JP4935731B2 - Iron-based powder mixture - Google Patents
Iron-based powder mixture Download PDFInfo
- Publication number
- JP4935731B2 JP4935731B2 JP2008070204A JP2008070204A JP4935731B2 JP 4935731 B2 JP4935731 B2 JP 4935731B2 JP 2008070204 A JP2008070204 A JP 2008070204A JP 2008070204 A JP2008070204 A JP 2008070204A JP 4935731 B2 JP4935731 B2 JP 4935731B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- powder
- mass
- based powder
- powder mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 164
- 239000000843 powder Substances 0.000 title claims description 129
- 229910052742 iron Inorganic materials 0.000 title claims description 79
- 239000000203 mixture Substances 0.000 title claims description 52
- 238000000465 moulding Methods 0.000 claims description 22
- 239000000454 talc Substances 0.000 claims description 16
- 229910052623 talc Inorganic materials 0.000 claims description 16
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 14
- 239000000194 fatty acid Substances 0.000 claims description 14
- 229930195729 fatty acid Natural products 0.000 claims description 14
- 150000004665 fatty acids Chemical class 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000000344 soap Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000000654 additive Substances 0.000 description 24
- 238000005245 sintering Methods 0.000 description 22
- 238000005520 cutting process Methods 0.000 description 19
- 229910000851 Alloy steel Inorganic materials 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000010949 copper Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 7
- 238000004663 powder metallurgy Methods 0.000 description 6
- 238000005255 carburizing Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- -1 steatite Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、鉄粉、合金鋼粉などの鉄基粉末に、所定の添加材、さらには黒鉛粉および銅粉などの合金用粉末を混合した鉄基粉末混合物に関し、さらに詳しくは、常温から100℃未満の温度域での加圧成形において優れた圧縮性が得られ、特に自動車用高強度焼結部品の製造に好適な粉末冶金用の鉄基粉末混合物に関するものである。 The present invention relates to an iron-based powder mixture in which iron-based powders such as iron powder and alloy steel powder are mixed with predetermined additives, and further alloy powders such as graphite powder and copper powder. The present invention relates to an iron-based powder mixture for powder metallurgy, which is excellent in compressibility in pressure molding in a temperature range of less than 0 ° C. and is particularly suitable for the production of high-strength sintered parts for automobiles.
粉末冶金用の鉄基粉末混合物は、鉄基粉末に、銅粉や黒鉛粉、燐化鉄粉などの合金用粉末と、ステアリン酸亜鉛やステアリン酸アルミニウム、ステアリン酸鉛などの潤滑剤、さらに必要に応じて切削性改善用粉末を混合して製造するのが一般的である。そして、使用する潤滑剤は、鉄基粉末との混合性や焼結時の散逸性などを考慮して選択されてきた。 Iron-based powder mixture for powder metallurgy requires iron-based powder, alloy powder such as copper powder, graphite powder, and iron phosphide powder, lubricant such as zinc stearate, aluminum stearate, lead stearate, etc. In general, it is generally produced by mixing the machinability improving powder. The lubricant to be used has been selected in consideration of the miscibility with the iron-based powder and the dissipating property during sintering.
近年、焼結部品に対する高強度化の要求の高まりと共に、特許文献1、特許文献2、特許文献3および特許文献4に開示されたように、鉄基粉末混合物を加熱しつつ成形することにより、成形体の高密度かつ高強度化を可能にする温間成形技術が開発された。この技術により、鉄基粉末が加熱により塑性変形抵抗が低下することを利用して、より低い荷重での成形体密度の向上が可能となった。 In recent years, with increasing demand for higher strength for sintered parts, as disclosed in Patent Literature 1, Patent Literature 2, Patent Literature 3 and Patent Literature 4, by molding an iron-based powder mixture while heating, Warm forming technology that enables high density and high strength of the compact has been developed. This technique makes it possible to improve the density of the molded body at a lower load by utilizing the fact that the plastic deformation resistance of iron-based powder is reduced by heating.
しかしながら、このような鉄基粉末混合物は、以下に述べるような問題を残していた。
すなわち、温間成形は、金型および粉末を100℃以上の高温に予め加熱した後、鉄基粉末混合物を加圧成形する技術であるが、熱伝導性が悪い鉄基粉末混合物を安定して100℃以上に加熱・保温することは極めて難しいため、焼結部品の生産性の低下を招く傾向にあった。また、鉄基粉末混合物を長時間加熱することによって、鉄基粉末混合物の酸化による変質という問題も生じていた。
However, such an iron-based powder mixture has left the following problems.
In other words, warm molding is a technique in which a mold and powder are preheated to a high temperature of 100 ° C. or higher, and then an iron-based powder mixture is pressure-molded, but an iron-based powder mixture having poor thermal conductivity is stably formed. Since it is extremely difficult to heat and keep above 100 ° C., the productivity of sintered parts tends to be reduced. In addition, heating the iron-based powder mixture for a long time has caused a problem of alteration due to oxidation of the iron-based powder mixture.
また、特許文献5や特許文献6には、MoS2やフッ化炭素、黒鉛などの層状結晶を有する無機化合物を潤滑剤として用いる技術が開示されている。
しかしながら、MoS2を用いた場合は、焼結時に分解して有害なSが発生し、焼成炉が汚染される危険性がある。また、フッ化炭素を用い、水素雰囲気中で焼結した場合は、フッ化水素の発生が懸念される。
Patent Documents 5 and 6 disclose techniques using an inorganic compound having a layered crystal such as MoS 2 , fluorocarbon, and graphite as a lubricant.
However, when MoS 2 is used, there is a risk of decomposing at the time of sintering, generating harmful S and contaminating the firing furnace. In addition, when carbon fluoride is used and sintered in a hydrogen atmosphere, the generation of hydrogen fluoride is a concern.
