JP4704949B2 - Mixed powder for producing iron-based sintered body and iron-based sintered body - Google Patents
Mixed powder for producing iron-based sintered body and iron-based sintered body Download PDFInfo
- Publication number
- JP4704949B2 JP4704949B2 JP2006122421A JP2006122421A JP4704949B2 JP 4704949 B2 JP4704949 B2 JP 4704949B2 JP 2006122421 A JP2006122421 A JP 2006122421A JP 2006122421 A JP2006122421 A JP 2006122421A JP 4704949 B2 JP4704949 B2 JP 4704949B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- powder
- sintered body
- based sintered
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、鉄基焼結体製造用混合粉末および鉄基焼結体に関する技術分野に属するものであり、特には、自動車用の高強度焼結部品として好適な鉄基焼結体およびこの鉄基焼結体の製造用の混合粉末に関する技術分野に属するものである。 The present invention belongs to a technical field related to a mixed powder for producing an iron-based sintered body and an iron-based sintered body, and in particular, an iron-based sintered body suitable as a high-strength sintered part for automobiles and the iron It belongs to the technical field related to mixed powders for the production of basic sintered bodies.
粉末冶金法は、金属粉末を金型内で加圧し成型した後、焼結して焼結体とする方法である。粉末冶金法は、複雑な形状の機械部品も精度良く製造することができるため、高い寸法精度が要求されるギヤ等の自動車部品の製造に広く適用されている。 The powder metallurgy method is a method in which a metal powder is pressed and molded in a mold and then sintered to form a sintered body. The powder metallurgy method is widely applied to the manufacture of automobile parts such as gears that require high dimensional accuracy, because it can also accurately manufacture mechanical parts having complicated shapes.
粉末冶金法において、金属粉末として鉄粉を用いる場合には、通常、鉄粉にCu粉や黒鉛粉等の合金成分を混合し、更に成形性を向上させるための潤滑剤を 0.8%程度添加し6.8 〜7.2g/cm3程度の密度を有する焼結体としている。なお、この焼結体は、Feの他にCu等を含有しているが、Feをベース(基礎)成分とするものである。この焼結体を得るための原料の粉末(焼結体製造用混合粉末)は、鉄粉の他にCu粉等を含有しているが、鉄粉をベース(基本)粉末とするものである。 In powder metallurgy, when iron powder is used as metal powder, alloy components such as Cu powder and graphite powder are usually mixed with iron powder, and about 0.8% of a lubricant is added to improve formability. The sintered body has a density of about 6.8 to 7.2 g / cm 3 . This sintered body contains Cu and the like in addition to Fe, but uses Fe as a base (basic) component. The raw material powder (mixed powder for producing a sintered body) for obtaining this sintered body contains Cu powder in addition to iron powder, but uses iron powder as a base (basic) powder. .
このようにFeをベース成分とする焼結体を、以下、鉄基焼結体という。鉄基焼結体を得るための原料の粉末を、以下、鉄基焼結体製造用混合粉末という。ベース粉末を、以下、母粉という。 Such a sintered body containing Fe as a base component is hereinafter referred to as an iron-based sintered body. The raw material powder for obtaining the iron-based sintered body is hereinafter referred to as a mixed powder for producing an iron-based sintered body. Hereinafter, the base powder is referred to as mother powder.
鉄基焼結体の高強度化をはかる手段として、合金元素の添加による方法が提案されている。この合金元素の添加による方法としては、例えば、特開平9-87794 号公報や、特開平9-59740 号公報、特開2000-64001号公報に記載されたものがある。 As a means for increasing the strength of the iron-based sintered body, a method by adding an alloy element has been proposed. Examples of the method by addition of the alloy element include those described in JP-A-9-87794, JP-A-9-59740, and JP-A-2000-64001.
上記の特開平9-87794 号公報記載のものでは、鉄基焼結体製造用混合粉末の母粉(ベース粉末)として、NiおよびMoを含有させた鉄基合金粉を用いている。特開平9-59740 号公報記載のものでは、鉄基焼結体製造用混合粉末の母粉として、NiやMo等を含有させた鉄基合金粉(プレアロイ型鋼粉)を用いると共に、鉄基焼結体製造用混合粉末にNiやMo等およびCuやSiを含有する合金化粉末をも含有させている。特開2000-64001号公報記載のものでは、鉄基焼結体製造用混合粉末の母粉として、Ni及びMoを部分合金化した鉄基合金粉(合金鋼粉)を用いると共に、鉄基焼結体製造用混合粉末にNi粉およびMo粉をも含有させている。
しかしながら、このような合金元素の添加による方法では、NiやMo等の高価な合金元素を用いる必要があるためにコスト上昇を招き、経済性が悪くなる。 However, such a method based on the addition of alloy elements necessitates the use of expensive alloy elements such as Ni and Mo, leading to an increase in cost and poor economic efficiency.
本発明はこのような事情に鑑みてなされたものであって、その目的は、NiやMo等の高価な合金元素を用いなくても、鉄基焼結体の高強度化がはかれ、高強度の鉄基焼結体を得ることができる鉄基焼結体製造用混合粉末および高強度を有することができる鉄基焼結体を提供しようとするものである。 The present invention has been made in view of such circumstances, and its purpose is to increase the strength of the iron-based sintered body without using expensive alloy elements such as Ni and Mo. An object of the present invention is to provide a mixed powder for producing an iron-based sintered body capable of obtaining a strong iron-based sintered body and an iron-based sintered body capable of having high strength.
本発明者らは、上記目的を達成するため、鋭意検討した結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。 As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. According to the present invention, the above object can be achieved.
このようにして完成されて上記目的を達成することができた本発明は、鉄基焼結体製造用混合粉末および鉄基焼結体に係わり、請求項1〜3記載の鉄基焼結体製造用混合粉末(第1〜3発明に係る鉄基焼結体製造用混合粉末)、請求項4記載の鉄基焼結体(第4発明に係る鉄基焼結体)であり、それは次のような構成としたものである。 The present invention, which has been completed in this way and has achieved the above object, relates to a mixed powder for producing an iron-based sintered body and an iron-based sintered body, and the iron-based sintered body according to claims 1 to 3. A mixed powder for production (mixed powder for producing an iron-based sintered body according to the first to third inventions), an iron-based sintered body (iron-based sintered body according to the fourth invention) according to claim 4 , which is The configuration is as follows.
即ち、請求項1記載の鉄基焼結体製造用混合粉末は、鉄粉および/または鉄合金粉を母粉として含有し、Cu合金粉および黒鉛粉を含有する鉄基焼結体製造用混合粉末であって、前記Cu合金粉の融点が1000℃以下であり、該Cu合金粉のCu合金が合金元素としてMnを含有し、この合金元素Mnの量が、当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、0.1 〜1.3 mass%であることを特徴とする鉄基焼結体製造用混合粉末である〔第1発明〕。 That is, the mixed powder for producing an iron-based sintered body according to claim 1 contains iron powder and / or iron alloy powder as a mother powder, and contains a Cu alloy powder and graphite powder. The melting point of the Cu alloy powder is 1000 ° C. or less, the Cu alloy of the Cu alloy powder contains Mn as an alloy element, and the amount of the alloy element Mn is used for producing the iron-based sintered body. An amount of the iron-based sintered body obtained from the mixed powder is 0.1 to 1.3 mass%, which is a mixed powder for producing an iron-based sintered body [first invention].
請求項2記載の鉄基焼結体製造用混合粉末は、前記Cu合金粉のCu合金中のCu量が50 mol%以上である請求項1記載の鉄基焼結体製造用混合粉末である〔第2発明〕。 The mixed powder for producing an iron-based sintered body according to claim 2, wherein the amount of Cu in the Cu alloy of the Cu alloy powder is 50 mol% or more. [Second invention].
請求項3記載の鉄基焼結体製造用混合粉末は、前記Cu合金粉のCu合金が合金元素としてさらにP、Siの1種以上を含有し、この合金元素P、Siの量が、当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、合計で、0.1 〜0.5 mass%である請求項1または2記載の鉄基焼結体製造用混合粉末である〔第3発明〕。 In the mixed powder for producing an iron-based sintered body according to claim 3 , the Cu alloy of the Cu alloy powder further contains one or more of P and Si as alloy elements , and the amount of the alloy elements P and Si is It is the quantity with respect to the iron base sintered compact obtained from the mixed powder for iron base sintered compact manufacture, and is 0.1-0.5 mass% in total, It is the mixed powder for iron base sintered compact manufacture of Claim 1 or 2 [ Third invention].
請求項4記載の鉄基焼結体は、請求項1〜3のいずれかに記載の鉄基焼結体製造用混合粉末より得られる鉄基焼結体である〔第4発明〕。 The iron-based sintered body according to claim 4 is an iron-based sintered body obtained from the mixed powder for producing an iron-based sintered body according to any one of claims 1 to 3 [ fourth invention].
本発明に係る鉄基焼結体製造用混合粉末によれば、NiやMo等の高価な合金元素を用いなくても、鉄基焼結体の高強度化がはかれ、高強度の鉄基焼結体を得ることができる。本発明に係る鉄基焼結体は、高強度を有することができ、このため、高強度の鉄基焼結体として好適に用いることができる。 According to the mixed powder for producing an iron-based sintered body according to the present invention, the strength of the iron-based sintered body can be increased without using an expensive alloy element such as Ni or Mo, and a high-strength iron-based sintered body can be obtained. A sintered body can be obtained. The iron-based sintered body according to the present invention can have high strength, and therefore can be suitably used as a high-strength iron-based sintered body.
本発明に係る鉄基焼結体製造用混合粉末は、前述のように、鉄粉および/または鉄合金粉を母粉として含有し、Cu合金粉および黒鉛粉を含有する鉄基焼結体製造用混合粉末であって、前記Cu合金粉の融点が1000℃以下であり、該Cu合金粉のCu合金が合金元素としてMnを含有し、この合金元素Mnの量が、当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、0.1 〜1.3 mass%であることを特徴とする鉄基焼結体製造用混合粉末である〔第1発明〕。なお、上記鉄合金粉とは鉄合金よりなる粉末(粉末状の鉄合金)のことであり、この鉄合金とはFeをベース(基礎)成分とする合金のことである。上記鉄粉および/または鉄合金粉を、以下、鉄基粉末という(鉄粉も、鉄合金粉も、以下、鉄基粉末という)。 The mixed powder for producing an iron-based sintered body according to the present invention, as described above, contains iron powder and / or iron alloy powder as a mother powder, and produces an iron-based sintered body containing Cu alloy powder and graphite powder. The Cu alloy powder has a melting point of 1000 ° C. or less, the Cu alloy of the Cu alloy powder contains Mn as an alloy element, and the amount of the alloy element Mn is the iron-based sintered body. An amount of the iron-based sintered body obtained from the mixed powder for production, which is 0.1 to 1.3 mass%, is a mixed powder for producing an iron-based sintered body [first invention]. The iron alloy powder is a powder made of an iron alloy (powdered iron alloy), and the iron alloy is an alloy containing Fe as a base (basic) component. The iron powder and / or iron alloy powder is hereinafter referred to as iron-based powder (both iron powder and iron alloy powder are hereinafter referred to as iron-based powder).
従来は鉄粉焼結用の焼結副資材としてCu粉が用いられていた。この副資材のCu粉は焼結中に溶融(Cuの融点1083℃)し、鉄粉界面をぬらして鉄粉の焼結が進行する。 Conventionally, Cu powder has been used as a sintering auxiliary material for iron powder sintering. The secondary material Cu powder melts during the sintering (melting point of Cu 1083 ° C.), wets the iron powder interface, and the sintering of the iron powder proceeds.
本発明に係る鉄基焼結体製造用混合粉末においては、このCu粉に代えてCu合金粉を用いており、このCu合金粉の融点は上記のように1000℃以下であるので、このCu合金粉は溶融しやすい。従って、焼結が進行しやすくなり、この結果、鉄基粉末(鉄粉、鉄合金粉)界面の接合強度が向上し、これにより鉄基焼結体の強度が向上する。 In the mixed powder for producing an iron-based sintered body according to the present invention, Cu alloy powder is used instead of this Cu powder, and the melting point of this Cu alloy powder is 1000 ° C. or less as described above. Alloy powder is easy to melt. Therefore, the sintering easily proceeds, and as a result, the bonding strength at the interface of the iron-based powder (iron powder, iron alloy powder) is improved, thereby improving the strength of the iron-based sintered body.
このような鉄基焼結体の強度の向上効果は、NiやMo等の高価な合金元素を用いなくても得ることができる。即ち、前述の特開平9-87794 号公報や、特開平9-59740 号公報、特開2000-64001号公報に記載のものでは、前述のように、鉄基焼結体製造用混合粉末の母粉としてNiやMo等を含有させた鉄基合金粉やNi及びMoを部分合金化した鉄基合金粉を用い、あるいは更に鉄基焼結体製造用混合粉末にNiやMo等を含有する合金化粉末やNi粉、Mo粉を含有させているが、本発明に係る鉄基焼結体製造用混合粉末によれば、このようなNiやMo等を含有させることや部分合金化させること、Ni粉、Mo粉を含有させることをしなくても、焼結が進行しやすくなるために鉄基粉末界面の接合強度が向上し、また、合金元素による固溶強化効果も作用して、鉄基焼結体の強度が向上する。 Such an effect of improving the strength of the iron-based sintered body can be obtained without using an expensive alloy element such as Ni or Mo. That is, in the above-mentioned JP-A-9-87794, JP-A-9-59740, and JP-A-2000-64001, as described above, the base of the mixed powder for producing an iron-based sintered body is used. An iron-base alloy powder containing Ni or Mo as a powder, an iron-base alloy powder partially alloyed with Ni or Mo, or an alloy containing Ni or Mo in a mixed powder for producing an iron-based sintered body Ni powder, Ni powder, and Mo powder are contained, but according to the mixed powder for producing an iron-based sintered body according to the present invention, such Ni or Mo or the like, or partially alloyed, Even if it does not contain Ni powder and Mo powder, the sintering is easy to proceed, so the bonding strength at the iron-based powder interface is improved, and the effect of solid solution strengthening by the alloy element also acts, The strength of the base sintered body is improved.
従って、本発明に係る鉄基焼結体製造用混合粉末によれば、NiやMo等の高価な合金元素を用いなくても、鉄基焼結体の高強度化がはかれ、高強度の鉄基焼結体を得ることができる。 Therefore, according to the mixed powder for producing an iron-based sintered body according to the present invention, the strength of the iron-based sintered body can be increased without using an expensive alloy element such as Ni or Mo. An iron-based sintered body can be obtained.
本発明に係る鉄基焼結体製造用混合粉末においては、前述のように、Cu合金粉は融点が低いために溶融しやすくて焼結が進行しやすいので、鉄基粉末界面の接合強度が向上するだけでなく、焼結時間が短時間でよくなるという利点もある。 In the mixed powder for producing an iron-based sintered body according to the present invention, as described above, since the Cu alloy powder has a low melting point, it is easy to melt and sinter easily. In addition to the improvement, there is an advantage that the sintering time can be shortened.
ここで、Cu合金粉の融点が1000℃以下であることとしている理由は、下記の点にある。Cuの融点は1083℃であり、一般的な鉄粉の焼結温度は1120〜1200℃である。副資材であるCu合金粉の融点が1000℃以下であれば、昇温中の早い時期に溶融でき、実質的な焼結時間を稼げる。そのため、焼結の促進による強度向上には副資材の融点が1000℃以下でなければ効果が得られない。従って、副資材としてのCu合金粉の融点は1000℃以下であることとしている。焼結の促進およびそれによる強度向上をより高水準なものとするために、Cu合金粉の融点は800 ℃以下であることが望ましい。融点は低ければ低いほどよいが、物性で下限が決まっている。 Here, the reason why the melting point of the Cu alloy powder is 1000 ° C. or less is as follows. The melting point of Cu is 1083 ° C., and the sintering temperature of general iron powder is 1120 to 1200 ° C. If the melting point of the Cu alloy powder, which is an auxiliary material, is 1000 ° C. or less, it can be melted at an early stage during the temperature rise, and a substantial sintering time can be obtained. Therefore, an effect cannot be obtained unless the melting point of the auxiliary material is 1000 ° C. or less for improving the strength by promoting the sintering. Therefore, the melting point of the Cu alloy powder as the auxiliary material is 1000 ° C. or less. In order to promote the sintering and improve the strength, the Cu alloy powder preferably has a melting point of 800 ° C. or lower. The lower the melting point, the better, but the lower limit is determined by the physical properties.
融点が1000℃以下であるCu合金粉は、融点が1000℃以下であるCu合金よりなる粉末である。融点が1000℃以下であるCu合金や融点が800 ℃以下であるCu合金には種々のものがあり、例えば、合金元素としてPや、Si、Mnを含有させたCu合金がある。 The Cu alloy powder having a melting point of 1000 ° C. or lower is a powder made of a Cu alloy having a melting point of 1000 ° C. or lower. There are various types of Cu alloys having a melting point of 1000 ° C. or less and Cu alloys having a melting point of 800 ° C. or less. For example, there are Cu alloys containing P, Si, and Mn as alloy elements.
合金元素の含有量とCu合金の融点について、以下、例示する。Pを含有するCu合金において、P含有量:5 mol%の場合、Cu合金の融点:1030℃であるが、P含有量:10 mol%の場合、Cu合金の融点:900 ℃であり、P含有量:13 mol%の場合、Cu合金の融点:800 ℃であり、P含有量:16 mol%の場合、Cu合金の融点:730 ℃である。P含有量:約6〜23 mol%のCu合金で、融点が1000℃以下となり、P含有量:約13〜17 mol%のCu合金で、融点が800 ℃以下となる。 The alloy element content and the melting point of the Cu alloy will be exemplified below. In a Cu alloy containing P, when the P content is 5 mol%, the melting point of the Cu alloy is 1030 ° C., but when the P content is 10 mol%, the melting point of the Cu alloy is 900 ° C. When the content is 13 mol%, the melting point of the Cu alloy is 800 ° C., and when the P content is 16 mol%, the melting point of the Cu alloy is 730 ° C. P content: Cu alloy with about 6-23 mol%, melting point is 1000 ° C. or less, P content: Cu alloy with about 13-17 mol%, melting point is 800 ° C. or less.
Siを31 mol%含有させたCu合金の融点は810 ℃であり、Si含有量:約7〜42 mol%のCu合金で、融点が1000℃以下となる。Mnを35 mol%含有させたCu合金の融点は880 ℃であり、Mn含有量:10〜58 mol%のCu合金で、融点が1000℃以下となる。 The melting point of a Cu alloy containing 31 mol% of Si is 810 ° C., and the Cu melting point is 1000 ° C. or less with a Cu content of about 7 to 42 mol%. The melting point of the Cu alloy containing 35 mol% of Mn is 880 ° C., and the melting point is 1000 ° C. or less with the Cu alloy of Mn content: 10 to 58 mol%.
上記のPや、Si、Mn以外の元素を含有させることによっても、融点1000℃以下のCu合金や融点800 ℃以下のCu合金が得られる。 A Cu alloy having a melting point of 1000 ° C. or lower and a Cu alloy having a melting point of 800 ° C. or lower can also be obtained by adding an element other than P, Si, and Mn.
本発明に係る鉄基焼結体製造用混合粉末において、Cu合金粉のCu合金中のCu量が50 mol%以上であることが望ましい〔第2発明〕。この理由は下記の点にある。 In the mixed powder for producing an iron-based sintered body according to the present invention, it is desirable that the amount of Cu in the Cu alloy of the Cu alloy powder is 50 mol% or more [second invention]. The reason is as follows.
副資材として従来よりCuが用いられている大きな理由の一つとして、Fe-Cu 系は接触角が0°と非常に濡れ性がよい。Cuは合金化することにより、より低融点になるが、Cu合金中の合金元素の量が多すぎると、Feとの濡れ性が損なわれる。かかる点から、Cu合金粉のCu合金中の合金元素量は50 mol%(モル%)未満であること、即ち、Cu量が50 mol%以上であることが望ましい。 One of the main reasons why Cu has been used as an auxiliary material is that the Fe—Cu system has a very good wettability with a contact angle of 0 °. Although Cu has a lower melting point when alloyed, if the amount of alloy elements in the Cu alloy is too large, the wettability with Fe is impaired. From this point, it is desirable that the amount of alloy elements in the Cu alloy of the Cu alloy powder is less than 50 mol% (mol%), that is, the amount of Cu is 50 mol% or more.
本発明に係る鉄基焼結体製造用混合粉末において、Cu合金粉のCu合金が合金元素としてP、Si、Mnの1種以上を含有し、この合金元素の量が、当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、合計で、0.1 mass%以上であることが望ましい。この理由は下記の点にある。 In the mixed powder for producing an iron-based sintered body according to the present invention, the Cu alloy of the Cu alloy powder contains one or more of P, Si, and Mn as alloy elements, and the amount of the alloy element is the iron-based sintered powder. The total amount of the iron-based sintered body obtained from the mixed powder for body production is preferably 0.1 mass% or more . The reason is as follows.
Cu合金粉のCu合金中のP、Si、Mnは、焼結中に鉄基粉末の鉄に固溶して固溶強化する。この効果を発揮するために、P、Si、Mnの1種以上の量が、鉄基焼結体において、合計で0.1 mass%(質量%)以上であることが望ましい。 P, Si, and Mn in the Cu alloy of the Cu alloy powder are solid-solution strengthened by solid solution in the iron-based powder iron during sintering. In order to exhibit this effect, it is desirable that the amount of at least one of P, Si, and Mn is 0.1 mass% (mass%) or more in total in the iron-based sintered body.
本発明に係る鉄基焼結体製造用混合粉末において、Cu合金粉のCu合金が合金元素としてP、Siの1種以上を含有し、この合金元素の量が、当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、合計で、0.1 〜0.5 mass%であることが望ましい〔第3発明〕。また、Cu合金粉のCu合金が合金元素としてMnを含有し、この合金元素の量が、当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、0.1 〜1.3 mass%であることが望ましい〔第1発明〕。この理由は下記の点にある。 In the mixed powder for producing an iron-based sintered body according to the present invention, the Cu alloy of the Cu alloy powder contains one or more of P and Si as alloy elements, and the amount of this alloy element is the iron-based sintered body produced. The total amount is preferably 0.1 to 0.5 mass% with respect to the iron-based sintered body obtained from the mixed powder for use [ third invention]. Moreover, the Cu alloy of the Cu alloy powder contains Mn as an alloy element, and the amount of the alloy element is 0.1 to 1.3 mass with respect to the iron-based sintered body obtained from the mixed powder for producing the iron-based sintered body. % Is desirable [ first invention]. The reason is as follows.
P、Si、Mnの1種以上の量が多すぎると鉄基焼結体の被削性が劣化する(切削工具が摩耗しやすくなる)。この被削性の劣化を抑制して良好な水準の被削性を有する鉄基焼結体とするために、合金元素としてP、Siの1種以上を含有する場合には、この合金元素の量が、鉄基焼結体において、合計で0.5 mass%以下であることが望ましく、合金元素としてMnを含有する場合には、この合金元素の量が、鉄基焼結体において、1.3 mass%以下であることが望ましい。従って、固溶強化による鉄基焼結体の強度の向上および鉄基焼結体の被削性の劣化の抑制のために、合金元素としてP、Siの1種以上を含有する場合には、この合金元素の量が、鉄基焼結体において、合計で、0.1 〜0.5 mass%であることが望ましく、合金元素としてMnを含有する場合には、この合金元素の量が、鉄基焼結体において、0.1 〜1.3 mass%であることが望ましい。なお、Mnの場合、Pの場合やSiの場合よりも、望ましい量の上限値(被削性の点での許容値)が大きいのは、低融点組成領域が高Mn組成になるからである(最低融点領域はおよそ31 mol%Mn程度)。 If the amount of one or more of P, Si, and Mn is too large, the machinability of the iron-based sintered body is deteriorated (the cutting tool is easily worn). In order to suppress the deterioration of the machinability and obtain an iron-based sintered body having a good level of machinability, when the alloy element contains at least one of P and Si, The total amount of iron-based sintered body is preferably 0.5 mass% or less. When Mn is contained as an alloy element, the amount of this alloy element is 1.3 mass% in iron-based sintered body. The following is desirable. Therefore, in order to improve the strength of the iron-based sintered body by solid solution strengthening and to suppress the deterioration of the machinability of the iron-based sintered body, when containing one or more of P and Si as alloy elements, The total amount of the alloy elements is preferably 0.1 to 0.5 mass% in the iron-based sintered body. When Mn is contained as the alloy element, the amount of the alloy elements is iron-based sintered. In the body, it is desirable to be 0.1 to 1.3 mass%. In the case of Mn, the upper limit value of the desired amount (allowable value in terms of machinability) is larger than that in the case of P or Si because the low melting point composition region has a high Mn composition. (The lowest melting point range is about 31 mol% Mn).
本発明に係る鉄基焼結体製造用混合粉末によれば、Cu合金粉が溶融しやすいために焼結が進行しやすくて鉄基粉末界面の接合強度が向上することによって鉄基焼結体の強度が向上するだけでなく、Cu合金粉のCu合金中のP、Si、Mnの1種以上が鉄に固溶して固溶強化することによって鉄基焼結体の強度が向上する。第3発明に係る鉄基焼結体製造用混合粉末によれば、鉄基粉末界面の接合強度向上によって鉄基焼結体の強度が向上し、更にP、Siの1種以上の鉄への固溶による固溶強化によって鉄基焼結体の強度が向上するだけでなく、鉄基焼結体の被削性の劣化を抑制し得て良好な水準の被削性を有することができる。第1発明に係る鉄基焼結体製造用混合粉末によれば、鉄基粉末界面の接合強度向上およびMnの鉄への固溶による固溶強化によって鉄基焼結体の強度が向上するだけでなく、鉄基焼結体の被削性の劣化を抑制し得て良好な水準の被削性を有することができる。 According to the mixed powder for producing an iron-based sintered body according to the present invention, since the Cu alloy powder is easily melted, the sintering proceeds easily, and the bonding strength at the iron-based powder interface is improved, whereby the iron-based sintered body is improved. In addition to improving the strength of the iron-based sintered body, at least one of P, Si, and Mn in the Cu alloy powder of the Cu alloy powder is dissolved in iron and strengthened by solid solution. According to the mixed powder for producing an iron-based sintered body according to the third aspect of the invention, the strength of the iron-based sintered body is improved by improving the bonding strength at the interface of the iron-based powder, and further, one or more irons of P and Si are added. The solid solution strengthening by solid solution not only improves the strength of the iron-based sintered body, but also can suppress deterioration of the machinability of the iron-based sintered body and have a good level of machinability. According to the mixed powder for producing an iron-based sintered body according to the first invention, only the strength of the iron-based sintered body is improved by improving the bonding strength at the iron-based powder interface and strengthening the solid solution by solid solution of Mn in iron. In addition, it is possible to suppress deterioration of the machinability of the iron-based sintered body and to have a good level of machinability.
本発明の第1発明〜第3発明に係る鉄基焼結体製造用混合粉末において、Cu合金粉の添加量は、特には限定されないが、通常は当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、1〜5質量%(重量%)とする。この量は一般的な焼結助剤の量である。 In the mixed powder for producing an iron-based sintered body according to the first to third inventions of the present invention, the addition amount of the Cu alloy powder is not particularly limited, but usually from the mixed powder for producing an iron-based sintered body. It is 1-5 mass% (weight%) with the quantity with respect to the obtained iron-based sintered compact. This amount is a general amount of sintering aid.
黒鉛(グラファイト)粉の添加量は、特には限定されないが、通常は当該鉄基焼結体製造用混合粉末より得られる鉄基焼結体に対する量で、0.3 〜1.5 質量%である。この量は一般的な焼結助剤の量である。なお、同一合金組成なら、強度およぼ被削性はほぼグラファイト量と相関がある。 The amount of graphite (graphite) powder added is not particularly limited, but is usually 0.3 to 1.5% by mass relative to the iron-based sintered body obtained from the mixed powder for producing the iron-based sintered body. This amount is a general amount of sintering aid. For the same alloy composition, strength and machinability are substantially correlated with the amount of graphite.
母粉の鉄基粉末(鉄粉および/または鉄合金粉)としては、鉄粉または鉄合金粉あるいは鉄粉および鉄合金粉の混合粉を用いる。この鉄合金粉としては、その組成は特には限定されず、NiやMo等を含有させた鉄合金粉(予合金粉)や、鉄粉の表面およびその近傍にNiやMo等を合金化した鉄基粉末(部分合金化粉)を用いることができ、その他種々の合金元素を含有させた鉄合金粉や、種々の合金元素を鉄粉の表面およびその近傍に合金化した鉄基粉末を用いることができる。なお、鉄基粉末の中、鉄合金粉はFeをベース(基礎)成分とする合金(即ち、合金元素を含有する鉄基合金)よりなる粉末であり、鉄粉は鉄合金粉以外のものであり、いわゆる純鉄粉ともいわれるものである。ただし、鉄粉(純鉄粉)には不可避的不純物を含有するものも含まれる。 As the iron-based powder (iron powder and / or iron alloy powder) of the mother powder, iron powder, iron alloy powder, or a mixed powder of iron powder and iron alloy powder is used. The composition of the iron alloy powder is not particularly limited, and iron alloy powder (pre-alloyed powder) containing Ni, Mo, or the like, or Ni, Mo, or the like is alloyed on or near the surface of the iron powder. Iron-based powders (partially alloyed powders) can be used, and other iron alloy powders containing various alloy elements, and iron-based powders obtained by alloying various alloy elements on the surface of iron powder and in the vicinity thereof are used. be able to. Among the iron-based powders, the iron alloy powder is a powder made of an alloy containing Fe as a base (base) component (that is, an iron-based alloy containing an alloy element), and the iron powder is other than the iron alloy powder. Yes, so-called pure iron powder. However, iron powder (pure iron powder) includes those containing inevitable impurities.
母粉の鉄基粉末として、NiやMo等の固溶強化元素を含有させた鉄合金粉や、かかる固溶強化元素を鉄粉の表面およびその近傍に合金化した鉄基粉末を用いた場合は、鉄粉を用いた場合よりも、鉄基焼結体の強度が高くなる。例えば、母粉の鉄基粉末として鉄粉を用いた場合、鉄基焼結体の引張強度は500MPa程度であり、母粉の鉄基粉末としてNiを含有させた鉄合金粉(予合金粉)を用いた場合、鉄基焼結体の引張強度は600 〜800MPa級であり、後者の場合の方が強度が高い。なお、上記のいずれの場合も黒鉛(グラファイト)粉の添加量は、鉄基焼結体製造用混合粉末に対する量で、0.8 %である。 When iron-base powder containing solid solution strengthening elements such as Ni or Mo, or iron-base powder alloyed with the solid solution strengthening element on or near the surface of the iron powder is used as the iron-base powder of the mother powder The strength of the iron-based sintered body is higher than when iron powder is used. For example, when iron powder is used as the iron-based powder of the mother powder, the tensile strength of the iron-based sintered body is about 500 MPa, and iron alloy powder (pre-alloyed powder) containing Ni as the iron-based powder of the mother powder Is used, the tensile strength of the iron-based sintered body is 600 to 800 MPa class, and the latter case has higher strength. In any of the above cases, the amount of graphite (graphite) powder added is 0.8% with respect to the mixed powder for producing an iron-based sintered body.
本発明に係る鉄基焼結体は、前述のような第1発明〜第3発明に係る鉄基焼結体製造用混合粉末より得られる鉄基焼結体である(第4発明)。即ち、第1発明〜第3発明に係る鉄基焼結体製造用混合粉末、あるいは、この混合粉末に必要に応じて添加する潤滑剤等の添加剤を混合したものを、加圧し成形した後、焼結して得られる鉄基焼結体である。この鉄基焼結体は、NiやMo等の高価な合金元素を用いない場合でも、高強度を有することができ、このため、高強度の鉄基焼結体として好適に用いることができる。第1発明〜第3発明に係る鉄基焼結体製造用混合粉末より得られる鉄基焼結体は、高強度を有することができるだけでなく、それと共に被削性の劣化が抑制されて良好な水準の被削性を有することができる。さらに、焼入れ・焼戻し等の熱処理により、強度はより向上する。 The iron-based sintered body according to the present invention is an iron-based sintered body obtained from the mixed powder for producing an iron-based sintered body according to the first to third inventions as described above ( fourth invention). That is, after pressing and molding the mixed powder for manufacturing an iron-based sintered body according to the first to third inventions, or a mixture of additives such as a lubricant added to the mixed powder as necessary. An iron-based sintered body obtained by sintering. This iron-based sintered body can have high strength even when an expensive alloy element such as Ni or Mo is not used. Therefore, it can be suitably used as a high-strength iron-based sintered body. The iron-based sintered body obtained from the mixed powder for producing an iron-based sintered body according to the first to third inventions can not only have high strength, but is also good in that deterioration of machinability is suppressed with it. Can have a certain level of machinability. Furthermore, the strength is further improved by heat treatment such as quenching and tempering.
本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.
母粉の鉄基粉末として鉄粉を用い、この鉄粉に、Cu合金粉またはCu粉と黒鉛粉末とを添加し、更に、潤滑剤としてステアリン酸亜鉛を添加し、60分間V型混合機で混合した後、加圧し成形し、これにより得られた成形体(圧粉体)を10%の水素を含む窒素雰囲気中において1120℃で30分間焼結して鉄基焼結体を得た。なお、上記の鉄粉にCu合金粉またはCu粉と黒鉛粉末とを添加したものが鉄基焼結体製造用混合粉末に相当する。 Iron powder is used as the iron-based powder of the mother powder. To this iron powder, Cu alloy powder or Cu powder and graphite powder are added. Furthermore, zinc stearate is added as a lubricant, and a V-type mixer is used for 60 minutes. After mixing, the mixture was pressed and molded, and the resulting molded body (green compact) was sintered at 1120 ° C. for 30 minutes in a nitrogen atmosphere containing 10% hydrogen to obtain an iron-based sintered body. In addition, what added Cu alloy powder or Cu powder, and graphite powder to said iron powder is equivalent to the mixed powder for iron-based sintered compact manufacture.
このとき、鉄粉としては、表1に示す化学成分のものを用いた。Cu合金粉またはCu粉の添加量は、鉄基焼結体に対する量で、表2に示すように1〜5mass%(質量%)の範囲で変化させた。黒鉛粉末の添加量は、いずれの場合も、鉄基焼結体に対する量で、0.8 mass%となるようにした。潤滑剤のステアリン酸亜鉛の添加量は、いずれの場合も、鉄基焼結体製造用混合粉末(鉄粉にCu合金粉またはCu粉と黒鉛粉末とを添加したもの)に対する量で、0.75mass%となるようにした。加圧成形する際の圧力(成形圧力)を調整し、鉄基焼結体の密度が6.9 〜6.95g/cm3 となるようにした。 At this time, as the iron powder, the chemical components shown in Table 1 were used. The addition amount of Cu alloy powder or Cu powder was an amount with respect to the iron-based sintered body, and was varied in the range of 1 to 5 mass% (mass%) as shown in Table 2. In any case, the amount of graphite powder added was 0.8 mass% with respect to the iron-based sintered body. In each case, the amount of zinc stearate added to the lubricant is 0.75 mass in terms of the amount of the mixed powder for iron-based sintered body production (iron powder plus Cu alloy powder or Cu powder and graphite powder). %. The pressure (molding pressure) at the time of pressure forming was adjusted so that the density of the iron-based sintered body was 6.9 to 6.95 g / cm 3 .
Cu合金粉の組成は、表2の組成の欄に示すとおりである。例えば、No.1のCu合金粉は、Cu-16mol%P合金粉であり、これはPを16 mol%含有するCu合金粉であることを示すものである。No.9のCu合金粉は、Cu-31mol%Si合金粉であり、これはSiを31 mol%含有するCu合金粉であることを示すものである。これらのPや、Si、Mnの量(mol%)は、いずれも、Cu合金中での濃度、即ち、Cu合金に対する量(mol%)である。 The composition of the Cu alloy powder is as shown in the composition column of Table 2. For example, the No. 1 Cu alloy powder is a Cu-16 mol% P alloy powder, which indicates a Cu alloy powder containing 16 mol% of P. The No. 9 Cu alloy powder is a Cu-31 mol% Si alloy powder, which indicates a Cu alloy powder containing 31 mol% of Si. These amounts of P, Si, and Mn (mol%) are all concentrations in the Cu alloy, that is, amounts (mol%) relative to the Cu alloy.
Cu合金粉の融点は、表2の融点の欄に示すとおりである。例えば、No.1のCu合金粉は、融点730 ℃である。 The melting point of the Cu alloy powder is as shown in the melting point column of Table 2. For example, No. 1 Cu alloy powder has a melting point of 730 ° C.
PやSi、Mnの鉄基焼結体中での量、即ち、鉄基焼結体に対する量は、表2の合金の欄に示すとおりである。例えば、No.1の鉄基焼結体はPを含有し、このPの鉄基焼結体中での量(濃度)は0.17mass%である。No.9の鉄基焼結体はSiを含有し、このSiの鉄基焼結体中での量(濃度)は0.33mass%である。 The amounts of P, Si, and Mn in the iron-based sintered body, that is, the amounts with respect to the iron-based sintered body are as shown in the column of alloys in Table 2. For example, the No. 1 iron-based sintered body contains P, and the amount (concentration) of P in the iron-based sintered body is 0.17 mass%. The iron-based sintered body of No. 9 contains Si, and the amount (concentration) of this Si in the iron-based sintered body is 0.33 mass%.
このようにして得られた鉄基焼結体について、これをMPIFスタンダード形状の引張試験片に機械加工し、引張試験を行った。 The iron-based sintered body thus obtained was machined into an MPIF standard shape tensile test piece and subjected to a tensile test.
また、鉄基焼結体を被削材として切削試験を行い、被削性を評価した。この切削試験は次の要領で実施した。鉄基焼結体3個をボルトに通し、予備リングを両側に配置させ、ナットにより挟み込む。その後、ボルトを旋盤のセンターに固定し、被削材(鉄基焼結体)の切削を行った。 Further, a cutting test was performed using an iron-based sintered body as a work material, and machinability was evaluated. This cutting test was performed as follows. Three iron-based sintered bodies are passed through bolts, spare rings are arranged on both sides, and sandwiched by nuts. Thereafter, the bolt was fixed to the center of the lathe, and the work material (iron-based sintered body) was cut.
このとき、使用した切削工具は、住友電工ハードメタル社製G10E(K種超硬)である。旋削条件は、切削速度:150m/min、送り速度:0.1mm/rev 、切込み量:0.5mm 、切削長:100 m、切削様式:乾式連続切削である。切削工具の逃げ面摩耗量(工具摩耗量)を測定した。 At this time, the cutting tool used was G10E (K-type carbide) manufactured by Sumitomo Electric Hardmetal Corporation. Turning conditions are cutting speed: 150 m / min, feeding speed: 0.1 mm / rev, cutting depth: 0.5 mm, cutting length: 100 m, cutting style: dry continuous cutting. The flank wear amount (tool wear amount) of the cutting tool was measured.
上記引張試験の結果を、表2の引張強度の欄に示す。上記切削試験の結果を、表2の工具摩耗の欄に示す。 The results of the tensile test are shown in the column of tensile strength in Table 2. The result of the cutting test is shown in the column of tool wear in Table 2.
No.10 の場合、母粉の鉄粉に混合するCu系粉末(Cu合金粉またはCu粉)としてCu粉を用いている。このCu粉の融点は1083℃である。No.10 の鉄基焼結体はP、Si、Mnのいずれも含有していない。このNo.10 の鉄基焼結体の場合、引張強度:506MPaであり、切削試験での工具摩耗量(切削工具の逃げ面摩耗量):156 μm である。 In the case of No. 10, Cu powder is used as Cu-based powder (Cu alloy powder or Cu powder) mixed with the iron powder of the mother powder. The melting point of this Cu powder is 1083 ° C. The No. 10 iron-based sintered body contains neither P, Si nor Mn. In the case of this No. 10 iron-based sintered body, the tensile strength is 506 MPa, and the amount of tool wear in the cutting test (the flank wear amount of the cutting tool) is 156 μm.
これに対し、No.1〜9 、No.11 〜14の場合、母粉の鉄粉に混合するCu系粉末としてCu合金粉を用いている。このCu合金粉は、合金元素としてP、Si、Mnの1種を含有しており、融点は1030〜730 ℃である。No.1〜9 、No.11 〜14の鉄基焼結体はP、Si、Mnの1種を含有している。このNo.1〜9 、No.11 〜14の鉄基焼結体の場合、No.10 の鉄基焼結体の場合よりも、引張強度が高い。 On the other hand, in the case of No.1-9 and No.11-14, Cu alloy powder is used as Cu-type powder mixed with the iron powder of mother powder. This Cu alloy powder contains one kind of P, Si, and Mn as an alloy element, and has a melting point of 1030 to 730 ° C. The iron-based sintered bodies of No. 1 to 9 and No. 11 to 14 contain one type of P, Si, and Mn. In the case of the iron-based sintered bodies of No. 1 to 9 and No. 11 to 14, the tensile strength is higher than that of the iron-based sintered body of No. 10.
この中でも、Cu合金粉として融点が1000℃以下のものを用いると共に、鉄基焼結体中でのPやSi、Mnの含有量が0.1 mass%以上である場合、鉄基焼結体の引張強度が高い(No.1〜9 、No.13 〜14)。これは、上記Cu合金粉が溶融しやすいために焼結性が向上して鉄粉界面の接合強度が向上することと、焼結中にCu合金粉のCu合金中のPやSi、Mnが鉄粉の鉄に固溶して固溶強化することとの複合効果によるものである。 Among these, when Cu alloy powder having a melting point of 1000 ° C. or less is used and the content of P, Si, or Mn in the iron-based sintered body is 0.1 mass% or more, the tensile strength of the iron-based sintered body High strength (No.1-9, No.13-14). This is because the Cu alloy powder is easily melted, so that the sinterability is improved and the bonding strength at the interface of the iron powder is improved, and the P, Si, and Mn in the Cu alloy of the Cu alloy powder are sintered. This is due to the combined effect of solid solution strengthening by solid solution in iron powder.
このとき、鉄基焼結体中でのPやSi、Mnの含有量が多くなるに伴い、鉄基焼結体の引張強度が高くなるが、切削試験での工具摩耗量(切削工具の逃げ面摩耗量)が多くなり、鉄基焼結体の被削性が低下する。鉄基焼結体がPを含有する場合において、鉄基焼結体中でのPの含有量が0.5 mass%以下の場合(No.1〜7 )、被削性が良好で充分である(許容範囲内にある)が、Pの含有量が0.5 mass%超の場合(No.13 )、被削性が悪くて不充分である。鉄基焼結体がSiを含有する場合において、鉄基焼結体中でのSiの含有量が0.5 mass%以下の場合(No.9)、被削性が良好で充分である(許容範囲内にある)。鉄基焼結体がMnを含有する場合において、鉄基焼結体中でのMnの含有量が1.3 mass%以下の場合(No.8)、被削性が良好で充分である(許容範囲内にある)が、Mnの含有量が1.3 mass%超の場合(No.14 )、被削性が悪くて不充分である。 At this time, as the content of P, Si, and Mn in the iron-based sintered body increases, the tensile strength of the iron-based sintered body increases. Surface wear amount) increases, and the machinability of the iron-based sintered body decreases. When the iron-based sintered body contains P, if the P content in the iron-based sintered body is 0.5 mass% or less (No. 1-7), the machinability is good and sufficient ( However, if the P content exceeds 0.5 mass% (No. 13), the machinability is poor and insufficient. When the iron-based sintered body contains Si and the Si content in the iron-based sintered body is 0.5 mass% or less (No. 9), machinability is good and sufficient (allowable range) Is in). When the iron-based sintered body contains Mn and the Mn content in the iron-based sintered body is 1.3 mass% or less (No. 8), the machinability is good and sufficient (allowable range) However, if the Mn content exceeds 1.3 mass% (No. 14), the machinability is poor and insufficient.
以上より、高強度を有する鉄基焼結体を得るには、母粉の鉄基粉末に混合するCu系粉末として、融点が1000℃以下であると共に合金元素としてP、Si、Mnの1種以上を含有し、鉄基焼結体中でのP、Si、Mnの1種以上の含有量が合計で0.1 mass%以上となるようなCu合金粉を用いることが望ましいことがわかる。高強度を有すると共に良好で充分な被削性を有する鉄基焼結体を得るためには、融点が1000℃以下であると共に合金元素としてP、Si、Mnの1種以上を含有し、鉄基焼結体中でのP、Si、Mnの1種以上の含有量が、Pの場合は0.1 〜0.5 mass%、Siの場合は0.1 〜0.5 mass%、Mnの場合は0.1 〜1.3 mass%となるようなCu合金粉を用いることが望ましいことがわかる。 From the above, in order to obtain an iron-based sintered body having high strength, the Cu-based powder mixed with the iron-based powder of the mother powder has a melting point of 1000 ° C. or less and one of P, Si, and Mn as alloy elements. It can be seen that it is desirable to use Cu alloy powder that contains the above, and that the content of one or more of P, Si, and Mn in the iron-based sintered body is 0.1 mass% or more in total. In order to obtain an iron-based sintered body having high strength and good and sufficient machinability, it has a melting point of 1000 ° C. or lower and contains one or more of P, Si, and Mn as alloy elements, and iron The content of one or more of P, Si, and Mn in the base sintered body is 0.1 to 0.5 mass% for P, 0.1 to 0.5 mass% for Si, and 0.1 to 1.3 mass% for Mn. It can be seen that it is desirable to use such Cu alloy powder.
なお、No.1〜7 、9 、12〜14の場合の鉄基焼結体製造用混合粉末は、参考例である。In addition, the mixed powder for iron group sintered compact manufacture in the case of No.1-7, 9, 12-12 is a reference example.
No.1〜14の鉄基焼結体において、鉄基焼結体中でのPやSi、Mnの含有量が同一もしくはほぼ同一のもの同士で比較すると、鉄基焼結体製造用混合粉末中に混合されたCu合金粉の融点が低い場合の方が鉄基焼結体の引張強度が高い。これは、Cu合金粉の融点が低い場合ほど、Cu合金粉が溶融しやすいために焼結性の向上の程度が大きくなり、ひいては鉄粉界面の接合強度向上の程度が大きくなるためである。Cu合金粉の融点が1000℃以下の場合に鉄粉界面の接合強度向上による鉄基焼結体の強度向上が充分なものとなる。 In the iron-based sintered bodies of Nos. 1 to 14, when the P-, Si-, and Mn contents in the iron-based sintered bodies are the same or nearly the same, mixed powder for producing iron-based sintered bodies The tensile strength of the iron-based sintered body is higher when the melting point of the Cu alloy powder mixed therein is lower. This is because the lower the melting point of the Cu alloy powder, the easier it is to melt the Cu alloy powder, so that the degree of improvement in sinterability increases, and consequently the degree of improvement in the bonding strength at the iron powder interface increases. When the melting point of the Cu alloy powder is 1000 ° C. or less, the strength of the iron-based sintered body is sufficiently improved by improving the bonding strength at the iron powder interface.
No.1〜14の鉄基焼結体において、鉄基焼結体製造用混合粉末中に混合されたCu合金粉の融点が同一もしくはほぼ同一のもの同士で比較すると、鉄基焼結体中でのPやSi、Mnの含有量が多い場合の方が鉄基焼結体の引張強度が高い。これは、鉄基焼結体中でのPやSi、Mnの含有量が多い場合ほど、Cu合金粉中のPやSi、Mnの鉄基粉末の鉄への固溶量が多く、固溶強化の程度が大きくなるためである。鉄基焼結体の強度向上のためには、鉄基焼結体中でのP、Si、Mnの1種以上の含有量は、合計で0.1 mass%以上となるようにすることが望ましい。鉄基焼結体の強度向上だけでなく、良好で充分な被削性を確保するためには、鉄基焼結体中でのPやSi、Mnの含有量が、Pの場合は0.1 〜0.5 mass%、Siの場合は0.1 〜0.5 mass%、Mnの場合は0.1 〜1.3 mass%となるようにすることが望ましい。 In the iron-based sintered bodies of Nos. 1 to 14, when the melting points of the Cu alloy powders mixed in the mixed powder for producing the iron-based sintered bodies are the same or nearly the same, the iron-based sintered bodies The tensile strength of the iron-based sintered body is higher when the content of P, Si, and Mn is higher. This is because the higher the content of P, Si, and Mn in the iron-based sintered body, the more the solid solution amount of iron, P, Si, and Mn in the Cu alloy powder, This is because the degree of strengthening increases. In order to improve the strength of the iron-based sintered body, it is desirable that the content of one or more of P, Si, and Mn in the iron-based sintered body is 0.1 mass% or more in total. In order not only to improve the strength of the iron-based sintered body, but also to ensure good and sufficient machinability, the content of P, Si, and Mn in the iron-based sintered body is 0.1 to It is desirable that the content be 0.5 mass%, 0.1 to 0.5 mass% in the case of Si, and 0.1 to 1.3 mass% in the case of Mn.
No.1〜14の鉄基焼結体についての引張強度と切削試験での工具摩耗量(切削工具の逃げ面摩耗量)との関係を図1に示す。鉄基焼結体の引張強度が高くなるに伴って、切削試験での工具摩耗量が多くなり、鉄基焼結体の被削性が低下することがわかる。 FIG. 1 shows the relationship between the tensile strength of No. 1 to 14 iron-based sintered bodies and the amount of tool wear in the cutting test (the amount of flank wear of the cutting tool). It can be seen that as the tensile strength of the iron-based sintered body increases, the amount of tool wear in the cutting test increases, and the machinability of the iron-based sintered body decreases.
以上の例においては、母粉の鉄基粉末に混合するCu合金粉としては合金元素としてP、Si、Mnの1種を含有するものを用いたが、合金元素としてP、Si、Mnの1種以上を含有するものを用いた場合も、以上の例の場合と同様の傾向の結果が得られる。即ち、高強度を有する鉄基焼結体を得るには、母粉の鉄基粉末に混合するCu系粉末として、融点が1000℃以下であると共に合金元素としてP、Si、Mnの1種以上を含有し、鉄基焼結体中でのP、Si、Mnの1種以上の含有量が合計で0.1 mass%以上となるようなCu合金粉を用いることが望ましいことを示す結果が得られる。また、高強度を有すると共に良好で充分な被削性を有する鉄基焼結体を得るためには、融点が1000℃以下であると共に合金元素としてP、Si、Mnの1種以上を含有し、鉄基焼結体中でのP、Siの1種以上の含有量が合計で0.1 〜0.5 mass%となるようなCu合金粉や、鉄基焼結体中でのMnの含有量が0.1 〜1.3 mass%となるようなCu合金粉を用いることが望ましいことを示す結果などが得られる。 In the above example, the Cu alloy powder mixed with the iron-based powder of the mother powder is one containing one of P, Si, and Mn as an alloy element. However, one of P, Si, and Mn is used as the alloy element. Even when a material containing seeds or more is used, a result having the same tendency as in the above example is obtained. That is, in order to obtain an iron-based sintered body having high strength, the Cu-based powder mixed with the iron-based powder of the mother powder has a melting point of 1000 ° C. or less and one or more of P, Si, and Mn as alloy elements. The result shows that it is desirable to use Cu alloy powder that contains at least one P, Si, and Mn content in the iron-based sintered body to be 0.1 mass% or more in total. . In addition, in order to obtain an iron-based sintered body having high strength and good and sufficient machinability, the melting point is 1000 ° C. or less and at least one of P, Si and Mn is contained as an alloy element. , Cu alloy powder in which the total content of one or more of P and Si in the iron-based sintered body is 0.1 to 0.5 mass%, and the Mn content in the iron-based sintered body is 0.1 The result which shows that it is desirable to use Cu alloy powder which will be -1.3 mass% is obtained.
以上の例においては、母粉の鉄基粉末として鉄粉を用いているが、鉄合金粉を用いた場合も、以上の例の場合と同様の傾向の結果が得られる。即ち、鉄基焼結体の強度向上のためには、鉄基焼結体中でのP、Si、Mnの1種以上の含有量は、合計で0.1 mass%以上となるようにすることが望ましいことや、鉄基焼結体の強度向上だけでなく、良好で充分な被削性を確保するためには、鉄基焼結体中でのPやSi、Mnの含有量が、Pの場合は0.1 〜0.5 mass%、Siの場合は0.1 〜0.5 mass%、Mnの場合は0.1 〜1.3 mass%となるようにすることが望ましいこと等を示す結果が得られる。ただし、鉄基焼結体製造用混合粉末中に混合されたCu合金粉の融点、および、鉄基焼結体中でのPやSi、Mnの含有量が同一同一のもの同士で比較すると、鉄合金粉を用いた場合の方が鉄粉を用いた場合(以上の例の場合)よりも鉄基焼結体の強度が高い。この強度差は、鉄合金粉の種類(合金元素の種類およびその含有量、組織)によって異なる。 In the above example, iron powder is used as the iron-based powder of the mother powder. However, when the iron alloy powder is used, the same tendency results as in the above example are obtained. That is, in order to improve the strength of the iron-based sintered body, the content of one or more of P, Si, and Mn in the iron-based sintered body should be 0.1 mass% or more in total. In order to ensure good and sufficient machinability as well as to improve the strength of the iron-based sintered body, the content of P, Si, and Mn in the iron-based sintered body is P. In the case of 0.1 to 0.5 mass% in the case of Si, 0.1 to 0.5 mass% in the case of Si, and 0.1 to 1.3 mass% in the case of Mn are desirable. However, the melting point of the Cu alloy powder mixed in the iron-based sintered body production mixed powder, and the P, Si, and Mn contents in the iron-based sintered body are the same and compared, The strength of the iron-based sintered body is higher when the iron alloy powder is used than when the iron powder is used (in the case of the above example). This difference in strength differs depending on the type of iron alloy powder (type of alloy element and its content, structure).
以上の例においては、母粉の鉄基粉末に混合する黒鉛粉末の添加量は鉄基焼結体に対する量で0.8 mass%となるようにしたが、これ以外の量にした場合も、以上の例の場合と同様の傾向の結果が得られる。ただし、鉄基焼結体製造用混合粉末中に混合されたCu合金粉の融点、および、鉄基焼結体中でのPやSi、Mnの含有量が同一のもの同士で比較すると、黒鉛粉末の添加量が多い場合ほど、強度が高く、被削性が良好である。 In the above example, the amount of graphite powder added to the iron-based powder of the mother powder was 0.8 mass% in terms of the amount based on the iron-based sintered body. The same trend results are obtained as in the example. However, when the melting point of the Cu alloy powder mixed in the mixed powder for manufacturing the iron-based sintered body and the contents of P, Si, and Mn in the iron-based sintered body are the same, graphite is compared. The more powder is added, the higher the strength and the better the machinability.
本発明に係る鉄基焼結体製造用混合粉末によれば、NiやMo等の高価な合金元素を用いなくても、鉄基焼結体の高強度化が図れ、高強度の鉄基焼結体を得ることができるので、本発明に係る鉄基焼結体製造用混合粉末は、経済性よく高強度の鉄基焼結体を製造する際の原料の粉末として好適に用いることができる。本発明に係る鉄基焼結体は、経済性よく製造することができ、高強度を有することができるので、高強度の鉄基焼結体として好適に用いることができる。 According to the mixed powder for producing an iron-based sintered body according to the present invention, it is possible to increase the strength of the iron-based sintered body without using an expensive alloy element such as Ni or Mo, and to produce a high-strength iron-based sintered material. Since a sintered body can be obtained, the mixed powder for producing an iron-based sintered body according to the present invention can be suitably used as a raw material powder when producing a high-strength iron-based sintered body with good economic efficiency. . Since the iron-based sintered body according to the present invention can be produced with good economic efficiency and has high strength, it can be suitably used as a high-strength iron-based sintered body.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006122421A JP4704949B2 (en) | 2006-04-26 | 2006-04-26 | Mixed powder for producing iron-based sintered body and iron-based sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006122421A JP4704949B2 (en) | 2006-04-26 | 2006-04-26 | Mixed powder for producing iron-based sintered body and iron-based sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007291467A JP2007291467A (en) | 2007-11-08 |
JP4704949B2 true JP4704949B2 (en) | 2011-06-22 |
Family
ID=38762363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006122421A Expired - Fee Related JP4704949B2 (en) | 2006-04-26 | 2006-04-26 | Mixed powder for producing iron-based sintered body and iron-based sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4704949B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6822308B2 (en) * | 2017-05-15 | 2021-01-27 | トヨタ自動車株式会社 | Sintered forged material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59123740A (en) * | 1982-12-28 | 1984-07-17 | Mitsubishi Metal Corp | Manufacture of sintered fe-cu-p alloy member having uniform dimension independently of change in carbon content |
JPS6191347A (en) * | 1984-10-11 | 1986-05-09 | Toyota Motor Corp | Iron-base sintered material |
JPH06346181A (en) * | 1993-06-07 | 1994-12-20 | Mitsubishi Materials Corp | Valve guide member made of fe-base sintered alloy excellent in wear resistance |
-
2006
- 2006-04-26 JP JP2006122421A patent/JP4704949B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59123740A (en) * | 1982-12-28 | 1984-07-17 | Mitsubishi Metal Corp | Manufacture of sintered fe-cu-p alloy member having uniform dimension independently of change in carbon content |
JPS6191347A (en) * | 1984-10-11 | 1986-05-09 | Toyota Motor Corp | Iron-base sintered material |
JPH06346181A (en) * | 1993-06-07 | 1994-12-20 | Mitsubishi Materials Corp | Valve guide member made of fe-base sintered alloy excellent in wear resistance |
Also Published As
Publication number | Publication date |
---|---|
JP2007291467A (en) | 2007-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308123B2 (en) | High-strength composition iron powder and sintered parts using it | |
JP4412133B2 (en) | Iron-based mixed powder for powder metallurgy | |
KR101776670B1 (en) | Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body | |
JP2011084816A (en) | Iron-based powder mixture, and methods for producing iron-based compacted body and iron-based sintered body | |
JP2009035796A (en) | Iron-containing mixed powder for powder metallurgy and sintered iron powder compact | |
JP5504963B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JPS5996250A (en) | Wear resistant sintered alloy | |
JP5504971B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP4839275B2 (en) | Mixed powder for powder metallurgy and sintered iron powder | |
JP4704949B2 (en) | Mixed powder for producing iron-based sintered body and iron-based sintered body | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JP5962691B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP6380501B2 (en) | Mixed powder for powder metallurgy, method for producing mixed powder for powder metallurgy, and sintered body | |
JP2009242887A (en) | Iron-based powdery mixture | |
JP2014025109A (en) | Mixed powder for powder metallurgy | |
JP5200768B2 (en) | Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same | |
JP2006241533A (en) | Iron based mixed powder for high strength sintered component | |
JP4839271B2 (en) | Mixed powder for powder metallurgy and sintered iron powder | |
JP5504863B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JPH1180803A (en) | Ferrous mixed powder for powder metallurgy | |
JP3537126B2 (en) | Free-cutting iron-based sintered alloy and method for producing the same | |
JP6493357B2 (en) | Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body | |
JP2008240031A (en) | Preform for pressing using iron powder as raw material, and its manufacturing method | |
JP4935731B2 (en) | Iron-based powder mixture | |
JP4367133B2 (en) | Iron-based powder mixture for high-strength sintered parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4704949 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |