JP2008240031A - Preform for pressing using iron powder as raw material, and its manufacturing method - Google Patents
Preform for pressing using iron powder as raw material, and its manufacturing method Download PDFInfo
- Publication number
- JP2008240031A JP2008240031A JP2007079532A JP2007079532A JP2008240031A JP 2008240031 A JP2008240031 A JP 2008240031A JP 2007079532 A JP2007079532 A JP 2007079532A JP 2007079532 A JP2007079532 A JP 2007079532A JP 2008240031 A JP2008240031 A JP 2008240031A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- powder
- molding material
- sintering
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、鉄粉を主体とする混合粉(以下、鉄基混合粉という)から加圧成形と焼結を経て、様々な用途に用いて好適な機械部品(以下、鉄基焼結部材という)を製造するための成形用素材に関し、特に高密度かつ高強度の鉄基焼結部材を製造するための、圧縮成形法に好適な成形用素材およびその製造方法に関するものである。 The present invention is a machine part suitable for use in various applications (hereinafter referred to as an iron-based sintered member) through pressure molding and sintering from a mixed powder mainly composed of iron powder (hereinafter referred to as an iron-based mixed powder). In particular, the present invention relates to a molding material suitable for a compression molding method and a manufacturing method thereof for manufacturing a high-density and high-strength iron-based sintered member.
粉末冶金技術は、複雑な形状の部品を所定の形状に高精度に仕上げることができ、切削コストを大幅に低減できる。そのため、鉄粉を原料として粉末冶金技術で製造した部品が様々な用途(たとえば自動車等)に多量に採用されている。しかも最近では各種機器の小型化,軽量化を図るために、部品の高強度化が求められており、とりわけ鉄基焼結部材に対する高強度化の要求が強い。 Powder metallurgy technology can finish a complicated shape part into a predetermined shape with high accuracy, and can greatly reduce the cutting cost. For this reason, parts manufactured by powder metallurgy technology using iron powder as a raw material are widely used for various applications (for example, automobiles). Moreover, recently, in order to reduce the size and weight of various devices, it is required to increase the strength of parts, and particularly, there is a strong demand for increasing the strength of iron-based sintered members.
鉄基焼結部材を製造する際には、一般に
(1)鉄粉に合金粉末(たとえば黒鉛粉,銅粉等)と潤滑剤(たとえばステアリン酸亜鉛,ステアリン酸リチウム等)とを混合して鉄基混合粉とする、
(2)鉄基混合粉を金型に充填し、さらに加圧成形して成形体とする、
(3)成形体を焼結して焼結体とする
という工程が採用される。得られた焼結体は、必要に応じてサイジングや切削加工が施されて、所定の形状,寸法を有する鉄基焼結部材となる。また、鉄基焼結部材に高強度が必要な場合は、浸炭熱処理や光輝熱処理を施す。
When manufacturing iron-based sintered parts,
(1) Iron powder is mixed with alloy powder (eg, graphite powder, copper powder, etc.) and lubricant (eg, zinc stearate, lithium stearate, etc.) to form an iron-based mixed powder.
(2) Filling the mold with iron-based mixed powder, and further pressing to form a molded body,
(3) A step of sintering the formed body to obtain a sintered body is employed. The obtained sintered body is subjected to sizing and cutting as necessary to become an iron-based sintered member having a predetermined shape and dimensions. Further, when high strength is required for the iron-based sintered member, carburizing heat treatment or bright heat treatment is performed.
上記の(2)で得られた成形体の密度は6.6〜7.1Mg/m3 程度であるから、(3)で得られる焼結体も同程度の密度を有する。
鉄基焼結部材の高強度化を図るためには、鉄基焼結部材の密度を高める必要がある。そこで(1)で得られる鉄基混合粉に高密度化を促進する添加剤や高強度化を促進する合金元素を混合する必要がある。鉄基焼結部材の高密度化を達成すれば鉄基焼結部材中の空孔が減少し、引張強さ,靭性,疲労強さ等の機械的性質が向上する。また、Mo,Mn,Ni,Cr等の合金元素を添加することによって焼入れ性が改善され、鉄基焼結部材の強度が向上する。
Since the density of the molded body obtained in the above (2) is about 6.6 to 7.1 Mg / m 3 , the sintered body obtained in (3) has the same density.
In order to increase the strength of the iron-based sintered member, it is necessary to increase the density of the iron-based sintered member. Therefore, it is necessary to mix an additive for promoting high density and an alloy element for promoting high strength into the iron-based mixed powder obtained in (1). If the density of the iron-based sintered member is increased, the voids in the iron-based sintered member are reduced, and mechanical properties such as tensile strength, toughness and fatigue strength are improved. In addition, the addition of alloying elements such as Mo, Mn, Ni, and Cr improves the hardenability and improves the strength of the iron-based sintered member.
そこで鉄基焼結部材の密度や強度を高める技術が種々検討されている。
たとえば特許文献1,2,3,4には、鉄粉を加熱しつつ成形する技術(いわゆる温間成形)が開示されている。これらの技術は、温間成形の技術を適用することによって、Fe−4Ni−0.5Mo−1.5Cu系の部分合金化鋼粉に0.5質量%の黒鉛粉と0.6質量%の潤滑剤とを配合し、得られた鉄基混合粉を150℃,686MPaで加圧成形して、7.30Mg/m3 程度の密度を有する成形体を製造するものである。
Therefore, various techniques for increasing the density and strength of the iron-based sintered member have been studied.
