the neck strength between the iron phase and the copper phase is insufficient.
  以上に述べた第二の実施形態の構成および作用をまとめると以下のとおりである。 The configuration and operation of the second embodiment described above are summarized as follows.
  支持すべき軸との間に軸受隙間を形成する軸受面を内周に有する焼結軸受であって、鉄粉に銅粉を部分拡散させてなる部分拡散合金粉と、低融点金属粉と、固体潤滑剤粉と、単体鉄粉および単体銅粉のどちらか一方もしくは双方からなる添加粉とを含む原料粉末を成形し、焼結した焼結体からなることを特徴とするものである。 A sintered bearing having a bearing surface on the inner periphery that forms a bearing gap between the shaft to be supported, a partial diffusion alloy powder obtained by partially diffusing copper powder into iron powder, a low melting point metal powder, It is characterized by comprising a sintered body obtained by molding and sintering a raw material powder containing a solid lubricant powder and an additive powder composed of one or both of simple iron powder and simple copper powder.
  部分拡散合金粉では、銅粉の一部が鉄粉に拡散しているため、銅被覆鉄粉を使用する場合よりも焼結後の鉄組織と銅組織の間で高いネック強度が得られる。また、原料粉末を成形(圧縮成形)した後の焼結により、圧粉体に含まれる低融点金属粉が溶融する。低融点金属は銅に対して高いぬれ性を持つので、液相焼結により、隣り合う部分拡散合金粉の鉄組織と銅組織、あるいは銅組織同士を強固に結合させることができる。さらに、個々の部分拡散合金粉のうち、鉄粉の表面に銅粉の一部が拡散してFe-Cu合金が形成された部分には、溶融した低融点金属が拡散していくため、鉄組織と銅組織間のネック強度を一層高めることができる。これらのことから、低温焼結でも軸受面の耐摩耗性に優れる高強度の焼結軸受を得ることが可能となる。また、部分拡散合金粉に相当量の銅粉が含まれるので、軸受面に多くの銅組織を形成することができ、そのために良好な摺動特性(低トルク性、初期なじみ性、静粛性等)を得ることができる。 In the partially diffused alloy powder, since a part of the copper powder is diffused into the iron powder, a higher neck strength is obtained between the sintered iron structure and the copper structure than when the copper-coated iron powder is used. Moreover, the low melting point metal powder contained in the green compact is melted by sintering after the raw material powder is molded (compressed). Since the low melting point metal has high wettability with respect to copper, the iron structure and the copper structure of adjacent partial diffusion alloy powders, or the copper structures can be firmly bonded by liquid phase sintering. Furthermore, among the individual partial diffusion alloy powders, the molten low melting point metal diffuses into the part where a part of the copper powder is diffused on the surface of the iron powder and the Fe—Cu alloy is formed. The neck strength between the structure and the copper structure can be further increased. From these facts, it becomes possible to obtain a high-strength sintered bearing having excellent bearing surface wear resistance even at low-temperature sintering. In addition, since the partial diffusion alloy powder contains a considerable amount of copper powder, a large amount of copper structure can be formed on the bearing surface, and therefore good sliding characteristics (low torque, initial conformability, quietness, etc.) ) Can be obtained.
  加えて、原料粉末に、単体鉄粉および単体銅粉のどちらか一方もしくは双方からなる添加粉を配合しているので、単体鉄粉や単体銅粉の配合量を変更することにより、高い耐摩耗性および強度と、良好な摺動特性とを満足しつつ、軸受特性を用途に合わせて調整することが可能となる。例えば単体鉄粉を加えれば、耐摩耗性や軸受強度をさらに高めることができ、単体銅粉を加えれば摺動特性を改善することができる。最低限の耐摩耗性、強度、および摺動特性を確保するため、原料粉末における部分拡散合金粉の割合は50wt%以上にするのが好ましい。 