ところで、自動車等の各種機械の部品を粉末冶金技術で製造するには、鉄基粉末混合物を金型に充填して圧粉成形し、さらに焼結を行う。こうして得られた焼結部品は寸法精度が良く、複雑な形状のものを製造することができる。但し、非常に厳しい寸法精度が要求される焼結部品を製造する場合には、焼結した後に、さらに機械加工(例えば切削加工やドリル加工等)を施す必要がある。 By the way, in order to manufacture parts of various machines such as automobiles by powder metallurgy technology, an iron-based powder mixture is filled in a mold, compacted, and further sintered. The sintered parts thus obtained have good dimensional accuracy and can be manufactured in complex shapes. However, when manufacturing a sintered part that requires extremely strict dimensional accuracy, it is necessary to perform further machining (for example, cutting or drilling) after sintering.
しかしながら、焼結部品は切削性に劣るので、機械加工で使用する切削工具が著しく損耗する。その結果、機械加工費が増大し、焼結部品の製造コストの上昇を招く。このような焼結部品の切削性の劣化は、内部に存在する気孔によって焼結部品の熱伝導率が低下し、切削中の焼結部品の温度が上昇するために生じる。
粉末冶金用の鉄基粉末混合物に快削成分(例えばS、MnS等)を添加することによって、焼結部品の切削性が改善されることは従来から知られている。快削成分は、切り屑を容易に破断させる効果、あるいは切削工具に薄い構成刃先を形成して切削工具(特にすくい面)の潤滑性を高める効果を有している。
However, since sintered parts are inferior in machinability, cutting tools used in machining are significantly worn. As a result, the machining cost increases and the manufacturing cost of the sintered part increases. Such deterioration of the machinability of the sintered part is caused by a decrease in the thermal conductivity of the sintered part due to pores present inside, and an increase in the temperature of the sintered part during cutting.
It has been conventionally known that the machinability of sintered parts is improved by adding a free-cutting component (for example, S, MnS, etc.) to an iron-based powder mixture for powder metallurgy. The free-cutting component has the effect of easily breaking chips, or the effect of increasing the lubricity of a cutting tool (particularly the rake face) by forming a thin component edge on the cutting tool.
焼結部品は、様々な機器の部品として採用されているが、とりわけ自動車の部品(例えばギヤ等)は高強度、高疲労強度が要求される。そこで、高強度、高疲労強度を有する焼結部品を製造するために、合金成分を添加した鉄基粉末混合物を使用する技術が種々検討されている。
例えば、特許文献7には、Ni,Cu,Mo等の粉末を純鉄粉に付着拡散させる技術が開示されている。この技術で得られた鉄基粉末混合物は圧縮性に優れており、高強度、高疲労強度を有する焼結部品の製造に好適である。
しかしながら、特許文献7に開示された技術では、Niの拡散が遅いので、純鉄粉にNiを十分に拡散させるために長時間の焼結が必要となる。また、得られた焼結部品の硬度が高いので、快削成分を鉄基粉末混合物に添加しても切削性の大幅な改善は期待できない。
Sintered parts are used as parts for various devices, but automobile parts (for example, gears) are required to have high strength and high fatigue strength. Therefore, various techniques using an iron-based powder mixture to which alloy components are added have been studied in order to produce sintered parts having high strength and high fatigue strength.
For example, Patent Document 7 discloses a technique for adhering and diffusing powders such as Ni, Cu, and Mo to pure iron powder. The iron-based powder mixture obtained by this technique has excellent compressibility and is suitable for the production of sintered parts having high strength and high fatigue strength.
However, in the technique disclosed in Patent Document 7, since diffusion of Ni is slow, long-time sintering is required to sufficiently diffuse Ni into the pure iron powder. Moreover, since the hardness of the obtained sintered part is high, even if a free-cutting component is added to the iron-based powder mixture, a significant improvement in machinability cannot be expected.
また、引用文献8には、CとMoを含有し、MnとCrを実質的に含有しない低合金鋼粉に、Cu粉および/またはNi粉を添加し、さらに黒鉛粉を添加した鉄基粉末混合物が開示されている。さらに、引用文献9には、Mo,Mn,Cを含有する合金鋼粉にCu粉を融着させた鉄基粉末混合物が開示されている。これらの鉄基粉末混合物は、高強度の焼結部品の製造に好適である。
しかしながら、特許文献8,9に開示された鉄基粉末混合物では、切削性に優れた焼結部品を製造することは困難であった。
Also, in Cited Document 8, an iron-based powder in which Cu powder and / or Ni powder is added to a low alloy steel powder containing C and Mo but substantially free of Mn and Cr, and further graphite powder is added. Mixtures are disclosed. Furthermore, cited document 9 discloses an iron-based powder mixture in which Cu powder is fused to alloy steel powder containing Mo, Mn, and C. These iron-based powder mixtures are suitable for the production of high strength sintered parts.
However, with the iron-based powder mixture disclosed in Patent Documents 8 and 9, it was difficult to produce a sintered part excellent in machinability.
本発明は、上記の問題を有利に解決するもので、成形体の焼結に際し、焼成炉の炉内環境に悪影響を及ぼすことなく、また100℃未満という低温度域で優れた成形性が得られ、しかも切削性に優れた焼結部品を製造するのに好適な粉末冶金用の鉄基粉末混合物を提案することを目的とする。 The present invention advantageously solves the above-mentioned problems, and has excellent moldability in a low temperature range of less than 100 ° C. without adversely affecting the furnace environment of the firing furnace when the molded body is sintered. Another object of the present invention is to propose an iron-based powder mixture for powder metallurgy that is suitable for producing sintered parts excellent in machinability.
さて、発明者らは、上記の問題を解決する方策として、鉄基粉末混合物の成形に際し、炉内環境に悪影響を及ぼすことなく、また鉄基粉末混合物の加熱温度をより低く、好ましくは加熱なしに成形した場合であっても、高密度の成形体の製造を可能とする添加材について、鋭意検討を重ねた。
その結果、添加材として、タルクやステアタイト、さらには脂肪酸アミドおよび金属石鹸を用いた場合に、これらの添加材の潤滑機能により、加圧成形時に鉄基粉末粒子の再配列が促進され、室温程度の低い成形温度であっても、成形密度の高い鉄基粉末成形体が得られること、またかかる鉄基粉末成形体を焼結して得られる焼結体は機械的強度および切削性に優れていることの知見を得た。
本発明は上記の知見に立脚するものである。
Now, as a measure for solving the above problems, the inventors do not adversely affect the furnace environment when forming the iron-based powder mixture, and lower the heating temperature of the iron-based powder mixture, preferably no heating. Even in the case of forming into a compact, the inventors have made extensive studies on the additive that enables the production of a high-density molded body.
As a result, when talc, steatite, fatty acid amide and metal soap are used as additives, the lubrication function of these additives promotes the rearrangement of iron-based powder particles at the time of pressure molding, and room temperature. Even at a low molding temperature, an iron-based powder molded body with a high molding density can be obtained, and a sintered body obtained by sintering such an iron-based powder molded body has excellent mechanical strength and machinability. I got the knowledge that
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
(1)7.3Mg/m3を超える成形密度を有する鉄基粉末成形体および1180MPa以上の焼結体引
張強度を有する鉄基粉末焼結体を得るための鉄基粉末混合物であって、
Moを0.3〜0.5mass%の範囲で含み残部が鉄の鉄基粉末に、合金用粉末として、黒鉛粉を0.1〜0.3mass%およびCuを1〜3mass%の範囲で添加し、さらに添加材として、タルクおよびステアタイトのうちから選んだ少なくとも1種を0.01〜0.05mass%(但し、0.05mass%は除く)と、脂肪酸アミド:0.01〜0.5mass%および金属石鹸:0.01〜0.5mass%をそれぞれ添加したことを特徴とする鉄基粉末混合物。
That is, the gist configuration of the present invention is as follows.
(1) An iron-based powder mixture for obtaining an iron-based powder molded body having a molding density exceeding 7.3 Mg / m 3 and an iron-based powder sintered body having a sintered body tensile strength of 1180 MPa or more,
Mo is added in the range of 0.3 to 0.5 mass%, and the remainder is iron- based powder. As an alloy powder, graphite powder is added in the range of 0.1 to 0.3 mass% and Cu is added in the range of 1 to 3 mass%. , 0.01 to 0.05 mass% (excluding 0.05 mass%), fatty acid amide : 0.01 to 0.5 mass % and metal soap : 0.01 to 0.5 mass % , respectively, added at least one selected from talc and steatite An iron-based powder mixture characterized by the above.
本発明によれば、室温程度の低い温度で成形したとしても、成形密度が高くかつ抜出力が小さい鉄基粉末混合物を得ることができる。
また、本発明によれば、上記の鉄基粉末混合物を原料とすることにより、成形密度が高い鉄基粉末成形体、さらには焼結密度が高く、しかも機械的強度および切削性に優れた鉄基粉末焼結体を得ることができる。
According to this invention, even if it shape | molds at the low temperature of about room temperature, the iron-based powder mixture with a high shaping | molding density and a small extraction output can be obtained.
Further, according to the present invention, by using the above iron-based powder mixture as a raw material, an iron-based powder molded body having a high molding density, an iron having a high sintering density, and excellent mechanical strength and machinability. A base powder sintered body can be obtained.
以下、本発明を具体的に説明する。
まず、本発明の鉄基粉末混合物の原料について説明する。
本発明において、鉄基粉末としては、アトマイズ鉄粉や還元鉄粉などの純鉄粉、または部分拡散合金化鋼粉および完全合金化鋼粉、さらには完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉などが例示される。
Hereinafter, the present invention will be specifically described.
First, the raw material of the iron-based powder mixture of the present invention will be described.
In the present invention, as iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, or partially diffused alloyed steel powder and fully alloyed steel powder, and further partially diffused alloy components in fully alloyed steel powder. The hybrid steel powder etc. which were made to be illustrated are illustrated.
また、合金用粉末としては、黒鉛粉末、Cu,Mo,Niなどの金属粉末、ボロン粉末および亜酸化銅粉末などが例示される。これらの合金用粉末を鉄基粉末に混合させることにより焼結体の強度を上昇させることができる。
この合金用粉末の配合量は、鉄基粉末混合物中0.1〜10mass%程度とすることが好ましい。というのは、合金用粉末を0.1mass%以上配合することにより、得られる焼結体の強度が有利に向上し、一方10mass%を超えると焼結体の寸法精度が低下するからである。
Examples of the alloy powder include graphite powder, metal powder such as Cu, Mo, and Ni, boron powder, and cuprous oxide powder. The strength of the sintered body can be increased by mixing these alloy powders with the iron-based powder.
The blending amount of the alloy powder is preferably about 0.1 to 10 mass% in the iron-based powder mixture. This is because, by adding 0.1 mass% or more of the alloy powder, the strength of the obtained sintered body is advantageously improved, while when it exceeds 10 mass%, the dimensional accuracy of the sintered body decreases.
さて、本発明では、添加材として、タルクおよびステアタイトのうちから選んだ少なくとも1種と、脂肪酸アミドおよび金属石鹸を添加することが重要である。そして、タルクは単斜晶系または三斜晶系の結晶構造、ステアタイトは単斜晶系の結晶構造をそれぞれ有することが好ましい。 In the present invention, it is important to add at least one selected from talc and steatite, fatty acid amide and metal soap as additives. The talc preferably has a monoclinic or triclinic crystal structure, and the steatite preferably has a monoclinic crystal structure.
添加材として、上記したタルクやステアタイト、脂肪酸アミドおよび金属石鹸を添加することにより、成形体の圧縮性が向上すると同時に、成形時の抜出力が低減し、成形性が大幅に改善される理由は、次のとおりと考えられる。
すなわち、タルクやステアタイトは、成形時に鉄基粉末粒子間で剪断応力を受けた際に、上記物質が結晶面に沿ってへき開し易く、そのため成形体内部の粒子間の摩擦抵抗が低減し、粒子間相互で動き易くなるという潤滑効果によって、成形体の密度が向上するものと考えられる。また、成形体と金型間にタルクやステアタイトが存在すると、成形体抜出時に金型表面からの剪断応力を受けてへき開するため、金型表面での成形体のすべり易さが向上し、抜出力が低減するものと考えられる。なお、これらの効果は、さらに脂肪酸アミドを添加することによって、格段に改善される。
The reason why by adding the above-mentioned talc, steatite, fatty acid amide and metal soap as additives, the compressibility of the molded body is improved, and at the same time, the output during molding is reduced and the moldability is greatly improved. Is considered as follows.
That is, talc and steatite, when subjected to shear stress between iron-based powder particles at the time of molding, the substance is easily cleaved along the crystal plane, so the frictional resistance between the particles inside the molded body is reduced, It is considered that the density of the molded body is improved by the lubrication effect of facilitating movement between particles. In addition, if talc or steatite is present between the molded body and the mold, it will be cleaved by the shearing stress from the mold surface when the molded body is extracted, which improves the ease of sliding of the molded body on the mold surface. It is considered that the unplugging power is reduced. These effects are remarkably improved by further adding a fatty acid amide.
これらの効果は、鉄基粉末混合物の温度によらず発現するため、鉄基粉末混合物を加熱する必要は必ずしもなく、常温での成形における鉄基粉末成形体の密度向上に有効に寄与する。また、鉄基粉末を加熱した場合は、加圧成形時に鉄基粉末の塑性変形抵抗が低下するため、より高い成形体密度が得られることが可能となる。従って、必要とする成形体密度に応じて、鉄基粉末の加熱温度を適宜設定することができるが、この加熱温度は100℃未満で十分である。 Since these effects are manifested regardless of the temperature of the iron-based powder mixture, it is not always necessary to heat the iron-based powder mixture, which effectively contributes to improving the density of the iron-based powder molded body in molding at room temperature. In addition, when the iron-based powder is heated, the plastic deformation resistance of the iron-based powder is reduced during pressure molding, so that a higher molded body density can be obtained. Therefore, although the heating temperature of the iron-based powder can be set as appropriate according to the required density of the compact, it is sufficient that the heating temperature is less than 100 ° C.
これらタルクおよびステアタイトの添加量は、鉄基粉末混合物全体に対し0.01〜0.05mass%の範囲とする必要がある。というのは、これらの添加材を0.01mass%以上添加することにより、加圧成形時における成形体密度を十分に向上させ、かつ成形体抜出時における抜出力を十分に低減させることができるからである。一方、添加量が0.05mass%を超えると、成形体を焼結して得た焼結材の機械的強度を低下させることが懸念される。 The amount of talc and steatite added must be in the range of 0.01 to 0.05 mass% with respect to the entire iron-based powder mixture. This is because by adding 0.01 mass% or more of these additives, it is possible to sufficiently improve the density of the molded body at the time of pressure molding and sufficiently reduce the output at the time of extracting the molded body. It is. On the other hand, when the addition amount exceeds 0.05 mass%, there is a concern that the mechanical strength of the sintered material obtained by sintering the compact is reduced.
また、脂肪酸アミドとしては、脂肪酸モノアミドおよび脂肪酸ビスアミドのうちから選ばれる1種以上が好適である。この脂肪酸アミドの添加量は、鉄基粉末混合物全体に対し0.01〜0.5 mass%程度とすることが好ましい。というのは、添加量が0.01mass%にに満たないとその添加効果に乏しく、一方0.5 mass%を超えると成形体強度の低下を招くからである。 As the fatty acid amide, one or more selected from fatty acid monoamides and fatty acid bisamides are suitable. The addition amount of the fatty acid amide is preferably about 0.01 to 0.5 mass% with respect to the entire iron-based powder mixture. This is because if the addition amount is less than 0.01 mass%, the effect of the addition is poor, whereas if it exceeds 0.5 mass%, the strength of the compact is reduced.
また、本発明では、添加材中に、さらに金属石鹸を含有させる。ここに、金属石鹸としてはステアリン酸亜鉛およびステアリン酸リチウムなどが好ましい。これらは、前記成形時の潤滑効果により、粒子間の摩擦抵抗を低減し、粒子相互を動きやすくすることにより、成形体の密度を向上させるだけでなく、鉄基粉末混合物の流動性をさらに向上させることができる。
この金属石鹸の添加量は、鉄基粉末混合物全体に対し0.01〜0.5 mass%程度とすることが好ましい。というのは、添加量が0.01mass%にに満たないとその添加効果に乏しく、一方0.5 mass%を超えると成形体の強度が低下するからである。
さらに、脂肪酸アミドと、ステアリン酸亜鉛やステアリン酸リチウムとを複合添加する場合は、脂肪酸アミドとステアリン酸亜鉛やステアリン酸リチウムとの総量が、鉄基粉末混合物全体に対し0.01〜1.0 mass%添加することが好ましく、0.05〜0.5mass%添加することがさらに好適である。というのは、添加量が0.01mass%に満たないと金属石鹸の添加効果が発現せず、一方1.0 mass%を超えると成形体の強度が低下し、焼結条件によっては焼結を阻害して、焼結体強度の低下を招き、好ましくないからである。
In the present invention, metal soap is further contained in the additive. Here, as the metal soap, zinc stearate and lithium stearate are preferable. These not only improve the density of the compact but also improve the fluidity of the iron-based powder mixture by reducing the frictional resistance between the particles and making the particles easier to move due to the lubricating effect during the molding. Can be made.
The addition amount of the metal soap is preferably about 0.01 to 0.5 mass% with respect to the entire iron-based powder mixture. This is because if the addition amount is less than 0.01 mass%, the effect of the addition is poor, while if it exceeds 0.5 mass%, the strength of the molded product is lowered.
Furthermore, when a fatty acid amide and zinc stearate or lithium stearate are added in combination, the total amount of the fatty acid amide and zinc stearate or lithium stearate is added in an amount of 0.01 to 1.0 mass% with respect to the entire iron-based powder mixture. It is preferable that 0.05 to 0.5 mass% be added. This is because if the amount added is less than 0.01 mass%, the effect of adding metal soap does not appear. On the other hand, if it exceeds 1.0 mass%, the strength of the molded product decreases, and depending on the sintering conditions, sintering may be hindered. This is because the strength of the sintered body is lowered, which is not preferable.
また、タルクやステアタイトは、潤滑性能を発揮する他、鉄基粉末混合物を成形し、焼結する際に分解しない、すなわち有害な分解ガスを発生させず、焼結を阻害しないため、焼結体の機械的強度の向上にも寄与する。
さらに、これらのタルクやステアタイトは、快削成分として知られるMgO−SiO2系酸化物であり、焼結体の切削性の改善にも有効に寄与するが、その効果は金属石鹸と複合添加することにより一層向上する。
以下、上記の効果を発現させるのに好適なタルク、ステアタイトの添加量について説明する。
In addition, talc and steatite exhibit lubrication performance, and do not decompose when forming and sintering an iron-based powder mixture, that is, no harmful decomposition gas is generated and sintering is not inhibited. It also contributes to improving the mechanical strength of the body.
Furthermore, these talc and steatite are MgO-SiO 2 oxides known as free-cutting components and contribute effectively to improving the machinability of the sintered body, but the effect is combined with metal soap. It improves further by doing.
Hereinafter, the addition amount of talc and steatite suitable for expressing the above effects will be described.
上記の目的でタルク(3MgO・4SiO2)やステアタイト(MgO・SiO2)を添加する場合、単独添加または複合添加いずれの場合においても、添加量が0.01mass%に満たないと十分に満足いくほどの切削性の改善効果が得られず、一方0.05mass%を超えると圧粉密度:7.3 Mg/m3を超える高密度成形時の抜出力が上昇し、量産成形への適用が困難となる場合がある。
従って、量産成形に適用可能な低抜出力および焼結体の良好な切削性を得るためには、タルクおよびステアタイトは単独添加または複合添加いずれの場合においても、0.01〜0.05mass%の範囲で添加する必要がある。
When adding talc (3MgO · 4SiO 2 ) or steatite (MgO · SiO 2 ) for the above-mentioned purpose, it is sufficiently satisfactory if the addition amount is less than 0.01 mass% in either case of single addition or combined addition. However, if it exceeds 0.05 mass%, the punching power at high density molding exceeding 7.3 Mg / m 3 will increase, making it difficult to apply to mass production molding. There is a case.
Therefore, in order to obtain low punching power applicable to mass production molding and good machinability of the sintered body, talc and steatite should be added in the range of 0.01 to 0.05 mass% in either case of single addition or composite addition. It is necessary to add.
次に、上記した優れた機械的強度および切削性を得るのに好適な合金組成について説明する。
鉄基粉末としては、水アトマイズ合金鋼粉が好適であり、合金成分については次のとおりである。なお、合金成分の含有量(mass%)は、水アトマイズ合金鋼粉と後述する添加材とを混合して得られる鉄基粉末混合物の質量(mass%)に占める比率を内数で示す。
Mo:0.3〜0.5mass%
Moは、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。しかしながら、含有量が0.3mass%未満では、十分満足いくほどの焼結部品の強度向上が望めず、一方0.5mass%を超えると、焼結部品の強度向上効果が飽和するばかりか、切削性の低下を招く。従って、Moは0.3〜0.5mass%の範囲内とする。
Next, an alloy composition suitable for obtaining the above-described excellent mechanical strength and machinability will be described.
As the iron-based powder, water atomized alloy steel powder is suitable, and the alloy components are as follows. In addition, content (mass%) of an alloy component shows the ratio which occupies for the mass (mass%) of the iron-based powder mixture obtained by mixing water atomized alloy steel powder and the additive mentioned later by an internal number.
Mo: 0.3-0.5mass%
Mo is an element that enhances the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. However, if the content is less than 0.3 mass%, it is not possible to expect a sufficiently satisfactory improvement in the strength of the sintered part. On the other hand, if it exceeds 0.5 mass%, not only the strength improvement effect of the sintered part is saturated, but also the machinability is improved. Incurs a decline. Therefore, Mo is in the range of 0.3 to 0.5 mass%.
Mn:0.1〜0.25mass%
Mnも、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。しかしながら、含有量が0.1mass%未満では、やはり十分な焼結部品の強度向上が望めず、一方0.25mass%を超えると、Mnの酸化が進行し易くなり、合金鋼粉の強度と圧縮性が低下する。従って、Mnは0.1〜0.25mass%の範囲内とする。
Mn: 0.1-0.25mass%
Mn is an element that enhances the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. However, if the content is less than 0.1 mass%, sufficient strength improvement of the sintered parts cannot be expected. On the other hand, if the content exceeds 0.25 mass%, the oxidation of Mn tends to proceed, and the strength and compressibility of the alloy steel powder are reduced. descend. Therefore, Mn is set within a range of 0.1 to 0.25 mass%.
上記した水アトマイズ合金鋼粉に、以下に述べる添加材を混合する。なお、これらの添加材の添加量(mass%)は、水アトマイズ合金鋼粉と添加材とを混合して得られる鉄基粉末混合物の質量(mass%)に占める比率を内数で示す。
Cu粉:1〜3mass%
Cuは、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。また、Cu粉は、焼結の際に溶融して液相となり、水アトマイズ合金鋼粉の粒子を互いに固着させる作用がある。しかしながら、添加量が1mass%に満たないとその効果に乏しく、一方3mass%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、切削性の低下を招く。従って、Cu粉は1〜3mass%の範囲内とする。
Additives described below are mixed with the above water atomized alloy steel powder. In addition, the addition amount (mass%) of these additive materials shows the ratio which occupies for the mass (mass%) of the iron-based powder mixture obtained by mixing water atomized alloy steel powder and an additive material with an internal number.
Cu powder: 1-3mass%
Cu is an element that increases the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. Further, the Cu powder melts during sintering to form a liquid phase, and has an effect of fixing the particles of the water atomized alloy steel powder to each other. However, if the added amount is less than 1 mass%, the effect is poor. On the other hand, if it exceeds 3 mass%, the effect of improving the strength of the sintered part is saturated, and the machinability is reduced. Therefore, Cu powder shall be in the range of 1-3 mass%.
なお、Cuを添加するにあたっては、添加量が上記の範囲内であれば、
(a) 水アトマイズ合金鋼粉にCu粉を添加して単に混合する、
(b) 水アトマイズ合金鋼粉の表面にバインダーを介してCu粉を付着させる、
(c) 水アトマイズ合金鋼粉とCu粉を混合し、さらに熱処理して水アトマイズ合金鋼粉の表面にCu粉を付着拡散させる
という方法のいずれを採用しても良い。
In addition, when adding Cu, if the addition amount is within the above range,
(a) Add Cu powder to water atomized alloy steel powder and simply mix.
(b) Adhering Cu powder to the surface of the water atomized alloy steel powder via a binder,
(c) Any of the methods of mixing water atomized alloy steel powder and Cu powder, further heat-treating, and adhering and diffusing Cu powder on the surface of the water atomized alloy steel powder may be adopted.
黒鉛粉:0.1〜0.3mass%
黒鉛粉の主成分であるCは、焼結時に鉄に固溶し、固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。焼結後に浸炭熱処理等で、焼結体に外部から浸炭する場合には、添加する黒鉛粉は少なくても良い。しかしながら、焼結後に浸炭熱処理を行わない場合、黒鉛粉の含有量が0.1mass%未満ではその添加効果に乏しく、一方0.3mass%を超えると強度が低下し、かつ切削性の低下を招く。また、焼結後に浸炭熱処理する場合でも、焼結体内部までは浸炭されないため、黒鉛粉は0.1〜0.3mass%の範囲内とする。
Graphite powder: 0.1~ 0.3 mass%
C, which is the main component of the graphite powder, is an element that dissolves in iron during sintering and enhances the strength of the sintered part by strengthening solid solution and improving hardenability. When carburizing the sintered body from the outside by carburizing heat treatment after sintering, the graphite powder to be added may be small. However, without any carburization heat treatment after sintering, the content of graphite powder is poor in its addition effect is less than 0.1mass%, whereas 0.3 mass% by weight, the strength degree is lowered, and leads to a decrease in machinability. Further, even if the carburizing heat treatment after sintering, because the inside the sintered body is not carburized, black Namariko is in the range of 0.1 to 0.3 mass%.
次に、本発明の鉄基粉末混合物の製造方法について説明する。
鉄基粉末に、タルク、ステアタイト、脂肪酸アミドおよび金属石鹸などの添加材、さらに必要に応じて合金用粉末を加えて、1次混合する。ついで、1次混合後の混合物を、上記した添加材のうち少なくとも1種の添加材の融点以上に加熱しつつ撹拌し、混合しながら徐々に冷却して、鉄基粉末の表面に溶融した添加材によって合金用粉末やその他の添加材を固着させる。
なお、上記したタルク、ステアタイト、脂肪酸アミド、金属石鹸などの添加材は、必ずしも全量を一度に添加する必要はなく、一部のみを添加して1次混合を行ったのち、残部を添加して2次混合することもできる。
また、混合手段としては、特に制限はなく従来から公知の混合機いずれもが使用できるが、加熱が容易な、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機などは特に有利に適合する。
Next, the manufacturing method of the iron-based powder mixture of this invention is demonstrated.
To the iron-based powder, additives such as talc, steatite, fatty acid amide and metal soap, and further, if necessary, a powder for alloy are added and mixed first. Next, the mixture after the primary mixing is stirred while being heated above the melting point of at least one of the above-mentioned additives, gradually cooled while mixing, and added to the surface of the iron-based powder. The alloy powder and other additives are fixed by the material.
The above-mentioned additives such as talc, steatite, fatty acid amide, and metal soap do not necessarily need to be added all at once, but after adding only a part and performing primary mixing, the remainder is added. And secondary mixing.
The mixing means is not particularly limited and any conventionally known mixer can be used. However, a high-speed bottom stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, and a cone that can be easily heated can be used. A planetary screw type mixer or the like is particularly advantageously adapted.
次に、本発明の鉄基粉末混合物を用いた鉄基粉末成形体の製造方法および鉄基粉末焼結体の製造方法について説明する。
本発明の鉄基粉末混合物は、通常の成形方法で成形体とすることができる。すなわち、常温で成形することができる。とはいえ、鉄基粉末混合物や金型を加熱したり、金型に潤滑剤を塗布することは有利である。加熱雰囲気で成形を行う場合、鉄基粉末混合物や金型の温度は100℃未満とすることが好ましい。というのは、本発明に従う鉄基粉末混合物は圧縮性に富むので100℃未満の温度でも優れた成形性を示し、また100℃以上になると酸化による劣化が懸念されるからである。
Next, a method for producing an iron-based powder molded body and a method for producing an iron-based powder sintered body using the iron-based powder mixture of the present invention will be described.
The iron-based powder mixture of the present invention can be formed into a molded body by a normal molding method. That is, it can be molded at room temperature. Nevertheless, it is advantageous to heat the iron-based powder mixture or the mold or to apply a lubricant to the mold. When molding is performed in a heated atmosphere, the temperature of the iron-based powder mixture and the mold is preferably less than 100 ° C. This is because the iron-based powder mixture according to the present invention is highly compressible and exhibits excellent moldability even at temperatures below 100 ° C., and when it exceeds 100 ° C., there is a concern about deterioration due to oxidation.
ついで、上記のようにして得られた高密度鉄基粉末成形体に、焼結処理を施して、高密度の焼結体とする。焼結処理については、特に限定されることはなく、従来公知の焼結処理方法いずれもが好適に使用できる。また、焼結処理後に、ガス浸炭熱処理や浸炭窒化処理等の熱処理を適用することも可能である。 Next, the high-density iron-based powder molded body obtained as described above is subjected to a sintering treatment to obtain a high-density sintered body. The sintering treatment is not particularly limited, and any conventionally known sintering treatment method can be suitably used. It is also possible to apply a heat treatment such as a gas carburizing heat treatment or a carbonitriding treatment after the sintering treatment.
以下、実施例に基づき本発明を具体的に説明する。
表1に、鉄基粉末として用いた各種の粉末冶金用鉄粉(いずれも平均粒径:約80μm)の種類を示す。
表2に示すように、各種の鉄基粉末、天然黒鉛粉(平均粒径:5μm)および/または銅粉(平均粒径:25μm)に、各種添加材(1次添加材)を添加し、高速底部撹拌式混合機で混合しながら140℃に加熱した後、60℃以下に冷却し、さらに各種添加材(2次添加材)を添加し、500rpmで1分間撹拌後、混合機から混合粉末を排出した。1次および2次添加材の種類と添加量を 、表2に併記する。添加材の添加量(質量部)は、鉄基粉末と天然黒鉛粉と銅粉との合計質量:100mass%に対する比率を外数で示したものであるが、内数で表した数値とほぼ同じである。なお、タルク粉末、ステアタイト粉末の平均粒径はそれぞれ6μm、4μmであった。
Hereinafter, the present invention will be specifically described based on examples.
Table 1 shows the types of various iron powders for powder metallurgy used as iron-based powders (all average particle size: about 80 μm).
As shown in Table 2, various additives (primary additives) are added to various iron-based powders, natural graphite powder (average particle size: 5 μm) and / or copper powder (average particle size: 25 μm), Heat to 140 ° C while mixing with a high-speed bottom-stirring mixer, cool to 60 ° C or below, add various additives (secondary additives), stir at 500 rpm for 1 minute, then mix powder from the mixer Was discharged. Table 2 shows the types and amounts of primary and secondary additives. The additive amount (parts by mass) of the additive is the total mass of iron-based powder, natural graphite powder, and copper powder: the ratio to 100 mass% is indicated by an external number, but is almost the same as the numerical value expressed by the internal number It is. The average particle sizes of talc powder and steatite powder were 6 μm and 4 μm, respectively.
次に、得られた各鉄基粉末混合物を、室温下で、内径:11mmの超硬製タブレット型に充填し、784 MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力および得られた成形体の圧粉密度を測定した。
さらに、得られた各鉄基粉末混合物に対し、別途、引張試験用の10×10×55mm試験片と切削試験用の外径60mm×内径20mm×厚み30mm試験片の圧粉成形を行った。圧粉成形の加圧力は784 MPaとした。焼結はRXガス雰囲気中で行い、加熱温度を1130℃とし、加熱時間を20分とした。
引張試験用の10×10×55mm試験片から、機械加工により平行部径:5mmの小型丸棒引張試験片を作製した。かかる引張試験片については、一部は焼結の後、一部は浸炭処理を施した後、引張試験に供した。
焼結体の切削性については、サーメットの切削工具を用いて、切削速度:200m/分、送り:0.1mm/回、切込み深さ:0.3mm,切削距離:1000mの条件で切削試験を行い、切削工具の逃げ面の摩耗幅を測定した。切削工具の逃げ面の摩耗幅が小さいほど、焼結体の切削性が優れていることを示す。
得られた結果を表3に示す。
Next, each obtained iron-based powder mixture was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature and pressure-molded at 784 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
Further, each of the obtained iron-based powder mixtures was separately compacted into a 10 × 10 × 55 mm test piece for a tensile test and an outer diameter 60 mm × inner diameter 20 mm × thickness 30 mm test piece for a cutting test. The pressing force in compacting was 784 MPa. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C., and the heating time was 20 minutes.
From a 10 × 10 × 55 mm test piece for tensile test, a small round bar tensile test piece having a parallel part diameter of 5 mm was prepared by machining. These tensile test pieces were subjected to a tensile test, partly after sintering and partly subjected to carburizing treatment.
Regarding the machinability of the sintered body, a cutting test was performed using a cermet cutting tool under the conditions of cutting speed: 200 m / min, feed: 0.1 mm / turn, cutting depth: 0.3 mm, cutting distance: 1000 m, The wear width of the flank of the cutting tool was measured. It shows that the machinability of a sintered compact is excellent, so that the wear width of the flank of a cutting tool is small.
The obtained results are shown in Table 3.
表2〜3に示した発明例1および2と比較例1〜6とを比較すれば明らかなように、潤滑剤として本発明の1次および2次添加材を添加し、さらに黒鉛粉の添加を0.3mass%とすることにより、室温成形であっても高密度の圧粉体を極めて低い抜出力で成形することができ、また焼結体および焼結浸炭熱処理材の引張強度が高く、切削性も良好であった。
これに対し、ステアタイトを添加しない比較例はいずれも、切削工具の摩耗が大きく、
切削性に劣っていた。また、ステアタイト量が0.06%と本発明の上限を超えた比較例は、
高密度成形時における抜出力が上昇した。
As apparent from comparison of Invention Examples 1 and 2 and Comparative Examples 1 to 6 shown in Tables 2 to 3, the primary and secondary additives of the present invention were added as a lubricant , and graphite powder was further added. With 0.3 mass%, high-density green compacts can be molded with extremely low output even at room temperature, and the sintered body and sintered carburized heat treated material have high tensile strength, cutting. The property was also good.
On the other hand, all of the comparative examples without the addition of steatite have large wear of the cutting tool,
It was inferior in machinability. In addition, a comparative example in which the amount of steatite exceeds 0.06% and the upper limit of the present invention,
The punching power during high density molding increased.
Claims (1)
Moを0.3〜0.5mass%の範囲で含み残部が鉄の鉄基粉末に、合金用粉末として、黒鉛粉を0.1〜0.3mass%およびCuを1〜3mass%の範囲で添加し、さらに添加材として、タルクおよびステアタイトのうちから選んだ少なくとも1種を0.01〜0.05mass%(但し、0.05mass%は除く)と、脂肪酸アミド:0.01〜0.5mass%および金属石鹸:0.01〜0.5mass%をそれぞれ添加したことを特徴とする鉄基粉末混合物。 An iron-based powder mixture for obtaining an iron-based powder molded body having a molding density exceeding 7.3 Mg / m 3 and an iron-based powder sintered body having a sintered body tensile strength of 1180 MPa or more,
Mo is added in the range of 0.3 to 0.5 mass%, and the remainder is iron- based powder. As an alloy powder, graphite powder is added in the range of 0.1 to 0.3 mass% and Cu is added in the range of 1 to 3 mass%. , 0.01 to 0.05 mass% (excluding 0.05 mass%), fatty acid amide : 0.01 to 0.5 mass % and metal soap : 0.01 to 0.5 mass % , respectively, added at least one selected from talc and steatite An iron-based powder mixture characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008070204A JP4935731B2 (en) | 2008-03-18 | 2008-03-18 | Iron-based powder mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008070204A JP4935731B2 (en) | 2008-03-18 | 2008-03-18 | Iron-based powder mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009221576A JP2009221576A (en) | 2009-10-01 |
JP4935731B2 true JP4935731B2 (en) | 2012-05-23 |
Family
ID=41238648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008070204A Active JP4935731B2 (en) | 2008-03-18 | 2008-03-18 | Iron-based powder mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4935731B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5696512B2 (en) * | 2010-02-18 | 2015-04-08 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same |
JP6309215B2 (en) * | 2013-07-02 | 2018-04-11 | Ntn株式会社 | Sintered machine part manufacturing method and mixed powder used therefor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101384387B (en) * | 2006-02-15 | 2011-12-21 | 杰富意钢铁株式会社 | Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body |
-
2008
- 2008-03-18 JP JP2008070204A patent/JP4935731B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009221576A (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4737107B2 (en) | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body | |
JP5696512B2 (en) | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same | |
JP5904234B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP5741649B2 (en) | Iron-based powder mixture | |
JP2006089829A (en) | Iron-base powdery mixture for powder metallurgy | |
JP5504971B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP5504963B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP5962787B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2009242887A (en) | Iron-based powdery mixture | |
JP4935731B2 (en) | Iron-based powder mixture | |
JP5200768B2 (en) | Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same | |
JP5962691B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2014025109A (en) | Mixed powder for powder metallurgy | |
JP5816413B2 (en) | Method for producing ferrous sintered material | |
JP5504863B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP6007928B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2018090854A (en) | Mixed powder for iron-based powder metallurgy and method for producing sintered body | |
JP5310074B2 (en) | Iron-based powder mixture for high-strength sintered parts of automobiles | |
JP2017106102A (en) | Mixture powder for powder metallurgy, manufacturing method of mixture powder for powder metallurgy and sintered body | |
JP6493357B2 (en) | Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body | |
JP4704949B2 (en) | Mixed powder for producing iron-based sintered body and iron-based sintered body | |
JP2016035105A (en) | Mixed powder for iron-based powder metallurgy, iron-based sintered alloy and sintered machine component, and method for producing iron-based sintered alloy | |
JP2017106060A (en) | Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body | |
JP2017101280A (en) | Mixed powder for powder metallurgy, production method for mixed powder for powder metallurgy, and iron-based powder-made sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100927 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20110125 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20110217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4935731 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |