JP5696512B2 - Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same - Google Patents
Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same Download PDFInfo
- Publication number
- JP5696512B2 JP5696512B2 JP2011024946A JP2011024946A JP5696512B2 JP 5696512 B2 JP5696512 B2 JP 5696512B2 JP 2011024946 A JP2011024946 A JP 2011024946A JP 2011024946 A JP2011024946 A JP 2011024946A JP 5696512 B2 JP5696512 B2 JP 5696512B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- mixed
- machinability
- iron
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、自動車焼結部品用などに好適な、鉄基粉末と合金用粉末と切削性改善用粉末と潤滑剤とを混合した粉末冶金用混合粉および該混合粉を成形、焼結して得られる鉄基粉末製焼結体に係り、とくに、鉄基粉末製焼結体の切削性改善に関する。 The present invention provides a powder mixture for powder metallurgy in which an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant, which are suitable for automotive sintered parts, and the mixed powder are molded and sintered. The present invention relates to an iron-based powder sintered body, and more particularly to improvement of machinability of the iron-based powder sintered body.
粉末冶金技術の進歩により、高寸法精度の複雑な形状の部品をニアネット形状に製造することができるようになり、粉末冶金技術を利用した製品が各種分野で利用されている。粉末冶金技術は、粉末を所望形状の金型に充填した後、焼結を行うことで、形状の自由度が高いことが特徴となっている。そのため、形状が複雑な歯車等の機械部品に適用する事例が多い。 Advances in powder metallurgy technology have made it possible to manufacture parts with high dimensional accuracy and complex shapes in a near net shape, and products using powder metallurgy technology have been used in various fields. The powder metallurgy technique is characterized by a high degree of freedom in shape by filling powder in a mold having a desired shape and then performing sintering. For this reason, there are many cases of application to mechanical parts such as gears having complicated shapes.
例えば、鉄系粉末冶金の分野では、鉄基粉末(金属粉末)に、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸亜鉛、ステアリン酸リチウム等の潤滑剤とを混合した鉄基混合粉を、所定形状の金型に充填したのち加圧成形して成形体とし、ついで、焼結処理を施して焼結部品を得ている。このようにして得られた焼結部品は、一般的に寸法精度が良いとされるが、非常に厳しい寸法精度が要求される焼結部品を製造する場合には、焼結した後に、さらに切削加工を施す必要がある。 For example, in the field of iron-based powder metallurgy, iron-based mixed powder in which iron-based powder (metal powder) is mixed with alloy powder such as copper powder and graphite powder and lubricant such as zinc stearate and lithium stearate. Are filled into a mold having a predetermined shape and then pressure-molded to form a molded body, and then subjected to a sintering treatment to obtain a sintered part. The sintered parts obtained in this way are generally considered to have good dimensional accuracy. However, when manufacturing sintered parts that require extremely strict dimensional accuracy, the sintered parts are further cut after sintering. Need to be processed.
しかし、このようにして製造された焼結体は、空孔の含有比率が高く、溶解法による金属材料にくらべて、切削抵抗が高い。このため、従来から、焼結体の切削性を向上させる目的で、鉄基混合粉に、Pb、Se、Te等を、粉末で添加、または鉄粉もしくは鉄基粉末に合金化して添加することが行なわれてきた。
しかし、Pbは融点が330℃と低いため、焼結過程で溶融し、しかも鉄中に固溶せず基地中に均一分散させることが難しいという問題があった。また、Se、Teは、焼結体を脆化させるため、焼結体の機械的特性の劣化が著しいという問題があった。これらの粉末以外にも、切削性改善のために種々の粉末を添加することが提案されている。
However, the sintered body produced in this way has a high content ratio of pores, and has a higher cutting resistance than a metal material obtained by the melting method. Therefore, conventionally, for the purpose of improving the machinability of the sintered body, Pb, Se, Te, etc. are added to the iron-based mixed powder as a powder, or alloyed with iron powder or iron-based powder. Has been done.
However, since Pb has a melting point as low as 330 ° C., it has a problem that it is melted during the sintering process and is not dissolved in iron and is difficult to uniformly disperse in the matrix. Moreover, since Se and Te embrittle the sintered body, there was a problem that the mechanical properties of the sintered body deteriorated remarkably. In addition to these powders, it has been proposed to add various powders to improve machinability.
またさらに、空孔は、熱伝導性が悪いため、加工時の摩擦発熱が蓄積され、工具の表面温度が上がりやすいため、切削工具が著しく損耗し、その結果、切削加工費が増大し、焼結部品の製造コストの上昇を招くという問題がある。
このような問題に対し、例えば、特許文献1には、鉄粉に、10μm以下の非常に微細な硫化マンガン粉末を重量%で0.05〜5%混合した焼結物体製造用鉄粉混合物が記載されている。特許文献1に記載された技術によれば、大きな寸法変化及び強度劣化を伴うことなく、焼結材の被削性(切削性)を改善できるとしている。
Furthermore, since the pores have poor thermal conductivity, frictional heat generated during machining is accumulated, and the surface temperature of the tool is likely to rise, so that the cutting tool is significantly worn, resulting in increased cutting costs and firing. There is a problem that the manufacturing cost of the connecting parts is increased.
For such a problem, for example, Patent Document 1 describes an iron powder mixture for manufacturing a sintered body in which 0.05 to 5% by weight of a very fine manganese sulfide powder of 10 μm or less is mixed with iron powder. ing. According to the technique described in Patent Document 1, the machinability (cutability) of the sintered material can be improved without being accompanied by a large dimensional change and strength deterioration.
また、特許文献2には、鉄粉を主体とし、アノールサイト相および/またはゲーレナイト相を有する平均粒径50μm以下のCaO−Al2O3−SiO2系複合酸化物の粉末(セラミックス粉末)を0.02〜0.3重量%含有する粉末冶金用鉄系混合粉末が記載されている。特許文献2に記載された技術によれば、切削時に加工面に露出したセラミックス粉末が工具表面に付着して工具保護膜(いわゆるベラーク層)を形成し、工具の材質劣化を防止して切削性を改善することができるとしている。 Patent Document 2 discloses a powder (ceramic powder) of a CaO—Al 2 O 3 —SiO 2 composite oxide having an average particle size of 50 μm or less, mainly composed of iron powder and having an anolsite phase and / or gehlenite phase. An iron-based mixed powder for powder metallurgy containing 0.02 to 0.3% by weight is described. According to the technique described in Patent Document 2, ceramic powder exposed on the work surface during cutting adheres to the tool surface to form a tool protection film (so-called Berak layer), and prevents material deterioration of the tool, thereby cutting performance. It can be improved.
また、特許文献3には、鉄基粉末と、合金用粉末と、切削性改善用粉末として硫化マンガン粉とリン酸カルシウム粉および/またはヒドロキシアパタイト粉とを、さらに潤滑剤を混合してなる鉄基混合粉が記載されている。ここで、硫化マンガンは切屑の微細化に有効に作用し、一方、リン酸カルシウム粉およびヒドロキシアパタイト粉は、切削時に工具の表面に付着して工具保護膜を形成して、工具表面の変質を防止又は抑制するとしている。特許文献3に記載された技術によれば、焼結体の機械的特性の劣化を伴うこともなく、切削性を向上できるとしている。 Patent Document 3 discloses an iron-based powder comprising an iron-based powder, an alloy powder, manganese sulfide powder, calcium phosphate powder and / or hydroxyapatite powder as a machinability improving powder, and further mixed with a lubricant. The powder is described. Here, manganese sulfide works effectively for finer chips, while calcium phosphate powder and hydroxyapatite powder adhere to the surface of the tool during cutting to form a tool protection film to prevent tool surface alteration or Trying to suppress. According to the technique described in Patent Document 3, it is said that the machinability can be improved without deteriorating the mechanical properties of the sintered body.
しかしながら、特許文献1、3に記載された技術では、硫化マンガン(MnS)粉を含むため、Sが焼結中に揮発し、焼結炉内の汚染や、焼結体外観の悪化の原因となるとともに、さらに、焼結体中に残留したS、あるいはMnSは、発錆を促進し、焼結部品の耐食性を低下させるという問題がある。また、特許文献2に記載された技術では、粉体特性、焼結体特性の低下を防止するために、セラミックス粉末を不純物が少なく、かつ粒度を調整した粉末とする必要があり、材料コストが高騰するという問題があった。 However, in the techniques described in Patent Documents 1 and 3, since manganese sulfide (MnS) powder is included, S volatilizes during sintering, causing contamination in the sintering furnace and deterioration of the appearance of the sintered body. Further, S or MnS remaining in the sintered body has a problem that it promotes rusting and lowers the corrosion resistance of the sintered part. Moreover, in the technique described in Patent Document 2, it is necessary to make the ceramic powder a powder with few impurities and a controlled particle size in order to prevent deterioration of powder characteristics and sintered body characteristics, and the material cost is low. There was a problem of soaring.