In addition, since the additive powder consisting of one or both of single iron powder and single copper powder is blended into the raw material powder, high wear resistance can be achieved by changing the blending amount of single iron powder and single copper powder. It is possible to adjust the bearing characteristics according to the application while satisfying the properties and strength and the good sliding characteristics. For example, if single iron powder is added, wear resistance and bearing strength can be further increased, and if single copper powder is added, sliding characteristics can be improved. In order to ensure the minimum wear resistance, strength, and sliding characteristics, the proportion of the partial diffusion alloy powder in the raw material powder is preferably 50 wt% or more.
  この焼結軸受としては、300MPa以上の圧環強度を有するものが好ましい。部分拡散合金粉を主原料として使用することで、かかる圧環強度の確保も容易なものとなる。 も の This sintered bearing preferably has a crushing strength of 300 MPa or more. By using the partial diffusion alloy powder as a main raw material, it is easy to ensure the crushing strength.
  以上に述べた焼結軸受(焼結体)を得るには、原料粉末に含める部分拡散合金粉として、平均粒径5μm以上20μm未満の銅粉が鉄粉表面に部分拡散し、かつ合金粉中にCuを10~30質量%含有するものを使用するのが好ましい。 In order to obtain the sintered bearing (sintered body) described above, as the partial diffusion alloy powder included in the raw material powder, copper powder having an average particle size of 5 μm or more and less than 20 μm partially diffuses on the surface of the iron powder, and in the alloy powder It is preferable to use a material containing 10 to 30% by mass of Cu.
  原料粉末中に平均粒径106μmを超える大粒径の部分拡散合金粉が含まれていると、焼結体の内部に粗大気孔が形成され易く、その結果、必要とされる軸受面の耐摩耗性や圧環強度等を確保できない場合があることが判明した。従って、部分拡散合金粉は、平均粒度145メッシュ以下(平均粒径106μm以下)のものを使用するのが好ましい。このような合金粉を使用することで、焼結後の金属組織(多孔質組織)が均一化され、金属組織中での粗大気孔の発生が抑制された焼結体を安定的に得ることができる。これにより、軸受面の耐摩耗性や軸受の圧環強度が一層向上した焼結軸受を安定的に得ることが可能となる。 If the raw material powder contains a partially diffused alloy powder having a large particle size exceeding the average particle size of 106 μm, rough air holes are likely to be formed inside the sintered body, and as a result, the required bearing surface wear resistance is required. It has been found that there are cases where it is not possible to ensure properties and crushing strength. Accordingly, it is preferable to use a partially diffused alloy powder having an average particle size of 145 mesh or less (average particle size of 106 μm or less). By using such an alloy powder, it is possible to stably obtain a sintered body in which the sintered metal structure (porous structure) is made uniform and the generation of rough atmospheric pores in the metal structure is suppressed. it can. Thereby, it becomes possible to stably obtain a sintered bearing in which the wear resistance of the bearing surface and the crushing strength of the bearing are further improved.
  この焼結軸受では、低融点金属粉として錫粉、固体潤滑剤粉として黒鉛粉を使用することができる。 In this sintered bearing, tin powder can be used as the low melting point metal powder, and graphite powder can be used as the solid lubricant powder.
  焼結体の鉄組織を、軟質なフェライト相を主体として構成することで、軸受面の軸に対する攻撃性を弱くすることができ、軸の摩耗を抑制することが可能となる。フェライト相を主体とした鉄組織は、例えば鉄と黒鉛が反応しない900℃以下の温度で圧粉体を焼結することにより得ることができる。 By making the iron structure of the sintered body mainly composed of a soft ferrite phase, the aggressiveness of the bearing surface against the shaft can be weakened, and the shaft wear can be suppressed. An iron structure mainly composed of a ferrite phase can be obtained, for example, by sintering a green compact at a temperature of 900 ° C. or less at which iron and graphite do not react.
  フェライト相を主体とする鉄組織には、その全てをフェライト相とした組織の他、フェライト相の粒界にフェライト相よりも硬質のパーライト相を存在させたような鉄組織も含まれる。このように、フェライト相の粒界にパーライト相を形成することで、鉄組織をフェライト相だけで構成する場合と比べ、軸受面の耐摩耗性を向上させることができる。軸の摩耗抑制と軸受面の耐摩耗性向上とを両立させるには、鉄組織に占めるフェライト相(αFe)およびパーライト相(γFe)の割合を、それぞれ、80~95%および5~20%とする(αFe:γFe=80~95%:5~20%)のが好適である。なお、上記の割合は、例えば、焼結体の任意断面におけるフェライト相およびパーライト相それぞれの面積比率で求めることができる。 The iron structure mainly composed of a ferrite phase includes an iron structure in which a pearlite phase harder than a ferrite phase is present at the grain boundary of the ferrite phase in addition to a structure in which all of the ferrite phase is a ferrite phase. Thus, by forming a pearlite phase at the grain boundary of the ferrite phase, it is possible to improve the wear resistance of the bearing surface as compared with the case where the iron structure is composed only of the ferrite phase. In order to achieve both the suppression of shaft wear and the improvement of wear resistance of the bearing surface, the proportions of ferrite phase (αFe) and pearlite phase (γFe) in the iron structure are 80 to 95% and 5 to 20%, respectively. (ΑFe: γFe = 80 to 95%: 5 to 20%) is preferable. In addition, said ratio can be calculated | required by the area ratio of each of the ferrite phase and the pearlite phase in the arbitrary cross sections of a sintered compact, for example.
  部分拡散合金粉(Fe-Cu部分拡散合金粉)を構成する鉄粉としては、還元鉄粉を使用することができる。鉄粉としては、還元鉄粉以外にも、例えばアトマイズ鉄粉を使用することもできるが、還元鉄粉は内部気孔を有する海綿状(多孔質状)をなすことから、アトマイズ鉄粉に比べて粉末が柔らかく、圧縮成形性に優れる。そのため、低密度でも圧粉体強度を高めることができ、圧粉体の欠けや割れの発生を防止することができる。また、還元鉄粉は、上記のとおり海綿状をなすことから、アトマイズ鉄粉に比べて保油性に優れる利点も有する。 Reduced iron powder can be used as the iron powder constituting the partially diffused alloy powder (Fe—Cu partially diffused alloy powder). As the iron powder, for example, atomized iron powder can be used in addition to the reduced iron powder. However, since the reduced iron powder has a spongy shape (porous shape) having internal pores, it is compared with the atomized iron powder. The powder is soft and excellent in compression moldability. Therefore, the green compact strength can be increased even at low density, and chipping and cracking of the green compact can be prevented. Moreover, since reduced iron powder makes a spongy shape as described above, it also has an advantage of superior oil retention as compared with atomized iron powder.
  上記構成において、表層部の気孔率、特に軸受面を含む表層部の気孔率は5~20%とするのが好ましい。なお、ここでいう表層部とは、表面から深さ100μmに至るまでの領域である。 に お い て In the above configuration, the porosity of the surface layer portion, particularly the porosity of the surface layer portion including the bearing surface is preferably 5 to 20%. Here, the surface layer portion is a region from the surface to a depth of 100 μm.
  焼結体(の内部気孔)には潤滑油を含浸させることができ、潤滑油としては、40℃の動粘度が10~50mm/sの範囲内にあるものが好ましく使用される。軸受隙間に形成される油膜の剛性を確保しつつ、回転トルクの上昇を抑えるためである。なお、焼結体に含浸させる油としては、40℃の動粘度が10~50mm/sの範囲内にある油(潤滑油)を基油とした液状グリースを採用しても良い。 The sintered body (internal pores) can be impregnated with a lubricating oil, and a lubricating oil having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s is preferably used. This is to suppress the increase in rotational torque while ensuring the rigidity of the oil film formed in the bearing gap. The oil impregnated in the sintered body may be a liquid grease based on an oil (lubricating oil) having a kinematic viscosity at 40 ° C. in the range of 10 to 50 mm 2 / s.
