JP6741730B2 - Sintered bearing and manufacturing method thereof - Google Patents
Sintered bearing and manufacturing method thereof Download PDFInfo
- Publication number
- JP6741730B2 JP6741730B2 JP2018153198A JP2018153198A JP6741730B2 JP 6741730 B2 JP6741730 B2 JP 6741730B2 JP 2018153198 A JP2018153198 A JP 2018153198A JP 2018153198 A JP2018153198 A JP 2018153198A JP 6741730 B2 JP6741730 B2 JP 6741730B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- copper
- iron
- sintered bearing
- bearing according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 222
- 239000000843 powder Substances 0.000 claims description 137
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 130
- 239000010949 copper Substances 0.000 claims description 61
- 229910052802 copper Inorganic materials 0.000 claims description 59
- 229910052751 metal Inorganic materials 0.000 claims description 57
- 239000002184 metal Substances 0.000 claims description 57
- 229910045601 alloy Inorganic materials 0.000 claims description 54
- 239000000956 alloy Substances 0.000 claims description 54
- 238000002844 melting Methods 0.000 claims description 50
- 230000008018 melting Effects 0.000 claims description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 37
- 239000002245 particle Substances 0.000 claims description 36
- 239000002344 surface layer Substances 0.000 claims description 34
- 239000000314 lubricant Substances 0.000 claims description 33
- 238000009792 diffusion process Methods 0.000 claims description 32
- 229910000859 α-Fe Inorganic materials 0.000 claims description 25
- 229910052742 iron Inorganic materials 0.000 claims description 22
- 229910001562 pearlite Inorganic materials 0.000 claims description 22
- 239000010439 graphite Substances 0.000 claims description 15
- 229910002804 graphite Inorganic materials 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 15
- 239000007858 starting material Substances 0.000 claims description 15
- 239000010687 lubricating oil Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 6
- 229910002549 Fe–Cu Inorganic materials 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 43
- 238000005245 sintering Methods 0.000 description 32
- 239000002994 raw material Substances 0.000 description 31
- 238000000465 moulding Methods 0.000 description 24
- 238000002156 mixing Methods 0.000 description 18
- 239000012530 fluid Substances 0.000 description 16
- 239000011148 porous material Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229910000906 Bronze Inorganic materials 0.000 description 5
- 239000010974 bronze Substances 0.000 description 5
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 230000016571 aggressive behavior Effects 0.000 description 4
- 229910000905 alloy phase Inorganic materials 0.000 description 4
- 230000004323 axial length Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910017755 Cu-Sn Inorganic materials 0.000 description 3
- 229910017927 Cu—Sn Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000005472 straight-chain saturated fatty acid group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、焼結金属からなる焼結軸受、およびその製造方法に関する。 The present invention relates to a sintered bearing made of sintered metal and a method for manufacturing the same.
焼結軸受は、無数の内部気孔を有する多孔質体であり、通常は、内部気孔に潤滑流体(例えば、潤滑油)を含浸させた状態で使用される。この場合、焼結軸受およびその内周に挿入した軸の相対回転時には、焼結軸受の内部気孔に保持された潤滑油が温度上昇に伴って焼結軸受の内周面(軸受面)に滲み出す。そして、この滲み出した潤滑油によって、焼結軸受の軸受面と軸の外周面との間の軸受隙間に油膜が形成され、軸が相対回転自在に支持される。 The sintered bearing is a porous body having innumerable internal pores and is usually used in a state where the internal pores are impregnated with a lubricating fluid (for example, lubricating oil). In this case, during relative rotation of the sintered bearing and the shaft inserted in the inner circumference of the sintered bearing, the lubricating oil retained in the internal pores of the sintered bearing seeps out to the inner peripheral surface (bearing surface) of the sintered bearing as the temperature rises. put out. The lubricating oil thus exuded forms an oil film in the bearing gap between the bearing surface of the sintered bearing and the outer peripheral surface of the shaft, so that the shaft is supported so as to be relatively rotatable.
例えば、下記の特許文献1には、鉄および銅を主成分とする銅鉄系の焼結軸受として、鉄粉に対し10質量%以上30質量%未満の銅を被覆してなり、粒度を80メッシュ以下とした銅被覆鉄粉を圧粉・焼結したものが記載されている。 For example, in Patent Document 1 below, as a copper-iron sintered bearing containing iron and copper as main components, 10 mass% or more and less than 30 mass% of copper is coated with respect to iron powder, and the particle size is 80. It is described that a copper-coated iron powder having a mesh or less is pressed and sintered.
しかしながら、特許文献1の構成では、鉄相(鉄組織)と銅相(銅組織)のネック強度が低いため、軸受面が早期に摩耗する等の点が問題となる。 However, in the configuration of Patent Document 1, since the neck strength of the iron phase (iron structure) and the copper phase (copper structure) is low, there is a problem in that the bearing surface is worn early.
特許文献1の焼結軸受を振動モータに使用した場合、長期間使用時に回転変動が大きくなることが明らかになった。これは鉄組織と銅組織間のネック強度不足により軸受面が早期に摩耗することによる。 It has been clarified that when the sintered bearing of Patent Document 1 is used in a vibration motor, the rotation fluctuation becomes large during long-term use. This is due to early wear of the bearing surface due to insufficient neck strength between the iron structure and the copper structure.
また、自動車用スタータにおけるモータ軸を回転自在に支持する軸受としてすべり軸受を使用することが知られている(特許文献2)。自動車用スタータでは、エンジン始動時に必要な大トルクを得るため、減速比の大きい減速装置、例えば遊星歯車機構を介してモータ出力を減速させるのが通例である。この遊星歯車機構を構成する遊星ギヤの内周に銅系、鉄系、あるいは銅鉄系等の焼結軸受を圧入し、軸に対して遊星ギヤを回転自在に支持することが既に提案されている(特許文献3)。 Further, it is known to use a slide bearing as a bearing that rotatably supports a motor shaft in a starter for an automobile (Patent Document 2). In a starter for an automobile, in order to obtain a large torque necessary for starting the engine, it is customary to decelerate the motor output through a reduction gear having a large reduction ratio, for example, a planetary gear mechanism. It has already been proposed to press-fit a sintered bearing such as a copper-based, iron-based, or copper-iron-based bearing on the inner circumference of a planetary gear that constitutes this planetary gear mechanism, and rotatably support the planetary gear with respect to the shaft. (Patent Document 3).
ところで、エンジンの回転中はスタータが停止状態にあるため、軸と軸受との間に相対回転は生じない。従って、エンジンの回転中に焼結軸受の軸受面やこれに対向する軸の表面が摩耗するとは考え難い。しかしながら、本発明者らの検証によれば、長時間エンジンを駆動させた際に、焼結軸受の軸受面や軸の表面にフレッティング摩耗を生じることが判明した。これは、エンジンの回転中はスタータにエンジンの振動が伝わるため、この振動により軸受面と軸の表面とが接触して微少滑りを生じ、これを契機として軸受面や軸の表面が酸化し、表面組織が脱落し易くなるためと考えられる。この場合、鉄組織と銅組織間のネック強度が不足していれば、表面組織の脱落が助長されることになる。このフレッティング摩耗は、焼結軸受におけるFeの含有量が増すほど顕著であるため、鉄系の焼結軸受、あるいはFe量の多い銅鉄系の焼結軸受を使用する場合に特に問題となる。 By the way, since the starter is stopped while the engine is rotating, relative rotation does not occur between the shaft and the bearing. Therefore, it is unlikely that the bearing surface of the sintered bearing or the surface of the shaft facing it will be worn during the rotation of the engine. However, according to the verification by the present inventors, it was found that fretting wear occurs on the bearing surface of the sintered bearing and the surface of the shaft when the engine is driven for a long time. This is because the vibration of the engine is transmitted to the starter while the engine is rotating, and this vibration causes the bearing surface and the surface of the shaft to come into contact with each other to cause a slight slip, which triggers oxidation of the bearing surface and the surface of the shaft. It is considered that the surface texture is easily removed. In this case, if the neck strength between the iron structure and the copper structure is insufficient, the removal of the surface structure is promoted. This fretting wear becomes more remarkable as the content of Fe in the sintered bearing increases, and thus becomes a problem particularly when an iron-based sintered bearing or a copper-iron-based sintered bearing having a large amount of Fe is used. ..
銅系の焼結軸受を使用すれば、酸化を生じにくくなるので、フレッティング摩耗を防止することができる。しかしながら、銅系の焼結軸受は、銅自体が軟質であるために軸受強度が不足する傾向にある。そのため、エンジンの振動により軸が軸受面に接触した際に軸受面が変形し、あるいは焼結軸受をハウジングの内周に圧入した際に、圧入に伴う焼結軸受の縮径変形の影響が軸受面にもおよび、軸受面の精度が低下するおそれがある。 When a copper-based sintered bearing is used, oxidation is less likely to occur, so fretting wear can be prevented. However, copper-based sintered bearings tend to lack bearing strength because copper itself is soft. Therefore, when the shaft comes into contact with the bearing surface due to engine vibration, the bearing surface is deformed, or when the sintered bearing is press-fitted into the inner circumference of the housing, the effect of shrinking deformation of the sintered bearing due to press-fitting is There is a risk that the accuracy of the bearing surface will be reduced as it reaches the surface.
このように銅系の焼結軸受は、初期なじみ性や静粛性といった摺動特性の面では有利であるが、軸受強度の面で難がある。反対に、鉄系やFe量の多い銅鉄系の焼結軸受は、軸受強度の面では有利であるが、摺動特性の面で難がある(既に述べたように、使用条件によってはフレッティング摩耗も懸念される)。このように既存の焼結軸受では、摺動特性、軸受強度、耐摩耗性等を全て満足することは困難であり、焼結軸受の用途拡大のためにもこれらの要求特性を高次元で満足する焼結軸受の提供が望まれる。 As described above, the copper-based sintered bearing is advantageous in terms of sliding properties such as initial conformability and quietness, but is difficult in terms of bearing strength. On the other hand, an iron-based or copper-iron-based sintered bearing containing a large amount of Fe is advantageous in terms of bearing strength, but it is difficult in terms of sliding characteristics. Worrying wear). As described above, it is difficult for existing sintered bearings to satisfy all of the sliding characteristics, bearing strength, wear resistance, etc., and these required characteristics are satisfied at a high level in order to expand the applications of sintered bearings. It is desired to provide a sintered bearing that can be used.
そこで、本発明は、良好な摺動特性を有すると共に、軸受面の耐摩耗性と軸受強度とを両立でき、かつコスト低減を図ることができる焼結軸受およびその製造方法を提供することを目的する。 Therefore, an object of the present invention is to provide a sintered bearing that has good sliding characteristics, can achieve both wear resistance of the bearing surface and bearing strength, and can reduce costs, and a method for manufacturing the same. To do.
上記目的を達成するため、本発明にかかる焼結軸受は、鉄、銅、銅よりも低融点の金属、および固体潤滑剤を主成分とする焼結軸受であって、鉄組織および銅組織を含むベース部と、ベース部の表面を覆う表面層とを有し、表面層が、その厚さ方向が薄くなるように配置された扁平銅粉を主体として形成され、かつベース部が、鉄粉に銅粉を部分拡散させた部分拡散合金粉で形成された鉄組織および銅組織を有することを特徴とするものである。 In order to achieve the above object, the sintered bearing according to the present invention is a sintered bearing containing iron, copper, a metal having a melting point lower than that of copper, and a solid lubricant as a main component, and has an iron structure and a copper structure. It has a base portion including a surface layer covering the surface of the base portion, the surface layer is formed mainly of flat copper powder arranged so that its thickness direction becomes thin, and the base portion is iron powder. It has an iron structure and a copper structure formed of a partially diffused alloy powder obtained by partially diffusing copper powder.