さらに、特許文献2、3に記載されたベラーク層形成による切削性改善は、旋削加工では切削動力低減に有効であるが、切屑が微細化しないため、ドリル切削においては、切り屑の排除性が悪く、ドリル切削性には問題を残している。
本発明は、上記した従来技術の問題を有利に解決し、焼結炉の炉内環境に悪影響を及ぼすことなく、成形体の焼結ができ、さらに、優れた切削性、詳しくは、優れた旋盤切削性(以下、旋削性ともいう)および優れたドリル切削性を兼備した焼結体を得ることが可能な、粉末冶金用混合粉およびその製造方法を提供することを目的とする。また、本発明では、優れた旋削性およびドリル加工性を兼備し、切削性に優れた焼結体およびその製造方法を提供することを目的とする。
Furthermore, the improvement in machinability by the formation of the verak layer described in Patent Documents 2 and 3 is effective in reducing the cutting power in turning, but since the chips do not become finer, in the case of drill cutting, the chip eliminability is reduced. Unfortunately, there remains a problem with drill machinability.
The present invention advantageously solves the above-mentioned problems of the prior art, enables the compact to be sintered without adversely affecting the furnace environment of the sintering furnace, and has excellent machinability, in particular, excellent It is an object of the present invention to provide a powder mixture for powder metallurgy and a method for producing the same, which can obtain a sintered body having both lathe machinability (hereinafter also referred to as lathe machinability) and excellent drill machinability. Another object of the present invention is to provide a sintered body having excellent turning ability and drilling workability and excellent in machinability and a method for producing the same.
本発明者らは、上記した目的を達成するために、焼結体の切削性に及ぼす各種要因、とくに添加材の影響について鋭意考究した。その結果、混合粉中に、鉄基粉末、合金用粉末、潤滑剤とともに加える切削性改善用粉末(添加材)として、少なくともSiO2および/またはMgOを含む粉末を使用することに思い至り、このような粉末を添加材として混合粉中に混合すると、焼結処理により焼結体の基地相中に軟質相と硬質相を同時に分散させることができることを見出した。とくに、少なくともSiO2およびMgOを含む粉末は、焼結時に鉄基粉末表面の酸化鉄層とSiO2、MgOが反応し、低融点相を形成し、焼結体の基地相の平均硬さより低い硬さの非晶質の軟質相として基地中に分散するとともに、反応の度合によって焼結体の基地相の平均硬さより高い硬さのファイアライト等のSiO2を含む酸化物相を形成して、硬質相として基地相中に分散する。このような、焼結体の基地相中に、非晶質の軟質金属化合物相と、硬質金属化合物相としてのSiO2を含む酸化物相とを、分散させることにより、旋盤での切削性(旋削性)とドリルによる切削性(ドリル切削性)とを共に向上でき、焼結体の切削性改善に有効であることを知見した。 In order to achieve the above-mentioned object, the present inventors diligently studied various factors on the machinability of the sintered body, particularly the influence of additives. As a result, it was conceived that the powder containing at least SiO 2 and / or MgO was used as the machinability improving powder (additive) added together with the iron-based powder, the alloy powder, and the lubricant in the mixed powder. It has been found that when such a powder is mixed into the mixed powder as an additive, the soft phase and the hard phase can be simultaneously dispersed in the matrix phase of the sintered body by the sintering treatment. In particular, the powder containing at least SiO 2 and MgO reacts with the iron oxide layer on the surface of the iron-based powder and SiO 2 and MgO during sintering to form a low melting point phase, which is lower than the average hardness of the base phase of the sintered body. While being dispersed in the matrix as an amorphous soft phase with hardness, an oxide phase containing SiO 2 such as firelite having a hardness higher than the average hardness of the matrix phase of the sintered body is formed depending on the degree of reaction. Disperse in the matrix phase as a hard phase. In such a base phase of the sintered body, an amorphous soft metal compound phase and an oxide phase containing SiO 2 as a hard metal compound phase are dispersed, whereby machinability on a lathe ( It has been found that it is possible to improve both the machinability (turnability) and the machinability (drill machinability) by a drill, and is effective in improving the machinability of the sintered body.
また、本発明者らは、切削性改善用粉末(添加材)として、少なくともSiO2および/またはMgOを含む粉末に加えてさらに、アルカリガラス粉末またはアルカリ金属塩粉末を混合することにより、アルカリガラスまたはアルカリ金属塩がフラックスとして作用して、物質拡散が促進され、さらに容易に焼結処理後の焼結体中に、非晶質の軟質相(SiO2−MgO−アルカリ金属酸化物系非晶質粒子、MgO−アルカリ金属酸化物系非晶質粒子)と、硬質相(SiO2を含む酸化物粒子、金属化合物粒子)とを同時に、基地中に分散させることができることを見出した。 Further, the present inventors further mixed alkali glass powder or alkali metal salt powder as a machinability improving powder (additive) in addition to powder containing at least SiO 2 and / or MgO, thereby producing alkali glass. Alternatively, the alkali metal salt acts as a flux to promote material diffusion, and more easily in the sintered body after the sintering treatment, an amorphous soft phase (SiO 2 —MgO—alkali metal oxide-based amorphous It was found that the solid particles, MgO-alkali metal oxide-based amorphous particles) and the hard phase (oxide particles containing SiO 2 , metal compound particles) can be simultaneously dispersed in the matrix.
焼結体の基地相中に、基地相の平均硬さよりも低い硬さの軟質金属化合物相と、基地相の平均硬さよりも高い硬さの硬質金属化合物相と、を分散させることにより、旋盤での切削性(旋削性)とドリルによる切削性(ドリル切削性)とを共に向上できる。このような焼結体の切削性改善の機構について、現在までのところ明確になっているわけではないが、本発明者らは次のように考えている。 A lathe is obtained by dispersing a soft metal compound phase having a hardness lower than the average hardness of the matrix phase and a hard metal compound phase having a hardness higher than the average hardness of the matrix phase in the matrix phase of the sintered body. It is possible to improve both the machinability (turnability) and the drilling machinability (drill machinability). The mechanism for improving the machinability of such a sintered body has not been clarified so far, but the present inventors consider as follows.
一般に、旋盤切削などの切削加工に際して、工具の先端には、塑性変形および剪断変形を起こす被削材の抗力が作用する。そして、工具の表面には被削材との摩擦力が作用し、工具表面の摩耗が生じる。また、工具内部には、抗力(切削抵抗)が作用し、変形あるいは亀裂発生の原因となり、工具が劣化してゆく。一方、焼結体内部に、焼結体基地相よりも軟質の、軟質金属化合物相が分散している場合には、軟質金属化合物相が、基地相の変形よりも低い応力で変形するため、工具に作用する抗力が低下し、工具の摩耗、変形あるいは亀裂の発生を抑制し、工具寿命が改善される。 In general, in cutting such as lathe cutting, a drag force of a work material that causes plastic deformation and shear deformation acts on the tip of a tool. Then, frictional force with the work material acts on the surface of the tool, and wear of the tool surface occurs. Also, drag (cutting resistance) acts inside the tool, causing deformation or cracking, and the tool deteriorates. On the other hand, when the soft metal compound phase, which is softer than the sintered body matrix phase, is dispersed inside the sintered body, the soft metal compound phase is deformed with a lower stress than the deformation of the matrix phase. The drag acting on the tool is reduced, the wear, deformation or cracking of the tool is suppressed, and the tool life is improved.
一方、ドリル切削加工においては、上記したような機構で、工具に作用する抗力が低下するだけでは、工具の寿命改善は生じない。というのは、ドリル切削時に発生した切屑が排除されずに穿孔中に存在する場合があり、これがドリルと被削材の間に噛みこみ、結果的に工具に加わる応力が増大して、工具摩耗や工具破損の原因となる。また、ドリル貫通の際には、穿孔表面に切屑が付着し、いわゆる“バリ”が発生する。バリの発生は、部品の加工精度を低下させるうえ、バリ除去の加工工程が必要となり、部品製造のコストを高騰させる。 On the other hand, in drill cutting, the life of the tool is not improved only by reducing the drag acting on the tool with the mechanism as described above. This is because chips generated during drilling may be present during drilling instead of being eliminated, and this may be caught between the drill and the workpiece, resulting in increased stress on the tool and tool wear. Or cause damage to the tool. Further, when drilling, chips adhere to the drilling surface, and so-called “burrs” are generated. The generation of burrs reduces the processing accuracy of the parts and requires a burrs removal processing step, which increases the cost of manufacturing the parts.