  振動モータの軸を支持する軸受として上記の焼結軸受を使用することにより、軸受面の耐摩耗性や強度が向上するので、回転変動を防止することができる。また、焼結体が300MPa以上の圧環強度を有しているので、圧入時の軸受面の変形や衝撃荷重による軸受面の変形を可及的に防止することができる。 使用 Use of the above-mentioned sintered bearing as a bearing for supporting the shaft of the vibration motor improves the wear resistance and strength of the bearing surface, so that rotation fluctuations can be prevented. Further, since the sintered body has a crushing strength of 300 MPa or more, deformation of the bearing surface during press-fitting and deformation of the bearing surface due to an impact load can be prevented as much as possible.
 なお、以上の説明では、本発明を、軸受面1aを真円形状とした真円軸受に適用する場合を例示したが、本発明は真円軸受に限らず、軸受面1aや軸2の外周面にヘリングボーン溝、スパイラル溝等の動圧発生部を設けた流体動圧軸受にも同様に適用することができる。また、本実施形態では、軸2を回転させる場合を説明したが、これとは逆に軸受1を回転させる用途にも使用することができる。さらに、用途として自動車用スタータや携帯端末に使用される振動モータ等を例示したが、本発明にかかる焼結軸受1の用途はこれらに限定されず、例示した以外の他の用途にも広く適用することが可能である。 In the above description, the case where the present invention is applied to a perfect circle bearing having a perfect circle shape on the bearing surface 1a is illustrated. However, the present invention is not limited to a perfect circle bearing, and the outer circumference of the bearing surface 1a and the shaft 2 is exemplified. The present invention can be similarly applied to a fluid dynamic pressure bearing in which a dynamic pressure generating portion such as a herringbone groove or a spiral groove is provided on the surface. Moreover, although the case where the axis | shaft 2 was rotated was demonstrated in this embodiment, it can be used also for the use which rotates the bearing 1 conversely. Furthermore, although the vibration motor etc. which are used for the starter for vehicles, a portable terminal, etc. were illustrated as a use, the use of the sintered bearing 1 concerning this invention is not limited to these, It applies widely also to other uses other than illustrated Is possible.
 また、圧粉体25を圧縮成形する際には、成形金型20および原料粉末の少なくとも一方を加熱した状態で圧粉体25を圧縮成形する、いわゆる温間成形法や、成形金型20の成形面に潤滑剤を塗布した状態で圧粉体25を圧縮成形する金型潤滑成形法を採用しても良い。このような方法を採用すれば、圧粉体25を一層精度良く成形することができる。 When the green compact 25 is compression-molded, a so-called warm molding method in which the green compact 25 is compression-molded in a state where at least one of the molding die 20 and the raw material powder is heated, A die lubrication molding method may be employed in which the green compact 25 is compression molded in a state where a lubricant is applied to the molding surface. By adopting such a method, the green compact 25 can be molded with higher accuracy.
1    軸受
1a   軸受面
2    軸
3    ハウジング
4    モータ
11   部分拡散合金粉
12   鉄粉
13   銅粉
14   黒鉛粉
15   扁平銅粉
16   青銅層
17   合金相
25   圧粉体
31a  表面層の銅組織
31b  ベース部の第一の銅組織
31c  ベース部の第二の銅組織
32   黒鉛(固体潤滑剤)
33   鉄組織
S1   表面層
S2   ベース部
ST   スタータ
αFe  フェライト相
γFe  パーライト相
M   モータ部
W   錘
DESCRIPTION OF SYMBOLS 1 Bearing 1a Bearing surface 2 Shaft 3 Housing 4 Motor 11 Partially diffused alloy powder 12 Iron powder 13 Copper powder 14 Graphite powder 15 Flat copper powder 16 Bronze layer 17 Alloy phase 25 Compact 31a Surface layer copper structure 31b One copper structure 31c Second copper structure 32 of base part Graphite (solid lubricant)
33 Iron structure S1 Surface layer S2 Base part ST Starter αFe Ferrite phase γFe Pearlite phase M Motor part W Weight