扁平銅粉は原料粉の成形時に金型成形面に付着する性質を有し、そのため成形後の圧粉体は表層に多くの銅が含まれる。従って、焼結後の焼結体には、銅の含有量の多い表面層が形成される(好ましくは表面層の表面に面積比で60%以上の銅組織が形成される)。このように表面層での銅の含有量を多くすることで、初期なじみ性および静粛性の向上を図ることができ、黒鉛等の固体潤滑剤の作用と相俟って、摺動特性が良好なものとなる。また、軸に対する攻撃性も低くなるので、耐久寿命が向上する。加えて、酸化されにくい銅リッチの軸受面が形成されるため、軸受面のフレッティング摩耗を防止することができる。 The flat copper powder has a property of adhering to the molding surface of the mold during the molding of the raw material powder, and therefore the green compact after molding contains a large amount of copper in the surface layer. Therefore, a surface layer having a high copper content is formed in the sintered body after sintering (preferably, a copper structure having an area ratio of 60% or more is formed on the surface of the surface layer). By increasing the content of copper in the surface layer in this way, it is possible to improve the initial conformability and quietness, and in combination with the action of solid lubricants such as graphite, good sliding characteristics are obtained. It will be In addition, since the aggressiveness to the shaft is also reduced, the durable life is improved. In addition, since a copper-rich bearing surface that is difficult to oxidize is formed, fretting wear of the bearing surface can be prevented.
この焼結軸受は低融点金属を含有するため、ベース部の鉄組織に接する銅組織は、基本的に銅粉に低融点金属を拡散させたものとなる。焼結時には低融点金属が銅の表面をぬらして液相焼結を進行させるため、特にベース部において金属粒子間の結合力を強化することができる。また、ベース部が基本的に鉄粉に銅粉の一部を拡散させた部分拡散合金粉で形成されるため、焼結後の銅組織(銅を主成分とする組織)と鉄組織(鉄を主成分とする組織)間で高いネック強度が得られる。以上から、軸受面からの銅組織や鉄組織の脱落を防止し、軸受面の耐摩耗性を高めることができる。また、軸受強度を高めることができ、そのためにハウジングの内周に焼結軸受を圧入固定した場合でも、軸受面がハウジングの内周面形状に倣って変形することがなく、軸受面の高精度化を図ることができる。また、軸受面の下地が強化されるため、振動等により軸が軸受面と接触した際の軸受面の変形を抑えることができる。従って、エンジンを始動するためのスタータ(スタータ内部に組み込まれる減速装置等も含まれる)での使用や携帯端末等に使用される振動モータでの使用に適合する焼結軸受を提供することができる。部分拡散合金粉における銅の割合は10wt%以上、30wt%以下とするのが好ましい。 Since this sintered bearing contains a low melting point metal, the copper structure in contact with the iron structure of the base portion is basically a copper powder in which the low melting point metal is diffused. At the time of sintering, the low melting point metal wets the surface of copper to promote liquid phase sintering, so that the bonding force between the metal particles can be strengthened particularly in the base portion. Further, since the base portion is basically formed of a partially diffused alloy powder obtained by diffusing a part of copper powder in iron powder, the copper structure (structure containing copper as a main component) and the iron structure (iron A high neck strength can be obtained between the structures mainly composed of. From the above, it is possible to prevent the copper structure and the iron structure from falling off from the bearing surface and improve the wear resistance of the bearing surface. In addition, the bearing strength can be increased. Therefore, even if the sintered bearing is press-fitted and fixed to the inner circumference of the housing, the bearing surface does not deform following the shape of the inner circumference of the housing, and the bearing surface has high accuracy. Can be promoted. Further, since the base of the bearing surface is strengthened, it is possible to suppress deformation of the bearing surface when the shaft comes into contact with the bearing surface due to vibration or the like. Therefore, it is possible to provide a sintered bearing suitable for use in a starter for starting an engine (including a reduction gear incorporated in the starter) and for use in a vibration motor used in a mobile terminal or the like. .. The proportion of copper in the partial diffusion alloy powder is preferably 10 wt% or more and 30 wt% or less.
扁平銅粉と低融点金属とを含む圧粉体を焼結すると、扁平銅粉の球状化が懸念される。本発明では、鉄粉に銅粉の一部を拡散させた部分拡散合金粉を使用しているため、焼結時に低融点金属の周囲には多数の銅粉が存在する。この場合、焼結の昇温に伴って溶融した低融点金属が扁平銅粉より先に部分拡散合金粉の銅粉に拡散するため、低融点金属粉が表面層の扁平銅粉に与える影響を抑えることができる。従って、表面層の扁平銅粉の球状化を防止することができ、表面層の表面における銅濃度を高めることができる。 When the compact powder containing the flat copper powder and the low melting point metal is sintered, the flat copper powder may be spheroidized. In the present invention, since the partially diffused alloy powder obtained by diffusing a part of copper powder in iron powder is used, a large number of copper powder exists around the low melting point metal during sintering. In this case, the melting point of the low-melting-point metal that has been melted as the temperature rises in the sintering diffuses into the copper powder of the partially-diffused alloy powder before the flattened copper powder. Can be suppressed. Therefore, the flattened copper powder in the surface layer can be prevented from being spheroidized, and the copper concentration on the surface of the surface layer can be increased.
ベース部の鉄組織および銅組織を、全て部分拡散合金粉で形成する他、ベース層の鉄組織および銅組織を、部分拡散合金粉と、単体鉄粉および単体銅粉のうち、どちらか一方または双方とで形成することができる。 The iron structure and the copper structure of the base part are all formed of the partial diffusion alloy powder, and the iron structure and the copper structure of the base layer are the partial diffusion alloy powder and one of the single iron powder and the single copper powder, or It can be formed with both.
扁平銅粉と低融点金属を組み合わせて使用する場合、球状化の影響を最小限にするためにも、扁平銅粉に対する低融点金属の含有量を10wt%よりも小さくすべきである、というのがこれまでの技術常識である。これに対し、本発明では、上記のとおり低融点金属による表面層の扁平銅粉の球状化を抑制することができるので、軸受中の低融点金属の含有量を増加させることができる。このように低融点金属の含有量が増えることで、金属粒子間の結合力がさらに強化されるので、軸受強度の向上に有効となる。具体的には、低融点金属を扁平銅粉に対する重量比で10wt%以上、30wt%以下含有させることができる。 When using the flat copper powder and the low melting point metal in combination, the content of the low melting point metal in the flat copper powder should be smaller than 10 wt% in order to minimize the influence of spheroidization. Is common technical knowledge so far. On the other hand, in the present invention, as described above, it is possible to suppress the spheroidizing of the flat copper powder of the surface layer due to the low melting point metal, so that the content of the low melting point metal in the bearing can be increased. By increasing the content of the low melting point metal in this way, the binding force between the metal particles is further strengthened, which is effective in improving the bearing strength. Specifically, the low melting point metal can be contained in an amount of 10 wt% or more and 30 wt% or less with respect to the weight of the flat copper powder.
鉄組織はフェライト相(だけ)で形成し、あるいはフェライト相と、フェライト相の粒界に存在するパーライト相とで形成することができる。前者であれば、表面層の摩耗により鉄組織を多く含むベース部が露出した際にも、鉄組織がフェライト相を主体とするため、銅の含有量が少なくても軸に対する攻撃性を弱くすることができ、耐久性が増す。後者であれば、硬質のパーライト相がフェライト相の耐摩耗性を補うため、軸受面の摩耗を抑制することができる。後者の場合、パーライトの存在割合が過剰になると、軸に対する攻撃性が増して軸が摩耗しやすくなる。かかる観点から、パーライト相はフェライト相の粒界に存在(点在)する程度とする(図9参照)。焼結軸受には、動粘度が30mm2/sec以上、200mm2/sec以下の潤滑油を含浸させるのが好ましい。 The iron structure can be formed by the ferrite phase (only), or can be formed by the ferrite phase and the pearlite phase existing at the grain boundary of the ferrite phase. In the former case, even when the base portion containing a large amount of iron structure is exposed due to wear of the surface layer, the iron structure mainly consists of the ferrite phase, so even if the copper content is low, the aggression to the shaft is weakened. It is possible and the durability is increased. In the latter case, the hard pearlite phase supplements the wear resistance of the ferrite phase, so that wear of the bearing surface can be suppressed. In the latter case, if the proportion of pearlite present is excessive, the aggression of the shaft is increased and the shaft is easily worn. From this point of view, the pearlite phase exists to the extent that it exists (is scattered) at the grain boundaries of the ferrite phase (see FIG. 9). It is preferable to impregnate the sintered bearing with a lubricating oil having a kinematic viscosity of 30 mm 2 /sec or more and 200 mm 2 /sec or less.
以上に述べた焼結軸受は、鉄粉に銅粉を部分拡散させた部分拡散合金粉と、扁平銅粉と、銅よりも低融点の金属粉と、固体潤滑剤粉とを混合し、この混合粉末で圧粉体を成形した後、圧粉体を銅の融点よりも低い温度で焼結することで製造することができる。 The sintered bearing described above is a mixture of a partially diffused alloy powder obtained by partially diffusing copper powder in iron powder, a flat copper powder, a metal powder having a melting point lower than copper, and a solid lubricant powder. It can be manufactured by forming a green compact with the mixed powder and then sintering the green compact at a temperature lower than the melting point of copper.
本発明によれば、良好な摺動特性を有すると共に、軸受面の耐摩耗性と軸受強度とを両立した低コストの焼結軸受を提供することが可能となる。 According to the present invention, it is possible to provide a low-cost sintered bearing that has good sliding characteristics and has both wear resistance of the bearing surface and bearing strength.
以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図1に示すように、焼結軸受1は、内周に軸受面1aを有する円筒状に形成される。この実施形態の焼結軸受1は多孔質の焼結体の内部空孔に潤滑油を含浸させて使用される(焼結含油軸受とも呼ばれる)。焼結軸受1の内周にステンレス鋼等からなる軸2を挿入し、その状態で軸を回転させ、あるいは軸受1を回転させると、焼結軸受1の無数の空孔に保持された潤滑油が温度上昇に伴って軸受面1aに滲み出す。この滲み出した潤滑油によって、軸の外周面と軸受面1aの間の軸受隙間に油膜が形成され、軸2が軸受1によって相対回転可能に支持される。 As shown in FIG. 1, the sintered bearing 1 is formed in a cylindrical shape having a bearing surface 1a on the inner circumference. The sintered bearing 1 of this embodiment is used by impregnating internal pores of a porous sintered body with lubricating oil (also referred to as a sintered oil-impregnated bearing). When the shaft 2 made of stainless steel or the like is inserted into the inner circumference of the sintered bearing 1 and the shaft is rotated or the bearing 1 is rotated in that state, the lubricating oil retained in the numerous holes of the sintered bearing 1 Exudes on the bearing surface 1a as the temperature rises. This leached lubricating oil forms an oil film in the bearing gap between the outer peripheral surface of the shaft and the bearing surface 1a, and the shaft 2 is supported by the bearing 1 so as to be relatively rotatable.
図2に、自動車用エンジンの始動のために用いられるスタータSTの代表的構成を簡略化して示す。図2に示すように示すように、スタータSTは、ハウジング3、モータ軸2aを有するモータ部4、出力軸2bを有する減速装置5、出力軸2cを有するオーバーランニングクラッチ6、ピニオンギヤ7、シフトレバー8、および電磁スイッチ9を主要な構成要素とする。シフトレバー8は支点Oを中心として回転可能であり、その先端はオーバーランニングクラッチ6の背後(入力側)に配置されている。オーバーランニングクラッチ6はワンウェイクラッチであり、その入力側には、減速装置5の出力軸2bがスプライン等を介して軸方向に摺動可能に連結されている。オーバーランニングクラッチ6の出力軸2cにピニオンギヤ7が取り付けられ、オーバーランニングクラッチ6は、その出力軸2cおよびピニオンギヤ7と一体となって軸方向に移動可能である。 FIG. 2 shows a simplified typical configuration of a starter ST used for starting an automobile engine. As shown in FIG. 2, the starter ST includes a housing 3, a motor unit 4 having a motor shaft 2a, a speed reducer 5 having an output shaft 2b, an overrunning clutch 6 having an output shaft 2c, a pinion gear 7, and a shift lever. 8 and the electromagnetic switch 9 as main constituent elements. The shift lever 8 is rotatable around a fulcrum O, and its tip is arranged behind (on the input side) the overrunning clutch 6. The overrunning clutch 6 is a one-way clutch, and the output shaft 2b of the speed reducer 5 is axially slidably coupled to the input side of the clutch via a spline or the like. A pinion gear 7 is attached to the output shaft 2c of the overrunning clutch 6, and the overrunning clutch 6 is movable in the axial direction integrally with the output shaft 2c and the pinion gear 7.