For example, Patent Documents 1, 2, 3, and 4 disclose a technique for forming iron powder while heating (so-called warm forming). In these technologies, 0.5% by mass of graphite powder and 0.6% by mass of lubricant are blended into Fe-4Ni-0.5Mo-1.5Cu based partially alloyed steel powder by applying warm forming technology. The obtained iron-based mixed powder is press-molded at 150 ° C. and 686 MPa to produce a molded body having a density of about 7.30 Mg / m 3 .
しかしながら特許文献1〜4に開示された技術は、温間成形技術を適用するために鉄基混合粉を加熱する設備が必要であるから、成形コストが上昇する。しかも成形体の加熱による膨張あるいは冷却による収縮の影響を受けて、成形体の寸法精度が低下する。
また特許文献5には、粉末冶金技術と冷間鍛造技術を組み合わせて、ほぼ真密度に近い鉄基焼結部材を製造する技術が開示されている。この技術は、鉄粉を加圧成形し、得られた成形体を予備焼結しさらに冷間鍛造した後、仕上げ焼結して高密度の鉄基焼結部材を製造するものである。
However, since the techniques disclosed in Patent Documents 1 to 4 require equipment for heating the iron-based mixed powder in order to apply the warm forming technique, the molding cost increases. In addition, the dimensional accuracy of the molded body decreases due to the influence of expansion or cooling due to heating of the molded body.
Patent Document 5 discloses a technique for manufacturing an iron-based sintered member having a nearly true density by combining powder metallurgy technique and cold forging technique. In this technique, iron powder is pressure-molded, and the resulting molded body is pre-sintered and further cold-forged, and then finish-sintered to produce a high-density iron-based sintered member.
この特許文献5に開示された技術は、成形体の表面に液状潤滑剤を塗布してダイス内で冷間鍛造した後、ダイス内に負圧を作用させて液状潤滑剤を吸引除去し、さらにダイス内で再び冷間鍛造を施して仕上げ焼結を行なう。つまり成形体の空孔に浸入した液状潤滑剤を吸引した後で冷間鍛造を行なうので、空孔が圧潰消滅し、高密度の鉄基焼結部材が得られるとしている。 In the technique disclosed in Patent Document 5, after applying a liquid lubricant to the surface of the molded body and cold forging in the die, a negative pressure is applied to the die to suck and remove the liquid lubricant. Cold forging is performed again in the die and finish sintering is performed. That is, since cold forging is performed after sucking the liquid lubricant that has entered the pores of the compact, the pores are crushed and the high-density iron-based sintered member is obtained.
しかしながら本発明者らの研究によれば、特許文献5に開示されるように粉末冶金技術と冷間鍛造技術を組み合わせても、得られる鉄基焼結部材の密度は7.5Mg/m3 程度であり、密度の大幅な向上は期待できない。
一方で鉄基焼結部材の強度を高めるためには、C濃度を高めることが有効である。具体的には、C源として黒鉛粉を添加した鉄粉を金型内で加圧成形し、得られた成形体に予備焼結を施して成形用素材として、その成形用素材を圧縮成形しさらに仕上げ焼結を行なう。一般に鉄粉に黒鉛粉を混合して鉄基焼結部材を製造する場合には、このような一連の手順が採用されるが、予備焼結にてCが成形用素材の全体に拡散する。その結果、成形用素材の硬度が上昇し、圧縮成形の変形抵抗が増大するので、高密度かつ高強度の鉄基焼結部材を製造するのは困難である。
However, according to the study by the present inventors, even if the powder metallurgy technique and the cold forging technique are combined as disclosed in Patent Document 5, the density of the obtained iron-based sintered member is about 7.5 Mg / m 3 . There is no significant increase in density.
On the other hand, to increase the strength of the iron-based sintered member, it is effective to increase the C concentration. Specifically, iron powder to which graphite powder is added as a C source is pressure-molded in a mold, the resulting molded body is pre-sintered, and the molding material is compression molded as a molding material. Further, finish sintering is performed. In general, when an iron-based sintered member is manufactured by mixing graphite powder with iron powder, such a series of procedures is employed, but C diffuses throughout the forming material by pre-sintering. As a result, the hardness of the molding material increases and the deformation resistance of compression molding increases, so it is difficult to manufacture a high-density and high-strength iron-based sintered member.
このような問題に対して特許文献6には、鉄粉,合金粉,黒鉛粉および潤滑剤を混合した混合粉を加圧成形しさらに予備焼結(温度1100℃,保持時間15〜20分)して成形用素材とし、その成形用素材に冷間鍛造を施して少なくとも50%の塑性変形を生じさせた後、仕上げ焼結,焼鈍およびロール加工を行なって鉄基焼結部材を製造する技術が開示されている。つまり、Cの拡散を抑制する条件で予備焼結を行なうので、冷間鍛造にて高い変形能を発現させることができるとしている。 In order to solve such a problem, Patent Document 6 discloses that a mixed powder obtained by mixing iron powder, alloy powder, graphite powder and a lubricant is pressure-molded and pre-sintered (temperature 1100 ° C., holding time 15 to 20 minutes) A technology for producing iron-based sintered parts by forming a molding material and cold forging the molding material to cause at least 50% plastic deformation, followed by finish sintering, annealing and roll processing Is disclosed. That is, since presintering is performed under conditions that suppress the diffusion of C, high deformability can be expressed by cold forging.