Claims (14)

  1.  鉄、銅、銅よりも低融点の金属、および固体潤滑剤を主成分とする焼結軸受であって、
     鉄組織および銅組織を含むベース部と、ベース部の表面を覆う表面層とを有し、表面層が、その厚さ方向が薄くなるように配置された扁平銅粉を主体として形成され、かつベース層の鉄組織および銅組織の少なくとも一部が、鉄粉に銅粉を部分拡散させた部分拡散合金粉で形成されていることを特徴とする焼結軸受。
    A sintered bearing mainly composed of iron, copper, a metal having a lower melting point than copper, and a solid lubricant,
    Having a base part including an iron structure and a copper structure, and a surface layer covering the surface of the base part, the surface layer being formed mainly of flat copper powder arranged so that its thickness direction is thin, and A sintered bearing characterized in that at least a part of the iron structure and copper structure of the base layer is formed of a partially diffused alloy powder obtained by partially diffusing copper powder into iron powder.
  2.  表面層の表面に面積比で60%以上の銅組織を形成した請求項1記載の焼結軸受。 The sintered bearing according to claim 1, wherein a copper structure having an area ratio of 60% or more is formed on the surface of the surface layer.
  3.  ベース層の鉄組織および銅組織が、全て部分拡散合金粉で形成されている請求項1または2記載の焼結軸受。 The sintered bearing according to claim 1 or 2, wherein the iron structure and copper structure of the base layer are all formed of partially diffused alloy powder.
  4.  ベース層の鉄組織および銅組織が、部分拡散合金粉と、単体鉄粉および単体銅粉のうち、どちらか一方または双方とで形成されている請求項1または2記載の焼結軸受。 The sintered bearing according to claim 1 or 2, wherein the iron structure and the copper structure of the base layer are formed of a partial diffusion alloy powder and one or both of a single iron powder and a single copper powder.
  5.  ベース層の鉄組織に接する銅組織を、銅粉に低融点金属を拡散させたものとした請求項1~4何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 4, wherein a copper structure in contact with the iron structure of the base layer is obtained by diffusing a low melting point metal into copper powder.
  6.  低融点金属を、扁平銅粉に対して重量比で10wt%以上、30wt%以下含有する請求項1~5何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 5, wherein the low melting point metal is contained in a weight ratio of 10 wt% to 30 wt% with respect to the flat copper powder.
  7.  固体潤滑剤として黒鉛を含有する請求項1~6何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 6, comprising graphite as a solid lubricant.
  8.  鉄組織をフェライト相で形成した請求項1~7何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 7, wherein the iron structure is formed of a ferrite phase.
  9.  鉄組織を、フェライト相と、フェライト相の粒界に存在するパーライト相とで形成した請求項1~7何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 7, wherein the iron structure is formed of a ferrite phase and a pearlite phase existing at a grain boundary of the ferrite phase.
  10.  部分拡散合金粉における銅の割合が10wt%以上、30wt%以下である請求項1~9何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 9, wherein the proportion of copper in the partial diffusion alloy powder is 10 wt% or more and 30 wt% or less.
  11.  動粘度が30mm/sec以上、200mm/sec以下の潤滑油を含浸させた請求項1~10何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 10, impregnated with a lubricating oil having a kinematic viscosity of 30 mm 2 / sec or more and 200 mm 2 / sec or less.
  12.  エンジンを始動するためのスタータに使用される請求項1~11何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 11, which is used for a starter for starting an engine.
  13.  振動モータに使用される請求項1~11何れか1項に記載の焼結軸受。 The sintered bearing according to any one of claims 1 to 11, which is used for a vibration motor.
  14.  鉄粉に銅粉を部分拡散させた部分拡散合金粉と、扁平銅粉と、銅よりも低融点の金属粉と、固体潤滑剤粉とを混合し、この混合粉末で圧粉体を成形した後、圧粉体を銅の融点よりも低い温度で焼結することを特徴とする焼結軸受の製造方法。 A partially diffused alloy powder obtained by partially diffusing copper powder into iron powder, flat copper powder, metal powder having a melting point lower than copper, and solid lubricant powder were mixed, and a green compact was formed from this mixed powder. Thereafter, the green compact is sintered at a temperature lower than the melting point of copper.
PCT/JP2014/076399 2013-10-03 2014-10-02 Sintered bearing and manufacturing process therefor WO2015050200A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14850756.9A EP3054185B1 (en) 2013-10-03 2014-10-02 Manufacturing process of a sintered bearing
CN201480053495.2A CN105593543B (en) 2013-10-03 2014-10-02 Sintered bearing and its manufacturing method
US15/026,134 US20160223016A1 (en) 2013-10-03 2014-10-02 Sintered bearing and manufacturing process therefor
US16/402,698 US10907685B2 (en) 2013-10-03 2019-05-03 Sintered bearing and manufacturing process therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-208277 2013-10-03
JP2013208277 2013-10-03
JP2014007911A JP6302259B2 (en) 2014-01-20 2014-01-20 Manufacturing method of sintered bearing
JP2014-007911 2014-01-20
JP2014-008892 2014-01-21
JP2014008892A JP6389038B2 (en) 2013-10-03 2014-01-21 Sintered bearing and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/026,134 A-371-Of-International US20160223016A1 (en) 2013-10-03 2014-10-02 Sintered bearing and manufacturing process therefor
US16/402,698 Division US10907685B2 (en) 2013-10-03 2019-05-03 Sintered bearing and manufacturing process therefor

Publications (1)

Publication Number Publication Date
WO2015050200A1 true WO2015050200A1 (en) 2015-04-09

Family

ID=52778784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076399 WO2015050200A1 (en) 2013-10-03 2014-10-02 Sintered bearing and manufacturing process therefor

Country Status (1)

Country Link
WO (1) WO2015050200A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110778A1 (en) * 2015-12-25 2017-06-29 三菱マテリアル株式会社 Sintered oil-retaining bearing and process for producing the same
WO2018047923A1 (en) * 2016-09-08 2018-03-15 Ntn株式会社 Sintered bearing and process for producing same
EP3530384A4 (en) * 2016-10-18 2020-04-08 Diamet Corporation Oil-impregnated sintered bearing and production method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257251U (en) 1988-10-19 1990-04-25
JPH11117044A (en) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp Bearing made of free-graphite-precipitation-type ferrous sintered material, excellent in initial conformability
JP2001123253A (en) * 1999-10-28 2001-05-08 Oiles Ind Co Ltd Ferrous sintered sliding member and producing method therefor
JP2004084038A (en) * 2002-08-28 2004-03-18 Mitsubishi Materials Corp Sliding component and its manufacturing method
JP3613569B2 (en) 1997-08-07 2005-01-26 ポーライト株式会社 Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JP2010276051A (en) * 2009-05-26 2010-12-09 Ntn Corp Sintered oil-retaining bearing and lubricating fluid used by being impregnated into this bearing
JP2011127742A (en) * 2009-12-21 2011-06-30 Diamet:Kk Oil-impregnated sintered bearing and method for manufacturing the same
JP2012026504A (en) 2010-07-22 2012-02-09 Ntn Corp Oil-impregnated sintered bearing
JP2013159795A (en) * 2012-02-02 2013-08-19 Ntn Corp Method for manufacturing sintered bearing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257251U (en) 1988-10-19 1990-04-25
JP3613569B2 (en) 1997-08-07 2005-01-26 ポーライト株式会社 Composite metal powder for sintered bearing and sintered oil-impregnated bearing
JPH11117044A (en) * 1997-10-13 1999-04-27 Mitsubishi Materials Corp Bearing made of free-graphite-precipitation-type ferrous sintered material, excellent in initial conformability
JP2001123253A (en) * 1999-10-28 2001-05-08 Oiles Ind Co Ltd Ferrous sintered sliding member and producing method therefor
JP2004084038A (en) * 2002-08-28 2004-03-18 Mitsubishi Materials Corp Sliding component and its manufacturing method
JP2010276051A (en) * 2009-05-26 2010-12-09 Ntn Corp Sintered oil-retaining bearing and lubricating fluid used by being impregnated into this bearing
JP2011127742A (en) * 2009-12-21 2011-06-30 Diamet:Kk Oil-impregnated sintered bearing and method for manufacturing the same
JP2012026504A (en) 2010-07-22 2012-02-09 Ntn Corp Oil-impregnated sintered bearing
JP2013159795A (en) * 2012-02-02 2013-08-19 Ntn Corp Method for manufacturing sintered bearing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054185A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110778A1 (en) * 2015-12-25 2017-06-29 三菱マテリアル株式会社 Sintered oil-retaining bearing and process for producing the same
US10570959B2 (en) 2015-12-25 2020-02-25 Mitsubishi Materials Corporation Oil-retaining sintered bearing and method of producing the same
WO2018047923A1 (en) * 2016-09-08 2018-03-15 Ntn株式会社 Sintered bearing and process for producing same
EP3530384A4 (en) * 2016-10-18 2020-04-08 Diamet Corporation Oil-impregnated sintered bearing and production method therefor
US10731704B2 (en) 2016-10-18 2020-08-04 Diamet Corporation Oil-impregnated sintered bearing and production method therefor

Similar Documents

Publication Publication Date Title
US10907685B2 (en) Sintered bearing and manufacturing process therefor
JP6741730B2 (en) Sintered bearing and manufacturing method thereof
US11248653B2 (en) Sintered bearing
CN110043564B (en) Method for manufacturing sintered bearing, and vibration motor
JP6816079B2 (en) Vibration motor
JP6921046B2 (en) Manufacturing method of sintered bearing
JP2011094167A (en) Iron-copper based sintered sliding member, and method for producing the same
JP6302259B2 (en) Manufacturing method of sintered bearing
WO2013137347A1 (en) Sintered bearing and manufacturing method for same
WO2016158373A1 (en) Sintered bearing and method of manufacturing same
JP2013216972A (en) Method for manufacturing sintered bearing
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP6548952B2 (en) Sintered bearing and method of manufacturing the same
JP6038460B2 (en) Manufacturing method of sintered bearing
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method
JP6571230B2 (en) Sintered bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014850756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850756

Country of ref document: EP