イグニッションをオンにすると、モータ部4が駆動され、モータ軸2aのトルクが減速装置5、およびオーバーランニングクラッチ6を介してピニオンギヤ7に伝達される。また電磁スイッチ9がオンとなってシフトレバー8に図中の矢印方向の回転力が与えられ、オーバーランニングクラッチ6およびピニオンギヤ7が一体に前進する。これにより、クランクシャフトと結合されたリングギヤ10にピニオンギヤ7が噛み合い、モータ部4のトルクがクランクシャフトに伝達されてエンジンが始動する。エンジンの始動後は、電磁スイッチ9がオフとなり、オーバーランニングクラッチ6およびピニオンギヤ7が後退して、ピニオンギヤ7がリングギヤ10から離れる。エンジン始動直後のエンジントルクはオーバーランニングクラッチ6で遮断されるため、モータ部4に伝達されない。 When the ignition is turned on, the motor unit 4 is driven, and the torque of the motor shaft 2a is transmitted to the pinion gear 7 via the reduction gear 5 and the overrunning clutch 6. Further, the electromagnetic switch 9 is turned on, the rotational force in the direction of the arrow in the drawing is given to the shift lever 8, and the overrunning clutch 6 and the pinion gear 7 advance integrally. As a result, the pinion gear 7 meshes with the ring gear 10 coupled to the crankshaft, the torque of the motor unit 4 is transmitted to the crankshaft, and the engine starts. After the engine is started, the electromagnetic switch 9 is turned off, the overrunning clutch 6 and the pinion gear 7 retract, and the pinion gear 7 separates from the ring gear 10. The engine torque immediately after the engine is started is cut off by the overrunning clutch 6 and is not transmitted to the motor unit 4.
本発明の焼結軸受1は、以上に述べたスタータSTのハウジング3等の内周に圧入固定され、スタータST内の各種軸2(2a〜2c)を支持する(図2ではモータ軸2aおよびオーバーランニングクラッチ6の出力軸2cを焼結軸受1で支持する場合を例示している)。詳細な図示は省略するが、減速装置5のギヤの支持にも焼結軸受1を使用することができる。例えば減速装置5を遊星歯車機構で構成する場合は、軸に対して回転する遊星ギヤの内周に本発明の焼結軸受1を圧入することで、遊星ギヤを軸に対して回転自在に支持することができる。 The sintered bearing 1 of the present invention is press-fitted and fixed to the inner circumference of the housing 3 or the like of the starter ST described above, and supports various shafts 2 (2a to 2c) in the starter ST (in FIG. 2, the motor shaft 2a and The case where the output shaft 2c of the overrunning clutch 6 is supported by the sintered bearing 1 is illustrated). Although not shown in detail, the sintered bearing 1 can also be used for supporting the gears of the speed reducer 5. For example, when the reduction gear 5 is composed of a planetary gear mechanism, the sintered bearing 1 of the present invention is press-fitted into the inner circumference of the planetary gear that rotates with respect to the shaft, so that the planetary gear is rotatably supported with respect to the shaft. can do.
以上に述べた焼結軸受1は、各種粉末を混合した原料粉を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。 The above-described sintered bearing 1 is formed by filling a raw material powder mixed with various powders into a mold, compressing the powder to form a green compact, and then sintering the green compact.
原料粉は、部分拡散合金粉、扁平銅粉、低融点金属粉、および固体潤滑剤粉を主成分とする混合粉末である。この混合粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。以下、焼結軸受1の第一の実施形態について、その原料粉末および製造手順を詳細に述べる。 The raw material powder is a mixed powder containing a partial diffusion alloy powder, a flat copper powder, a low melting point metal powder, and a solid lubricant powder as main components. If necessary, various molding aids such as a lubricant (metal soap or the like) for improving releasability are added to the mixed powder. Hereinafter, the raw material powder and the manufacturing procedure of the first embodiment of the sintered bearing 1 will be described in detail.
[部分拡散合金粉]
部分拡散合金粉としては、図3に示すように、鉄粉12の表面に多数の銅粉13を部分拡散させたFe−Cu部分拡散合金粉11が使用される。部分拡散合金粉11の拡散部分はFe−Cu合金を形成しており、図3中の部分拡大図に示すように、合金部分は鉄原子12aと銅原子13aとが相互に結合し、配列した結晶構造を有する。部分拡散合金粉11としては平均粒径が75μm〜212μmのものを使用するのが好ましい。
[Partially diffused alloy powder]
As the partial diffusion alloy powder, as shown in FIG. 3, Fe—Cu partial diffusion alloy powder 11 in which a large number of copper powders 13 are partially diffused on the surface of the iron powder 12 is used. The diffusion portion of the partially diffused alloy powder 11 forms a Fe—Cu alloy, and as shown in a partially enlarged view of FIG. 3, iron atoms 12a and copper atoms 13a are bonded to each other and arranged in the alloy portion. Has a crystal structure. As the partial diffusion alloy powder 11, it is preferable to use one having an average particle diameter of 75 μm to 212 μm.
上記の部分拡散合金粉11を構成する鉄粉12としては、還元鉄粉、アトマイズ鉄粉等、公知の鉄粉を使用することができるが、本実施形態では還元鉄粉を使用する。還元鉄粉は、球形に近似した不規則形状で、かつ内部気孔を有する海綿状(多孔質状)であるから、海綿鉄粉とも称される。使用する鉄粉12は、平均粒径45μm〜150μmのものが好ましく、平均粒径63μm〜106μmのものがより一層好ましい。 Known iron powder such as reduced iron powder and atomized iron powder can be used as the iron powder 12 constituting the above-mentioned partial diffusion alloy powder 11, but in the present embodiment, reduced iron powder is used. The reduced iron powder is also called sponge iron powder because it has an irregular shape similar to a sphere and is spongy (porous) having internal pores. The iron powder 12 used preferably has an average particle size of 45 μm to 150 μm, and more preferably has an average particle size of 63 μm to 106 μm.
なお、平均粒径は、粒子群にレーザ光を照射し、そこから発せられる回析・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるレーザ回析散乱法(例えば株式会社島津製作所製のSALD31000を用いる)により測定することができる(以下に述べる各粉末の平均粒径も同様の方法で測定することができる) The average particle size is determined by irradiating a particle group with laser light and calculating the particle size distribution from the intensity distribution pattern of the diffracted/scattered light emitted from the particle group. It can be measured by using SALD31000 manufactured by Shimadzu Corporation (the average particle size of each powder described below can also be measured by the same method).
また、部分拡散合金粉11を構成する銅粉13としては、汎用されている不規則形状や樹枝状の銅粉が広く使用可能であり、例えば、電解銅粉、アトマイズ銅粉等が用いられる。本実施形態では、表面に多数の凹凸を有すると共に、粒子全体として球形に近似した不規則形状をなし、成形性に優れたアトマイズ銅粉を使用している。使用する銅粉13は、鉄粉12よりも小粒径のものが使用され、具体的には平均粒径5μm以上45μm以下のものが使用される。なお、部分拡散合金粉11におけるCuの割合は10〜30wt%(好ましくは22〜26wt%)とする。 Further, as the copper powder 13 constituting the partial diffusion alloy powder 11, widely used irregularly shaped or dendritic copper powder can be widely used, and for example, electrolytic copper powder, atomized copper powder and the like are used. In this embodiment, atomized copper powder having a large number of irregularities on the surface and an irregular shape that is close to a spherical shape as a whole particle and excellent in formability is used. The copper powder 13 used has a particle size smaller than that of the iron powder 12, and more specifically has an average particle size of 5 μm or more and 45 μm or less. The proportion of Cu in the partial diffusion alloy powder 11 is 10 to 30 wt% (preferably 22 to 26 wt%).
[扁平銅粉]
扁平銅粉は、水アトマイズ粉等からなる原料銅粉を搗砕(Stamping)することで扁平化させたものである。扁平銅粉としては、長さLが20μm〜80μm、厚さtが0.5μm〜1.5μm(アスペクト比L/t=13.3〜160)のものが主に用いられる。ここでいう「長さ」および「厚さ」は、図4に示すように個々の扁平銅粉15の幾何学的な最大寸法をいう。扁平銅粉の見かけ密度は1.0g/cm3以下とする。以上のサイズ、及び見かけ密度の扁平銅粉であれば、金型成形面に対する扁平銅粉の付着力が高まるため、金型成形面に多量の扁平銅粉を付着させることができる。
[Flat copper powder]
The flat copper powder is flattened by stamping raw material copper powder such as water atomized powder. The flat copper powder having a length L of 20 μm to 80 μm and a thickness t of 0.5 μm to 1.5 μm (aspect ratio L/t=13.3 to 160) is mainly used. The "length" and "thickness" referred to here are the maximum geometrical dimensions of each flat copper powder 15 as shown in FIG. The apparent density of the flat copper powder is 1.0 g/cm 3 or less. With the flat copper powder having the above size and apparent density, the adhesion of the flat copper powder to the die molding surface is increased, so that a large amount of the flat copper powder can be attached to the die molding surface.
[流体潤滑剤]
金型成形面に扁平銅粉を付着させるため、扁平銅粉には予め流体潤滑剤を付着させておく。この流体潤滑剤は、原料粉末の金型充填前に扁平銅粉に付着させていればよく、好ましくは原料粉の混合前、さらに好ましくは原料銅粉を搗砕する段階で原料銅粉に付着させる。搗砕後、他の原料粉体と混合するまでの間に扁平銅粉に流体潤滑剤を供給し、攪拌する等の手段で扁平銅粉に流体潤滑剤を付着させてもよい。金型成形面上の扁平銅粉の付着量を確保するため、扁平銅粉に対する流体潤滑剤の配合割合は、重量比で0.1重量%以上とし、また扁平銅粉同士の付着による凝集を防止するため、配合割合は0.8重量%以下とする。望ましくは配合割合の下限は0.2重量%以上とし、上限は0.7重量%とする。流体潤滑剤としては、脂肪酸、特に直鎖飽和脂肪酸が好ましい。この種の脂肪酸は、Cn-1H2n-1COOHの一般式で表される。この脂肪酸としては、Cnが12〜22の範囲のもので、具体例として例えばステアリン酸を使用することができる。
[Fluid lubricant]
In order to attach the flat copper powder to the die molding surface, a fluid lubricant is previously attached to the flat copper powder. This fluid lubricant may be adhered to the flat copper powder before filling the raw material powder into the mold, preferably before mixing the raw material powder, and more preferably at the stage of grinding the raw material copper powder, to the raw material copper powder. Let The fluid lubricant may be applied to the flat copper powder by a means such as supplying the flat copper powder with a fluid lubricant and stirring the mixture until it is mixed with other raw material powder after crushing. In order to secure the adhesion amount of the flat copper powder on the die molding surface, the mixing ratio of the fluid lubricant to the flat copper powder is 0.1% by weight or more, and the aggregation due to the adhesion of the flat copper powder to each other is made. In order to prevent this, the compounding ratio is 0.8% by weight or less. Desirably, the lower limit of the mixing ratio is 0.2% by weight or more and the upper limit is 0.7% by weight. As the fluid lubricant, a fatty acid, particularly a straight chain saturated fatty acid is preferable. This type of fatty acid is represented by the general formula of Cn - 1H2n- 1COOH. This fatty acid has a Cn in the range of 12 to 22, and as a specific example, stearic acid can be used.