本発明では、焼結体の基地相中に、軟質金属化合物相に加えて、焼結体基地相よりも硬質の硬質金属化合物相を分散させるため、切屑発生時に硬質金属化合物相に応力が集中し、切屑内部での亀裂の発生を促進する。このため、切屑が微細化し、ドリル穿孔の際の切屑排出性が向上し、ドリルに作用する抗力が低下して、ドリル寿命を改善できる。さらには、切屑が排除されやすくなるため、バリの発生を抑制するという副次的効果をももたらす。 In the present invention, in addition to the soft metal compound phase, in addition to the soft metal compound phase, the hard metal compound phase harder than the sintered matrix base phase is dispersed in the sintered body, so stress concentrates on the hard metal compound phase when chips are generated. And promote the generation of cracks inside the chip. For this reason, the chips become finer, the chip discharging performance during drilling is improved, the drag acting on the drill is lowered, and the drill life can be improved. Furthermore, since chips are easily removed, a secondary effect of suppressing the generation of burrs is also brought about.
基地相中に、軟質金属化合物相および硬質金属化合物相を分散させた焼結体とする本発明によれば、上記したような機構によって、優れた旋削性および優れたドリル切削性を確保できたものと考えている。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
According to the present invention, which is a sintered body in which a soft metal compound phase and a hard metal compound phase are dispersed in the base phase, excellent turning performance and excellent drill cutting performance can be secured by the mechanism described above. I believe that.
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1)鉄基粉末と、合金用粉末と、さらに切削性改善用粉末と、潤滑剤粉末とを混合してなる粉末冶金用混合粉であって、前記切削性改善用粉末を、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選ばれた少なくとも1種とし、前記切削性改善用粉末を、前記鉄基粉末、前記合金用粉末および前記切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%配合してなり、前記潤滑剤粉末を、潤滑剤粉末(但し、金属硼化物粉末、硫化マンガン粉末を除く)とすることを特徴とする粉末冶金用混合粉。 (1) and the iron-based powder, the alloying powder further the machinability improvement powder, a lubricant for powder metallurgy powder mixture and the powder obtained by mixing the powder for the machinability improvement, mosquito Olin powder , Mica powder, granulated slag powder, pancreas clay powder, magnesium oxide (MgO) powder, and mixed powder of silica (SiO 2 ) and magnesium oxide (MgO), and at least one selected from the above, the machinability improving powder, wherein the iron-based powder, in percentage by weight relative to the total amount of the alloy powder and the machinability improving powder, Ri Na compounded 0.01% to 1.0%, the lubricant powder, a lubricant powder (However, the metal boride powder, except manganese sulfide powder) and to a powder metallurgical mixed powder according to claim Rukoto.
(2)(1)において、前記切削性改善用粉末がさらに、アルカリガラス粉末、アルカリ炭酸塩粉末、アルカリ金属石鹸粉末のうちから選ばれた1種または2種以上を、前記切削性改善用粉末の合計量に対する質量%で、10〜80%配合して含むことを特徴とする粉末冶金用混合粉。
(3)(2)において、前記アルカリガラス粉末が、ソーダガラス粉末、カリウムガラス粉末、リチウムガラス粉末のいずれか、あるいはそれらの混合であることを特徴とする粉末冶金用混合粉。
(2) In (1), the machinability improving powder further comprises one or more selected from alkali glass powder , alkali carbonate powder , and alkali metal soap powder. A mixed powder for powder metallurgy characterized by containing 10 to 80% by mass with respect to the total amount.
(3) The mixed powder for powder metallurgy according to (2), wherein the alkali glass powder is one of soda glass powder, potassium glass powder, lithium glass powder, or a mixture thereof.
(4)(1)ないし(3)のいずれかにおいて、前記切削性改善用粉末がさらに、金属窒化物粉末を含むことを特徴とする粉末冶金用混合粉。
(5)(4)において、前記金属窒化物が、TiN、AlN、Si3N4のうちの少なくとも1種であることを特徴とする粉末冶金用混合粉。
(4) (1) to in any one of (3), the machinability improving powder is further for powder metallurgy powder mixture characterized in that it comprises a metallic nitride powder.
(5) In (4), before Symbol metal nitride, TiN, AlN, powder metallurgical mixed powder which is characterized in that at least one of Si 3 N 4.
(6)(4)または(5)において、前記金属窒化物の平均粒径が、10μm以下であることを特徴とする粉末冶金用混合粉。
(7)(1)ないし(6)のいずれかに記載の粉末冶金用混合粉を用いて、成形、焼結してなる焼結体であって、該焼結体の基地相中に、該基地相の平均硬さである200HVより低い硬さの軟質金属化合物相であるSiO 2 −MgO系非晶質相と、前記基地相の平均硬さである200HVより高い硬さの硬質金属化合物相であるSiO 2 を含む酸化物相とを、分散させてなることを特徴とする切削性に優れた鉄基粉末製焼結体。
(6) (4) or (5), the average particle diameter before Symbol metal nitride powder metallurgical mixed powder, characterized in that at 10μm or less.
( 7 ) A sintered body obtained by molding and sintering using the mixed powder for powder metallurgy according to any one of (1) to ( 6 ), and SiO 2 -MgO based amorphous phase which is soft metal compound phase of less than 200HV is the average hardness of the matrix phase hardness, hard metal compound phase is that 200HV higher hardness average hardness of the matrix phase An iron-based powder sintered body excellent in machinability, characterized by being dispersed with an oxide phase containing SiO 2 .
(8)(7)において、前記軟質金属化合物相が、SiO2−MgO−アルカリ金属酸化物系非晶質相であることを特徴とする切削性に優れた鉄基粉末製焼結体。
(9)(8)において、前記アルカリ金属酸化物が、Na2O、K2O、Li2Oのいずれかまたはそれらの複合であることを特徴とする切削性に優れた鉄基粉末製焼結体。
(8) (7), said soft metal compound phase, iron-based powder manufactured sintered body is excellent in machinability, characterized in that the SiO 2 -MgO- alkali metal oxide-based amorphous phase.
(9) In (8), wherein the alkali metal oxide, Na 2 O, K 2 O , iron powder manufactured by sintering excellent in machinability, characterized in that the one or their composite Li 2 O Union .
(10)(7)ないし(9)のいずれかにおいて、前記硬質金属化合物相がさらに、金属窒化物を含むことを特徴とする切削性に優れた鉄基粉末製焼結体。
(11)(10)において、前記金属窒化物が、TiN、AlN、Si3N4のうちの少なくとも1種であることを特徴とする切削性に優れた鉄基粉末製焼結体。
(10) (7) to (9) of the one, the hard metal compound phase further iron-based powders made sintered body with excellent machinability, characterized in that it comprises a metallic nitride.
(11) In (10), before Symbol metal nitride, TiN, AlN, at least one a iron-based powder made sintered body excellent in machinability, characterized in that of the Si 3 N 4.
(12)(10)または(11)において、前記金属窒化物の平均粒径が、10μm以下であることを特徴とする切削性に優れた鉄基粉末製焼結体。
(13)鉄基粉末と、合金用粉末と、切削性改善用粉末と、さらに潤滑剤粉末とを配合し、混合して混合粉とする混合粉の製造方法であって、前記切削性改善用粉末を、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選ばれた少なくとも1種とし、該切削性改善用粉末の配合量が、前記鉄基粉末、前記合金用粉末および前記切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%であり、前記潤滑剤粉末を、潤滑剤粉末(但し、金属硼化物粉末、硫化マンガン粉末を除く)とし、前記混合が、前記鉄基粉末と前記合金用粉末に、一次混合材として前記切削性改善用粉末の一部または全部と、さらに前記潤滑剤粉末の一部を添加し、前記潤滑剤の融点のうちの最低値以上に加熱し、少なくとも1種の潤滑剤を溶融させて、混合したのち、所定の温度以下に冷却して固化させる一次混合と、さらに前記切削性改善用粉末の一部および/または前記潤滑剤の一部を二次混合材として添加し、混合する二次混合とからなる工程であることを特徴とする粉末冶金用混合粉の製造方法。
(12) An iron-based powder sintered body excellent in machinability, wherein the metal nitride has an average particle size of 10 μm or less in (10) or (11).
(13) A method for producing a mixed powder comprising an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant powder, and mixed to obtain a mixed powder, the machinability improving the powder, mosquito Olin powder, mica powder, granulated slag powder, Suihi clay powder, magnesium oxide (MgO) powder and mixed powder of silica (SiO 2) and magnesium oxide (MgO), selected from among The lubricant is at least one kind, and the blending amount of the machinability improving powder is 0.01% to 1.0% by mass% with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder, and the lubricant. The powder is a lubricant powder (excluding metal boride powder and manganese sulfide powder), and the mixing is performed on the iron-based powder and the alloy powder, and a part of the machinability improving powder as a primary mixture. Or all of the lubricant powder Adding a part, heating to at least the minimum of the melting point of the lubricant, melting at least one lubricant, mixing, and then cooling to a predetermined temperature or lower to solidify, and further Production of mixed powder for powder metallurgy, characterized in that it is a step comprising secondary mixing in which a part of the powder for improving machinability and / or a part of the lubricant is added and mixed as a secondary mixture. Method.