しかしながら本発明者らの研究によれば、特許文献6に開示されるような予備焼結を行なうとCが成形用素材の全体に拡散するので、成形用素材の硬度が上昇し、圧縮成形の変形抵抗が増大する。したがって、高密度かつ高強度の鉄基焼結部材を製造するのは困難である。
また特許文献7には、予備焼結の条件を制御して成形用素材のN含有量を調整することによって、成形用素材の変形能を改善する技術が開示されている。この技術は鉄粉のC含有量を0.5質量%以下に規定しているので、成形用素材の変形抵抗を低減でき、その成形用素材を圧縮成形することによって7.7Mg/m3 以上の密度を有する鉄基焼結部材を製造できる。
However, according to the study by the present inventors, when pre-sintering as disclosed in Patent Document 6 is performed, C diffuses throughout the molding material, so that the hardness of the molding material increases and compression molding is performed. Deformation resistance increases. Therefore, it is difficult to manufacture a high-density and high-strength iron-based sintered member.
Patent Document 7 discloses a technique for improving the deformability of a molding material by controlling the pre-sintering conditions and adjusting the N content of the molding material. Since this technology regulates the C content of iron powder to 0.5% by mass or less, the deformation resistance of the molding material can be reduced, and the density of 7.7 Mg / m 3 or more can be achieved by compression molding the molding material. An iron-based sintered member can be produced.
しかしながら特許文献7に開示された技術で高硬度(HRC60程度)のHRC60程度を得るためには、Mo等の高価な合金元素を添加し、さらに浸炭焼入れ熱処理を行なわなければならない。
本発明は、高密度かつ高強度の鉄基焼結部材を、高価な合金成分を添加することなく、圧縮成形法で製造するための成形用素材、およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a molding material for producing a high-density and high-strength iron-based sintered member by a compression molding method without adding an expensive alloy component, and a method for producing the same. To do.
本発明は、鉄粉に黒鉛粉、あるいはさらに潤滑材と、を混合して得られる鉄基混合粉に加圧成形を施した後、予備焼結を施して得られる成形用素材であって、Mnを0.2質量%未満,Cを0.5〜0.8質量%含有し、遊離黒鉛が0.02質量%以下であり、残部がFeおよび不可避的不純物からなる組成を有する成形用素材である。
また本発明は、鉄粉に黒鉛粉、あるいはさらに潤滑材と、を混合して得られる鉄基混合粉に加圧成形を施した後、予備焼結を施す成形用素材の製造方法において、予備焼結として不活性雰囲気中で1000〜1200℃の温度範囲に60秒以下保持する成形用素材の製造方法である。
The present invention is a molding material obtained by applying pressure molding to iron-based mixed powder obtained by mixing iron powder with graphite powder, or further with a lubricant, and pre-sintering, This molding material contains less than 0.2% by mass of Mn, 0.5 to 0.8% by mass of C, 0.02% by mass or less of free graphite, and the balance of Fe and inevitable impurities.
The present invention also relates to a method for producing a molding material in which pre-sintering is performed after pressure-forming iron-based mixed powder obtained by mixing iron powder with graphite powder or further with a lubricant. This is a method for producing a molding material that is held in a temperature range of 1000 to 1200 ° C for 60 seconds or less in an inert atmosphere as sintering.
本発明によれば、成形用素材中のCが結晶粒界に偏析するので、結晶粒内はC含有量が減少して成形用素材の硬度が低下する。したがって変形能の高い成形用素材が得られ、その成形用素材に圧縮成形を施すことによって緻密化され、高密度かつ高強度の鉄基焼結部材を製造できる。しかも成形用素材の変形抵抗が小さいので、複雑な形状の鉄基焼結部材を製造できる。 According to the present invention, C in the molding material is segregated at the crystal grain boundaries, so that the C content is reduced in the crystal grains and the hardness of the molding material is lowered. Therefore, a molding material with high deformability can be obtained, and the molding material can be densified by compression molding to produce a high-density and high-strength iron-based sintered member. In addition, since the deformation resistance of the molding material is small, an iron-based sintered member having a complicated shape can be manufactured.
さらに成形用素材に圧縮成形を施した後で、仕上げ焼結を行なうことによってCが均一に拡散する。したがって仕上げ焼結の後、さらに高周波焼入れを施して、高価な合金元素を添加することなく、強度を一層高めた鉄基焼結部材を製造できる。 Further, after compression molding is performed on the molding material, finish sintering is performed to uniformly diffuse C. Accordingly, after the finish sintering, induction hardening is further performed, and an iron-based sintered member with further enhanced strength can be manufactured without adding an expensive alloy element.
図1は、本発明を適用して製造した成形用素材を用いて、鉄基焼結部材を製造する際の手順を示すフロー図である。
本発明では、図1に示すように、鉄粉に黒鉛粉を混合して鉄基混合粉とする。必要に応じて、鉄粉に潤滑剤を添加しても良い。得られた鉄基混合粉を金型に充填し、さらに加圧成形を行なって予備成形体とする。加圧成形で付加する押圧力は、予備成形体の密度が7.1Mg/m3 以上となるように調整する。密度を7.1Mg/m3 以上とすることによって鉄粉の粒子間の接合面積が増大し、予備成形体の変形能が向上するからである。ただし加圧成形の際に過剰な押圧力を付加すると、金型の耐用性が低下する。したがって、加圧成形で付加する押圧力は7.1〜7.5Mg/m3 の範囲内が好ましい。より好ましくは7.3〜7.5Mg/m3 の範囲内である。
FIG. 1 is a flowchart showing a procedure for producing an iron-based sintered member using a molding material produced by applying the present invention.
In the present invention, as shown in FIG. 1, graphite powder is mixed with iron powder to obtain an iron-based mixed powder. If necessary, a lubricant may be added to the iron powder. The obtained iron-based mixed powder is filled into a mold and further subjected to pressure molding to obtain a preform. The pressing force applied by pressure molding is adjusted so that the density of the preform is 7.1 Mg / m 3 or more. This is because by setting the density to 7.1 Mg / m 3 or more, the bonding area between the iron powder particles is increased, and the deformability of the preform is improved. However, if an excessive pressing force is applied during pressure molding, the durability of the mold is reduced. Therefore, the pressing force applied by pressure molding is preferably in the range of 7.1 to 7.5 Mg / m 3 . More preferably, it is in the range of 7.3 to 7.5 Mg / m 3 .
なお上記の(2)では鉄基混合粉を金型に充填しさらに加圧成形したものを成形体と記したが、ここでは後述する仕上げ成形体と区別するために予備成形体と記す。
こうして得られた予備成形体に予備焼結を施して焼結体とする。この焼結体は、鉄基焼結部材を製造するための圧縮成形の素材となるので、成形用素材と記す。
この成形用素材に圧縮成形を施して、所定の形状を有する仕上げ成形体とする。次いで仕上げ成形体に仕上げ焼結を施して、高密度かつ高強度の鉄基焼結部材を製造する。さらに必要に応じて焼入れ(たとえば高周波焼入れ,光輝焼入れ等)を行なうことによって、強度を一層高めた鉄基焼結部材(以下、高強度鉄基焼結部材という)を製造できる。
In the above (2), an iron-based mixed powder filled in a mold and further press-molded is referred to as a molded body, but here it is referred to as a preformed body in order to distinguish it from a finished molded body described later.
The preform thus obtained is pre-sintered to obtain a sintered body. Since this sintered body becomes a material for compression molding for producing an iron-based sintered member, it is referred to as a molding material.
The molding material is subjected to compression molding to obtain a finished molded body having a predetermined shape. Next, the finished compact is subjected to finish sintering to produce a high-density and high-strength iron-based sintered member. Further, by performing quenching (for example, induction quenching, bright quenching, etc.) as necessary, an iron-based sintered member (hereinafter referred to as a high-strength iron-based sintered member) with higher strength can be manufactured.
以上に説明した通り、本発明は、鉄基焼結部材を製造するための圧縮成形の素材となる成形用素材を製造するものである。
成形用素材のC含有量が0.5質量%未満では、仕上げ焼結あるいは高周波焼入れを施しても十分な強度が得られない。一方、0.8質量%を超えると、仕上げ焼結あるいは高周波焼入れにて鉄基焼結部材や高強度鉄基焼結部材に割れが生じる惧れがある。したがって、成形用素材のC含有量は0.5〜0.8質量%の範囲内とする。
As described above, the present invention manufactures a molding material that is a compression molding material for manufacturing an iron-based sintered member.
If the C content of the molding material is less than 0.5% by mass, sufficient strength cannot be obtained even by finish sintering or induction hardening. On the other hand, if it exceeds 0.8% by mass, there is a possibility that cracking may occur in the iron-based sintered member or the high-strength iron-based sintered member by finish sintering or induction hardening. Therefore, the C content of the molding material is in the range of 0.5 to 0.8 mass%.
Mnは、成形用素材の焼入れ性を向上させる元素であるが、0.2質量%以上含有すると、成形用素材の変形抵抗が増すので、0.2質量%未満に制限する。
成形用素材の遊離黒鉛が0.02質量%を超えると、圧縮成形の際に素材の流れに沿って黒鉛の伸展層が形成され、仕上げ焼結によってCが黒鉛から基地へ拡散する。その結果、黒鉛の伸展層が空孔となって残留するので、成形用素材の密度の低下および強度の低下を招く。したがって、成形用素材の遊離黒鉛は0.02質量%以下とする。
Mn is an element that improves the hardenability of the molding material, but if it is contained in an amount of 0.2% by mass or more, the deformation resistance of the molding material increases, so it is limited to less than 0.2% by mass.
When the free graphite of the molding material exceeds 0.02% by mass, an extended layer of graphite is formed along the flow of the material during compression molding, and C is diffused from the graphite to the base by finish sintering. As a result, the extension layer of graphite remains as voids, resulting in a decrease in density and strength of the molding material. Therefore, the free graphite of the molding material is 0.02% by mass or less.
残部はFeおよび不可避的不純物である。不可避的不純物としては、主としてN,Oが挙げられる。
成形用素材のN含有量を0.005質量%以下とすることによって、成形用素材の変形抵抗を減少できる。そのため、N含有量は可能な限り低減することが好ましい。しかし成形用素材の0.0005質量%未満まで低減するためには、雰囲気中のN濃度を低レベルに抑制しなければならず、生産性の低下や製造コストの上昇を招く。したがって、成形用素材のN含有量は0.005質量%以下が好ましく、より好ましくは0.0005〜0.005質量%の範囲内である。
The balance is Fe and inevitable impurities. Inevitable impurities mainly include N and O.
By setting the N content of the molding material to 0.005% by mass or less, the deformation resistance of the molding material can be reduced. Therefore, it is preferable to reduce the N content as much as possible. However, in order to reduce the molding material to less than 0.0005% by mass, the N concentration in the atmosphere must be suppressed to a low level, resulting in a decrease in productivity and an increase in manufacturing cost. Therefore, the N content of the molding material is preferably 0.005% by mass or less, and more preferably in the range of 0.0005 to 0.005% by mass.
成形用素材のO含有量を0.3質量%以下とすることによって、成形用素材の変形抵抗を減少できる。そのため、O含有量は可能な限り低減することが好ましい。しかし成形用素材の0.02質量%未満まで低減するためには、同程度のO含有量を有する鉄粉を使用しなければならない。そのようにO含有量を低減した鉄基金属粉は、製造コストが上昇するのは避けられない。したがって、成形用素材のO含有量は0.3質量%以下が好ましく、より好ましくは0.02〜0.3質量%の範囲内である。 By setting the O content of the molding material to 0.3% by mass or less, the deformation resistance of the molding material can be reduced. Therefore, it is preferable to reduce the O content as much as possible. However, in order to reduce it to less than 0.02% by mass of the molding material, iron powder having a comparable O content must be used. The iron-based metal powder having such a reduced O content inevitably increases the production cost. Accordingly, the O content of the molding material is preferably 0.3% by mass or less, more preferably 0.02 to 0.3% by mass.
本発明で使用する鉄粉の粒径は、特に限定する必要はないが、工業的に安価に製造できるサイズ(すなわち平均粒径30〜120μmの範囲内)の鉄粉を使用することが好ましい。なお平均粒径は、重量積算粒度分布の中点(D50)の値とする。
また鉄基混合粉には、加圧成形における押圧力を有効に作用させて予備成形体の密度を高め、かつ金型から取り出す際の抜出し力を軽減するために、潤滑剤を添加しても良い。潤滑剤としては、ステアリン酸亜鉛,ステアリン酸リチウム,エチレンビスステアロアミド,ポリエチレン,ポリプロピレン,熱可塑性樹脂,ポリアミド,ステアリン酸アミド,オレイン酸,ステアリン酸カルシウム等が使用できる。潤滑剤を添加する場合は、鉄基混合粉(すなわち鉄粉と黒鉛粉の合計量)100質量部に対して、潤滑剤0.1〜0.6質量部を添加することが好ましい。さらに、黒鉛粉が鉄粉の表面に付着し易くなるように、鉄基混合粉にワックスやスピンドル油を添加しても良い。
The particle size of the iron powder used in the present invention is not particularly limited, but it is preferable to use iron powder having a size that can be produced industrially at low cost (that is, within an average particle size of 30 to 120 μm). The average particle diameter is the value of the middle point (D50) of the weight integrated particle size distribution.
In addition, a lubricant may be added to the iron-based mixed powder in order to increase the density of the preformed body by effectively applying the pressing force in pressure molding and to reduce the pulling force when taking out from the mold. good. As the lubricant, zinc stearate, lithium stearate, ethylene bisstearamide, polyethylene, polypropylene, thermoplastic resin, polyamide, stearamide, oleic acid, calcium stearate and the like can be used. When the lubricant is added, it is preferable to add 0.1 to 0.6 parts by mass of the lubricant with respect to 100 parts by mass of the iron-based mixed powder (that is, the total amount of iron powder and graphite powder). Furthermore, wax or spindle oil may be added to the iron-based mixed powder so that the graphite powder can easily adhere to the surface of the iron powder.
鉄粉と黒鉛粉と(あるいは必要に応じてさらに潤滑剤)を混合するための混合装置は、従来から知られているヘンシェルミキサー,コーン型ミキサー,V型ミキサー等の混合装置が使用できる。
このようにして得られた鉄基混合粉を金型に充填して加圧成形を行ない予備成形体を得る際には、従来から知られている金型潤滑法,分割金型による多段成形法,CNCプレス法,静水圧プレス法,温間成形法,ロールフォーミング法等が使用できる。ただし、温間成形法は上記したような問題があるので、予備成形体の成形コスト削減と寸法精度向上の観点から、温間成形法以外の技術を採用することが好ましい。
As a mixing device for mixing iron powder and graphite powder (or further, if necessary, a lubricant), conventionally known mixing devices such as a Henschel mixer, a cone mixer, and a V mixer can be used.
When a preform is obtained by filling a mold with the iron-based mixed powder obtained in this way and performing pressure molding, a conventionally known mold lubrication method, multistage molding method using split molds , CNC press method, isostatic press method, warm forming method, roll forming method and the like can be used. However, since the warm forming method has the problems described above, it is preferable to employ a technique other than the warm forming method from the viewpoint of reducing the forming cost of the preform and improving the dimensional accuracy.
この予備成形体に予備焼結を施す際に、温度が1000℃未満では、Cが黒鉛粉から基地へ拡散せず、多量の遊離黒鉛が生成される。一方、1200℃を超えると、Cが過剰に拡散して予備成形体の硬度が上昇するので、予備成形体の変形抵抗が増大する。したがって、予備焼結の温度は1000〜1200℃の範囲内とする。好ましくは1000〜1100℃である。
予備焼結の保持時間が60秒を超えると、Cが黒鉛から基地へ過剰に拡散して予備成形体の硬度が上昇するので、予備成形体の変形抵抗が増大する。したがって、予備焼結の保持時間は60秒以下とする。一方、10秒未満では、Cが十分に拡散せず、多量の遊離黒鉛が生成される。そのため、保持時間を10〜60秒の範囲内とすることが好ましい。より好ましくは10〜30秒である。そのような短時間で予備焼結を行なうためには、プラズマ加熱や高周波加熱を採用することが好ましい。
When pre-sintering the preform, if the temperature is less than 1000 ° C., C does not diffuse from the graphite powder to the base, and a large amount of free graphite is generated. On the other hand, when the temperature exceeds 1200 ° C., C is excessively diffused and the hardness of the preform is increased, so that the deformation resistance of the preform is increased. Therefore, the pre-sintering temperature is set within a range of 1000 to 1200 ° C. Preferably it is 1000-1100 degreeC.
When the pre-sintering holding time exceeds 60 seconds, C is excessively diffused from graphite to the base and the hardness of the preform is increased, so that the deformation resistance of the preform is increased. Therefore, the pre-sintering holding time is 60 seconds or less. On the other hand, if it is less than 10 seconds, C does not diffuse sufficiently and a large amount of free graphite is produced. Therefore, it is preferable that the holding time is in the range of 10 to 60 seconds. More preferably, it is 10 to 30 seconds. In order to perform pre-sintering in such a short time, it is preferable to employ plasma heating or high-frequency heating.
予備焼結の雰囲気ガスは、従来から知られている窒素ガス,水素ガス,窒素と水素の混合ガス,アルゴンガス,アンモニア分解ガス,RXガス等が使用できる。
以下では、この成形用素材から鉄基焼結部材あるいは高強度鉄基焼結部材を製造する方法を説明する。
成形用素材は、圧縮成形によって所定の寸法,形状を有する仕上げ成形体となる。圧縮成形は、従来から知られている冷間鍛造,ロールフォーミング等が使用できる。ただし本発明の成形用素材は優れた変形能を有するので、寸法精度の高い仕上げ成形体を安価に製造できる冷間鍛造が好ましい。
As the pre-sintering atmosphere gas, conventionally known nitrogen gas, hydrogen gas, mixed gas of nitrogen and hydrogen, argon gas, ammonia decomposition gas, RX gas and the like can be used.
Hereinafter, a method for producing an iron-based sintered member or a high-strength iron-based sintered member from the molding material will be described.
The molding material becomes a finished molded body having a predetermined size and shape by compression molding. For compression molding, conventionally known cold forging, roll forming and the like can be used. However, since the molding material of the present invention has excellent deformability, cold forging capable of producing a finished molded body with high dimensional accuracy at low cost is preferable.
この仕上げ成形体に仕上げ焼結を施す際に、温度が1050℃未満では、Cが黒鉛粉から基地へ拡散せず、十分な強度の鉄基焼結部材が得られない。一方、1300℃を超えると、結晶粒が粗大化して、十分な強度の鉄基焼結部材が得られない。したがって、仕上げ焼結の温度は1050〜1300℃の範囲内が好ましい。
仕上げ焼結の保持時間が600秒未満では、Cが黒鉛粉から基地へ拡散せず、十分な強度の鉄基焼結部材が得られない。一方、3600秒を超えても、黒鉛拡散の効果はそれほど向上せず、経済的でない。したがって、仕上げ焼結の保持時間は600〜3600秒の範囲内が好ましい。
When the final sintered body is subjected to finish sintering, if the temperature is lower than 1050 ° C., C does not diffuse from the graphite powder to the base, and a sufficiently strong iron-based sintered member cannot be obtained. On the other hand, when the temperature exceeds 1300 ° C., the crystal grains become coarse and an iron-based sintered member having sufficient strength cannot be obtained. Therefore, the finish sintering temperature is preferably in the range of 1050 to 1300 ° C.
When the holding time of finish sintering is less than 600 seconds, C does not diffuse from the graphite powder to the base, and a sufficiently strong iron-based sintered member cannot be obtained. On the other hand, even if it exceeds 3600 seconds, the effect of graphite diffusion is not improved so much and it is not economical. Accordingly, the holding time of finish sintering is preferably in the range of 600 to 3600 seconds.
仕上げ焼結の雰囲気は、鉄基焼結部材の酸化を防止するために不活性雰囲気,還元性雰囲気または真空とすることが好ましい。
このようにして高密度かつ高強度の鉄基焼結部材を製造できる。
強度を一層高めた高強度鉄基焼結部材を製造するためには、焼入れ(たとえば高周波焼入れ,光輝焼入れ等)を行なう。焼入れを行なう際の加熱温度は800〜950℃の範囲内が好ましく、冷却媒体は水を使用(いわゆる水焼入れ)しても良いが、割れの発生を防止するために油を使用(いわゆる油焼入れ)することが好ましい。
The atmosphere for finish sintering is preferably an inert atmosphere, a reducing atmosphere or a vacuum in order to prevent oxidation of the iron-based sintered member.
In this way, a high-density and high-strength iron-based sintered member can be manufactured.
In order to manufacture a high-strength iron-based sintered member with higher strength, quenching (for example, induction quenching, bright quenching, etc.) is performed. The heating temperature during quenching is preferably in the range of 800 to 950 ° C., and the cooling medium may be water (so-called water quenching), but oil is used to prevent cracking (so-called oil quenching) ) Is preferable.
鉄粉に黒鉛粉と潤滑剤を添加し、V型ミキサーで混合して鉄基混合粉とした。鉄粉は、C:0.007質量%,Mn:0.12質量%,O:0.15質量%,N:0.001質量%を含有する鉄粉(JFEスチール製JIP301A)を使用した。潤滑剤はステアリン酸亜鉛を使用し、その添加量は鉄基金属粉と黒鉛粉の合計量を100質量部として0.3質量部とした。黒鉛粉の添加量は表1に示す通りである。 Graphite powder and a lubricant were added to the iron powder and mixed with a V-type mixer to obtain an iron-based mixed powder. As the iron powder, iron powder (JIP301A made by JFE Steel) containing C: 0.007 mass%, Mn: 0.12 mass%, O: 0.15 mass%, and N: 0.001 mass% was used. Zinc stearate was used as the lubricant, and the amount added was 0.3 parts by mass with the total amount of iron-based metal powder and graphite powder being 100 parts by mass. The amount of graphite powder added is as shown in Table 1.
この予備成形体に予備焼結を施して焼結体(すなわち成形用素材)とした。予備焼結は、90体積%水素−10体積%窒素の混合ガスを雰囲気ガスとして使用し、大気圧と同等の雰囲気圧で行なった。予備焼結の温度と保持時間は表1に示す通りである。得られた成形用素材から試験片を採取し、C含有量,O含有量,N含有量を測定した。その結果を表1に示す。なお、C含有量は燃焼赤外線吸収法で測定し、O含有量は不活性ガス融解赤外線吸収法で測定し、N含有量は不活性ガス融解熱伝導度法で測定した。 This preform was pre-sintered to obtain a sintered body (that is, a molding material). The pre-sintering was performed at an atmospheric pressure equivalent to atmospheric pressure using a mixed gas of 90% by volume hydrogen and 10% by volume nitrogen as the atmospheric gas. The presintering temperature and holding time are as shown in Table 1. Test pieces were collected from the obtained molding materials and measured for C content, O content, and N content. The results are shown in Table 1. The C content was measured by a combustion infrared absorption method, the O content was measured by an inert gas melting infrared absorption method, and the N content was measured by an inert gas melting thermal conductivity method.
遊離黒鉛量は、C含有量の測定の際に、酸に溶解しない残渣中のC量を試験片の質量で除して求めた。測定された遊離黒鉛は、比較例8で0.02質量%を超え、他は0.02質量%未満であった。
次に、これらの成形用素材を用いて断面減少率60%の圧縮成形(すなわち後方押出し法による冷間鍛造)を行ない、カップ状の仕上げ成形体とした。冷間鍛造の荷重は表2に示す通りである。得られた仕上げ成形体の外観を目視で観察して亀裂の有無を調査し、さらにアルキメデス法で密度を測定した。その結果は表2に示す通りである。
The amount of free graphite was determined by dividing the amount of C in the residue not dissolved in acid by the mass of the test piece when measuring the C content. The measured free graphite was over 0.02% by mass in Comparative Example 8, and the other was less than 0.02% by mass.
Next, compression molding (that is, cold forging by a backward extrusion method) with a cross-section reduction rate of 60% was performed using these molding materials to obtain a cup-shaped finished molded body. The cold forging load is as shown in Table 2. The appearance of the finished molded product thus obtained was visually observed for the presence or absence of cracks, and the density was measured by the Archimedes method. The results are as shown in Table 2.
さらに仕上げ成形体に仕上げ焼結と高周波焼入れを施して、鉄基焼結部材とした。仕上げ焼結は、20体積%水素−80体積%窒素の混合ガスを雰囲気ガスとして使用し、1140℃で1800秒保持して行なった。高周波焼入れは、表1に示す温度に加熱した後、水焼入れを行なった。得られた鉄基焼結部材の外観を目視で観察してクラックの有無を調査し、さらにJIS規格Z2245に準拠して硬度(HRC)を測定した。その結果は表2に示す通りである。 Further, the finished molded body was subjected to finish sintering and induction hardening to obtain an iron-based sintered member. The finish sintering was performed by using a mixed gas of 20% by volume hydrogen and 80% by volume nitrogen as an atmospheric gas and holding at 1140 ° C. for 1800 seconds. In the induction hardening, after heating to the temperature shown in Table 1, water quenching was performed. The appearance of the obtained iron-based sintered member was visually observed to investigate the presence or absence of cracks, and the hardness (HRC) was measured in accordance with JIS standard Z2245. The results are as shown in Table 2.
一方、比較例(No.1)の成形用素材はC含有量が低いので、鉄基焼結部材の硬度も低かった。また、比較例(No.5)の成形用素材はC含有量が高いので、変形抵抗が増大して所定の形状まで圧縮成形できなかった。比較例(No.7)の成形用素材は予備焼結の保持時間が長いので、Cが黒鉛から基地へ過剰に拡散して変形抵抗が増大し、所定の形状まで圧縮成形できなかった。比較例(No.8)の成形用素材は遊離黒鉛が多いので、黒鉛の伸展層に起因する欠陥が発生する惧れがあり、試験を取止めた。比較例(No.11)の成形用素材の密度が最も低かったので、仕上げ成形体の密度も低かった。 On the other hand, since the molding material of the comparative example (No. 1) has a low C content, the hardness of the iron-based sintered member was also low. In addition, since the molding material of the comparative example (No. 5) has a high C content, the deformation resistance is increased and compression molding cannot be performed to a predetermined shape. Since the molding material of the comparative example (No. 7) has a long pre-sintering holding time, C was excessively diffused from the graphite to the matrix, resulting in an increase in deformation resistance and compression molding to a predetermined shape. Since the molding material of Comparative Example (No. 8) has a large amount of free graphite, there is a possibility that defects due to the extended layer of graphite may occur, and the test was stopped. Since the density of the molding material of the comparative example (No. 11) was the lowest, the density of the finished molded body was also low.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007079532A JP2008240031A (en) | 2007-03-26 | 2007-03-26 | Preform for pressing using iron powder as raw material, and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007079532A JP2008240031A (en) | 2007-03-26 | 2007-03-26 | Preform for pressing using iron powder as raw material, and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008240031A true JP2008240031A (en) | 2008-10-09 |
Family
ID=39911716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007079532A Pending JP2008240031A (en) | 2007-03-26 | 2007-03-26 | Preform for pressing using iron powder as raw material, and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008240031A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011050934A (en) * | 2009-09-04 | 2011-03-17 | Nihon Technical Development Center Co Ltd | Solid matter for water purification and marine resource growth |
WO2011093036A1 (en) * | 2010-01-27 | 2011-08-04 | 中川特殊鋼株式会社 | Fine iron mixture, method for utilizing fine iron mixture, and process for producing fine iron mixture |
CN102935514A (en) * | 2012-10-25 | 2013-02-20 | 无锡中彩新材料股份有限公司 | Powder metallurgical gear and forming method thereof |
-
2007
- 2007-03-26 JP JP2007079532A patent/JP2008240031A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011050934A (en) * | 2009-09-04 | 2011-03-17 | Nihon Technical Development Center Co Ltd | Solid matter for water purification and marine resource growth |
WO2011093036A1 (en) * | 2010-01-27 | 2011-08-04 | 中川特殊鋼株式会社 | Fine iron mixture, method for utilizing fine iron mixture, and process for producing fine iron mixture |
JP2011153353A (en) * | 2010-01-27 | 2011-08-11 | Nakagawa Special Steel Co Inc | Iron powder mixture, method for using iron powder mixture, and method for producing iron powder mixture |
CN102725234A (en) * | 2010-01-27 | 2012-10-10 | 中川特殊钢株式会社 | Fine iron mixture, method for utilizing fine iron mixture, and process for producing fine iron mixture |
CN102725234B (en) * | 2010-01-27 | 2015-03-25 | 中川特殊钢株式会社 | Fine iron mixture, method for utilizing fine iron mixture, and process for producing fine iron mixture |
TWI498286B (en) * | 2010-01-27 | 2015-09-01 | Nakagawa Special Steel Co Inc | Mixture of fine iron, method for using the mixture of fine iron and method for manufacturing the mixture of fine iron |
KR101831457B1 (en) * | 2010-01-27 | 2018-04-04 | 나카가와 토쿠슈코 가부시키가이샤 | Fine iron mixture, Method for utilizing fine iron mixture, and process for producing fine iron mixture |
CN102935514A (en) * | 2012-10-25 | 2013-02-20 | 无锡中彩新材料股份有限公司 | Powder metallurgical gear and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2911031C (en) | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body | |
JP5949952B2 (en) | Method for producing iron-based sintered body | |
JP3741654B2 (en) | Manufacturing method of high density iron-based forged parts | |
KR20020018169A (en) | Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density | |
JP2002146403A (en) | Alloy steel powder for powder metallurgy | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
JP2010090470A (en) | Iron-based sintered alloy and method for producing the same | |
WO2005102564A1 (en) | Mixed powder for powder metallurgy | |
KR20180031749A (en) | Iron-based sintered compact and method for producing same | |
JP4923801B2 (en) | Method for producing high-density iron-based molded body and high-strength high-density iron-based sintered body | |
JP2011094187A (en) | Method for producing high strength iron based sintered compact | |
JP4640134B2 (en) | Method for producing high-strength, high-density iron-based sintered body | |
JP5125158B2 (en) | Alloy steel powder for powder metallurgy | |
JP2008240031A (en) | Preform for pressing using iron powder as raw material, and its manufacturing method | |
JP4060092B2 (en) | Alloy steel powder for powder metallurgy and sintered body thereof | |
JP3729764B2 (en) | Iron-based powder molding material, manufacturing method thereof, and manufacturing method of high-strength high-density iron-based sintered body | |
JP6743720B2 (en) | Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance | |
JP2006241533A (en) | Iron based mixed powder for high strength sintered component | |
JP2007169736A (en) | Alloy steel powder for powder metallurgy | |
JP5786755B2 (en) | Method for producing ferrous sintered material | |
JP4615191B2 (en) | Method for producing iron-based sintered body | |
JP2007031757A (en) | Alloy steel powder for powder metallurgy | |
CN113677459A (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JP2007031841A (en) | Iron-based powder mixture for warm die lubricating compaction | |
WO2023157386A1 (en) | Iron-based mixed powder for powder metallurgy, and iron-based sintered body |