[低融点金属粉]
低融点金属粉は、銅よりも低融点の金属粉であり、本発明では、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。この中でも焼結時の蒸散が少ない錫が好ましい。低融点金属粉の平均粒径は5μm〜45μmとし、部分拡散合金粉11の平均粒径よりも小さくするのが好ましい。これら低融点金属粉は銅に対して高いぬれ性を持つ。原料粉に低融点金属粉を配合することで、焼結時には先ず低融点金属粉が溶融して銅粉の表面をぬらし、銅に拡散して銅を溶融させる。溶融した銅と低融点金属の合金により液相焼結が進行し、鉄粒子同士の間、鉄粒子と銅粒子の間、および銅粒子同士の間の結合強度が強化される。
[Low melting metal powder]
The low melting point metal powder is a metal powder having a melting point lower than that of copper, and in the present invention, a metal powder having a melting point of 700° C. or lower, for example, powder of tin, zinc, phosphorus or the like is used. Among these, tin is preferable because it has less evaporation during sintering. The low melting point metal powder has an average particle size of 5 μm to 45 μm, and is preferably smaller than the average particle size of the partial diffusion alloy powder 11. These low melting point metal powders have high wettability with copper. By mixing the low-melting-point metal powder with the raw material powder, the low-melting-point metal powder first melts at the time of sintering to wet the surface of the copper powder and diffuse into the copper to melt the copper. Liquid phase sintering proceeds due to the molten alloy of copper and low melting point metal, and the bond strength between iron particles, between iron particles and copper particles, and between copper particles is strengthened.
[固体潤滑剤粉]
固体潤滑剤粉は、軸2との摺動による金属接触時の摩擦低減のために添加され、例えば黒鉛が使用される。この時、黒鉛粉としては、扁平銅粉に対する付着性が得られるように、鱗状黒鉛粉を使用するのが望ましい。固体潤滑剤粉としては、黒鉛粉の他に二硫化モリブデン粉も使用することができる。二硫化モリブデン粉は層状結晶構造を有していて層状に剥離するため、鱗状黒鉛と同様に扁平銅粉に対する付着性が得られる。
[Solid lubricant powder]
The solid lubricant powder is added to reduce friction at the time of metal contact due to sliding with the shaft 2, and graphite, for example, is used. At this time, as the graphite powder, it is desirable to use scaly graphite powder so that adhesion to the flat copper powder can be obtained. As the solid lubricant powder, molybdenum disulfide powder can be used in addition to graphite powder. Since the molybdenum disulfide powder has a layered crystal structure and is exfoliated in a layered form, the adhesion to the flat copper powder can be obtained like the scaly graphite.
[配合比]
上記各粉末を配合した原料粉では、部分拡散合金粉を75〜90wt%、扁平銅粉を8〜20wt%、低融点金属粉(例えば錫粉)を0.8〜6.0wt% 、固体潤滑剤粉(例えば黒鉛粉)を0.5〜2.0wt%配合するのが好ましい。この配合比としたのは以下の理由による。
[Mixing ratio]
In the raw material powder containing the above powders, the partial diffusion alloy powder is 75 to 90 wt%, the flat copper powder is 8 to 20 wt%, the low melting point metal powder (for example, tin powder) is 0.8 to 6.0 wt%, and the solid lubrication is used. It is preferable to add 0.5 to 2.0 wt% of agent powder (for example, graphite powder). The reason for setting this mixing ratio is as follows.
本発明では、後述のように、原料粉の金型への充填時に扁平銅粉を金型に層状に付着させている。原料粉における扁平銅の配合割合が8重量%を下回ると、金型への扁平銅の付着量が不十分となって本願発明の作用効果が期待できない。また、扁平銅粉の金型への付着量は20wt%程度で飽和し、これ以上配合量を増しても、高コストの扁平銅粉を使用することによるコストアップが問題となる。低融点金属粉の割合が0.8wt%を下回ると軸受の強度を確保できず、6.0wt%を超えると、扁平銅粉の球形化の影響が無視できなくなる。また、固体潤滑剤粉の割合が0.5重量%を下回ると、軸受面における摩擦低減効果が得られず、2.0wt%を超えると強度低下等を招く。 In the present invention, as described later, the flat copper powder is adhered to the mold in layers when the raw material powder is filled into the mold. If the mixing ratio of the flat copper in the raw material powder is less than 8% by weight, the amount of the flat copper attached to the mold becomes insufficient, and the effect of the present invention cannot be expected. Further, the amount of the flat copper powder adhered to the mold is saturated at about 20 wt %, and even if the amount of the flat copper powder is increased beyond this, the cost increase due to the use of high-cost flat copper powder poses a problem. If the proportion of the low melting point metal powder is less than 0.8 wt %, the strength of the bearing cannot be secured, and if it exceeds 6.0 wt %, the effect of spheroidizing the flat copper powder cannot be ignored. Further, if the proportion of the solid lubricant powder is less than 0.5% by weight, the effect of reducing the friction on the bearing surface cannot be obtained, and if it exceeds 2.0% by weight, the strength is lowered.
[混合]
以上に述べた各粉末の混合は、2回に分けて行うのが望ましい。先ず、一次混合として、鱗状黒鉛粉および予め流体潤滑剤を付着させた扁平銅粉を公知の混合機で混合する。次いで、二次混合として、一次混合粉に部分拡散合金粉、および低融点金属粉を添加して混合し、さらに必要に応じて黒鉛粉も添加・混合する。扁平銅粉は、各種原料粉末の中でも見かけ密度が低いため、原料粉中に均一に分散させるのが難しいが、一次混合で見かけ密度が同レベルの扁平銅粉と黒鉛粉とを予め混合しておくと、扁平銅粉に付着した流体潤滑剤等により、図5に示すように、扁平銅粉15と黒鉛粉14が互いに付着して層状に重なり、扁平銅粉の見かけ密度が高まる。そのため、二次混合時に原料粉末中に扁平銅粉を均一に分散させることが可能となる。一次混合時に、別途潤滑剤を添加すれば、扁平銅粉と黒鉛粉の付着がさらに促進されるため、二次混合時に扁平銅粉をより均一に分散させることが可能となる。ここで添加する潤滑剤としては、上記流体潤滑剤と同種または異種の流体状潤滑剤の他、粉末状のものも使用可能である。例えば上述した金属セッケン等の成形助剤は一般に粉状でありながら、ある程度の付着力を有するので、扁平銅粉と黒鉛粉の付着より促進させることができる。
[mixture]
It is desirable to mix the powders described above in two steps. First, as primary mixing, scaly graphite powder and flat copper powder to which a fluid lubricant has been previously attached are mixed with a known mixer. Then, as the secondary mixing, the partial diffusion alloy powder and the low melting point metal powder are added to the primary mixed powder and mixed, and further, graphite powder is added and mixed as necessary. Flat copper powder has a low apparent density among various raw material powders, so it is difficult to uniformly disperse it in the raw material powders, but the apparent density in the primary mixing is the same level as the flat copper powder and the graphite powder in advance. Then, due to the fluid lubricant or the like attached to the flat copper powder, the flat copper powder 15 and the graphite powder 14 are attached to each other and overlap each other as shown in FIG. 5, and the apparent density of the flat copper powder is increased. Therefore, the flat copper powder can be uniformly dispersed in the raw material powder during the secondary mixing. If a lubricant is separately added during the primary mixing, the adhesion of the flat copper powder and the graphite powder is further promoted, so that the flat copper powder can be dispersed more uniformly during the secondary mixing. As the lubricant added here, in addition to the same or different kind of fluid lubricant as the above-mentioned fluid lubricant, powdery one can be used. For example, the above-mentioned forming aids such as metal soaps, which are generally powdery, have a certain degree of adhesion, so that they can be promoted by the adhesion of flat copper powder and graphite powder.
図5に示す扁平銅粉15と鱗状黒鉛粉14との付着状態は、二次混合後もある程度保持されるため、原料粉末を金型に充填した際には、金型表面に扁平銅粉と共に多くの黒鉛粉が付着することとなる。 The state of adhesion between the flat copper powder 15 and the scaly graphite powder 14 shown in FIG. 5 is maintained to some extent even after the secondary mixing. Therefore, when the raw material powder was filled in the mold, the flat copper powder and the flat copper powder were formed on the mold surface. A lot of graphite powder will adhere.
[成形]
二次混合後の原料粉末は成形機の金型20に供給される。図6に示すように、金型20は、コア21、ダイ22、上パンチ23、および下パンチ24からなり、これらによって区画されたキャビティに原料粉末が充填される。上下パンチ23,24を接近させて原料粉体を圧縮すると、原料粉末が、コア21の外周面、ダイ22の内周面、上パンチ23の端面、および下パンチ24の端面からなる成形面によって成形され、円筒状の圧粉体25が得られる。
[Molding]
The raw material powder after the secondary mixing is supplied to the mold 20 of the molding machine. As shown in FIG. 6, the mold 20 is composed of a core 21, a die 22, an upper punch 23, and a lower punch 24, and a raw material powder is filled in a cavity defined by these. When the raw material powder is compressed by bringing the upper and lower punches 23 and 24 close to each other, the raw material powder is formed by the molding surface including the outer peripheral surface of the core 21, the inner peripheral surface of the die 22, the end surface of the upper punch 23, and the end surface of the lower punch 24. Molded to obtain a cylindrical green compact 25.
原料粉体における金属粉の中では、扁平銅粉の見かけ密度が最も小さい。また、扁平銅粉は、上記長さLおよび厚さtを有する箔状であり、単位重量あたりの幅広面の面積が大きい。そのため、扁平銅粉15は、その表面に付着した流体潤滑剤による付着力、さらにはクーロン力等の影響を受けやすくなり、原料粉の金型20への充填後は、図7(図6中の領域Qの拡大図)に拡大して示すように、扁平銅粉15がその幅広面を金型20の成形面20aに向け、かつ複数層(1層〜3層程度)重なった層状態となって成形面20aの全域に付着する。この際、扁平銅粉15に付着した鱗状黒鉛も扁平銅粉15に付随して金型の成形面20aに付着する(図7では黒鉛の図示を省略)。その一方で、扁平銅15の層状組織の内側領域(キャビティ中心側となる領域)では、部分拡散合金粉11、扁平銅粉15、低融点金属粉16、および黒鉛粉の分散状態が全体で均一化している。成形後の圧粉体25は、このような各粉末の分布状態をほぼそのまま保持している。 Among the metal powders of the raw material powder, the flat copper powder has the smallest apparent density. The flat copper powder is a foil having the length L and the thickness t, and has a large area of the wide surface per unit weight. Therefore, the flat copper powder 15 is easily affected by the adhesive force of the fluid lubricant adhering to the surface thereof, further the Coulomb force, etc. (Enlarged view of area Q), the flat copper powder 15 has a wide surface facing the molding surface 20a of the mold 20, and a plurality of layers (about 1 to 3 layers) are stacked. Then, it adheres to the entire molding surface 20a. At this time, the scaly graphite attached to the flat copper powder 15 also attaches to the flat copper powder 15 and attaches to the molding surface 20a of the mold (graphite is not shown in FIG. 7). On the other hand, in the region inside the layered structure of the flat copper 15 (the region on the center side of the cavity), the partial diffusion alloy powder 11, the flat copper powder 15, the low melting point metal powder 16, and the graphite powder are uniformly dispersed throughout. It has become. The green compact 25 after molding holds the distribution state of each powder as it is.