(14)(13)において、前記切削性改善用粉末がさらに、アルカリガラス粉末、アルカリ炭酸塩粉末、アルカリ金属石鹸粉末のうちから選ばれた1種または2種以上を、前記切削性改善用粉末の合計量に対する質量%で、10〜80%配合して含むことを特徴とする粉末冶金用混合粉の製造方法。
(15)(14)において、前記アルカリガラス粉末が、ソーダガラス粉末、カリウムガラス粉末、リチウムガラス粉末のいずれか、あるいはそれらの混合であることを特徴とする粉末冶金用混合粉の製造方法。
( 14 ) In ( 13 ), the machinability improving powder further comprises one or more selected from alkali glass powder , alkali carbonate powder , and alkali metal soap powder. A method for producing a powder mixture for powder metallurgy, characterized by containing 10 to 80% by mass with respect to the total amount.
( 15 ) The method for producing a powder mixture for powder metallurgy characterized in that, in ( 14 ), the alkali glass powder is any one of soda glass powder, potassium glass powder, lithium glass powder, or a mixture thereof.
(16)(13)ないし(15)のいずれかにおいて、前記切削性改善用粉末がさらに、金属窒化物粉末を含むことを特徴とする粉末冶金用混合粉の製造方法。
(17)(16)において、前記金属窒化物が、TiN、AlN、Si3N4のうちの少なくとも1種であることを特徴とする粉末冶金用混合粉の製造方法。
(16) In any one of (13) to (15), the machinability improving powder further method of producing a powder metallurgical powder mixture characterized in that it comprises a metallic nitride powder.
(17) In (16), before Symbol metal nitride, TiN, AlN, method of producing a powder metallurgical mixed powder which is characterized in that at least one of Si 3 N 4.
(18)(16)または(17)において、前記金属窒化物の平均粒径が、10μm以下であることを特徴とする粉末冶金用混合粉の製造方法。
(19)(13)ないし(18)のいずれかに記載の製造方法で製造された混合粉を、金型に挿入し、所定の圧力で圧粉成形して成形体とする成形工程と、該成形体に焼結処理を施して焼結体とする焼結工程とを順次施すことを特徴とする切削性に優れた鉄基粉末製焼結体の製造方法。
(18) (16) or in (17), the average particle diameter before Symbol metal nitride, method of producing a powder metallurgical mixed powder, characterized in that at 10μm or less.
( 19 ) A molding step in which the mixed powder produced by the production method according to any one of ( 13 ) to ( 18 ) is inserted into a mold and compacted with a predetermined pressure to form a molded body, A method for producing a sintered body made of iron-based powder excellent in machinability, characterized by sequentially performing a sintering process on a formed body by subjecting the formed body to a sintered body.
本発明によれば、優れた旋削性と、優れたドリル切削性とを兼備した、切削性に優れた焼結体を安価に製造でき、金属焼結部品の製造コストを顕著に低減でき、産業上格段の効果を奏する。また、本発明によれば、成形時には、圧粉密度の低下や、抜出力の増大を招くことなく成形でき、さらに、焼結時には、焼結炉の炉内環境に悪影響を及ぼすこともなく焼結できるという効果もある。 According to the present invention, it is possible to produce a sintered body with excellent machinability at low cost, which has both excellent turning properties and excellent drill machinability, and can remarkably reduce the manufacturing cost of metal sintered parts. Has an exceptional effect. In addition, according to the present invention, molding can be performed without causing a reduction in the density of the dust and an increase in the extraction force. Further, during sintering, the sintering can be performed without adversely affecting the furnace environment of the sintering furnace. There is also an effect that can be concluded.
まず、本発明の粉末冶金用混合粉について説明する。
本発明の粉末冶金用混合粉は、鉄基粉末と、合金用粉末と、さらに切削性改善用粉末と、潤滑剤粉末と、を混合してなる混合粉である。
本発明では、鉄基粉末としては、アトマイズ鉄粉および還元鉄粉などの純鉄粉、合金元素を予め合金化した予合金鋼粉(完全合金化鋼粉)、あるいは鉄粉に合金元素が部分拡散し合金化された部分拡散合金化鋼粉、あるいは予合金化鋼粉(完全合金化鋼粉)にさらに合金元素を部分拡散させたハイブリッド鋼粉などの鉄基粉末がいずれも適用できる。また、鉄基粉末としては、上記した鉄基粉末に加えてさらに合金用粉末、および潤滑剤粉末を混合した鉄基粉末混合粉としてもよい。
First, the mixed powder for powder metallurgy according to the present invention will be described.
The mixed powder for powder metallurgy according to the present invention is a mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant powder.
In the present invention, as the iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, prealloyed steel powder (alloyed steel powder) obtained by pre-alloying the alloying element, or alloying element partially in the iron powder. Any iron-based powder such as partially diffused alloyed steel powder that has been diffused and alloyed, or hybrid steel powder obtained by further partially diffusing alloying elements into prealloyed steel powder (fully alloyed steel powder) can be used. The iron-based powder may be an iron-based powder mixed powder obtained by further mixing an alloy powder and a lubricant powder in addition to the above-described iron-based powder.
また、合金用粉末としては、黒鉛粉末、Cu(銅粉末)粉、Mo粉、Ni粉などの非鉄金属粉末、亜酸化銅粉末などが例示され、所望の焼結体特性に応じて選択して混合する。これらの合金用粉末を、鉄基粉末に混合させることにより焼結体の強度を上昇させることができ、所望の焼結部品強度を確保できる。なお、合金用粉末の配合量は、所望の焼結体強度に応じて、金属粉末、合金用粉末、切削製改善用粉末の合計量に対する質量%で、0.1〜10%程度とすることが好ましい。合金用粉末の配合量が、0.1質量%未満では、所望の焼結体強度を確保できなくなる。一方10質量%を超えて添加すると、焼結体の寸法精度が低下する。 Examples of the alloy powder include non-ferrous metal powders such as graphite powder, Cu (copper powder) powder, Mo powder, Ni powder, and cuprous oxide powder, which are selected according to desired sintered body characteristics. Mix. By mixing these alloy powders with iron-based powder, the strength of the sintered body can be increased, and a desired sintered part strength can be ensured. The blending amount of the alloy powder is preferably about 0.1 to 10% in mass% with respect to the total amount of the metal powder, the alloy powder, and the cutting improvement powder according to the desired sintered body strength. . If the blending amount of the alloy powder is less than 0.1% by mass, the desired sintered body strength cannot be secured. On the other hand, if it exceeds 10% by mass, the dimensional accuracy of the sintered body decreases.
また、本発明では、切削性改善用粉末として、混合粉を成形体とし焼結した際に、焼結体の基地相中に基地相の平均硬さより低い硬さの軟質粒子(軟質相)となる、低融点の非晶質相を形成できる軟質金属化合物粉末とする。具体的には、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選ばれた少なくとも1種である。 Further, in the present invention, when the mixed powder is sintered as a compact as a machinability improving powder, soft particles having a hardness lower than the average hardness of the matrix phase (soft phase) are included in the matrix phase of the sintered body. Thus, a soft metal compound powder capable of forming an amorphous phase having a low melting point is obtained. Specifically, selected mosquito Olin powder, mica powder, granulated slag powder, Suihi clay powder, magnesium oxide (MgO) powder and mixed powder of silica (SiO 2) and magnesium oxide (MgO), from among the At least one of them.
なお、ここでいう「焼結体の基地相中に基地相の平均硬さより低い硬さの軟質粒子(軟質相)」とは、焼結体の基地相の平均硬さを、200HV(モース硬度約4)と定義し、その硬さより低い硬さを有する「粒子(相)」をいうものとする。なお、例えば、Fe−Cu−C系鉄基粉末焼結体(金属粉末としての鉄基粉末と、合金用粉末としての黒鉛粉および銅粉とを用いた場合)では、焼結体の基地相を形成する組織は、フェライト相(α鉄)およびパーライト相であり、通常、基地相は概ね100〜300HV程度(A.Salak,M.Selewcka and H.Danninger:Machinability of Powder Metallugy Steels, p.369, (2005) 発行元:Elsevier社 参照)の平均硬さを有する。そこで本発明では、Fe−Cu−C系鉄基粉末焼結体(金属粉末としての鉄基粉末と、合金用粉末としての黒鉛粉および銅粉とを用いた場合)の焼結体の基地相の平均硬さを参照してその中央値である200HV(モース硬度約4)を、焼結体の基地相の平均硬さと定義した。 The term “soft particles having a hardness lower than the average hardness of the matrix phase in the matrix phase of the sintered body (soft phase)” means that the average hardness of the matrix phase of the sintered body is 200 HV (Mohs hardness). It is defined as about 4) and refers to “particle (phase)” having a hardness lower than that hardness. For example, in a Fe-Cu-C-based iron-based powder sintered body (when iron-based powder as metal powder and graphite powder and copper powder as alloy powder are used), the base phase of the sintered body The structure that forms is a ferrite phase (α iron) and a pearlite phase, and the base phase is usually about 100 to 300 HV (A. Salak, M. Selewcka and H. Danninger: Machinability of Powder Metallugy Steels, p. 369). , (2005) Publisher: See Elsevier). Therefore, in the present invention, the base phase of the sintered body of the Fe-Cu-C-based iron-based powder sintered body (when the iron-based powder as the metal powder and the graphite powder and the copper powder as the alloy powder are used). The median value of 200 HV (Mohs's hardness of about 4) was defined as the average hardness of the base phase of the sintered body.
切削性改善用粉末として混合粉に添加する、カオリン粉末、マイカ粉末等の軟質鉱物はいずれも、少なくともSi、Mg、O(SiO2、MgO)を含有する金属化合物であり、または水砕スラグ粉末は、CaO−SiO2−Al2O3、MgO−Al2O3−SiO2等の成分系で代表される脱酸生成物である。Si、Mg、Oを含有する化合物であるこれら粉末はいずれも、混合粉を成形した圧粉体を焼結する際に、低融点の非晶質相を形成し、焼結体の基地相中に軟質金属化合物相として分散させることができる。なお、焼結時に形成される低融点の非晶質相は、SiO2−MgO系非晶質相である。 It added to the mixed powder as a machinability improving powder, mosquito Olin powder, both soft mineral mica powder and the like is a metal compound containing at least Si, Mg, O (SiO 2 , MgO), or granulated slag The powder is a deoxidation product represented by a component system such as CaO—SiO 2 —Al 2 O 3 or MgO—Al 2 O 3 —SiO 2 . All of these powders, which are compounds containing Si, Mg, and O, form a low-melting-point amorphous phase during sintering of the green compact formed from the mixed powder, and in the base phase of the sintered body. Can be dispersed as a soft metal compound phase. Note that the low melting point amorphous phase formed during sintering is a SiO 2 -MgO-based amorphous phase.
また、切削性改善用粉末として、同様にSi、Mg、Oを含む、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末を用いてもよい。この混合粉末は、混合粉を成形した圧粉体を焼結する際に、同様に低融点の非晶質相(非晶質粒子)を形成できる。なお、混合比は、質量比でSiO2:MgOが、1:2〜3:1とすることが好ましい。 Further, as a powder for machinability improvement, Si Similarly, Mg, including O, silica may be used a mixed powder of (SiO 2) and magnesium oxide (MgO). This mixed powder can similarly form an amorphous phase (amorphous particles) having a low melting point when the green compact formed from the mixed powder is sintered. The mixing ratio, SiO 2 in a weight ratio: MgO is 1: 2 to 3: is preferably 1.
また、本発明では、切削性改善用粉末として、カオリン粉末、マイカ粉末、水砕スラグ粉末、すいひ粘土粉末、酸化マグネシウム(MgO)粉末および、シリカ(SiO2)と酸化マグネシウム(MgO)との混合粉末、のうちから選ばれた少なくとも1種に、さらにアルカリガラス粉末、アルカリ炭酸塩粉末、アルカリ金属石鹸粉末のうちから選ばれた1種または2種以上を加えることが好ましい。SiO2、MgOからなる粉末にさらにアルカリガラス粉末、アルカリ炭酸塩粉末、アルカリ金属石鹸粉末のうちから選ばれた1種または2種以上を加えることにより、圧粉体の焼結時に低融点の非晶質相の形成がより促進される。アルカリガラス、アルカリ炭酸塩、アルカリ金属石鹸は、焼結時に単独であるいは鉄基粉末表面の酸化鉄と反応して、低融点のフラックスを形成し、そのフラックス中に、混合粉中に含まれるSiO2、MgO等の他の酸化物が溶融し、SiO2−MgO−アルカリ金属酸化物系非晶質相を形成して、軟質相として焼結体の基地相中に分散する。 Further, in the present invention, as a powder for machinability improvement, mosquito Olin powder, mica powder, granulated slag powder, Suihi clay powder, magnesium oxide (MgO) powder and a silica (SiO 2) and magnesium oxide (MgO) It is preferable to add at least one selected from alkali glass powder, alkali carbonate powder, and alkali metal soap powder to at least one selected from the above mixed powders. Further alkali glass powder SiO 2, MgO Tona Ru powder powder, alkali carbonate powder, by adding one or more members selected from among alkali metal soap powder, low melting point during sintering of the green compact The formation of the amorphous phase is further promoted. Alkali glass, alkali carbonate, and alkali metal soap are used alone or react with iron oxide on the surface of the iron-based powder to form a low melting flux, and the SiO contained in the mixed powder is included in the flux. 2. Other oxides such as MgO are melted to form a SiO 2 -MgO-alkali metal oxide-based amorphous phase and dispersed as a soft phase in the matrix phase of the sintered body.
なお、アルカリガラスとしては、ソーダガラス、カリウムガラス、リチウムガラス等が例示でき、それら粉末のいずれかあるいはそれらを複合して含有できる。なお、アルカリ金属石鹸を用いた場合には、金属石鹸による潤滑効果により粉末成形時に圧粉体の密度が向上するという利点もある。 Examples of the alkali glass include soda glass, potassium glass, lithium glass, and the like, and any of these powders or a combination thereof can be contained . Na us, in the case of using the alkali metal soap, an advantage that the density of the green compact is improved during powder molding by the lubricating effect of the metal soap.
また、混合粉中に、切削性改善用粉末として配合されるSi、Mg、Oを含有する金属化合物粉末は、焼結時に低融点の非晶質相を形成して軟質相となると同時に、一部が鉄基粉末表面と焼結時に反応して、SiO2を含む酸化物相を形成し、焼結体の基地相中に基地相の平均硬さより高い硬さの硬質粒子を分散させることができる。このSiO2を含む酸化物相としては、ファイアライト(Fe2SiO4)、クォーツ等が例示できる。したがって、本発明では、混合粉中に、基地相の平均硬さより高い硬さの硬質粒子となる切削性改善用粉末をとくに添加する必要はないが、硬質相を均一に分散させるためには、切削性改善用粉末として、さらにファイアライト(Fe2SiO4)等のSiO2を含む高融点酸化物粉末を混合してもよい。また、SiO2を含む酸化物相以外の硬質粒子を切削性改善用粉末として、さらに混合してもよい。SiO2を含む酸化物相以外の硬質粒子となる粉末としては、金属窒化物粉末が例示でき、金属窒化物粉末としては、TiN粉末、AlN粉末、Si3N4粉末が例示でき、とりわけSi3N4粉末が好ましい。 Also, the powder mixture, Si formulated as machinability improving powder, Mg, metal compound powders containing O, when forming an amorphous phase of a low melting point during sintering becomes soft phase simultaneously, A part reacts with the surface of the iron-based powder to form an oxide phase containing SiO 2, and hard particles having a hardness higher than the average hardness of the matrix phase are dispersed in the matrix phase of the sintered body. Can do. Examples of the oxide phase containing SiO 2 include firelite (Fe 2 SiO 4 ) and quartz. Therefore, in the present invention, in the mixed powder, it is not particularly necessary to add a machinability improving powder that becomes hard particles having a hardness higher than the average hardness of the matrix phase, but in order to uniformly disperse the hard phase, As the machinability improving powder, high melting point oxide powder containing SiO 2 such as firelite (Fe 2 SiO 4 ) may be further mixed. Further, hard particles other than the oxide phase containing SiO 2 may be further mixed as a machinability improving powder. The powder of the hard particles other than the oxide phase containing SiO 2, metallic nitride powder can be exemplified, as the metallic nitride powder, TiN powder, AlN powder, Si 3 N 4 powder. Examples of especially Si 3 N 4 powder is preferred.
なお、均一分散性の観点から、切削性改善用粉末の平均粒径は0.01〜20μm程度とすることが好ましい。なかでも、硬質粒子として配合される金属窒化物粉末は、応力集中点として作用するとともに、工具摩耗の原因となるため、平均粒径は10μm以下に限定することが好ましい。金属窒化物粉末の平均粒径が10μmを超えると、硬質粒子が研磨剤のような働きをすると考えられ、工具摩耗が増大する。なお、より好ましくは5μm以下である。平均粒径は、レーザ回折法を利用して求めたものを使用するものとする。 From the viewpoint of uniform dispersibility, the average particle size of the machinability improving powder is preferably about 0.01 to 20 μm. Among them, Rukin nitrides powder is formulated as hard particles, as well as act as a stress concentration point, it will cause tool wear, the average particle diameter is preferably limited to 10μm or less. If the average particle size of the metallic nitride powder exceeds 10 [mu] m, hard particles are believed to act as an abrasive, tool wear is increased. In addition, More preferably, it is 5 micrometers or less. The average particle diameter is determined using a laser diffraction method.
なお、金属窒化物粉末の配合量は、切削性改善用粉末の合計量に対する質量%で、10〜80%とすることが好ましい。配合量が10質量%未満では、所望の効果が期待できない。一方、80質量%を超える配合は粉末の圧縮性や焼結体強度が低下する。
また、本発明混合粉における切削性改善用粉末の配合量は、合計で、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%とすることが好ましい。配合量が、0.01質量%未満では、切削性改善効果が不十分となる。一方、1.0質量%を超えて配合すると、圧粉体密度が低下し、さらに成形体を焼結して得た焼結体の機械的強度が低下する恐れがある。このため、混合粉における切削性改善用粉末の配合量は、合計で、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対する質量%で、0.01〜1.0%の範囲に限定した。
The amount of the metallic nitride powder, by mass% to the total amount of machinability improvement powder, preferably 10 to 80%. If the amount is less than 10% by mass, the desired effect cannot be expected. On the other hand, when it exceeds 80% by mass, the compressibility of the powder and the strength of the sintered body decrease.
Further, the blending amount of the machinability improving powder in the mixed powder of the present invention is preferably 0.01% to 1.0% in terms of the mass% with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder. . If the blending amount is less than 0.01% by mass, the machinability improving effect is insufficient. On the other hand, when the content exceeds 1.0% by mass, the density of the green compact is lowered, and the mechanical strength of the sintered body obtained by sintering the molded body may be lowered. For this reason, the blending amount of the powder for improving machinability in the mixed powder was limited to the range of 0.01 to 1.0% in terms of mass% with respect to the total amount of the iron-based powder, the alloy powder and the machinability improving powder.
上記したような粉末を切削性改善用粉末として配合した混合粉を成形し、焼結すると、基地相中に、主としてSiO2−MgO系非晶質粒子(非晶質相)あるいはSiO2−MgO−アルカリ金属酸化物系非晶質粒子(非晶質相)からなる軟質金属化合物相と、主としてSiO2を含む酸化物相からなる硬質金属化合物相が分散した焼結体が得られる。基地相中に軟質金属化合物相が分散していることにより、切削時に、切屑の変形抵抗を低減し、切削工具に作用する応力を低減でき、工具寿命が向上する。またさらに、基地相中に硬質金属化合物相が分散していることにより、切削時に形成された切屑が変形する際に、硬質金属化合物相が応力集中点となり、切屑の微細化が可能となり、例えばドリル切削時の切屑の排出が促進され、ドリル切削性が向上する。軟質金属化合物相、硬質金属化合物相の分散量が上記した範囲を外れると、切削性の改善の程度が少ないか、機械的特性が低下する。 When a mixed powder containing the above-described powder as a machinability improving powder is molded and sintered, the SiO 2 —MgO amorphous particles (amorphous phase) or SiO 2 —MgO is mainly contained in the matrix phase. A sintered body is obtained in which a soft metal compound phase composed of alkali metal oxide-based amorphous particles (amorphous phase) and a hard metal compound phase composed mainly of an oxide phase containing SiO 2 are dispersed. Since the soft metal compound phase is dispersed in the base phase, it is possible to reduce chip deformation resistance during cutting, reduce stress acting on the cutting tool, and improve tool life. Furthermore, since the hard metal compound phase is dispersed in the base phase, when the chips formed at the time of cutting are deformed, the hard metal compound phase becomes a stress concentration point, and the chip can be made finer. Chip discharge during drill cutting is promoted and drill cutting performance is improved. If the amount of dispersion of the soft metal compound phase and the hard metal compound phase is out of the above range, the degree of improvement in machinability is small or the mechanical properties are deteriorated.
本発明混合粉には、上記した鉄基粉末、合金用粉末、切削性改善用粉末に加えて、適正量の潤滑剤を配合する。配合される潤滑剤としては、ステアリン酸亜鉛、ステアリン酸リチウム等の金属石鹸、あるいはオレイン酸などのカルボン酸、ステアリン酸アミド、ステアリン酸ビスアミド、エチレンビスステアロアミドなどの、アミドワックスが好ましい。潤滑剤の配合量は、本発明ではとくに限定されないが、金属粉末、合金用粉末、切削性改善用粉末の合計量100質量部に対し、0.1〜1.0質量部とすることが好ましい。潤滑剤の配合量が、0.1質量部未満では、金型との摩擦が増加し抜き出し力が増大し、金型寿命が低下する。一方、1.0質量部を超えて多量となると、成形密度が低下し、焼結体密度が低くなる。 In addition to the iron-based powder, the alloy powder, and the machinability improving powder, an appropriate amount of lubricant is blended in the mixed powder of the present invention. The lubricant to be blended is preferably a metal soap such as zinc stearate or lithium stearate, or an amide wax such as carboxylic acid such as oleic acid, stearic acid amide, stearic acid bisamide, or ethylene bisstearamide. The blending amount of the lubricant is not particularly limited in the present invention, but is preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the total amount of the metal powder, the alloy powder, and the machinability improving powder. When the blending amount of the lubricant is less than 0.1 parts by mass, the friction with the mold increases, the extraction force increases, and the mold life decreases. On the other hand, if the amount exceeds 1.0 part by mass, the molding density decreases and the sintered body density decreases.
つぎに、本発明混合粉の好ましい製造方法について説明する。
鉄基粉末に、合金用粉末、および、上記したような種類、配合量の粉末からなる切削性改善用粉末、さらに潤滑剤を、それぞれ所定量配合し、通常公知の混合機を用いて、一回に、あるいは二回以上に分けて混合し、混合粉(鉄基混合粉)とすることが望ましい。上記した切削性改善用粉末は、必ずしも全量を一度に混合する必要はなく、一部のみを配合して混合(一次混合)を行ったのち、残部を配合して混合(二次混合)することもできる。なお、潤滑剤も、二回に分けて配合してもよい。
Below, the preferable manufacturing method of this invention mixed powder is demonstrated.
A predetermined amount of each of the iron-based powder, the alloy powder, the cutting ability improving powder composed of the above-mentioned types and blended amounts of powder, and the lubricant is blended, and the mixture is mixed using a generally known mixer. It is desirable to mix in one or two or more times to obtain a mixed powder (iron-based mixed powder). The above-mentioned machinability improving powder does not necessarily need to be mixed all at once. After mixing only a part (primary mixing), the remaining part is mixed (secondary mixing). You can also. In addition, you may mix | blend a lubricant in two steps.
なお、鉄基粉末の一部または全部を、合金用粉末および/または切削性改善用粉末の一部または全部が結合材を用いて表面に固着させる偏析防止処理を施した鉄基粉末を用いても良い。なお、偏析防止処理としては、特許第3004800号公報に記載の方法を用いることができる。
また、鉄基粉末に、合金用粉末、および、切削性改善用粉末を、潤滑剤とともに所定量配合して、該潤滑剤の融点のうちの最低値以上に加熱し、少なくとも1種の潤滑剤を溶融させて、一次混合したのち、所定の温度以下に冷却して固化させたのち、二次混合材を添加し、二次混合してもよい。
In addition, using iron-base powder that has been subjected to segregation prevention treatment in which part or all of the iron-base powder is bonded to the surface by using a binder for the alloy powder and / or the machinability improving powder. Also good. As the segregation prevention treatment, the method described in Japanese Patent No. 3004800 can be used.
In addition, a predetermined amount of the alloy powder and the machinability improving powder are mixed with the iron-based powder together with the lubricant, and heated to the minimum value or more of the melting point of the lubricant, and at least one lubricant is added. After melting and primary mixing, the mixture may be cooled to a predetermined temperature or lower and solidified, and then a secondary mixture may be added and secondary mixed.
また、混合手段としては、とくに制限はなく、従来公知の混合機いずれもが使用できる。なお、加熱が容易な、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機などは特に有利に適合する。
つぎに、上記した製造方法で製造された本発明の粉末冶金用混合粉を用いた、焼結体の好ましい製造方法について説明する。
The mixing means is not particularly limited, and any conventionally known mixer can be used. Note that a high-speed bottom-stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, a conical planetary screw mixer, and the like that are easy to heat are particularly advantageous.
Below, the preferable manufacturing method of a sintered compact using the mixed powder for powder metallurgy of this invention manufactured with the above-mentioned manufacturing method is demonstrated.
まず、好ましくは上記した方法で製造された、本発明の粉末冶金用混合粉を、金型に充填し圧縮成形し、成形体とすることが好ましい。成形方法は、プレス等の通常の成形方法がいずれも好適である。本発明の粉末冶金用混合粉を用いることにより、成形圧力を294MPa以上とでき、さらに常温においても成形することができる。なお、安定した成形性を確保するためには、混合粉や金型を適正な温度に加熱したり、金型に潤滑剤を塗布することが好ましい。 First, it is preferable that the mixed powder for powder metallurgy of the present invention, which is preferably produced by the above-described method, is filled into a mold and compression-molded to obtain a molded body. As the molding method, any ordinary molding method such as a press is suitable. By using the mixed powder for powder metallurgy according to the present invention, the molding pressure can be set to 294 MPa or more, and further molding can be performed at room temperature. In order to secure stable moldability, it is preferable to heat the mixed powder or the mold to an appropriate temperature or apply a lubricant to the mold.
また、成形を、加熱雰囲気中で行う場合には、混合粉や金型の温度は150℃未満とすることが好ましい。というのは、本発明の混合粉は、圧縮性に富むため、150℃未満の温度でも優れた成形性を示すうえ、150℃以上になると酸化による劣化が懸念されるためである。
得られた成形体は、ついで焼結処理を施され、焼結体となる。焼結処理の温度は、金属粉末の融点の約70%の温度で行う。鉄基粉末の場合は、1000℃以上好ましくは1300℃以下とする。焼結処理の温度が1000℃未満では、所望の密度の焼結体とすることが難しくなる。なお、焼結処理の温度が1300℃を超えて高温となると、異常粒成長が起こり、焼結体強度が低下する。
In addition, when molding is performed in a heated atmosphere, the temperature of the mixed powder or the mold is preferably less than 150 ° C. This is because the mixed powder of the present invention is excellent in compressibility, so that it exhibits excellent moldability even at a temperature of less than 150 ° C., and at the temperature of 150 ° C. or higher, there is a concern about deterioration due to oxidation.
The obtained molded body is then subjected to a sintering treatment to become a sintered body. The temperature of the sintering process is about 70% of the melting point of the metal powder. In the case of iron-based powder, the temperature is set to 1000 ° C or higher, preferably 1300 ° C or lower. When the sintering temperature is less than 1000 ° C., it becomes difficult to obtain a sintered body having a desired density. When the temperature of the sintering process exceeds 1300 ° C. and becomes high, abnormal grain growth occurs and the strength of the sintered body decreases.
また、焼結処理の雰囲気は、窒素あるいはアルゴンなどの不活性ガス雰囲気、あるいは、これに水素を混合した不活性ガス−水素ガス混合雰囲気、あるいは、アンモニア分解ガス、RXガス、天然ガスなどの還元雰囲気とすることが好ましい。
焼結処理後、さらに、必要に応じて、ガス浸炭熱処理や浸炭窒化処理等の熱処理を施し、所望の特性を具備された製品(焼結部品等)とする。なお、切削加工等の加工を随時施し、所定寸法の製品とすることは言うまでもない。
In addition, the sintering atmosphere can be an inert gas atmosphere such as nitrogen or argon, an inert gas-hydrogen gas mixed atmosphere in which hydrogen is mixed with this, or a reduction of ammonia decomposition gas, RX gas, natural gas, etc. An atmosphere is preferable.
After the sintering treatment, heat treatment such as gas carburizing heat treatment or carbonitriding treatment is performed as necessary to obtain a product (sintered part or the like) having desired characteristics. Needless to say, processing such as cutting is performed as needed to obtain a product with a predetermined size.
以下、実施例に基づき、さらに本発明を具体的に説明する。 Hereinafter, based on an Example, this invention is demonstrated further more concretely.
鉄基粉末として、表1に示す鉄基粉末(いずれも平均粒径:約80μm)を使用した。使用した鉄基粉末は、アトマイズ純鉄粉(A)、還元純鉄粉(B)、鉄粉表面に合金元素としてCuを部分拡散させ合金化した部分拡散合金化鋼粉(C)、鉄粉表面に合金元素としてNi、Cu、Moを部分拡散させ合金化した部分拡散合金化鋼粉(D)、合金元素としてNi、Moを予合金化した予合金化鋼粉(完全合金化鋼粉)(E)、合金元素としてMoを予合金化した予合金化鋼粉(完全合金化鋼粉)(F)と、合金元素として、Moを予合金化した完全合金化鋼粉にさらにMoを部分拡散合金化した鋼粉(ハイブリッド型合金鋼粉)(H)とした。 As the iron-based powder, the iron-based powder shown in Table 1 (both average particle size: about 80 μm) was used. The iron-based powder used is atomized pure iron powder (A), reduced pure iron powder (B), partially diffused alloyed steel powder (C), which is alloyed by partially diffusing Cu as an alloy element on the iron powder surface, iron powder Partially-diffused alloyed steel powder (D), which is alloyed by partially diffusing Ni, Cu, Mo as alloy elements on the surface, pre-alloyed steel powder (fully-alloyed steel powder) pre-alloyed with Ni, Mo as alloy elements (E) Pre-alloyed steel powder (fully alloyed steel powder) (F) prealloyed with Mo as an alloying element (F), and Mo further subdivided into fully alloyed steel powder prealloyed with Mo as an alloying element Diffusion alloyed steel powder (hybrid alloy steel powder) (H) was used.
上記した鉄基粉末に、表2に示す種類、配合量の合金用粉末と、表2に示す種類、配合量の切削性改善用粉末と、さらに、表2に示す種類、配合量の潤滑剤とを、配合し、高速底部撹拌式混合機を利用して、一次混合した。なお、一次混合では、混合しながら140℃に加熱した後、60℃以下に冷却した。なお、合金用粉末として配合した天然黒鉛粉は平均粒径:5μmの粉末とし、銅粉は平均粒径:20μmの粉末とした。なお、切削性改善用粉末として用いた、金属硼化物粉末および金属窒化物粉末は、表2に示す平均粒径の粉末とした。 The above-mentioned iron-based powder, the types and amounts of alloy powder shown in Table 2, the types and amounts of cutting powder for improving machinability shown in Table 2, and the types and amounts of lubricant shown in Table 2 Were mixed and primary mixed using a high speed bottom stirring mixer. In primary mixing, the mixture was heated to 140 ° C. while mixing and then cooled to 60 ° C. or less. The natural graphite powder blended as an alloy powder was a powder having an average particle diameter of 5 μm, and the copper powder was a powder having an average particle diameter of 20 μm. The metal boride powder and metal nitride powder used as the machinability improving powder were powders having an average particle size shown in Table 2.
一次混合したのち、さらに表2に示す種類、配合量の切削性改善用粉末、潤滑剤からなる二次混合材を配合し、混合機の回転数を1000rpmとし、1分間撹拌する、二次混合を行なった。二次混合後、混合機から混合粉を排出した。なお、切削性改善用粉末は、一次混合と二次混合時の二回に分けて配合した。切削性改善用粉末の配合量は、鉄基粉末、合金用粉末、切削性改善用粉末の合計量に対する質量%で表示し、潤滑剤の配合量は、鉄基粉末、合金用粉末、切削性改善用粉末の合計量100質量部に対する質量部で表示した。 After the primary mixing, mix the secondary mixing material consisting of the types and blending amounts of the powders for improving machinability and the lubricant shown in Table 2 and stir for 1 minute with the mixer rotating at 1000 rpm. Was done. After the secondary mixing, the mixed powder was discharged from the mixer. In addition, the machinability improving powder was blended in two steps during primary mixing and secondary mixing. The compounding amount of the powder for improving machinability is expressed in mass% with respect to the total amount of the iron-based powder, alloy powder and powder for improving machinability, and the compounding amount of the lubricant is iron-based powder, alloy powder and machinability. Displayed in parts by mass relative to 100 parts by mass of the total amount of powder for improvement.
これにより、鉄基粉末、合金用粉末、切削性改善用粉末が、偏析を生じることなく、均一に混合された混合粉が得られた。
なお、比較例として、表2に示す種類、配合量で、鉄基粉末、合金用粉末、潤滑剤を配合し、V型容器回転式混合機を用いて、常温で混合し、混合粉を得た。
得られた混合粉を、金型(旋盤切削試験用およびドリル切削試験用の2種)に装入し、加圧力:590MPaで圧粉成形し、成形体を得た。ついで、得られた成形体に、RXガス雰囲気中で、1130℃×20minの焼結処理を施して、焼結体を得た。
As a result, a mixed powder was obtained in which the iron-based powder, the alloy powder, and the machinability improving powder were uniformly mixed without causing segregation.
As a comparative example, iron-base powder, alloy powder, and lubricant are blended in the types and amounts shown in Table 2, and mixed at room temperature using a V-type container rotary mixer to obtain a mixed powder. It was.
The obtained mixed powder was charged into a mold (two types for lathe cutting test and drill cutting test) and compacted at a pressure of 590 MPa to obtain a molded body. Subsequently, the obtained molded body was subjected to a sintering treatment at 1130 ° C. for 20 minutes in an RX gas atmosphere to obtain a sintered body.
得られた焼結体について、組織観察、旋盤切削試験、ドリル切削試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた焼結体から組織分析用試験片を採取し、電界抽出法により非金属介在物を抽出した。そして得られた抽出物をX線回折測定により、焼結体中の軟質相と硬質相の同定を行った。
(2)旋盤切削試験
得られた焼結体(リング状:外径60mm×内径20mm×長さ20mm)を3個重ねて、その側面を、旋盤を利用して切削した。切削条件は、超硬の切削工具を用いて、切削速度:200m/min、送り量:0.1mm/回、切込み深さ:0.5mm,切削距離:1000mとし、切削後、切削工具の逃げ面の摩耗幅を測定した。切削工具の逃げ面の摩耗幅が小さいほど、焼結体の切削性が優れていると評価した。
(3)ドリル切削試験
得られた焼結体(円盤状:外径60mm×厚さ10mm)に、高速度鋼製ドリル(直径:1.2mmのシャンクドリル)で、回転数:10,000rpm、送り速度:300mm/minの条件で貫通穴を穿孔し、ドリルが破損するまでの穿孔数を調査した。なお、穿孔部表面のバリ発生の有無を目視で調査した。
The obtained sintered body was subjected to a structure observation, a lathe cutting test, and a drill cutting test. The test method was as follows.
(1) Structure observation A specimen for structure analysis was collected from the obtained sintered body, and non-metallic inclusions were extracted by an electric field extraction method. And the soft phase and hard phase in a sintered compact were identified by the X-ray-diffraction measurement of the obtained extract.
(2) Lathe cutting test Three of the obtained sintered bodies (ring shape: outer diameter 60 mm x inner diameter 20 mm x length 20 mm) were stacked, and the side surfaces were cut using a lathe. Cutting conditions were as follows: Carbide cutting tool, cutting speed: 200 m / min, feed rate: 0.1 mm / turn, depth of cut: 0.5 mm, cutting distance: 1000 m. The wear width was measured. It was evaluated that the smaller the wear width of the flank of the cutting tool, the better the machinability of the sintered body.
(3) Drill cutting test The obtained sintered body (disk shape: outer diameter 60 mm x thickness 10 mm) was rotated with a high-speed steel drill (diameter: 1.2 mm shank drill), rotating speed: 10,000 rpm, feed rate : A through hole was drilled under the condition of 300 mm / min, and the number of drill holes until the drill broke was investigated. In addition, the presence or absence of burr | flash generation | occurrence | production of the perforated part surface was investigated visually.
得られた結果を、表3に示す。 The results obtained are shown in Table 3.
本発明例はいずれも、切削工具逃げ面の摩耗幅も小さく、旋盤切削性に優れ、さらにドリルが破損するまでの穿孔数が多く、またバリの発生もなく、ドリル切削性にも優れた、焼結体となっている。一方、本発明の範囲を外れる比較例は、旋削性および/またはドリル切削性が低下していた。 In any of the examples of the present invention, the wear width of the cutting tool flank is small, the lathe cutting performance is excellent, and the number of drill holes until the drill breaks is large, there is no occurrence of burrs, and the drill cutting performance is excellent. It is a sintered body. On the other hand, in the comparative example outside the scope of the present invention, the turning property and / or the drill cutting property were lowered.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011024946A JP5696512B2 (en) | 2010-02-18 | 2011-02-08 | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010033775 | 2010-02-18 | ||
JP2010033775 | 2010-02-18 | ||
JP2010286989 | 2010-12-24 | ||
JP2010286989 | 2010-12-24 | ||
JP2011024946A JP5696512B2 (en) | 2010-02-18 | 2011-02-08 | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012144801A JP2012144801A (en) | 2012-08-02 |
JP5696512B2 true JP5696512B2 (en) | 2015-04-08 |
Family
ID=46788656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011024946A Active JP5696512B2 (en) | 2010-02-18 | 2011-02-08 | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5696512B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102814495B (en) * | 2012-09-10 | 2014-09-17 | 北京科技大学 | Method for improving iron powder forming property |
CN105377477B (en) * | 2013-07-18 | 2017-11-24 | 杰富意钢铁株式会社 | The manufacture method of powder used in metallurgy mixed powder and its manufacture method and iron-based powder sintered body |
JP6389038B2 (en) * | 2013-10-03 | 2018-09-12 | Ntn株式会社 | Sintered bearing and manufacturing method thereof |
JP6007928B2 (en) * | 2014-02-21 | 2016-10-19 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder |
JP5962787B2 (en) * | 2014-02-21 | 2016-08-03 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder |
JP5962691B2 (en) * | 2014-02-21 | 2016-08-03 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder |
DK3253512T3 (en) * | 2015-02-03 | 2023-06-06 | Hoeganaes Ab Publ | POWDER METAL COMPOSITION FOR LIGHT MACHINING |
JP6480265B2 (en) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same |
JP6480264B2 (en) | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | Mixed powder and sintered body for iron-based powder metallurgy |
WO2017051671A1 (en) * | 2016-02-08 | 2017-03-30 | 住友電気工業株式会社 | Iron-based sintered body |
WO2019146310A1 (en) * | 2018-01-25 | 2019-08-01 | 株式会社神戸製鋼所 | Mixed powder for powder metallurgy |
JP6929259B2 (en) * | 2018-01-25 | 2021-09-01 | 株式会社神戸製鋼所 | Mixed powder for powder metallurgy |
CN115515901A (en) * | 2020-05-27 | 2022-12-23 | 松下知识产权经营株式会社 | Inorganic structure and method for producing same |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826441B2 (en) * | 1986-10-06 | 1996-03-13 | 勝美 山口 | Free-cutting sintered material |
JPH0711007B2 (en) * | 1988-04-05 | 1995-02-08 | 川崎製鉄株式会社 | Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering |
JPH0711006B2 (en) * | 1988-04-05 | 1995-02-08 | 川崎製鉄株式会社 | Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering |
JPH0689364B2 (en) * | 1989-11-20 | 1994-11-09 | 川崎製鉄株式会社 | Method for producing iron-based powder mixture for powder metallurgy |
JPH06145701A (en) * | 1992-11-04 | 1994-05-27 | Kawasaki Steel Corp | Iron base powder mixture for powder metallurgy |
JPH11131108A (en) * | 1997-10-29 | 1999-05-18 | Fuji Oozx Inc | Functionally gradient fe-cu-c metallic sintered body containing ceramic particle |
JP2005290530A (en) * | 2004-04-06 | 2005-10-20 | Kubota Corp | Metal boride-dispersed sintered compact |
JP4640162B2 (en) * | 2005-12-21 | 2011-03-02 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy and iron-based sintered body |
CN101384387B (en) * | 2006-02-15 | 2011-12-21 | 杰富意钢铁株式会社 | Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body |
JP4935731B2 (en) * | 2008-03-18 | 2012-05-23 | Jfeスチール株式会社 | Iron-based powder mixture |
JP2009242887A (en) * | 2008-03-31 | 2009-10-22 | Jfe Steel Corp | Iron-based powdery mixture |
JP5200768B2 (en) * | 2008-08-27 | 2013-06-05 | Jfeスチール株式会社 | Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same |
JP5310074B2 (en) * | 2009-02-20 | 2013-10-09 | Jfeスチール株式会社 | Iron-based powder mixture for high-strength sintered parts of automobiles |
JP2010236061A (en) * | 2009-03-31 | 2010-10-21 | Jfe Steel Corp | Iron based mixed powder for sintered member excellent in machinability |
JP5504863B2 (en) * | 2009-12-10 | 2014-05-28 | Jfeスチール株式会社 | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability |
-
2011
- 2011-02-08 JP JP2011024946A patent/JP5696512B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012144801A (en) | 2012-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5696512B2 (en) | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same | |
JP5904234B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP4737107B2 (en) | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body | |
JP4412133B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP5504971B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP5504963B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
TWI769130B (en) | Powder metal composition for easy machining | |
JP5962787B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2010236061A (en) | Iron based mixed powder for sintered member excellent in machinability | |
JP5962691B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP6380501B2 (en) | Mixed powder for powder metallurgy, method for producing mixed powder for powder metallurgy, and sintered body | |
JP5504863B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
WO2018100955A1 (en) | Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same | |
JP5200768B2 (en) | Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same | |
JP2009242887A (en) | Iron-based powdery mixture | |
JP2014025109A (en) | Mixed powder for powder metallurgy | |
JP6007928B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2007169713A (en) | Iron-based powdery mixture for powder metallurgy | |
JP6493357B2 (en) | Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body | |
JP5310074B2 (en) | Iron-based powder mixture for high-strength sintered parts of automobiles | |
JP2009221576A (en) | Iron-based powdery mixture | |
JP2017101280A (en) | Mixed powder for powder metallurgy, production method for mixed powder for powder metallurgy, and iron-based powder-made sintered compact | |
JP2017106060A (en) | Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130702 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140901 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141210 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5696512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |