JP2007169713A - Iron-based powdery mixture for powder metallurgy - Google Patents

Iron-based powdery mixture for powder metallurgy Download PDF

Info

Publication number
JP2007169713A
JP2007169713A JP2005368835A JP2005368835A JP2007169713A JP 2007169713 A JP2007169713 A JP 2007169713A JP 2005368835 A JP2005368835 A JP 2005368835A JP 2005368835 A JP2005368835 A JP 2005368835A JP 2007169713 A JP2007169713 A JP 2007169713A
Authority
JP
Japan
Prior art keywords
powder
iron
machinability
improving
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005368835A
Other languages
Japanese (ja)
Other versions
JP4640162B2 (en
Inventor
Yukiko Ozaki
由紀子 尾▲崎▼
Satoshi Uenosono
聡 上ノ薗
Yutaka Sugihara
裕 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005368835A priority Critical patent/JP4640162B2/en
Publication of JP2007169713A publication Critical patent/JP2007169713A/en
Application granted granted Critical
Publication of JP4640162B2 publication Critical patent/JP4640162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-based powdery mixture with which machinability of a sintered compact can be improved without bringing about deterioration in its mechanical properties. <P>SOLUTION: The iron-based powdery mixture is obtained by mixing iron-based powder with powder for alloy, powder for improving machinability and further, a lubricant. As the powder for improving machinability, manganese sulfide powder with the average particle diameter of 1 to 60 μm and/or calcium fluoride powder with the average particle diameter of 1 to 60 μm is used. The powder for improving machinability is comprised by 0.1 to 1.5 mass% to the total content of the iron-based powder, the powder for alloy and the powder for improving machinability. Further, the powder for improving machinability has a grain size distribution similar to the grain size distribution of holes in an iron-based sintered compact obtained by subjecting an iron-based powdery mixture mixed with iron-based powder, powder for alloy and a lubricant to pressure-compacting and sintering. In this way, the holes in the sintered compact can be reduced, intermittent impact to a tool is reduced, and the service life of the tool is prolonged. Further, a part or the whole of the iron-base powder can be used as the iron-based powder applying a segregation-preventive treatment, in which the powder for alloy and/or the powder for improving the machinability, are stuck on the surface with a binder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粉末冶金用鉄基混合粉に係り、とくに焼結体の切削性改善と、良好な切削後表面性状を得ることが可能である粉末冶金用鉄基混合粉に関する。   The present invention relates to an iron-based mixed powder for powder metallurgy, and more particularly to an iron-based mixed powder for powder metallurgy that can improve the machinability of a sintered body and obtain good surface properties after cutting.

粉末冶金技術の進歩により、高寸法精度の複雑な形状の部品をニアネット形状に製造することができるようになっており、粉末冶金技術を利用した製品が各種分野で利用されている。
鉄系粉末冶金製品は、鉄基粉末に、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸亜鉛、ステアリン酸リチウム等の潤滑剤とを混合した鉄基混合粉を金型に充填したのち、加圧成形し、ついで焼結処理を施して焼結体とし、必要に応じ切削加工されて製品とされる。このようにして製造された焼結体は、空孔の含有比率が高く、溶解法による金属材料(溶製材)にくらべて、切削抵抗が高い。このため、従来から、焼結体の切削性を向上させる目的で、鉄基粉末に、Pb、Se、Te等の種々の粉末を添加、あるいは鉄粉あるいは鉄基粉末に合金化して添加することが行なわれてきた。
Advances in powder metallurgy technology make it possible to manufacture parts with complex shapes with high dimensional accuracy in a near net shape, and products using powder metallurgy technology are used in various fields.
Iron-based powder metallurgy products are obtained by filling a die with iron-based powder mixed with iron-based powder, alloy powder such as copper powder and graphite powder, and lubricant such as zinc stearate and lithium stearate. Then, it is pressure-molded and then subjected to a sintering treatment to obtain a sintered body, which is cut as necessary to obtain a product. The sintered body thus produced has a high content ratio of pores, and has a higher cutting resistance than a metal material (melted material) obtained by a melting method. For this reason, for the purpose of improving the machinability of sintered bodies, various powders such as Pb, Se, Te, etc. have been added to the iron-based powder, or alloyed with iron powder or iron-based powder. Has been done.

しかしながら、Pbは融点が330℃と低いため、焼結過程で溶融し、しかも鉄中に固溶せず基地中に均一分散させることが難しいという問題があった。また、Se、Teは、焼結体を脆化させるため、焼結体の機械的特性の劣化が著しいという問題があった。これらの粉末以外にも、切削性改善のために種々の粉末を添加することが提案されている。
例えば、特許文献1には、鉄粉に、10μm以下の硫化マンガンを重量で0.05〜5%混合した鉄粉混合物が提案されている。特許文献1に記載された技術では、寸法変化や強度変化を伴うことなく焼結材の被削性を改善できるとしている。
However, since Pb has a low melting point of 330 ° C., it has a problem that it melts during the sintering process, and does not dissolve in iron and is difficult to uniformly disperse in the matrix. Moreover, since Se and Te embrittle the sintered body, there was a problem that the mechanical properties of the sintered body deteriorated remarkably. In addition to these powders, it has been proposed to add various powders to improve machinability.
For example, Patent Document 1 proposes an iron powder mixture in which 0.05 to 5% by weight of manganese sulfide of 10 μm or less is mixed with iron powder. According to the technique described in Patent Document 1, the machinability of the sintered material can be improved without causing dimensional change or strength change.

また、特許文献2には、S:0.04〜0.2wt%、Mn:0.05〜0.5wt%、Si:0.01〜0.1wt%を含み、MnS粒子数の5%以上が酸素を含有しているアトマイズ鉄粉が提案されている。この鉄粉を用いて焼結体とすることにより、優れた切削性を有する粉末冶金製品を製造できるとしている。
また、特許文献3には、鉄基粉末に、黒鉛粉を含む合金用粉末と、潤滑剤とを含み、切削性改善用粉末としてアルカリ土類金属のフッ化物粉を鉄基粉末と合金用粉末と切削性改善用粉末の合計量に対し、0.1〜0.7質量%含有するとともに、黒鉛粉および切削性改善用粉末を結合材により鉄基粉末表面に固着して含む粉末冶金用鉄基混合粉が提案されている。特許文献3に記載された技術によれば、焼結体の機械的特性劣化を生じることなく切削性が向上できるとしている。
Patent Document 2 includes atomized iron containing S: 0.04 to 0.2 wt%, Mn: 0.05 to 0.5 wt%, Si: 0.01 to 0.1 wt%, and 5% or more of the number of MnS particles containing oxygen. Powder has been proposed. It is said that a powder metallurgy product having excellent machinability can be manufactured by using this iron powder as a sintered body.
Patent Document 3 discloses an iron-base powder containing an alloy powder containing graphite powder and a lubricant, and an alkaline earth metal fluoride powder as an iron-base powder and alloy powder as a machinability improving powder. And an iron-based mixed powder for powder metallurgy containing 0.1 to 0.7% by mass with respect to the total amount of the powder for improving machinability, and containing the graphite powder and the powder for improving machinability fixed to the surface of the iron-based powder with a binder. Proposed. According to the technique described in Patent Document 3, the machinability can be improved without causing deterioration of mechanical properties of the sintered body.

また、特許文献4には、鉄または鉄基合金に切削性改善用粉末として硫酸バリウム、硫化バリウムを単独または合計で0.3〜3.0重量%添加した、粉末冶金法で製造された快削性金属材料が提案されている。
また、特許文献5には、鉄基粉末組成物において、焼結製品の切削性を改善する添加剤としてフッ化カルシウムとフッ化バリウムの粉末、好ましくはそれらの溶融物から作られた粉末を0.1〜1.0重量%含み、さらにMnSおよびMoSを含む1種またはそれ以上の従来の切削性改善剤を組み合わせた鉄基粉末組成物が提案されている。
Patent Document 4 discloses a free-cutting metal material manufactured by a powder metallurgy method, in which barium sulfate or barium sulfide is added alone or in a total amount of 0.3 to 3.0% by weight as iron or iron-based alloy as a powder for improving machinability. Has been proposed.
Patent Document 5 discloses a powder made of calcium fluoride and barium fluoride, preferably a powder made from a melt thereof, as an additive for improving the machinability of sintered products in an iron-based powder composition. An iron-based powder composition is proposed that is combined with one or more conventional machinability improvers that contain ˜1.0% by weight and further comprises MnS and MoS 2 .

特許文献1〜5に記載された技術では、切削性改善用粉をチッピング促進材として、焼結体内に分散させ切削時に切削部位が塑性変形する際に、これら切削性改善用粉(粒子)が応力の集中点となり切屑を微細化する。この切屑の微細化により切削工具と切屑間の接触面積が低減し、摩擦抵抗を下げることにより工具摩耗を防止、或いは低減しようとするものである。しかしながら、これらチッピング促進材には工具表面を保護する機能はなく、切削に際し、工具表面と被削材とが直接接触し、大気中で摩擦による発熱が生じ、工具表面が酸化するとともに、切削に際し焼結体内部に内在する空孔により工具に断続的衝撃が負荷され、これにより工具内部に微細亀裂が発生し工具材質が劣化し、所望の切削性向上が得られないという問題があった。   In the techniques described in Patent Documents 1 to 5, when the cutting ability improving powder is dispersed in the sintered body as a chipping promoter, the cutting ability improving powder (particles) is dispersed when the cutting site is plastically deformed during cutting. It becomes a stress concentration point and refines the chips. By reducing the size of the chips, the contact area between the cutting tool and the chips is reduced, and tool wear is prevented or reduced by reducing the frictional resistance. However, these chipping promoting materials do not have a function to protect the tool surface, and the tool surface and the work material are in direct contact with each other during cutting, and heat is generated due to friction in the atmosphere, and the tool surface is oxidized. There is a problem that intermittent impact is applied to the tool due to the voids inside the sintered body, thereby causing a microcrack inside the tool, deteriorating the tool material, and the desired machinability cannot be improved.

このような問題に対し、例えば特許文献6には、鉄粉を主体とし、アノールサイト相および/またはゲーレナイト相を有する平均粒径50μm以下のCaO−Al2O3−SiO2系複合酸化物の粉末を0.02〜0.3重量%含有する粉末冶金用鉄系混合粉末が提案されている。特許文献6に記載された技術では、被削材中に予め低融点のセラミックスを分散させ、切削時に加工面に露出したセラミックス粒子が工具表面に付着し工具保護膜(いわゆるベラーグ層)を形成し、工具の材質劣化を防止して、切削性を改善するとともに、焼結時の寸法変化を少なくできるとしている。
特開昭61−147801号公報 特許第3443911号公報 特開2002−155301号公報 特公昭46−39564号公報 特許3073526号公報 特開平9−279204号公報
For example, Patent Document 6 discloses a CaO—Al 2 O 3 —SiO 2 composite oxide having an average particle size of 50 μm or less and mainly having iron powder and having an anolite phase and / or a gehlenite phase. An iron-based mixed powder for powder metallurgy containing 0.02 to 0.3% by weight of a powder has been proposed. In the technique described in Patent Document 6, ceramics having a low melting point are dispersed in advance in a work material, and ceramic particles exposed to the processing surface during cutting adhere to the tool surface to form a tool protection film (so-called bellage layer). In addition to preventing material deterioration of the tool and improving machinability, it is possible to reduce dimensional changes during sintering.
JP-A-61-147801 Japanese Patent No. 3443911 JP 2002-155301 A Japanese Patent Publication No.46-39564 Japanese Patent No. 3073526 JP-A-9-279204

しかしながら、特許文献6に記載された技術では、CaO−Al2O3−SiO2系複合酸化物を不純物が少なく、かつ粒度を制限した粉末とする必要がある。不純物が少なく、かつ粒度を制限した粉末を使用しないと、粉体特性、焼結体特性が低下するという問題があった。また、さらに切削条件によっては、工具と被削材との摩擦発熱が不十分で、低融点のセラミックスが軟化せず、工具保護膜を形成しない場合があり、所望の切削性向上が得られないという問題があった。 However, in the technique described in Patent Document 6, it is necessary to make the CaO—Al 2 O 3 —SiO 2 composite oxide a powder with few impurities and with a limited particle size. If a powder with few impurities and a limited particle size is not used, there is a problem that powder characteristics and sintered body characteristics are deteriorated. Further, depending on cutting conditions, frictional heat generation between the tool and the work material may be insufficient, the low melting point ceramic may not be softened, and a tool protective film may not be formed, and a desired machinability improvement cannot be obtained. There was a problem.

本発明は、かかる従来技術の問題を有利に解決し、機械的特性の劣化を伴うことなく、焼結体の切削性を向上できる粉末冶金用鉄基混合粉を提供することを目的とする。   It is an object of the present invention to provide an iron-based mixed powder for powder metallurgy that can advantageously solve the problems of the prior art and improve the machinability of a sintered body without deteriorating mechanical properties.

本発明者らは、上記した課題を達成するために、更なる切削性向上に及ぼす切削性改善用粉末の種類、粒径の影響について鋭意考究した。 その結果、本発明者らは、切削性向上のためには、焼結体内に内在する空孔を減少させ、切削時に空孔を形成する自由表面と工具との衝突により生じる断続的衝撃を緩和し、工具表面の摩耗や工具内部の微細亀裂生成を抑制して、工具寿命を延長することが肝要であり、そのためには、切削性改善用粒子(粉末)で空孔を充填することが効率的であることに思い至った。そして、切削性改善用粉末として、平均粒径:1〜60μmの硫化マンガン粉、平均粒径:1〜60μmのフッ化カルシウム粉を単独または複合して使用することにより、焼結体の切削性が顕著に向上することを見出した。とくに、30μmを超える粗大な空孔を充填することができ、切削時に生じる強い断続的衝撃を顕著に緩和できることを知見した。   In order to achieve the above-mentioned problems, the present inventors diligently studied the effects of the type and particle size of the machinability improving powder on further machinability improvement. As a result, in order to improve the machinability, the present inventors have reduced the number of vacancies in the sintered body and alleviated the intermittent impact caused by the collision between the free surface that forms vacancies during cutting and the tool. However, it is important to extend the tool life by suppressing the wear on the tool surface and the generation of micro cracks inside the tool. For this purpose, it is efficient to fill the holes with particles (powder) for improving machinability. I realized that Then, as the powder for improving machinability, manganese sulfide powder having an average particle diameter of 1 to 60 μm and calcium fluoride powder having an average particle diameter of 1 to 60 μm are used singly or in combination, whereby the machinability of the sintered body is obtained. Has been found to be significantly improved. In particular, it was found that coarse pores exceeding 30 μm can be filled, and the strong intermittent impact generated during cutting can be remarkably reduced.

これは、切削性改善用粉末の平均粒径を1〜60μmの範囲とすることにより、切削性改善用粉末粒子により焼結体内の空孔が充填されやすくなり、焼結体の空孔が実質的に減少して、切削時に生じる断続的衝撃が緩和されるためであると、本発明者らは考えている。
また、本発明者らは、更なる検討により、切削性改善用粉末粒子の粒度分布を、切削性改善用粉末を含まない、鉄基粉末と合金用粉末と潤滑剤とを混合してなる鉄基混合粉を加圧成形し焼結して得られる鉄基焼結体に生じる空孔の粒度分布に相似するように調整することにより、切削性改善用粉末粒子による空孔の充填が効率的に行えることを知見した。
This is because when the average particle size of the machinability improving powder is in the range of 1 to 60 μm, the pores in the sintered body are easily filled with the machinability improving powder particles, and the vacancies in the sintered body are substantially The present inventors believe that this is because the intermittent impact generated during cutting is reduced and the intermittent impact is reduced.
In addition, the present inventors have further studied that the particle size distribution of the machinability improving powder particles is a mixture of iron-based powder, alloy powder, and lubricant that does not include machinability improving powder. Efficient filling of pores with powder particles for improving machinability by adjusting the particle size distribution of the pores generated in the iron-based sintered body obtained by pressing and sintering the base mixed powder I found out that I can do it.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)鉄基粉末と、合金用粉末と、切削性改善用粉末と、さらに潤滑剤と、を混合してなる鉄基混合粉であって、前記切削性改善用粉末を、平均粒径:1〜60μmの硫化マンガン粉および/または平均粒径:1〜60μmのフッ化カルシウム粉とし、該切削性改善用粉末を合計で、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対する質量%で0.1〜1.5%含有することを特徴とする粉末冶金用鉄基混合粉。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) An iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant, wherein the machinability improving powder has an average particle size: 1 to 60 μm manganese sulfide powder and / or calcium fluoride powder having an average particle size of 1 to 60 μm, and the total of the machinability improving powder and the iron-base powder, alloy powder and machinability improving powder Iron-based mixed powder for powder metallurgy, characterized by containing 0.1 to 1.5% by mass relative to the amount.

(2)(1)において、前記切削性改善用粉末を、平均粒径:1〜10μmの硫化マンガン粉と平均粒径:10〜60μmのフッ化カルシウム粉とし、該フッ化カルシウム粉を切削性改善用粉末全量に対する質量%で10〜80%配合することを特徴とする粉末冶金用鉄基混合粉。
(3)(1)または(2)において、前記鉄基粉末の一部または全部が、表面に前記合金用粉末および/または前記切削性改善用粉末を結合材により固着してなることを特徴とする粉末冶金用鉄基混合粉。
(2) In (1), the powder for improving machinability is manganese sulfide powder having an average particle diameter of 1 to 10 μm and calcium fluoride powder having an average particle diameter of 10 to 60 μm, and the calcium fluoride powder is machinable. An iron-based mixed powder for powder metallurgy, characterized by containing 10 to 80% by mass% based on the total amount of powder for improvement.
(3) In (1) or (2), a part or all of the iron-based powder is formed by fixing the alloy powder and / or the machinability improving powder to a surface with a binder. Iron-based mixed powder for powder metallurgy.

(4)(1)ないし(3)のいずれかにおいて、前記切削性改善用粉末が、鉄基粉末と合金用粉末と潤滑剤とを混合してなる鉄基混合粉を加圧成形し焼結して得られた鉄基焼結体の空孔の粒度分布と相似する粒度分布を有する切削性改善用粉末であることを特徴とする粉末冶金用鉄基混合粉。
(5)(1)ないし(4)のいずれかに記載の粉末冶金用鉄基混合粉を、加圧成形し、さらに焼結してなる鉄基焼結体。
(4) In any one of (1) to (3), the machinability improving powder is pressure-molded and sintered with an iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, and a lubricant. An iron-based mixed powder for powder metallurgy, characterized by being a machinability improving powder having a particle size distribution similar to the pore size distribution of the iron-based sintered body obtained as described above.
(5) An iron-based sintered body obtained by press-molding and sintering the iron-based mixed powder for powder metallurgy according to any one of (1) to (4).

本発明によれば、機械的特性の劣化を伴うことなく焼結体の切削性を向上させることができ、切削加工を必要とする焼結部材の生産性を顕著に向上できるという、産業上格段の効果を奏する。   According to the present invention, it is possible to improve the machinability of a sintered body without deteriorating mechanical properties, and to remarkably improve the productivity of a sintered member that requires cutting, which is remarkable in the industry. The effect of.

本発明の粉末冶金用鉄基混合粉は、鉄基粉末と、合金用粉末と、切削性改善用粉末と、さらに潤滑剤と、を混合してなる鉄基混合粉である。本発明では、切削性改善用粉末として、硫化マンガン粉および/またはフッ化カルシウム粉を使用する。硫化マンガン粉およびフッ化カルシウム粉は、いずれも焼結体の切削時に応力の集中点となり、切屑を微細化し、切削工具と切屑との接触面を低減し摩擦抵抗を低減し、切削性を改善する作用を有する。さらに、焼結体の空孔の粒度分布(空孔径の分布)に応じて、粒度分布の異なる2種の粒子を、適宜、鉄基粉末に混合して混合粉とし、これを成形、焼結すると、得られる焼結体中の空孔が充填され、空孔が実質的に減少する効果も有する。   The iron-based mixed powder for powder metallurgy according to the present invention is an iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant. In the present invention, manganese sulfide powder and / or calcium fluoride powder is used as the machinability improving powder. Both manganese sulfide powder and calcium fluoride powder become stress concentration points when cutting sintered bodies, miniaturize chips, reduce the contact surface between the cutting tool and chips, reduce frictional resistance, and improve machinability. Has the effect of Furthermore, depending on the particle size distribution of pores in the sintered body (pore size distribution), two types of particles with different particle size distributions are appropriately mixed with iron-based powder to form a mixed powder, which is molded and sintered Then, the void | hole in the obtained sintered compact is filled, and it also has the effect that a void | hole reduces substantially.

このような効果を得るために、本発明では、硫化マンガン粉、フッ化カルシウム粉の平均粒径を1〜60μmの範囲に限定する。これにより、焼結体の空孔が実質的に減少し、切削時の断続的衝撃を緩和することができ、工具表面の摩耗や工具内部における微細亀裂発生を抑制し、工具寿命を増加させることができる。切削性改善用粉末の平均粒径が1μm未満では、粒子が細かすぎて、空孔を十分に充填することができない。一方、60μmを超えて大きくなると、粒子が大きすぎて空孔を充填することができなくなるばかりか、焼結体の機械的強度の低下を招く。このため、硫化マンガン粉およびフッ化カルシウム粉の平均粒径を1〜60μmの範囲に限定した。これにより、30μmを超える粗大な空孔を充填することができる。   In order to acquire such an effect, in this invention, the average particle diameter of manganese sulfide powder and a calcium fluoride powder is limited to the range of 1-60 micrometers. As a result, voids in the sintered body are substantially reduced, intermittent impact during cutting can be mitigated, tool surface wear and the occurrence of fine cracks inside the tool are suppressed, and tool life is increased. Can do. If the average particle size of the machinability improving powder is less than 1 μm, the particles are too fine to fill the pores sufficiently. On the other hand, if it exceeds 60 μm, the particles are too large to fill the pores, and the mechanical strength of the sintered body is reduced. For this reason, the average particle diameter of manganese sulfide powder and calcium fluoride powder was limited to a range of 1 to 60 μm. Thereby, coarse pores exceeding 30 μm can be filled.

さらに好ましくは、切削性改善用粉末の粒度分布を、鉄基粉末と合金用粉末と潤滑剤とを混合してなる鉄基混合粉を加圧成形し焼結して得られた鉄基焼結体の空孔の粒度分布(空孔径の分布)と相似する粒度分布とする。これにより、切削性改善用粉末を焼結体中の空孔に、効率的に充填することができ、焼結体中の空孔を実質的に効率よく減少することができる。   More preferably, the particle size distribution of the machinability improving powder is obtained by pressing and sintering an iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, and a lubricant. The particle size distribution is similar to the particle size distribution of the body pores (pore size distribution). Accordingly, the machinability improving powder can be efficiently filled into the pores in the sintered body, and the voids in the sintered body can be reduced substantially efficiently.

なお、ここでは、切削性改善用粉末の粒径は、レーザを用いたマイクロトラック法で測定した値を用いるものとし、平均粒径は、50%累積透過粒径(d50)を用いるものとする。また、焼結体中の空孔径の分布は、焼結体断面の光学顕微鏡写真をスキャナーにより電子画像化し、画像の明度を明部と暗部とに2値化し、暗部の画素数の比率を求めることにより求めた。なお、空孔径の分布に相似する粒度分布を有する切削性改善用粉末とするには、篩を用いて分級し、空孔径の分布に相似する粒度分布になるように調整する。 Here, the particle size of the powder for improving machinability is a value measured by a microtrack method using a laser, and the average particle size is a 50% cumulative transmitted particle size (d 50 ). To do. In addition, regarding the distribution of pore diameters in the sintered body, an optical micrograph of the cross section of the sintered body is converted into an electronic image by a scanner, the brightness of the image is binarized into a bright part and a dark part, and the ratio of the number of pixels in the dark part is obtained. Was determined by In order to obtain a machinability improving powder having a particle size distribution similar to the pore size distribution, classification is performed using a sieve, and the particle size distribution is similar to the pore size distribution.

本発明では、上記したような平均粒径あるいはさらに上記したような粒度分布を有する切削性改善用粉末を合計で、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対する質量%で0.1〜1.5%含有する。
切削性改善用粉末の合計の含有量が、0.1質量%未満では、切削性の顕著な向上が認められない。一方、1.5質量%を超えると、圧縮性の低下、圧壊強さの低下が顕著となり好ましくない。この範囲内の切削性改善用粉末の含有量であれば、焼結体の寸法変化率も小さく、寸法精度上問題とならない。このため、切削性改善用粉末の含有量は合計で、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対し0.1〜1.5質量%とする。なお、好ましくは鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対し0.3〜1.0質量%である。
In the present invention, the total amount of the machinability improving powder having the average particle size as described above or the particle size distribution as described above, and the mass% with respect to the total amount of the iron base powder, the alloy powder and the machinability improving powder. 0.1 to 1.5%.
When the total content of the machinability improving powder is less than 0.1% by mass, no significant improvement in machinability is observed. On the other hand, when it exceeds 1.5% by mass, the compressibility and the crushing strength are remarkably lowered, which is not preferable. If the content of the machinability improving powder is within this range, the dimensional change rate of the sintered body is small, and there is no problem in dimensional accuracy. For this reason, the total content of the machinability improving powder is 0.1 to 1.5 mass% with respect to the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. In addition, Preferably it is 0.3-1.0 mass% with respect to the total amount of iron-base powder, alloy powder, and machinability improvement powder.

また、切削性改善用粉末を、平均粒径:1〜10μmの硫化マンガン粉と平均粒径:10〜60μmのフッ化カルシウム粉とし、フッ化カルシウム粉を切削性改善用粉末全量に対する質量%で10〜80%配合することが好ましい。これにより、焼結密度:6.0〜7.3Mg/mの切削性が改善された鉄基焼結体をより容易に製造することができる。
切削性改善効果のある切削性改善用粉末の粒度分布は、想定する焼結部品の密度に応じた空孔径の分布に相似した粒度分布となるように、適宜選択することが好ましい。切削性改善用粉末の粒度分布の調整は、平均粒径の異なる2種の粉末の混合比を調整することにより行うのが望ましい。本発明では、切削性改善用粉末として、硫化マンガン粉とフッ化カルシウム粉の2種の粉末を使用するが、これら粉末の平均粒径の調整は、平均粒径1〜60μmの範囲で、一方を大きく、他方を小さくすればよい。
Further, the machinability improving powder is made of manganese sulfide powder having an average particle diameter of 1 to 10 μm and calcium fluoride powder having an average particle diameter of 10 to 60 μm, and the calcium fluoride powder is in mass% with respect to the total amount of the machinability improving powder. It is preferable to blend 10 to 80%. As a result, an iron-based sintered body with improved machinability having a sintered density of 6.0 to 7.3 Mg / m 3 can be more easily produced.
The particle size distribution of the machinability improving powder having an effect of improving the machinability is preferably selected as appropriate so that the particle size distribution is similar to the distribution of pore diameters according to the density of the assumed sintered part. It is desirable to adjust the particle size distribution of the machinability improving powder by adjusting the mixing ratio of two kinds of powders having different average particle diameters. In the present invention, two kinds of powders of manganese sulfide powder and calcium fluoride powder are used as the machinability improving powder. The average particle diameter of these powders is adjusted within the range of 1-60 μm average particle diameter. Should be made larger and the other smaller.

なお、硫化マンガン粒子の硬さは、フッ化カルシウム粒子の硬さより高いため、鉄基粉末に混合する以前に、予め微細に粉砕し、硫化マンガン粉の平均粒径を、フッ化カルシウム粉より相対的に小さい1〜10μmとし、フッ化カルシウム粉の平均粒径を10〜60μmとすることが望ましい。というのは、硫化マンガン粉の平均粒径を相対的に大きくすると、硬い粗大粒子が焼結体中の空孔に配されるため、切削加工時に工具に衝撃を与え工具の欠けの原因となり好ましくないためである。   Since the hardness of manganese sulfide particles is higher than that of calcium fluoride particles, it is finely pulverized in advance before mixing with iron-based powder, and the average particle size of manganese sulfide powder is relative to that of calcium fluoride powder. Therefore, it is desirable that the average particle size of calcium fluoride powder be 10 to 60 μm. This is because if the average particle size of the manganese sulfide powder is relatively large, hard coarse particles are arranged in the pores in the sintered body, which may impact the tool during cutting and cause the tool to chip. This is because there is not.

また、フッ化カルシウム粉の配合量が、切削性改善用粉末全量に対する質量%で10%未満では、焼結体中の空孔を十分に充填できない。一方、80%を超えると、空孔径の分布より多くの粗大なフッ化カルシウム粒子が焼結体中に存在することになり、焼結体の機械的強度の低下を招く。
本発明で使用する鉄基粉末は、アトマイズ鉄粉、還元粉等の純鉄粉がいずれも好適に使用できる。また、鉄粉に代えて、合金元素を予め合金化した予合金鋼粉、あるいは鉄粉に合金元素が部分合金化された部分合金化鋼粉がいずれも好適に用いることができる。なお、これらを混合して用いてもなんら問題はない。
Moreover, if the blending amount of the calcium fluoride powder is less than 10% by mass with respect to the total amount of the machinability improving powder, the pores in the sintered body cannot be sufficiently filled. On the other hand, if it exceeds 80%, coarse calcium fluoride particles more than the pore size distribution are present in the sintered body, leading to a decrease in the mechanical strength of the sintered body.
As the iron-based powder used in the present invention, pure iron powder such as atomized iron powder and reduced powder can be preferably used. Moreover, it can replace with iron powder and the prealloyed steel powder which alloyed the alloy element previously, or the partial alloyed steel powder by which the alloy element was partially alloyed to iron powder can use suitably. In addition, there is no problem even if these are mixed and used.

また、本発明で使用する合金用粉末は、黒鉛粉、銅粉等が例示でき、所望の製品特性に応じて、適宜選定し所定量含有することが好ましい。
また、本発明の鉄基混合粉中に含有される潤滑剤としては、ステアリン酸亜鉛、ステアリン酸リチウム等の金属石鹸、あるいはワックス等が好適である。潤滑剤の配合量は、本発明ではとくに限定されないが、鉄基粉末、合金用粉末、切削性改善用粉末の合計量100質量部に対し、0.2〜1.5質量部とすることが好ましい。潤滑剤の配合量が0.2質量部未満では、金型との摩擦が増加し抜出し力が増大し金型寿命が低下する。一方、1.5質量部を超えて多くなると、成形密度が低下し、焼結体密度が低下する。
The alloy powder used in the present invention can be exemplified by graphite powder, copper powder, and the like, and it is preferable that the alloy powder is appropriately selected and contained in a predetermined amount according to desired product characteristics.
Moreover, as the lubricant contained in the iron-based mixed powder of the present invention, metal soaps such as zinc stearate and lithium stearate, or waxes are suitable. The blending amount of the lubricant is not particularly limited in the present invention, but is preferably 0.2 to 1.5 parts by mass with respect to 100 parts by mass of the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. When the blending amount of the lubricant is less than 0.2 parts by mass, the friction with the mold increases, the extraction force increases, and the mold life decreases. On the other hand, if it exceeds 1.5 parts by mass, the molding density is lowered and the sintered body density is lowered.

つぎに、本発明の鉄基混合粉の好ましい製造方法について説明する。
上記した鉄基粉末に、合金用粉末、切削性改善用粉末および潤滑剤を所定量配合し、ヘンシュルミキサ、Vブレンダ、ダブルコーンブレンダ等の通常公知の混合機を用いて、一度に、あるいは二回以上に分けて混合し鉄基混合粉とすることが好ましい。なお、鉄基粉末の一部または全部を、合金用粉末および/または切削性改善用粉末の一部または全部を結合材を用いて表面に固着させる偏析防止処理を施した鉄基粉末を用いて、鉄基混合粉としてもよい。これにより、より偏析が少なく、より流動性に優れた鉄基混合粉となる。
Below, the preferable manufacturing method of the iron-based mixed powder of this invention is demonstrated.
A predetermined amount of alloying powder, machinability improving powder and lubricant are blended with the above iron-based powder, and using a commonly known mixer such as a Henshur mixer, a V blender, a double cone blender, etc. at once or It is preferable to divide the mixture into two or more times to obtain an iron-based mixed powder. It should be noted that a part or all of the iron-based powder is used, and an iron-based powder subjected to segregation prevention treatment for fixing a part or all of the alloy powder and / or the machinability improving powder to the surface using a binder. It may be iron-based mixed powder. Thereby, it becomes an iron-based mixed powder with less segregation and better fluidity.

偏析防止処理としては、特許第3004800号公報に記載の方法を用いることができる。すなわち、鉄基粉末に、合金用粉末および/または切削性改善用粉末を結合材とともに混合し、ついで結合材の融点のうちの最低値より10℃以上、好ましくは15℃以上に加熱することが好ましい。なお、結合材が2種以上の場合には、それら結合材の融点のうちの最低値より10℃以上、それら結合材の融点のうちの最高値以下の温度とすることが好ましい。この加熱により、少なくとも1種の結合材を溶融させたのち冷却固化させて、鉄基粉末表面に合金用粉末および/または切削性改善用粉末を固着させる。上記した下限温度未満では、結合材の結合機能が発揮されず、また上記した上限温度を超えると、熱分解等により結合機能が低下すると共に、ホッパ排出性能が低下する。   As the segregation preventing treatment, the method described in Japanese Patent No. 3004800 can be used. That is, the powder for alloying and / or the machinability improving powder is mixed with the iron-base powder together with the binder, and then heated to 10 ° C. or more, preferably 15 ° C. or more from the lowest value of the melting point of the binder. preferable. In addition, when two or more types of binders are used, the temperature is preferably set to 10 ° C. or more from the lowest value among the melting points of these binders and to the maximum value or less among the melting points of these binders. By this heating, at least one kind of binder is melted and then cooled and solidified to fix the alloy powder and / or the machinability improving powder on the surface of the iron-based powder. When the temperature is lower than the above lower limit temperature, the binding function of the binding material is not exhibited. When the temperature exceeds the above upper limit temperature, the bonding function is degraded due to thermal decomposition or the like, and the hopper discharging performance is degraded.

結合材としては、高級脂肪酸、高級脂肪酸アミドまたはワックスとすることが好ましい。高級脂肪酸または高級脂肪酸アミドとしては、ステアリン酸、オレイン酸アミド、ステアリン酸アミド、エチレンビスステアリン酸アミド、ステアリン酸アミドとエチレンビスステアリン酸アミドとの溶融混合物のうちから選ばれた1種または2種以上、あるいは、オレイン酸、スピンドル油、タービン油のうちから選ばれた1種または2種以上とステアリン酸亜鉛との加熱溶融物とすることが好ましい。本発明では、結合材の含有量は、鉄基粉末と合金用粉末と切削性改善粒子粉との合計量100質量部に対し、0.1〜1.0質量部とすることが好ましい。0.1質量部未満では、合金用粉末等の偏析防止効果が認められない。一方、1.0質量部を超えて含有すると、鉄基混合粉の充填性が低下する。   The binder is preferably higher fatty acid, higher fatty acid amide or wax. As the higher fatty acid or higher fatty acid amide, one or two selected from stearic acid, oleic acid amide, stearic acid amide, ethylene bis stearic acid amide, and a melt mixture of stearic acid amide and ethylene bis stearic acid amide It is preferable to use a heated melt of one or more selected from oleic acid, spindle oil, and turbine oil and zinc stearate. In this invention, it is preferable that content of a binder shall be 0.1-1.0 mass part with respect to 100 mass parts of total amounts of iron-base powder, alloy powder, and machinability improvement particle powder. If the amount is less than 0.1 parts by mass, the effect of preventing segregation of the alloy powder is not observed. On the other hand, when it contains exceeding 1.0 mass part, the filling property of iron-based mixed powder will fall.

なお、本発明の鉄基混合粉は、上記した製造方法に限定されるものでないことはいうまでもない。
本発明の鉄基混合粉は、一般の粉末冶金における工法を適用して、機械部品の製造に供することができる。具体的には、本発明の鉄基混合粉を、金型に充填し圧縮成形したのち、必要に応じてサイジングを行い、焼結し、焼結体とする。焼結後さらに浸炭焼入れ、光輝焼入れ、高周波焼入れ等の熱処理を施し、製品(機械部品等)とする。なお切削加工等の加工を随時施し、所定寸法の製品とすることは言うまでもない。
In addition, it cannot be overemphasized that the iron-based mixed powder of this invention is not limited to an above-described manufacturing method.
The iron-based mixed powder of the present invention can be used for the production of machine parts by applying a general method in powder metallurgy. Specifically, the iron-based mixed powder of the present invention is filled in a mold and compression-molded, and then sizing and sintering as necessary to obtain a sintered body. After sintering, heat treatment such as carburizing quenching, bright quenching, and induction quenching is performed to obtain a product (machine part, etc.). Needless to say, processing such as cutting is performed as needed to obtain a product with a predetermined size.

(実施例1)
鉄基粉末としてアトマイズ純鉄粉A(銘柄:JIP 260A(JFEスチール(株)製))100kgに、合金用粉末として表1に示す配合量の黒鉛粉(平均粒径:4μm)と、切削性改善用粉末として表1に示す種類、平均粒径、配合量の切削性改善用粉末と、を潤滑剤とともに配合し、Vブレンダに装入し、均一混合し鉄基混合粉とした。合金用粉末および切削性改善用粉末の配合量は、鉄基粉末と合金用粉末と切削性改善用粉末の合計量に対する質量%とした。なお、潤滑剤はステアリン酸亜鉛(平均粒径:20μm)とした。なお、一部の鉄基混合粉では、比較例として切削性改善用粉末の配合を行なわなかった。
Example 1
Atomized pure iron powder A (brand: JIP 260A (manufactured by JFE Steel Co., Ltd.)) 100 kg as iron-based powder, graphite powder (average particle size: 4 μm) in the amount shown in Table 1 as alloy powder, and machinability The types, average particle diameters, and blending amounts of the machinability improving powder shown in Table 1 as the improvement powder were blended together with a lubricant, charged into a V blender, and uniformly mixed to obtain an iron-based mixed powder. The blending amount of the alloy powder and the machinability improving powder was set to mass% with respect to the total amount of the iron-base powder, the alloy powder, and the machinability improving powder. The lubricant was zinc stearate (average particle size: 20 μm). In some iron-based mixed powders, the machinability improving powder was not blended as a comparative example.

これら鉄基混合粉を金型に装入し、圧縮成形し、成形体(リング状試験片A、B、タブレット型試験片C)とした。リング状試験片A(外径35mmφ×内径14mmφ×高さ10mm)は圧壊試験用とし、リング状試験片B(外径60mmφ×内径20mmφ×高さ25mm)は旋削試験用とし、タブレット型試験片C(外径60mmφ×高さ10mm)はドリル切削試験用、硬さ試験用とした。なお、成形体の密度は6.6Mg/m2一定とした。なお、密度測定はアルキメデス法によった。 These iron-based mixed powders were charged into a mold and compression-molded to obtain molded bodies (ring-shaped test pieces A and B, tablet-type test pieces C). Ring-shaped specimen A (outer diameter 35mmφ x inner diameter 14mmφ x height 10mm) is for crushing test, ring-shaped specimen B (outer diameter 60mmφ x inner diameter 20mmφ x height 25mm) is for turning test, tablet type specimen C (outer diameter 60 mmφ × height 10 mm) was used for drill cutting test and hardness test. The density of the compact was fixed at 6.6 Mg / m 2 . The density was measured by the Archimedes method.

ついで、これら成形体を5体積%H−窒素ガス雰囲気中でメッシュベルト炉を使用して1150℃×20minで焼結し焼結体とした。得られた焼結体について、圧壊試験(Ring Rupture)、旋削試験、ドリル切削試験、硬さ試験を実施した。
圧壊試験は、リング状試験片Aの焼結体を用いて、JIS Z 2507の規定に準拠して実施し、圧壊強さを求めた。
Subsequently, these compacts were sintered at 1150 ° C. × 20 min using a mesh belt furnace in a 5 volume% H 2 -nitrogen gas atmosphere to obtain sintered bodies. About the obtained sintered compact, the crushing test (Ring Rupture), the turning test, the drill cutting test, and the hardness test were implemented.
The crushing test was performed using the sintered body of the ring-shaped test piece A in accordance with the provisions of JIS Z 2507, and the crushing strength was obtained.

旋削試験は、リング状試験片Bの焼結体を3個重ねて長さ75mmの円筒状として、その側面を超硬製(三菱マテリアル製HT105T)バイトを用いて切削し、横逃げ面の摩耗深さが0.5mmに達するまで旋削した。旋削条件は、切削速度:92m/min、送り量:0.03mm/rev、切込み深さ:0.89mmとした。なお、横逃げ面の摩耗形態を模式的に図1に示す。旋削試験後に、試験片の切削面を接触式表面粗さ計を用いて、JIS B 0601−2001の規定に準拠して、試験片切削面の表面粗さRzを測定した。   In the turning test, three sintered bodies of the ring-shaped specimen B were stacked to form a cylinder with a length of 75 mm, and the side surface was cut with a carbide (HT105T) bite to wear the side flank. Turning until the depth reached 0.5mm. Turning conditions were a cutting speed: 92 m / min, a feed amount: 0.03 mm / rev, and a cutting depth: 0.89 mm. In addition, the wear form of a side flank is typically shown in FIG. After the turning test, the surface roughness Rz of the test piece cutting surface was measured on the cutting surface of the test piece using a contact-type surface roughness meter in accordance with the provisions of JIS B 0601-2001.

ドリル切削試験は、タブレット型試験片Cの焼結体を用いて、該試験片Cの平面を、外径3.0mmの超硬製(三菱マテリアル製HT105T)ドリルで、回転速度:800rpm、送り量:0.02mm/revの条件でドリル切削を行った。200穴加工完了時のドリル外周部の摩耗深さ(逃げ面摩耗深さ)を測定した。ドリル外周部の摩耗状況を図2に示す。また、200穴加工時の切削抵抗としてトルクおよびその振動幅を測定した。なお、トルクおよびその振動幅は、試験片(被削材)を切削動力計(キースラー)にセットし、図3に示すような、ドリル切削時のトルクの経時変化を求め、矩形波の高さの平均値からトルクを、矩形波上の振動幅からトルクの振動幅を求めた。   The drill cutting test uses a sintered compact of tablet-type test piece C, and the plane of test piece C is a carbide (HT105T, Mitsubishi Materials HT105T) drill with an outer diameter of 3.0 mm, rotating speed: 800 rpm, feed amount : Drill cutting was performed at 0.02 mm / rev. The wear depth (flank wear depth) of the outer periphery of the drill when the 200-hole drilling was completed was measured. FIG. 2 shows the state of wear on the outer periphery of the drill. In addition, torque and its vibration width were measured as cutting resistance when machining 200 holes. The torque and its vibration width were determined by setting the test piece (work material) on a cutting dynamometer (Keithler) and determining the change over time in the torque during drill cutting as shown in FIG. Torque was obtained from the average value of the torque, and the vibration width of the torque was obtained from the vibration width on the rectangular wave.

硬さ試験は、タブレット型試験片Cの焼結体を用いて、JIS Z 2245の規定に準拠して実施し、ロックウェル(Bスケール)硬さHRBを求めた。
得られた結果を表2に示す。
The hardness test was performed using the sintered body of the tablet-type test piece C in accordance with the provisions of JIS Z 2245, and the Rockwell (B scale) hardness HRB was obtained.
The obtained results are shown in Table 2.

Figure 2007169713
Figure 2007169713

Figure 2007169713
本発明例はいずれも、焼結体の圧壊強さが高く大きな強度低下がない焼結体となっている。また、本発明例は、施削後の試験片の表面粗さRzが低減し、切削加工面の外観が改善されており、旋削性に優れた焼結体となっている。また、本発明例は、ドリル摩耗量が少なく、切削抵抗が小さく、さらに切削抵抗の振動幅が小さい焼結体となっている。切削抵抗の振動幅は、断続的衝撃の発生に対応し、切削抵抗の振動幅が小さいことは、断続的衝撃の主たる原因となる焼結体内部の空孔が低減したことによるものと考えられる。このように、本発明例は鉄基混合粉として優れた特性を有する鉄基混合粉である。一方、本発明の範囲を外れる比較例は、圧壊強さが低いか、施削後の試験片の表面粗さが粗いか、切削抵抗が高いか、あるいは切削抵抗の振動が大きくなり、旋削性、切削性が低下している。
Figure 2007169713
In all of the examples of the present invention, the sintered body has a high crushing strength and does not have a significant decrease in strength. In addition, the present invention example is a sintered body having a reduced surface roughness Rz of the test piece after cutting, an improved appearance of the cut surface, and excellent turning properties. Moreover, the example of the present invention is a sintered body with a small drill wear amount, a small cutting resistance, and a small vibration width of the cutting resistance. The vibration width of the cutting resistance corresponds to the occurrence of intermittent impact, and the small vibration width of the cutting resistance is thought to be due to the reduction of voids inside the sintered body, which is the main cause of intermittent impact. . Thus, the example of the present invention is an iron-based mixed powder having excellent characteristics as an iron-based mixed powder. On the other hand, the comparative examples that are out of the scope of the present invention have low crushing strength, rough surface roughness of the test piece after cutting, high cutting resistance, or large vibration of cutting resistance, and turning performance. The machinability is degraded.

切削工具横逃げ面の摩耗形態を模式的に示す説明図である。It is explanatory drawing which shows typically the wear form of the cutting tool side flank. ドリル外周部の摩耗状況を模式的に示す説明図である。It is explanatory drawing which shows typically the abrasion condition of a drill outer peripheral part. ドリル切削時のトルクの経時変化の1例を示すグラフである。It is a graph which shows an example of the time-dependent change of the torque at the time of drill cutting.

Claims (5)

鉄基粉末と、合金用粉末と、切削性改善用粉末と、さらに潤滑剤と、を混合してなる鉄基混合粉であって、前記切削性改善用粉末を、平均粒径:1〜60μmの硫化マンガン粉および/または平均粒径:1〜60μmのフッ化カルシウム粉とし、該切削性改善用粉末を合計で、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対する質量%で0.1〜1.5%含有することを特徴とする粉末冶金用鉄基混合粉。   An iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant, and the machinability improving powder has an average particle size of 1 to 60 μm. Manganese sulfide powder and / or calcium fluoride powder having an average particle size of 1 to 60 μm, and the total amount of the machinability improving powder with respect to the total amount of the iron-based powder, the alloy powder, and the machinability improving powder An iron-based mixed powder for powder metallurgy, characterized by containing 0.1 to 1.5% by weight. 前記切削性改善用粉末を、平均粒径:1〜10μmの硫化マンガン粉と平均粒径:10〜60μmのフッ化カルシウム粉とし、該フッ化カルシウム粉を切削性改善用粉末全量に対する質量%で10〜80%配合することを特徴とする請求項1に記載の粉末冶金用鉄基混合粉。   The powder for improving machinability is a manganese sulfide powder having an average particle size of 1 to 10 μm and a calcium fluoride powder having an average particle size of 10 to 60 μm, and the calcium fluoride powder is in mass% with respect to the total amount of the powder for improving machinability. The iron-based mixed powder for powder metallurgy according to claim 1, wherein 10 to 80% is blended. 前記鉄基粉末の一部または全部が、表面に前記合金用粉末および/または前記切削性改善用粉末を結合材により固着してなることを特徴とする請求項1または2に記載の粉末冶金用鉄基混合粉。   3. The powder metallurgy according to claim 1, wherein a part or all of the iron-based powder is formed by bonding the alloy powder and / or the machinability improving powder to a surface with a binder. 4. Iron-based mixed powder. 前記切削性改善用粉末が、鉄基粉末と合金用粉末と潤滑剤とを混合してなる鉄基混合粉を加圧成形し焼結して得られた鉄基焼結体の空孔の粒度分布と相似する粒度分布を有する切削性改善用粉末であることを特徴とする請求項1ないし3のいずれかに記載の粉末冶金用鉄基混合粉。   The pore size of the iron-based sintered body obtained by press-molding and sintering the iron-based mixed powder obtained by mixing the iron-based powder, the alloy powder, and the lubricant with the machinability improving powder. The iron-based mixed powder for powder metallurgy according to any one of claims 1 to 3, wherein the powder is a machinability improving powder having a particle size distribution similar to the distribution. 請求項1ないし4のいずれかに記載の粉末冶金用鉄基混合粉を、加圧成形し、さらに焼結してなる鉄基焼結体。   An iron-based sintered body obtained by press-molding and further sintering the iron-based mixed powder for powder metallurgy according to any one of claims 1 to 4.
JP2005368835A 2005-12-21 2005-12-21 Iron-based mixed powder for powder metallurgy and iron-based sintered body Active JP4640162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368835A JP4640162B2 (en) 2005-12-21 2005-12-21 Iron-based mixed powder for powder metallurgy and iron-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368835A JP4640162B2 (en) 2005-12-21 2005-12-21 Iron-based mixed powder for powder metallurgy and iron-based sintered body

Publications (2)

Publication Number Publication Date
JP2007169713A true JP2007169713A (en) 2007-07-05
JP4640162B2 JP4640162B2 (en) 2011-03-02

Family

ID=38296654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368835A Active JP4640162B2 (en) 2005-12-21 2005-12-21 Iron-based mixed powder for powder metallurgy and iron-based sintered body

Country Status (1)

Country Link
JP (1) JP4640162B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
CN102925807A (en) * 2012-10-26 2013-02-13 益阳世龙新材料有限公司 Powder metallurgy iron-based material suitable for high speed boring and preparation method
CN105772704A (en) * 2016-03-16 2016-07-20 苏州莱特复合材料有限公司 Ferrotungsten-based powder metallurgy material and preparation method thereof
CN114182350A (en) * 2021-12-10 2022-03-15 福建师范大学 Method for preparing FePbSeTe single-crystal superconducting material by suspension smelting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258450A (en) * 1984-06-06 1985-12-20 Toyota Motor Corp Sintered iron alloy for valve seat
JPS61147801A (en) * 1984-11-30 1986-07-05 ヘーガネース アーベー Manganese sulfide-containing iron powder mixture for producing sintered matter and its production
JPH1121659A (en) * 1997-06-30 1999-01-26 Nippon Piston Ring Co Ltd Wear resistant iron-base sintered alloy material
JP2002155301A (en) * 2000-11-17 2002-05-31 Kawasaki Steel Corp Iron-based powdery mixture for powder metallurgy and iron based sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258450A (en) * 1984-06-06 1985-12-20 Toyota Motor Corp Sintered iron alloy for valve seat
JPS61147801A (en) * 1984-11-30 1986-07-05 ヘーガネース アーベー Manganese sulfide-containing iron powder mixture for producing sintered matter and its production
JPH1121659A (en) * 1997-06-30 1999-01-26 Nippon Piston Ring Co Ltd Wear resistant iron-base sintered alloy material
JP2002155301A (en) * 2000-11-17 2002-05-31 Kawasaki Steel Corp Iron-based powdery mixture for powder metallurgy and iron based sintered compact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
CN102925807A (en) * 2012-10-26 2013-02-13 益阳世龙新材料有限公司 Powder metallurgy iron-based material suitable for high speed boring and preparation method
CN102925807B (en) * 2012-10-26 2014-11-05 益阳世龙新材料有限公司 Powder metallurgy iron-based material suitable for high speed boring and preparation method
CN105772704A (en) * 2016-03-16 2016-07-20 苏州莱特复合材料有限公司 Ferrotungsten-based powder metallurgy material and preparation method thereof
CN114182350A (en) * 2021-12-10 2022-03-15 福建师范大学 Method for preparing FePbSeTe single-crystal superconducting material by suspension smelting method

Also Published As

Publication number Publication date
JP4640162B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
KR101101734B1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
JP5904234B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
TWI392747B (en) Iron powder for powder metallurgy and powder sintered body
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP5962787B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP4640162B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
WO2016190039A1 (en) Mixed powder for iron-based powder metallurgy and sintered body produced using same
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5200768B2 (en) Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same
JP2014025109A (en) Mixed powder for powder metallurgy
JP6007928B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP2007211329A (en) Iron-based powdery mixture for powder metallurgy
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
JP2006348335A (en) Iron-based mixed powder for powder metallurgy
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
CN111344090B (en) Mixed powder for powder metallurgy
JP3855899B2 (en) Iron-based mixed powder for powder metallurgy
JP2007291467A (en) Powdery mixture for producing iron based sintered compact, and iron based sintered compact
JP2017106060A (en) Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4640162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250