[焼結]
その後、圧粉体25は焼結炉にて焼結される。本実施形態では、鉄組織が、フェライト相とパーライト相の二相組織となるように焼結条件が決定される。このように鉄組織をフェライト相とパーライト相の二相組織とすれば、硬質のパーライト相が耐摩耗性の向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる。
[Sintering]
Then, the green compact 25 is sintered in a sintering furnace. In the present embodiment, the sintering conditions are determined so that the iron structure has a two-phase structure of a ferrite phase and a pearlite phase. In this way, if the iron structure has a two-phase structure of ferrite phase and pearlite phase, the hard pearlite phase contributes to the improvement of wear resistance and suppresses the wear of the bearing surface under high surface pressure to improve the bearing life. Can be made.
炭素が拡散することにより、パーライト(γFe)の存在割合が過剰となり、フェライト(αFe)と同等レベル以上の割合になると、パーライトによる軸に対する攻撃性が著しく増して軸が摩耗しやすくなる。これを防止するため、パーライト相(γFe)はフェライト相(αFe)の粒界に存在(点在)する程度に抑える(図9参照)。ここでいう「粒界」は、粉末粒子間に形成される粒界の他、粉末粒子中に形成される結晶粒界18の双方を意味する。このように鉄組織をフェライト相(αFe)とパーライト相(γFe)の二相組織で形成する場合、鉄組織に占めるフェライト相(αFe)およびパーライト相(γFe)の割合は、後述するベース部S2の任意断面における面積比で、それぞれ、80〜95%および5〜20%(αFe:γFe=80〜95%:5〜20%)程度とするのが望ましい。これにより、軸2の摩耗抑制と軸受面1aの耐摩耗性向上とを両立させることができる。 Due to the diffusion of carbon, the abundance ratio of pearlite (γFe) becomes excessive, and when the ratio is equal to or higher than that of ferrite (αFe), the aggression of the pearlite on the shaft remarkably increases and the shaft is easily worn. In order to prevent this, the pearlite phase (γFe) is suppressed to the extent that it exists (is scattered) at the grain boundaries of the ferrite phase (αFe) (see FIG. 9). The term “grain boundary” as used herein means both the grain boundaries formed between the powder particles and the crystal grain boundaries 18 formed in the powder particles. When the iron structure is formed of a two-phase structure of the ferrite phase (αFe) and the pearlite phase (γFe) as described above, the ratio of the ferrite phase (αFe) and the pearlite phase (γFe) in the iron structure is determined by the base portion S2 described later. It is desirable that the area ratios in the arbitrary cross sections are about 80 to 95% and 5 to 20% (αFe:γFe=80 to 95%:5 to 20%), respectively. This makes it possible to achieve both suppression of wear of the shaft 2 and improvement of wear resistance of the bearing surface 1a.
パーライトの成長速度は、主に焼結温度に依存する。従って、上記の態様でパーライト相をフェライト相の粒界に存在させるためには、焼結温度(炉内雰囲気温度)を820℃〜900℃程度とし、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相(γFe)を形成することができる。なお、900℃を越える温度で焼結すると、黒鉛粉中の炭素が鉄と反応し、パーライト相が必要以上に増えるので好ましくない。焼結に伴い、上記流体潤滑剤、その他の潤滑剤、各種成形助剤は焼結体内部で燃焼し、あるいは焼結体内部からベーパする。 The growth rate of pearlite mainly depends on the sintering temperature. Therefore, in order to allow the pearlite phase to exist at the grain boundary of the ferrite phase in the above-described mode, the sintering temperature (in-furnace atmosphere temperature) is set to about 820° C. to 900° C., and a gas containing carbon as the in-furnace atmosphere, for example, Sintering is performed using natural gas or endothermic gas (RX gas). As a result, during sintering, carbon contained in the gas diffuses into iron and a pearlite phase (γFe) can be formed. It should be noted that sintering at a temperature exceeding 900° C. is not preferable because the carbon in the graphite powder reacts with iron and the pearlite phase increases more than necessary. With sintering, the fluid lubricant, other lubricants, and various molding aids are burned inside the sintered body or vaporized from the inside of the sintered body.
以上に述べた焼結工程を経ることで、多孔質の焼結体が得られる。この焼結体にサイジングを施し、さらに真空含浸等の手法で潤滑油あるいは液状グリースを含浸させることにより、図1に示す焼結軸受1(焼結含油軸受)が完成する。焼結体に含浸させた潤滑油は、焼結組織の粒子間に形成された気孔だけでなく、部分拡散合金粉の還元鉄粉が有する気孔にも保持される。焼結体に含浸させる潤滑油としては、動粘度が30mm2/sec以上、200mm2/sec以下のものが好ましい。なお、用途によっては、潤滑油の含浸工程を省略し、無給油下で使用する焼結軸受1とすることもできる。 A porous sintered body is obtained through the above-described sintering process. The sintered body is sized and further impregnated with lubricating oil or liquid grease by a technique such as vacuum impregnation, whereby the sintered bearing 1 (sintered oil-impregnated bearing) shown in FIG. 1 is completed. The lubricating oil impregnated in the sintered body is retained not only in the pores formed between the particles of the sintered structure but also in the pores of the reduced iron powder of the partially diffused alloy powder. The lubricating oil with which the sintered body is impregnated preferably has a kinematic viscosity of 30 mm 2 /sec or more and 200 mm 2 /sec or less. Depending on the application, the lubricating oil impregnation step may be omitted and the sintered bearing 1 may be used without oil supply.
以上の製作工程を経た焼結軸受1の表面付近(図1中の領域P)のミクロ組織を図8に概略図示する。 The microstructure in the vicinity of the surface (region P in FIG. 1) of the sintered bearing 1 that has undergone the above manufacturing steps is schematically shown in FIG.
図8に示すように、本発明の焼結軸受1では、金型成形面20aに扁平銅粉15を層状に付着させた状態で圧粉体25が成形され(図7参照)、この扁平銅粉15が焼結されていることに由来して、軸受1の軸受面1aを含む表面全体に銅濃度が他よりも高い表面層S1が形成される。しかも、扁平銅粉15の幅広面が成形面20aに付着していたこともあり、表面層S1の銅組織31aの多くが表面層S1の厚さ方向を薄くした扁平状になる。表面層S1の厚さは金型成形面20aに層状に付着した扁平銅粉層の厚さに相当し、概ね1μm〜6μm程度である。表面層S1の表面は、銅組織31aの他に遊離黒鉛32(黒塗りで示す)を主体として形成され、残りが気孔の開口部や後述の鉄組織となる。この中では、銅組織31aの面積が最大であり、具体的には表面の60%以上が銅組織31aとなる。 As shown in FIG. 8, in the sintered bearing 1 of the present invention, the green compact 25 is molded in a state where the flat copper powder 15 is adhered in layers on the die molding surface 20a (see FIG. 7). Due to the fact that the powder 15 is sintered, the surface layer S1 having a higher copper concentration than the other is formed on the entire surface of the bearing 1 including the bearing surface 1a. Moreover, since the wide surface of the flat copper powder 15 was attached to the molding surface 20a, most of the copper structure 31a of the surface layer S1 has a flat shape in which the thickness direction of the surface layer S1 is reduced. The thickness of the surface layer S1 corresponds to the thickness of the flat copper powder layer layered on the die molding surface 20a, and is approximately 1 μm to 6 μm. The surface of the surface layer S1 is formed mainly of free graphite 32 (shown by black coating) in addition to the copper structure 31a, and the rest is pore openings and an iron structure described later. Among them, the area of the copper structure 31a is the largest, and specifically, 60% or more of the surface is the copper structure 31a.
一方、表面層S1で覆われた内側のベース部S2は、二種類の銅組織(31b,31c)、鉄組織33、遊離黒鉛32、および気孔が形成される。一方の銅組織31b(第一の銅組織)は圧粉体25の内部に含まれていた扁平銅粉15に由来して形成されたもので、扁平銅粉に対応した扁平形状をなしている。他方の銅組織31c(第二の銅組織)は、部分拡散合金粉11を構成する銅粉13に低融点金属が拡散して形成されたものであり、鉄組織33と接して形成されている。この第二の銅組織31cは、後述のように、粒子同士の結合力を高める役割を担う。 On the other hand, in the inner base portion S2 covered with the surface layer S1, two kinds of copper structures (31b, 31c), an iron structure 33, free graphite 32, and pores are formed. One of the copper structures 31b (first copper structure) is formed from the flat copper powder 15 contained inside the green compact 25 and has a flat shape corresponding to the flat copper powder. .. The other copper structure 31c (second copper structure) is formed by diffusing a low melting point metal into the copper powder 13 forming the partial diffusion alloy powder 11, and is formed in contact with the iron structure 33. .. The second copper structure 31c plays a role of increasing the bonding force between particles, as described later.
図9は、図8に示す焼結後の鉄組織33およびその周辺組織を拡大して示すものである。図9に示すように、低融点金属としての錫は、焼結時に最初に溶融して部分拡散合金粉11(図3参照)を構成する銅粉13に拡散し、青銅相16(Cu−Sn)を形成する。この青銅相16により液相焼結が進行し、鉄粒子同士、鉄粒子と銅粒子、あるいは銅粒子同士が強固に結合される。また、個々の部分拡散合金粉11のうち、銅粉13の一部が拡散してFe−Cu合金が形成された部分にも溶融した錫が拡散してFe−Cu−Sn合金(合金相17)が形成される。青銅相16と合金相17を合わせたものが第二の銅組織31cとなる。このように第二の銅組織31cは、その一部が鉄組織33に拡散しているため、第二の銅組織31cと鉄組織33の間で高いネック強度を得ることができる。なお、図9においては、フェライト相(αFe)やパーライト相(γFe)などを色の濃淡で表現している。具体的には、フェライト相(αFe)→青銅相16→合金相17(Fe−Cu−Sn合金)→パーライト相(γFe)の順に色を濃くしている。 FIG. 9 is an enlarged view of the iron structure 33 after sintering shown in FIG. 8 and its surrounding structure. As shown in FIG. 9, tin as a low melting point metal is first melted at the time of sintering and diffused into the copper powder 13 that constitutes the partially diffused alloy powder 11 (see FIG. 3), and the bronze phase 16 (Cu-Sn). ) Is formed. Liquid phase sintering proceeds by the bronze phase 16, and the iron particles, the iron particles and the copper particles, or the copper particles are firmly bonded to each other. In addition, in each of the partially diffused alloy powders 11, the molten tin also diffuses into a portion in which a part of the copper powder 13 diffuses to form the Fe—Cu alloy, and the Fe—Cu—Sn alloy (alloy phase 17 ) Is formed. The combination of the bronze phase 16 and the alloy phase 17 becomes the second copper structure 31c. As described above, since a part of the second copper structure 31c is diffused in the iron structure 33, high neck strength can be obtained between the second copper structure 31c and the iron structure 33. In FIG. 9, the ferrite phase (αFe), the pearlite phase (γFe), etc. are represented by the shade of color. Specifically, the color is darkened in the order of ferrite phase (αFe) → bronze phase 16 → alloy phase 17 (Fe-Cu-Sn alloy) → pearlite phase (γFe).
部分拡散合金粉11に代えて通常の鉄粉19を使用した場合、図10(a)に示すように、低融点金属粉16の一部が扁平銅粉15と通常鉄粉19の間に存在することになる。この状態で焼結すると、溶融した低融点金属粉16の表面張力によって扁平銅粉15が低融点金属粉16に引き込まれ、低融点金属粉16を核として丸くなる、いわゆる扁平銅粉15の球状化の問題を生じる。扁平銅粉15の球状化を放置すると、表面層S1における銅組織31a(図9参照)の面積が減少し、軸受面1aの摺動性に大きな影響を与える。 When the normal iron powder 19 is used instead of the partial diffusion alloy powder 11, a part of the low melting point metal powder 16 exists between the flat copper powder 15 and the normal iron powder 19 as shown in FIG. Will be done. When sintered in this state, the flat copper powder 15 is drawn into the low melting metal powder 16 by the surface tension of the melted low melting metal powder 16, and rounds with the low melting metal powder 16 as a nucleus, so-called spherical copper powder 15. Raises the problem of commutation. If the flattened copper powder 15 is left spheroidized, the area of the copper structure 31a (see FIG. 9) in the surface layer S1 is reduced, which greatly affects the slidability of the bearing surface 1a.
これに対し、本発明では、図11に示すように、原料粉末として鉄粉12の略全周が銅粉13で覆われた部分拡散合金粉11を使用しているため、低融点金属粉16の周辺には多数の銅粉13が存在することになる。この場合、焼結に伴って溶融した低融点金属粉16が扁平銅粉15より先に部分拡散合金粉11の銅粉13に拡散する。特に焼結の初期段階では、扁平銅粉15の表面に流体潤滑剤が残存しているため、この現象が助長される。これにより、低融点金属粉16が表面層S1の扁平銅粉15に与える影響を抑えることができる(仮に扁平銅粉15の直下に低融点金属粉16が存在していたとしても、扁平銅粉15に作用する表面張力が減少する)。従って、表面層における扁平銅粉15の球状化を抑制することができ、軸受面1aをはじめとする軸受表面における銅組織の割合を高め、良好な摺動特性を得ることが可能となる。以上の特徴を活かすため、原料粉末には極力単体の鉄粉を添加しないのが好ましい。すなわち、鉄組織33は全て部分拡散合金粉由来のものとするのが好ましい。 On the other hand, in the present invention, as shown in FIG. 11, since the partial diffusion alloy powder 11 in which substantially the entire circumference of the iron powder 12 is covered with the copper powder 13 is used as the raw material powder, the low melting point metal powder 16 A large number of copper powders 13 are present around the area. In this case, the low-melting-point metal powder 16 melted by sintering diffuses into the copper powder 13 of the partial diffusion alloy powder 11 before the flat copper powder 15. In particular, at the initial stage of sintering, since the fluid lubricant remains on the surface of the flat copper powder 15, this phenomenon is promoted. As a result, the influence of the low melting point metal powder 16 on the flat copper powder 15 of the surface layer S1 can be suppressed (even if the low melting point metal powder 16 exists directly below the flat copper powder 15, the flat copper powder 15). The surface tension acting on 15 is reduced). Therefore, the spheroidization of the flat copper powder 15 in the surface layer can be suppressed, the proportion of the copper structure on the bearing surface including the bearing surface 1a can be increased, and good sliding characteristics can be obtained. In order to make full use of the above characteristics, it is preferable to add as little iron powder as possible to the raw material powder. That is, it is preferable that the iron structure 33 is entirely derived from the partial diffusion alloy powder.
このように本発明では、表面層S1における扁平銅粉15の球状化を回避できるので、軸受における低融点金属粉16の配合割合を増やすことができる。すなわち、これまでの技術常識では、扁平銅粉15の球状化の影響を抑えるために、扁平銅粉15に対する低融点金属の配合配合(重量比)は10wt%未満に抑えるべきとされているが、本発明によれば、この割合を10wt%〜30wt%にまで高めることができる。このように低融点金属の配合割合を増すことで、液相焼結による金属粒子間の結合を促進させる効果がさらに高まるため、焼結軸受1の高強度化により有効となる。 In this way, according to the present invention, the spheroidizing of the flat copper powder 15 in the surface layer S1 can be avoided, so that the blending ratio of the low melting point metal powder 16 in the bearing can be increased. That is, according to the technical common knowledge so far, in order to suppress the influence of the spheroidizing of the flat copper powder 15, the compounding ratio (weight ratio) of the low melting point metal to the flat copper powder 15 should be suppressed to less than 10 wt %. According to the present invention, this ratio can be increased to 10 wt% to 30 wt%. By increasing the mixing ratio of the low-melting point metal in this way, the effect of promoting the bonding between the metal particles by liquid phase sintering is further enhanced, which is effective in increasing the strength of the sintered bearing 1.
以上の構成から、軸受面1aを含む表面層S1の表面全体で、鉄組織に対する銅組織の面積比を60%以上にすることができ、酸化されにくい銅リッチの軸受面1aを安定的に得ることができる。また、表面層S1が摩耗したとしても、部分拡散合金粉11に付着した銅粉13に由来する銅組織31cが軸受面1aに現れる。従って、焼結軸受1をスタータSTに使用した場合でも、軸受面1aのフレッティング摩耗を防止することが可能となる。また、初期なじみ性および静粛性をはじめとする軸受面1aの摺動特性も向上させることができる。 With the above configuration, the area ratio of the copper structure to the iron structure can be set to 60% or more on the entire surface of the surface layer S1 including the bearing surface 1a, and the copper-rich bearing surface 1a that is hard to be oxidized is stably obtained. be able to. Further, even if the surface layer S1 is worn, the copper structure 31c derived from the copper powder 13 attached to the partial diffusion alloy powder 11 appears on the bearing surface 1a. Therefore, even when the sintered bearing 1 is used for the starter ST, it is possible to prevent fretting wear of the bearing surface 1a. Further, the sliding characteristics of the bearing surface 1a including the initial conformability and quietness can be improved.
その一方で、表面層S1の内側のベース部S2は、表面層S1に比べて銅の含有量が少なく、かつ鉄の含有量が多い硬質組織となっている。具体的には、ベース部S2ではFeの含有量が最大であり、Cuの含有量は20〜40wt%となる。このように軸受1のほとんどの部分を占めるベース部S2で鉄の含有量が多くなるため、軸受1全体での銅の使用量を削減することができ、低コスト化を達成することができる。また、鉄の含有量が多いために軸受全体の強度を高めることができる。 On the other hand, the base portion S2 inside the surface layer S1 has a hard structure in which the content of copper is smaller and the content of iron is larger than that of the surface layer S1. Specifically, the Fe content is maximum in the base portion S2, and the Cu content is 20 to 40 wt %. Since the iron content is large in the base portion S2 that occupies most of the bearing 1 in this manner, the amount of copper used in the entire bearing 1 can be reduced, and cost reduction can be achieved. Further, since the iron content is large, the strength of the entire bearing can be increased.
特に本発明では、銅よりも低融点の金属を所定量配合し、その液相焼結により金属粒子間(鉄粒子間、鉄粒子と銅粒子、あるいは銅粒子同士)の結合力が向上しており、しかも部分拡散合金粉11に由来する銅組織31cと鉄組織間33の間で高いネック強度が得られる。以上から、軸受面1aからの銅組織や鉄組織の脱落を防止し、軸受面の耐摩耗性を向上させることができる。また、軸受強度を高めることができ、具体的には、既存の銅鉄系焼結体に比べて2倍以上の圧環強度(300MPa以上)を達成することが可能となる。そのため、図2に示すようにハウジング3の内周に焼結軸受1を圧入固定した場合でも、軸受面1aがハウジング3の内周面形状に倣って変形することがなく、取り付け後も軸受面1aの真円度や円筒度等を安定的に維持することができる。従って、ハウジング3の内周に焼結軸受1を圧入固定した後、軸受面1aを適正形状・精度に仕上げるための加工(例えばサイジング)を追加的に実行することなく、所望の真円度(例えば3μm以下の真円度)を確保することができる。また、エンジンの振動により、軸2が軸受面1aに接触した際にも軸受面1aの変形を防止することができる。 In particular, in the present invention, a predetermined amount of a metal having a melting point lower than that of copper is blended, and the liquid phase sintering improves the bonding force between metal particles (between iron particles, iron particles and copper particles, or copper particles). Moreover, a high neck strength can be obtained between the copper structure 31c derived from the partial diffusion alloy powder 11 and the iron structure 33. From the above, it is possible to prevent the copper structure and the iron structure from falling off from the bearing surface 1a and improve the wear resistance of the bearing surface. Further, the bearing strength can be increased, and more specifically, it is possible to achieve a radial crushing strength (300 MPa or more) that is at least twice that of the existing copper-iron-based sintered body. Therefore, even when the sintered bearing 1 is press-fitted and fixed to the inner periphery of the housing 3 as shown in FIG. 2, the bearing surface 1a does not deform following the shape of the inner peripheral surface of the housing 3, and the bearing surface 1a does not deform after mounting. The roundness and cylindricity of 1a can be stably maintained. Therefore, after the sintered bearing 1 is press-fitted and fixed to the inner periphery of the housing 3, the desired roundness (for example, sizing) is not additionally executed for finishing the bearing surface 1a into an appropriate shape and precision. For example, a roundness of 3 μm or less) can be secured. Further, it is possible to prevent the deformation of the bearing surface 1a even when the shaft 2 comes into contact with the bearing surface 1a due to the vibration of the engine.
加えて、軸受面1aを含む表面全体に遊離黒鉛が析出しており、しかも扁平銅粉3に付随する形で金型成形面20aに鱗状黒鉛を付着させているため、表面層S1における黒鉛の含有率がベース部S2での黒鉛の含有率よりも大きくなる。そのため、軸受面1aを低摩擦化することができ、軸受1の耐久性を増すことができる。 In addition, since free graphite is deposited on the entire surface including the bearing surface 1a, and scaly graphite is attached to the mold molding surface 20a in a form accompanying the flat copper powder 3, the graphite of the surface layer S1 The content rate becomes higher than the content rate of graphite in the base portion S2. Therefore, the bearing surface 1a can be reduced in friction, and the durability of the bearing 1 can be increased.
[金属組織の他の形態]
以上に述べた第一の実施形態では、鉄組織をフェライト相とパーライト相の二層組織としているが、パーライト相(γFe)は硬い組織(HV300以上)であって、相手材に対する攻撃性が強いため、軸受の使用条件によっては、軸2の摩耗を進行させるおそれがある。これを防止するため、鉄組織33の全てをフェライト相(αFe)で形成することもできる。
[Other forms of metal structure]
In the first embodiment described above, the iron structure has a two-layer structure of a ferrite phase and a pearlite phase. However, the pearlite phase (γFe) has a hard structure (HV300 or more) and has a strong aggression property against the mating material. Therefore, depending on the usage conditions of the bearing, the wear of the shaft 2 may progress. In order to prevent this, the entire iron structure 33 can be formed of a ferrite phase (αFe).
このように鉄組織33の全てをフェライト相で形成するため、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。これらの対策により、原料粉では炭素と鉄の反応が生じず、従って焼結後の鉄組織は全て軟らかい(HV200以下)フェライト相(αFe)となる。かかる構成であれば、仮に表面層S1が摩耗してベース部S2の鉄組織33が表面に現れていても、軸受面1aを軟質化することができ、軸2に対する攻撃性を弱めることができる。これ以外の構成、例えば原料粉体の組成や製造手順等は、第一の実施形態と共通であるので、重複説明を省略する。 Since the entire iron structure 33 is formed in the ferrite phase in this manner, the sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. By these measures, the reaction between carbon and iron does not occur in the raw material powder, and therefore, the iron structure after sintering becomes a soft (HV200 or less) ferrite phase (αFe). With such a configuration, even if the surface layer S1 is abraded and the iron structure 33 of the base portion S2 appears on the surface, the bearing surface 1a can be softened and the aggressiveness to the shaft 2 can be weakened. .. Other configurations, such as the composition of the raw material powder and the manufacturing procedure, are the same as those in the first embodiment, and thus duplicated description will be omitted.
[焼結軸受の他の構成]
図12に示すように、表面層S1とベース部S2を有する焼結軸受1の円筒面状の軸受面1aの軸方向両側に、開口側が大径となるテーパ面1b1,1b2を形成することもできる。このように焼結軸受1の軸方向両端にテーパ面1b1,1b2を形成することで、軸2にたわみが生じた場合でも軸2の外周面が焼結軸受1の端部に局所的に当接することを防止でき、応力集中による軸受面1aの局部摩耗や軸受強度の低下、異常音の発生等を防止することができる。
[Other configurations of sintered bearings]
As shown in FIG. 12, tapered surfaces 1b1 and 1b2 having a large diameter on the opening side may be formed on both sides in the axial direction of the cylindrical bearing surface 1a of the sintered bearing 1 having the surface layer S1 and the base portion S2. it can. By forming the tapered surfaces 1b1 and 1b2 at both axial ends of the sintered bearing 1 in this way, the outer peripheral surface of the shaft 2 locally contacts the end of the sintered bearing 1 even when the shaft 2 is bent. It is possible to prevent contact, and it is possible to prevent local wear of the bearing surface 1a due to stress concentration, deterioration of bearing strength, occurrence of abnormal noise, and the like.
以上の効果を得るため、両テーパ面1b1,1b2の各軸方向長さb1,b2(何れも軸方向端部のチャンファは含まない)に対する半径方向ドロップ量の最大値γの比X(X=γ/b1もしくはX=γ/b2)は、1.75×10-3≦X≦5.2×10-2の範囲内(テーパ面の傾斜角が0.1°〜3°となる範囲内)に設定するのが好ましい。なお、この場合、焼結軸受1の軸方向全長aに対する両テーパ面1b1,1b2の軸方向長さの和の比は、0.2≦(b1+b2)/a≦0.8の範囲に設定するのが好ましい。図12に示す焼結軸受1は、例えば自動車のパワーウィンド用駆動機構やパワーシート用駆動機構に用いることができる。 In order to obtain the above effects, the ratio X (X=X=X) of the maximum value γ of the radial drop amount with respect to the axial lengths b1 and b2 of both tapered surfaces 1b1 and 1b2 (neither includes the chamfer at the axial end). γ/b1 or X=γ/b2) is in the range of 1.75×10 −3 ≦X≦5.2×10 −2 (in the range where the inclination angle of the tapered surface is 0.1° to 3°). ) Is preferable. In this case, the ratio of the sum of the axial lengths of the tapered surfaces 1b1 and 1b2 to the axial total length a of the sintered bearing 1 is set in the range of 0.2≦(b1+b2)/a≦0.8. Is preferred. The sintered bearing 1 shown in FIG. 12 can be used, for example, in a power window drive mechanism or a power seat drive mechanism of an automobile.
図13に示すように、焼結軸受1の円筒面状の軸受面1aの軸方向一方側にだけ、開口側が大径となるテーパ面1b1を形成することもでき、これによっても図12に示す実施形態と同様の作用効果を得ることができる。図12に示す実施形態と同様に、テーパ面1b1に対する半径方向ドロップ量の最大値γの比X(X=γ/b1)は、1.75×10-3≦X≦5.2×10-2の範囲内(テーパ面の傾斜角が0.1°〜3°となる範囲内)に設定するのが好ましい。なお、この場合、焼結軸受1の軸方向全長aに対するテーパ面1b1の軸方向長さの比は、0.2≦b/a≦0.8の範囲に設定するのが好ましい。図13に示す焼結軸受1は、例えば自動車のパワーウィンド用駆動機構やパワーシート用駆動機構に用いることができる。 As shown in FIG. 13, a tapered surface 1b1 having a large diameter on the opening side can be formed only on one side in the axial direction of the cylindrical bearing surface 1a of the sintered bearing 1, which is also shown in FIG. It is possible to obtain the same effect as that of the embodiment. Similar to the embodiment shown in FIG. 12, the ratio X (X=γ/b1) of the maximum value γ of the radial drop amount to the tapered surface 1b1 is 1.75×10 −3 ≦X≦5.2×10 − It is preferable to set it in the range of 2 (the range in which the inclination angle of the tapered surface is 0.1° to 3°). In this case, the ratio of the axial length of the tapered surface 1b1 to the axial total length a of the sintered bearing 1 is preferably set in the range of 0.2≦b/a≦0.8. The sintered bearing 1 shown in FIG. 13 can be used, for example, in a power window drive mechanism or a power seat drive mechanism of an automobile.
[焼結軸受の他の用途]
図1に示す焼結軸受1は、携帯電話やスマートフォンをはじめとする携帯端末等において、電話の着信やメールの受信等を報知するバイブレータとして機能する振動モータに使用することができる。この振動モータは、図14に示すように、軸2の一端に取り付けた錘(偏芯錘)Wをモータ部4で回転させることにより、振動モータのハウジング3、さらには携帯端末全体に振動を発生させる構成になっている。図14は、二つの焼結軸受1(101,102)を使用した場合の振動モータの要部を概念的に示すもので、図示例ではモータ部4の軸方向両側に突出させた軸2の両側を焼結軸受1(101,102)により回転自在に支持している。錘W側の焼結軸受101は、錘Wとモータ部4の間に配置されており、この錘W側の焼結軸受101は、錘Wと反対側の焼結軸受102よりも厚肉でかつ大径に形成されている。二つの焼結軸受1は、何れも内周に軸受面1aを有し、例えば金属材料で形成されたハウジング3の内周に圧入等の手段で固定されている。
[Other uses for sintered bearings]
The sintered bearing 1 shown in FIG. 1 can be used for a vibration motor that functions as a vibrator for notifying an incoming call, receiving an email, or the like in a mobile terminal such as a mobile phone or a smartphone. In this vibration motor, as shown in FIG. 14, a weight (eccentric weight) W attached to one end of the shaft 2 is rotated by a motor unit 4 to cause vibration to the housing 3 of the vibration motor and further to the entire mobile terminal. It is configured to generate. FIG. 14 conceptually shows the main part of the vibration motor when two sintered bearings 1 (101, 102) are used. In the illustrated example, the shaft 2 of the motor 2 is projected to both sides in the axial direction. Both sides are rotatably supported by sintered bearings 1 (101, 102). The weight W side sintered bearing 101 is disposed between the weight W and the motor unit 4, and the weight W side sintered bearing 101 is thicker than the weight W opposite side sintered bearing 102. Moreover, it is formed in a large diameter. Each of the two sintered bearings 1 has a bearing surface 1a on its inner circumference and is fixed to the inner circumference of a housing 3 made of, for example, a metal material by means of press fitting or the like.
この振動モータにおいて、軸2は10000rpm以上の回転数で駆動される。軸2が回転すると、錘Wの影響を受けて軸2が軸受面1aの全面に沿って振れ回りながら回転する。通常用途の焼結軸受では、軸2は重力方向に偏芯した状態を保持して回転するが、振動モータ用の焼結軸受1では、図15に示すように、軸受中心Obに対して軸中心Oaを重力方向だけでなくあらゆる方向に偏芯させた状態で軸2が回転することになる。 In this vibration motor, the shaft 2 is driven at a rotation speed of 10,000 rpm or more. When the shaft 2 rotates, the shaft 2 rotates under the influence of the weight W while whirling along the entire surface of the bearing surface 1a. In a sintered bearing for normal use, the shaft 2 rotates while maintaining an eccentricity in the direction of gravity, but in the sintered bearing 1 for a vibration motor, as shown in FIG. The shaft 2 rotates with the center Oa eccentric in not only the gravity direction but also all directions.
このように振動モータ用の軸受では、軸2が軸受面全面にわたって振れ回り、さらにアンバランス荷重により軸受面が軸によって頻繁に叩かれる(軸受面に対して軸が頻繁に摺動接触する)ため、軸受面が通常用途の焼結軸受よりも摩耗し易くなる。また、焼結軸受をハウジング3内周に圧入した際に、軸受面がハウジングの内周面形状に倣って僅かでも変形すると、軸2の回転精度に大きな影響を与えることになる。本発明の焼結軸受1を振動モータに使用することで、これらの問題を解消することができる。 As described above, in the bearing for the vibration motor, the shaft 2 swirls over the entire bearing surface, and the bearing surface is frequently hit by the shaft due to an unbalanced load (the shaft frequently slides against the bearing surface). The bearing surface is more likely to be worn than the sintered bearing for normal use. Further, when the sintered bearing is press-fitted into the inner circumference of the housing 3, even if the bearing surface is slightly deformed following the shape of the inner circumferential surface of the housing, the rotational accuracy of the shaft 2 is greatly affected. These problems can be solved by using the sintered bearing 1 of the present invention in a vibration motor.
なお、振動モータ用の焼結軸受1では、部分拡散合金粉として、平均粒度145メッシュ以下(平均粒径106μm以下)の粉末を使用するのが好ましい。これにより、軸受の多孔質組織を均一化して粗大気孔の生成を防止することができるので、軸受1を高密度化し、振動モータ用軸受としての使用にも耐え得る圧環強度や耐摩耗性を得ることが可能となる。圧粉工程における粉末充填性が低下するのを防止するため、平均粒度350メッシュ(平均粒径45μm)以下の部分拡散合金粉の割合は、25質量%未満とするのが好ましい。また、例えば振動モータ用の焼結軸受1として、図12あるいは図13の何れか一方に記載した焼結軸受1を用いてもよい。この場合、両図におけるテーパ面の軸方向長さに対する半径方向ドロップ量の最大値γの比Xは、上記と同様の範囲に設定することができる。 In the sintered bearing 1 for a vibration motor, it is preferable to use powder having an average particle size of 145 mesh or less (average particle size of 106 μm or less) as the partial diffusion alloy powder. As a result, the porous structure of the bearing can be made uniform and the formation of coarse air holes can be prevented, so that the bearing 1 can be densified, and radial crushing strength and wear resistance that can be used as a bearing for a vibration motor can be obtained. It becomes possible. In order to prevent the powder filling property from being lowered in the powder compacting step, the proportion of the partial diffusion alloy powder having an average particle size of 350 mesh (average particle size 45 μm) or less is preferably less than 25% by mass. Further, for example, as the sintered bearing 1 for a vibration motor, the sintered bearing 1 shown in either FIG. 12 or FIG. 13 may be used. In this case, the ratio X of the maximum value γ of the radial drop amount to the axial length of the tapered surface in both figures can be set in the same range as above.
[その他の実施形態]
これまでは、焼結軸受1の鉄組織や銅組織の全てを部分拡散合金粉だけで形成する場合を説明したが、原料粉末に単体鉄粉および単体銅粉のうちどちらか一方または双方を添加し、ベース部S2における鉄組織や銅組織の一部を単体鉄粉や単体銅粉で形成することもできる。この場合、最低限の耐摩耗性、強度、および摺動特性を確保するため、原料粉末における部分拡散合金粉の割合は50質量%以上にするのが好ましい。この場合の原料粉末には、扁平銅粉を8〜20wt%、低融点金属粉(例えば錫粉)を0.8〜6.0wt%、固体潤滑剤粉(例えば黒鉛粉)を0.5〜2.0wt%配合し、残部を単体鉄粉もしくは単体銅粉(あるいは双方の単体粉)とする。
[Other Embodiments]
Up to now, the case where all of the iron structure and the copper structure of the sintered bearing 1 are formed by only the partial diffusion alloy powder has been described, but either one or both of the simple iron powder and the simple copper powder is added to the raw material powder. However, it is also possible to form part of the iron structure or the copper structure in the base portion S2 with simple iron powder or simple copper powder. In this case, in order to secure the minimum wear resistance, strength, and sliding characteristics, it is preferable that the ratio of the partial diffusion alloy powder in the raw material powder is 50% by mass or more. In this case, as the raw material powder, 8 to 20 wt% of flat copper powder, 0.8 to 6.0 wt% of low melting point metal powder (eg, tin powder), and 0.5 to 0.5% of solid lubricant powder (eg, graphite powder) are used. 2.0 wt% is blended, and the balance is a single iron powder or a single copper powder (or both single powders).
かかる構成では、単体鉄粉や単体銅粉の配合量を変更することにより、部分拡散合金粉を使用することで得られる耐摩耗性、高強度、および良好な摺動特性を維持しつつ、軸受特性を調整することが可能となる。例えば単体鉄粉を添加すれば、部分拡散合金粉の使用量減による低コスト化を図りつつ軸受の耐摩耗性や強度を高めることができ、単体銅粉を添加すれば摺動特性をさらに改善することができる。そのため、各種用途に適合した焼結軸受の開発コストを低廉化することができ、焼結軸受の多品種少量生産にも対応可能となる。 In such a configuration, the wear resistance, high strength, and good sliding characteristics obtained by using the partial diffusion alloy powder are maintained by changing the blending amount of the single iron powder or the single copper powder, and the bearing It becomes possible to adjust the characteristics. For example, adding elemental iron powder can improve the wear resistance and strength of the bearing while reducing the cost by reducing the amount of partially diffused alloy powder, and adding elemental copper powder further improves the sliding characteristics. can do. Therefore, it is possible to reduce the development cost of the sintered bearing suitable for various applications, and it is possible to support the production of a large variety of sintered bearings in small quantities.
なお、以上の説明では、本発明を、軸受面1aを真円形状とした真円軸受に適用する場合を例示したが、本発明は真円軸受に限らず、軸受面1aや軸2の外周面にヘリングボーン溝、スパイラル溝等の動圧発生部を設けた流体動圧軸受にも同様に適用することができる。また、本実施形態では、軸2を回転させる場合を説明したが、これとは逆に軸受1を回転させる用途にも使用することができる。さらに、用途として自動車用スタータや携帯端末に使用される振動モータ等を例示したが、本発明にかかる焼結軸受1の用途はこれらに限定されず、例示した以外の他の用途にも広く適用することが可能である。 In the above description, the case where the present invention is applied to a perfect circular bearing in which the bearing surface 1a has a perfect circular shape is illustrated, but the present invention is not limited to the perfect circular bearing, and the outer circumferences of the bearing surface 1a and the shaft 2 are illustrated. The present invention can be similarly applied to a fluid dynamic bearing having a dynamic pressure generating portion such as a herringbone groove or a spiral groove on its surface. Further, in the present embodiment, the case where the shaft 2 is rotated has been described, but conversely, it can be used for the purpose of rotating the bearing 1. Furthermore, as an application, a vibration motor or the like used for an automobile starter or a mobile terminal is illustrated, but the application of the sintered bearing 1 according to the present invention is not limited to these, and is widely applied to other applications other than those illustrated. It is possible to
また、圧粉体25を圧縮成形する際には、成形金型20および原料粉末の少なくとも一方を加熱した状態で圧粉体25を圧縮成形する、いわゆる温間成形法や、成形金型20の成形面に潤滑剤を塗布した状態で圧粉体25を圧縮成形する金型潤滑成形法を採用しても良い。このような方法を採用すれば、圧粉体25を一層精度良く成形することができる。 When the green compact 25 is compression-molded, the green compact 25 is compression-molded in a state where at least one of the molding die 20 and the raw material powder is heated. A die lubrication molding method may be adopted in which the green compact 25 is compression molded with a lubricant applied to the molding surface. If such a method is adopted, the green compact 25 can be molded with higher accuracy.
1 軸受
1a 軸受面
2 軸
3 ハウジング
4 モータ
11 部分拡散合金粉
12 鉄粉
13 銅粉
14 黒鉛粉
15 扁平銅粉
16 青銅層
17 合金相
25 圧粉体
31a 表面層の銅組織
31b ベース部の第一の銅組織
31c ベース部の第二の銅組織
32 黒鉛(固体潤滑剤)
33 鉄組織
S1 表面層
S2 ベース部
ST スタータ
1 Bearing 1a Bearing surface 2 Shaft 3 Housing 4 Motor 11 Partially diffused alloy powder 12 Iron powder 13 Copper powder 14 Graphite powder 15 Flat copper powder 16 Bronze layer 17 Alloy phase 25 Powder compact 31a Surface layer copper structure 31b Base part No. 1 1st copper structure 31c 2nd copper structure 32 of base part Graphite (solid lubricant)
33 Iron structure S1 Surface layer S2 Base part ST Starter
Claims (20)
鉄組織および銅組織を含むベース部と、ベース部の表面を覆う表面層とを有し、表面層が、その厚さ方向が薄くなるように配置された扁平銅粉を主体として形成され、かつベース層が、鉄粉に当該鉄粉よりも小粒径の複数の銅粉の一部をそれぞれ拡散させ、この拡散部分でFe−Cu合金を形成した部分拡散合金粉で形成された鉄組織および銅組織を有し、前記銅よりも低融点の金属を、前記扁平銅粉に対して重量比で10wt%以上、30wt%以下含有し、
前記表面層の表面に面積比で60%以上の銅組織を形成し、
前記部分拡散合金粉における銅の割合が10wt%以上、30wt%以下であることを特徴とする焼結軸受。 A sintered bearing containing iron, copper, a metal having a melting point lower than that of copper, and a solid lubricant as a main component,
A base portion including an iron structure and a copper structure, and a surface layer that covers the surface of the base portion, the surface layer is formed mainly of flat copper powder arranged so that its thickness direction becomes thin, and The base layer diffuses a part of each of the plurality of copper powders having a particle size smaller than that of the iron powder into the iron powder, and an iron structure formed of a partially diffused alloy powder in which an Fe-Cu alloy is formed in the diffused portion, and It has a copper tissue, the low-melting metal than the copper, the 10 wt% or more by weight relative to the flat copper powder contains less 30 wt%,
Forming a copper structure of 60% or more in area ratio on the surface of the surface layer,
A sintered bearing, wherein the proportion of copper in the partially diffused alloy powder is 10 wt% or more and 30 wt% or less.
鉄粉に当該鉄粉よりも小粒径の複数の銅粉の一部をそれぞれ拡散させ、この拡散部分でFe−Cu合金を形成した部分拡散合金粉と、扁平銅粉と、銅よりも低融点の金属粉と、固体潤滑剤粉とを混合し、この混合粉末で圧粉体を成形した後、圧粉体を銅の融点よりも低い温度で焼結し、
前記銅よりも低融点の金属を、前記扁平銅粉に対して重量比で10wt%以上、30wt%以下含有し、
前記表面層の表面に面積比で60%以上の銅組織を形成し、
前記部分拡散合金粉における銅の割合が10wt%以上、30wt%以下であることを特徴とする焼結軸受の製造方法。 A method of manufacturing a sintered bearing having a base portion including an iron structure and a copper structure, and a surface layer covering a surface of the base portion,
A part of a plurality of copper powders each having a smaller particle size than the iron powder is diffused into the iron powder, and a partially diffused alloy powder in which a Fe-Cu alloy is formed in this diffusion portion, a flat copper powder, and a lower copper Metal powder having a melting point and solid lubricant powder are mixed, a green compact is molded with this mixed powder, and then the green compact is sintered at a temperature lower than the melting point of copper,
A metal having a melting point lower than that of copper is contained in the flat copper powder in a weight ratio of 10 wt% or more and 30 wt% or less,
Forming a copper structure of 60% or more in area ratio on the surface of the surface layer,
The method for producing a sintered bearing, wherein the proportion of copper in the partially diffused alloy powder is 10 wt% or more and 30 wt% or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013208277 | 2013-10-03 | ||
JP2013208277 | 2013-10-03 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014008892A Division JP6389038B2 (en) | 2013-10-03 | 2014-01-21 | Sintered bearing and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018185050A JP2018185050A (en) | 2018-11-22 |
JP6741730B2 true JP6741730B2 (en) | 2020-08-19 |
Family
ID=53195353
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014008892A Active JP6389038B2 (en) | 2013-10-03 | 2014-01-21 | Sintered bearing and manufacturing method thereof |
JP2018153198A Active JP6741730B2 (en) | 2013-10-03 | 2018-08-16 | Sintered bearing and manufacturing method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014008892A Active JP6389038B2 (en) | 2013-10-03 | 2014-01-21 | Sintered bearing and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6389038B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017066491A (en) * | 2015-09-30 | 2017-04-06 | Ntn株式会社 | Powder for powder metallurgy, green compact and method for producing sintered component |
JP2017078183A (en) * | 2015-10-19 | 2017-04-27 | Ntn株式会社 | Sintered shaft bearing |
CN106222522A (en) * | 2016-08-31 | 2016-12-14 | 成都威士达粉末冶金有限公司 | A kind of powder metallurgical composition manufacturing motor housing, and the method manufacturing motor housing |
JP6855194B2 (en) * | 2016-09-08 | 2021-04-07 | Ntn株式会社 | Sintered bearings and their manufacturing methods |
JP6836364B2 (en) * | 2016-09-21 | 2021-03-03 | Ntn株式会社 | Sintered bearings and their manufacturing methods |
DE112017004520T5 (en) * | 2016-09-08 | 2019-06-19 | Ntn Corporation | Sintered bearing and process for its production |
JP6836366B2 (en) * | 2016-09-26 | 2021-03-03 | Ntn株式会社 | Sintered bearings and their manufacturing methods |
JP2019211001A (en) * | 2018-06-04 | 2019-12-12 | 大豊工業株式会社 | Slide bearing |
CN117072986B (en) * | 2023-10-13 | 2023-12-19 | 福建聚创新材料科技有限公司 | BDO raffinate is with burning furnace processing apparatus that burns |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4253834B2 (en) * | 2002-08-28 | 2009-04-15 | 三菱マテリアルPmg株式会社 | Manufacturing method of sliding parts |
JP2005232592A (en) * | 2004-01-23 | 2005-09-02 | Jfe Steel Kk | Iron-based powdery mixture for powder metallurgy |
JP2010276051A (en) * | 2009-05-26 | 2010-12-09 | Ntn Corp | Sintered oil-retaining bearing and lubricating fluid used by being impregnated into this bearing |
JP5675090B2 (en) * | 2009-12-21 | 2015-02-25 | 株式会社ダイヤメット | Sintered oil-impregnated bearing and manufacturing method thereof |
JP5696512B2 (en) * | 2010-02-18 | 2015-04-08 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same |
JP5972588B2 (en) * | 2012-02-02 | 2016-08-17 | Ntn株式会社 | Manufacturing method of sintered bearing |
-
2014
- 2014-01-21 JP JP2014008892A patent/JP6389038B2/en active Active
-
2018
- 2018-08-16 JP JP2018153198A patent/JP6741730B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015092097A (en) | 2015-05-14 |
JP6389038B2 (en) | 2018-09-12 |
JP2018185050A (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6741730B2 (en) | Sintered bearing and manufacturing method thereof | |
US10907685B2 (en) | Sintered bearing and manufacturing process therefor | |
US11248653B2 (en) | Sintered bearing | |
JP6816079B2 (en) | Vibration motor | |
JP6921046B2 (en) | Manufacturing method of sintered bearing | |
US10536048B2 (en) | Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same | |
JP2011094167A (en) | Iron-copper based sintered sliding member, and method for producing the same | |
WO2013137347A1 (en) | Sintered bearing and manufacturing method for same | |
WO2016158373A1 (en) | Sintered bearing and method of manufacturing same | |
JP6302259B2 (en) | Manufacturing method of sintered bearing | |
JP6026319B2 (en) | Manufacturing method of sintered bearing | |
JP5972588B2 (en) | Manufacturing method of sintered bearing | |
JP6038459B2 (en) | Sintered bearing | |
WO2015050200A1 (en) | Sintered bearing and manufacturing process therefor | |
WO2016147925A1 (en) | Method for manufacturing sintered bearing, and sintered bearing | |
JP6548952B2 (en) | Sintered bearing and method of manufacturing the same | |
JP2016065638A (en) | Sliding member and method of manufacturing the same | |
JP6038460B2 (en) | Manufacturing method of sintered bearing | |
WO2013042664A1 (en) | Sintered bearing and method for manufacturing same | |
JP6571230B2 (en) | Sintered bearing | |
JP2016172900A (en) | Method for manufacturing sintered bearing, and sintered bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180914 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6741730 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |