JP5949952B2 - Method for producing iron-based sintered body - Google Patents

Method for producing iron-based sintered body Download PDF

Info

Publication number
JP5949952B2
JP5949952B2 JP2014557657A JP2014557657A JP5949952B2 JP 5949952 B2 JP5949952 B2 JP 5949952B2 JP 2014557657 A JP2014557657 A JP 2014557657A JP 2014557657 A JP2014557657 A JP 2014557657A JP 5949952 B2 JP5949952 B2 JP 5949952B2
Authority
JP
Japan
Prior art keywords
powder
iron
alloy steel
mass
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014557657A
Other languages
Japanese (ja)
Other versions
JPWO2015045273A1 (en
Inventor
前谷 敏夫
敏夫 前谷
宇波 繁
繁 宇波
尾野 友重
友重 尾野
由紀子 尾▲崎▼
由紀子 尾▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP5949952B2 publication Critical patent/JP5949952B2/en
Publication of JPWO2015045273A1 publication Critical patent/JPWO2015045273A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Description

本発明は、粉末冶金技術に供して好適な粉末冶金用合金鋼粉に関し、特に、かかる粉末冶金用合金鋼粉を用いた焼結材料の強度および靭性の向上を図ろうとするものである。
また、本発明は、上記の粉末冶金用合金鋼粉を用いて製造した強度および靭性に優れた鉄基焼結体の製造方法に関するものである。
The present invention relates to an alloy steel powder for powder metallurgy suitable for use in powder metallurgy technology, and in particular, intends to improve the strength and toughness of a sintered material using the alloy steel powder for powder metallurgy .
Moreover, this invention relates to the manufacturing method of the iron-based sintered compact excellent in the intensity | strength and toughness manufactured using said alloy steel powder for powder metallurgy.

粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)で、かつ高い寸法精度で製造できることから、大幅な切削コストの低減が可能となる。このため、粉末冶金製品が各種の機械構造物やその部品として、多方面に利用されている。
さらに、最近では、部品の小型化、軽量化のために、粉末冶金製品の強度の向上が強く要望されていて、特に、鉄基粉末製品(鉄基焼結体)に対する高強度化の要求が強い。
The powder metallurgy technique can manufacture parts having a complicated shape in a shape very close to a product shape (so-called near net shape) and with high dimensional accuracy, so that the cutting cost can be greatly reduced. For this reason, powder metallurgy products are used in various fields as various mechanical structures and parts thereof.
Furthermore, recently, there has been a strong demand for improving the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, there is a demand for higher strength of iron-based powder products (iron-based sintered bodies). strong.

鉄基焼結体の前段階である粉末冶金用鉄基粉末成形体は、一般に、鉄基粉末に対し、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸、ステアリン酸亜鉛等の潤滑剤とを混合して鉄基粉末混合粉とし、これを金型に充填して加圧成形することにより製造される。そして、鉄基粉末は、成分に応じて、鉄粉(例えば純鉄粉等)や、合金鋼粉等に分類される。また、製法による分類では、アトマイズ鉄粉や、還元鉄粉等があり、これらの分類における鉄粉という単語は、合金鋼粉を含む広い意味で用いられる。   The iron-based powder compact for powder metallurgy, which is the pre-stage of the iron-based sintered body, is generally made of an alloy powder such as copper powder and graphite powder, and a lubricant such as stearic acid and zinc stearate with respect to the iron-based powder. Are mixed to obtain an iron-based powder mixed powder, which is filled into a mold and pressure-molded. And iron base powder is classified into iron powder (for example, pure iron powder etc.), alloy steel powder, etc. according to a component. Moreover, in the classification | category by a manufacturing method, there exist atomized iron powder, reduced iron powder, etc., and the word iron powder in these classification | category is used by the wide meaning containing alloy steel powder.

通常の粉末冶金工程で得られる粉末冶金用鉄基粉末成形体の密度は、6.8〜7.3Mg/m3程度が一般的である。この鉄基粉末成形体は、その後に焼結処理が施されて鉄基焼結体とされ、さらに必要に応じてサイジングや切削加工などが施されて、粉末冶金製品とされる。また、さらに高い強度が必要な場合は、焼結後に浸炭熱処理や光輝熱処理が施されることもある。 The density of the iron-based powder compact for powder metallurgy obtained by a normal powder metallurgy process is generally about 6.8 to 7.3 Mg / m 3 . This iron-based powder molded body is subsequently subjected to a sintering process to be an iron-based sintered body, and further subjected to sizing, cutting, or the like as necessary to obtain a powder metallurgy product. Further, when higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.

ここに、従来から、原料粉の段階で、合金元素を加えた粉末として、
(1)純鉄粉に各合金元素粉末を配合した混合粉、
(2)完全に各元素を合金化した予合金鋼粉、
(3)純鉄粉や予合金鋼粉の表面に、各合金元素粉末を部分的に拡散させた拡散付着合金鋼粉等が知られている。
Conventionally, as a powder to which alloying elements are added at the raw material powder stage,
(1) Mixed powder in which each alloy element powder is mixed with pure iron powder,
(2) Pre-alloyed steel powder that completely alloyed each element,
(3) Diffusion-bonded alloy steel powder or the like in which each alloy element powder is partially diffused on the surface of pure iron powder or prealloyed steel powder is known.

上記(1)に示した純鉄粉に各合金元素粉末を配合する混合粉は、純鉄粉並みの高圧縮性を確保できるという利点がある。しかしながら、各合金元素粉末の偏析が大きいため、特性のばらつきが大きく、また、合金元素がFe中に十分に拡散せず、不均質組織のままとなって効果的な基地強化を達成できないという問題があった。
このために、上記純鉄粉に各合金元素粉末を配合した混合粉は、近年の特性安定化、高強度化の要求に対応できずに、その使用量が減少してきている。
The mixed powder in which each alloy element powder is mixed with the pure iron powder shown in the above (1) has an advantage that high compressibility as high as that of the pure iron powder can be secured. However, because the segregation of each alloy element powder is large, there is a large variation in characteristics, and the alloy elements do not diffuse sufficiently in Fe, and the inhomogeneous structure remains and effective base strengthening cannot be achieved. was there.
For this reason, the amount of use of the mixed powder in which each alloy element powder is blended with the above pure iron powder has not been able to meet the recent demands for characteristic stabilization and high strength.

また、上記(2)に示した各元素を完全に合金化する予合金鋼粉は、溶鋼をアトマイズして製造するものであって、均質組織による基地強化が達成できるものの、固溶硬化作用による圧縮性低下が課題となっている。   In addition, the prealloyed steel powder that completely alloyes each element shown in (2) above is manufactured by atomizing molten steel, which can achieve base strengthening with a homogeneous structure, but by solid solution hardening action Decrease in compressibility is a problem.

さらに、上記(3)に示した拡散付着合金鋼粉は、純鉄粉や予合金鋼粉に各元素の金属粉末を配合し、非酸化性または還元性の雰囲気の下で加熱して、純鉄粉や予合金鋼粉の表面に各金属粉末を部分的に拡散接合して製造することから、上記(1)の鉄基混合粉および上記(2)の予合金鋼粉の良い点を組み合わせることができる。
従って、合金元素の偏析を防止しながら、純鉄粉並みの高圧縮性を確保できると同時に、部分的な合金濃化相が分散する複合組織となるため、基地強化の可能性があり、高強度向けの拡散付着合金鋼粉として開発が行われている。
Furthermore, the diffusion-adhesive alloy steel powder shown in (3) above contains pure iron powder and pre-alloy steel powder mixed with metal powders of each element, heated in a non-oxidizing or reducing atmosphere, Since each metal powder is partially diffusion bonded on the surface of iron powder or prealloyed steel powder, the advantages of the iron-based mixed powder of (1) above and the prealloyed steel powder of (2) above are combined be able to.
Therefore, while preventing segregation of alloy elements, it is possible to ensure high compressibility equivalent to that of pure iron powder, and at the same time, a composite structure in which a partial alloy concentrated phase is dispersed. It is being developed as a diffusion-bonded alloy steel powder for strength.

このように、粉末冶金製品の強度、靭性を向上させるためには高合金化が考えられる。しかしながら、この合金化には、素材となる合金鋼粉が硬化して圧縮性が低下し、加圧成形における設備負担が増大するという問題が生じる。また、合金鋼粉の圧縮性の低下は、焼結体の密度低下を引き起こし高強度化を相殺することになる。すなわち、粉末冶金製品の強度、靭性を向上させるためには、圧縮性の低下を極力抑えつつ、焼結体を高強度化する技術が求められる。   Thus, in order to improve the strength and toughness of the powder metallurgy product, high alloying can be considered. However, this alloying has a problem that the alloy steel powder as a raw material is hardened and compressibility is lowered, and the equipment burden in pressure forming is increased. In addition, a decrease in compressibility of the alloy steel powder causes a decrease in the density of the sintered body and offsets the increase in strength. That is, in order to improve the strength and toughness of the powder metallurgy product, a technique for increasing the strength of the sintered body while suppressing the decrease in compressibility as much as possible is required.

上述したような、圧縮性を維持しつつ焼結体を高強度化する技術としては、焼入性を改善するNi,CuおよびMo等の合金元素を鉄基粉末に添加することが一般的に行われている。この目的に対して有効な元素として、例えば特許文献1では、Moを圧縮性が損なわれない範囲(Mo:0.1〜1.0質量%)で鉄粉に予合金元素として添加し、さらにこの鉄粉の粒子表面にCuとNiを粉末の形で拡散付着させることによって、圧粉成形時の圧縮性と焼結後の部材の強度を両立させる技術が開示されている。   As described above, as a technique for increasing the strength of a sintered body while maintaining compressibility, it is common to add alloy elements such as Ni, Cu and Mo that improve hardenability to iron-based powders. Has been done. As an element effective for this purpose, for example, in Patent Document 1, Mo is added to the iron powder as a pre-alloying element in a range where the compressibility is not impaired (Mo: 0.1 to 1.0% by mass). A technique has been disclosed in which Cu and Ni are diffused and adhered to the particle surface in the form of powder to achieve both compressibility during compacting and strength of the sintered member.

また、特許文献2には、鉄鋼粉表面に2種類以上の合金元素、特にMoとNi、あるいはさらにCuを拡散付着させた高強度焼結体用の粉末冶金用合金鋼粉が提案されている。
この技術では、さらに、各拡散付着元素について、粒子径:44μm以下の微粒粉に対する拡散付着濃度が、その鉄鋼粉全体に対する拡散付着濃度の0.9〜1.9倍の範囲内に収まるように制御することが提案されており、この比較的広い範囲への限定によって焼結体の衝撃靭性が確保されるとされている。
Patent Document 2 proposes an alloy steel powder for powder metallurgy for high-strength sintered bodies in which two or more kinds of alloy elements, particularly Mo and Ni, or further Cu are diffused and adhered to the surface of steel powder. .
In this technology, furthermore, for each diffusion adhesion element, it is possible to control so that the diffusion adhesion concentration with respect to the fine powder having a particle diameter of 44 μm or less is within a range of 0.9 to 1.9 times the diffusion adhesion concentration with respect to the entire steel powder. It has been proposed that the impact toughness of the sintered body is ensured by this limitation to a relatively wide range.

他方、Moを主たる合金元素として、NiやCuを含まないMo系合金鋼粉もこれまで提案されている。例えば、特許文献3では、自己拡散速度の速いFeのα単一相を形成して焼結を促進させるために、フェライト安定化元素であるMoを1.5〜20質量%の範囲で予合金として含む合金鋼粉が提案されている。この合金鋼粉は、加圧焼結という工程に粒径分布等を適合させることにより、高密度の焼結体が得られるとされ、また拡散付着型の合金元素を用いないことで、均質で安定した組織が得られるとされている。   On the other hand, Mo-based alloy steel powders that do not contain Ni or Cu as the main alloying element have been proposed. For example, in Patent Document 3, in order to promote the sintering by forming an α single phase of Fe having a high self-diffusion rate, Mo as a ferrite stabilizing element is included as a prealloy in the range of 1.5 to 20% by mass. Alloy steel powder has been proposed. This alloy steel powder is said to have a high-density sintered body by adapting the particle size distribution to the process of pressure sintering, and it is homogeneous by not using a diffusion adhesion type alloy element. It is said that a stable tissue can be obtained.

同様に、Moを主たる合金元素とする粉末冶金用合金鋼粉として、特許文献4に開示の技術がある。この技術は、Mnを1.0質量%以下、あるいはさらにMoを0.2質量%未満、予合金として含有する鉄基粉末の表面に、Mo:0.2〜10.0質量%を拡散付着させた合金鋼粉を提案するものである。鉄基粉末は、アトマイズ鉄粉を用いても、また還元鉄粉を用いても良く、平均粒径は30〜120μmとするのが好適であるとされている。そして、この合金鋼粉は、圧縮性に優れるだけでなく、高密度かつ高強度の焼結部品を得ることができるとされている。   Similarly, there is a technique disclosed in Patent Document 4 as an alloy steel powder for powder metallurgy containing Mo as a main alloy element. This technology proposes an alloy steel powder in which Mo: 0.2-10.0% by mass is diffused and adhered to the surface of an iron-based powder containing Mn of 1.0% by mass or less or less than 0.2% by mass of Mo as a pre-alloy. Is. As the iron-based powder, atomized iron powder or reduced iron powder may be used, and the average particle size is preferably 30 to 120 μm. And this alloy steel powder is not only excellent in compressibility but is said to be able to obtain a high-density and high-strength sintered part.

特公昭63−66362号公報Japanese Patent Publication No.63-66362 特開昭61−130401号公報JP 61-130401 A 特公平6−89365号公報Japanese Patent Publication No. 6-89365 特開2002−146403号公報JP 2002-146403 A

しかしながら、特許文献1および2に記載された技術では、Niを必須の添加成分とするが、Niは、焼結時の拡散が遅いので、鉄粉や鉄鋼粉にNiを十分に拡散させるためには長時間の焼結が必要となる。   However, in the techniques described in Patent Documents 1 and 2, Ni is an essential additive component, but since Ni diffuses slowly during sintering, in order to sufficiently diffuse Ni into iron powder and steel powder. Requires long-time sintering.

また、特許文献3に記載された技術では、Mo添加量が1.8質量%以上と比較的高く、圧縮性が低いので、高い成形密度が得られないという欠点がある。
このため、通常の焼結工程(加圧せず1回焼結)を適用した場合は低い焼結密度のものしか得られずに、十分な強度、靭性が得られないという問題があった。
Further, the technique described in Patent Document 3 has a disadvantage that a high molding density cannot be obtained because the Mo addition amount is relatively high at 1.8% by mass or more and the compressibility is low.
For this reason, when a normal sintering process (single sintering without pressing) is applied, only a low sintered density can be obtained, and sufficient strength and toughness cannot be obtained.

さらに、特許文献4に記載された技術は、焼結体の再圧縮および再焼結を含む粉末冶金工程に適合させたものである。すなわち、通常の焼結法では、前述した効果がそれほど発揮されないという問題があった。
結果的に、発明者らの研究では、上記した特許文献1〜4に記載のいずれの合金鋼粉を用いた焼結体でも、強度と靭性を高いレベルで両立させるのは困難であることが分かった。
Furthermore, the technique described in Patent Document 4 is adapted to a powder metallurgy process including recompression and re-sintering of a sintered body. That is, the usual sintering method has a problem that the above-described effects are not so much exhibited.
As a result, the inventors' research shows that it is difficult to achieve both strength and toughness at a high level in any sintered body using any of the alloy steel powders described in Patent Documents 1 to 4 above. I understood.

本発明は、上記した現状に鑑み開発されたもので、上記した従来技術の問題点を克服し、それを用いた焼結体の強度と靭性の両立が高いレベルで可能な粉末冶金用合金鋼粉を提案することを目的とする。   The present invention has been developed in view of the above-described current situation, overcomes the problems of the prior art described above, and is an alloy steel for powder metallurgy capable of achieving both high strength and toughness of a sintered body using the same. The purpose is to propose powder.

さて、発明者等は、上記の目的を達成するために、鉄基粉末の合金成分およびその添加手段について種々検討を重ねた結果、以下に述べる知見を得た。
すなわち、鉄基粉末表面に、Mo含有合金粉末を付着させた複合合金鋼粉であって、この複合合金鋼粉の比表面積を0.100m2/g以上とし、さらにMoが複合合金鋼粉中、0.2〜1.5質量%含有された複合合金鋼粉を用いることにより、この複合合金鋼粉から得た粉末冶金用合金鋼粉を成形、焼結した際、その焼結性が優れているために、焼結体の気孔が適度に微細化して、焼結体の強度と共に、焼結体の靱性も向上するという知見を得た。
本発明は、上記知見に基づいてなされたものである。
Now, in order to achieve the above object, the inventors have made various studies on the alloy components of the iron-based powder and the means for adding the same, and as a result, have obtained the following knowledge.
That is, a composite alloy steel powder in which Mo-containing alloy powder is adhered to the iron-based powder surface, the specific surface area of this composite alloy steel powder is 0.100 m 2 / g or more, and Mo is further in the composite alloy steel powder, By using a composite alloy steel powder containing 0.2 to 1.5% by mass, when the alloy steel powder for powder metallurgy obtained from this composite alloy steel powder is molded and sintered, its sinterability is excellent. It was found that the pores of the sintered body were appropriately refined and the toughness of the sintered body was improved along with the strength of the sintered body.
The present invention has been made based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.平均粒径が76〜96μmの鉄基粉末の表面にMo含有合金粉末を付着させた複合合金鋼粉と黒鉛粉とを含む粉末冶金用合金鋼粉であって前記複合合金鋼粉の比表面積が0.100m2/g以上0.5m2/g以下で、かつ前記複合合金鋼粉中のMo量が0.2〜1.5質量%の範囲であって、さらに、前記粉末冶金用合金鋼粉:100質量%に対する前記黒鉛粉の含有量が0.1〜1.0質量%の範囲である粉末冶金用合金鋼粉に、潤滑剤を添加して混合した後、加圧成形処理、焼結処理を1回行って鉄基焼結体とする鉄基焼結体の製造方法
That is, the gist configuration of the present invention is as follows.
1. An alloy steel powder for powder metallurgy comprising a composite alloy steel powder having a mean particle size of 76-96 μm and a Mo-containing alloy powder adhered to the surface of an iron-based powder and a graphite powder, the specific surface area of the composite alloy steel powder there in 0.100M 2 / g or more 0.5 m 2 / g or less, and a range Mo amount of 0.2 to 1.5 mass% of the composite alloy steel powder in further the powder metallurgy alloy steel powder: 100 wt% powder metallurgy alloy steel powder content of the graphite powder is in the range of 0.1 to 1.0% by weight against to, after adding and mixing a lubricant, pressing process, carried out once the sintering process A method for producing an iron-based sintered body as an iron-based sintered body .

2.前記粉末冶金用合金鋼粉に、さらに、該粉末冶金用合金鋼粉:100質量%に対して、Cu粉が0.5〜4.0質量%の範囲で含有している、前記1に記載の鉄基焼結体の製造方法。 2. The iron-based firing according to 1, wherein the alloy steel powder for powder metallurgy further contains Cu powder in a range of 0.5 to 4.0% by mass with respect to 100% by mass of the alloy steel powder for powder metallurgy. A method for producing a knot.

3.前記粉末冶金用合金鋼粉において、前記鉄基粉末が還元鉄粉を含み、かつ該鉄基粉末の平均粒径が80μm以下である、前記1または2に記載の鉄基焼結体の製造方法。 3. 3. The method for producing an iron-based sintered body according to 1 or 2 above, wherein in the alloy steel powder for powder metallurgy, the iron-based powder includes reduced iron powder, and the average particle size of the iron-based powder is 80 μm or less. .

4.前記粉末冶金用合金鋼粉において、前記鉄基粉末の酸素含有量が0.3質量%以下である、前記1乃至3のいずれかに記載の鉄基焼結体の製造方法。 4). 4. The method for producing an iron-based sintered body according to any one of 1 to 3, wherein in the alloy steel powder for powder metallurgy, the oxygen content of the iron-based powder is 0.3% by mass or less.

削除 Delete

本発明に従う粉末冶金用合金鋼粉によれば、Niを用いる必要がなく、かつ圧縮性が高いので、通常の焼結法であっても、高強度と高靭性を兼ね備えた焼結材を安価に得ることができる。   According to the alloy steel powder for powder metallurgy according to the present invention, it is not necessary to use Ni, and since the compressibility is high, a sintered material having both high strength and high toughness can be obtained at low cost even with a normal sintering method. Can get to.

以下、本発明を具体的に説明する。
本発明の粉末冶金用合金鋼粉は、鉄基粉末の表面に、Mo含有合金粉末を付着させた比表面積が0.100m2/g以上であり、Mo量が0.2〜1.5質量%の範囲である複合合金鋼粉を含むことを特徴としている。
そして、上記した複合合金鋼粉を、以下に示す適量の黒鉛粉末と混合して粉末冶金用合金鋼粉としこれを成形体にして、焼結することによって、焼結体の気孔が効果的に微細化し、強度、靭性が共に向上した焼結部品を得ることができる。
Hereinafter, the present invention will be specifically described.
Powder metallurgy alloy steel powder of the present invention, the surface of the iron-based powder was deposited Mo-containing alloy powder, and a specific surface area of 0.100M 2 / g or more, the range M o amount of 0.2 to 1.5 mass% It is characterized by containing a composite alloy steel powder .
The composite alloy steel powder described above is mixed with an appropriate amount of graphite powder shown below to obtain an alloy steel powder for powder metallurgy , which is then formed into a compact and sintered, whereby the pores of the sintered body are effective. Thus, it is possible to obtain a sintered part that is refined and improved in both strength and toughness.

本発明によって、焼結体の気孔が効果的に微細化し、強度や、靭性が向上した焼結部品を得ることができる機構について、発明者らは以下のように考えている。
一般に、焼結体には気孔が多く存在するため、気孔部分に応力が集中し、焼結体の強度や、靱性が低下する傾向にある。しかしながら、本発明に従う粉末冶金用合金鋼粉では、複合合金鋼粉の比表面積を0.100m2/g以上とすることで、焼結体の気孔が微細化され、応力集中の度合いが緩和されると共に、焼結ネック部が強靭化されることになる。
The inventors consider the mechanism by which the pores of the sintered body can be effectively refined and a sintered part with improved strength and toughness can be obtained by the present invention as follows.
Generally, since there are many pores in a sintered body, stress concentrates on the pores, and the strength and toughness of the sintered body tend to decrease. However, in the alloy steel powder for powder metallurgy according to the present invention, by setting the specific surface area of the composite alloy steel powder to 0.100 m 2 / g or more, the pores of the sintered body are refined and the degree of stress concentration is reduced. At the same time, the sintered neck portion is toughened.

加えて、複合合金鋼粉中のMoを0.2〜1.5質量%の範囲とすることで、焼結体の気孔周囲部にMoが濃化して、焼結体がさらに強化されるのみならず、本発明に従う粉末冶金用合金鋼粉は、鉄基粉末の表面にMo含有合金粉末が付着していて、基地部にMoが含まれていないため、焼結ネック部に比べると炭化物の生成が難くなって、高靭性な組織となる。
すなわち、焼結体の気孔分布とMo分布の制御を行うことによって、本発明では、焼結体の高強度と高靭性との両立が可能になったものと考えられる。
In addition, by making Mo in the composite alloy steel powder in the range of 0.2 to 1.5% by mass, Mo concentrates around the pores of the sintered body, and the sintered body is further strengthened. In the alloy steel powder for powder metallurgy according to the invention, Mo-containing alloy powder adheres to the surface of the iron-based powder, and Mo is not contained in the base part, so that it is difficult to generate carbide compared to the sintered neck part. And a tough structure.
That is, by controlling the pore distribution and the Mo distribution of the sintered body, it is considered that the present invention makes it possible to achieve both high strength and high toughness of the sintered body.

以下、本発明の限定事項の限定理由について説明する。
まず、本発明の粉末冶金用合金鋼粉の製造方法について説明する。
本発明では、鉄基粉末としてアトマイズ鉄粉、還元鉄粉等の鉄粉、そしてMo含有合金粉末の原料であるMo原料粉末を準備する。
Hereinafter, the reasons for the limitation of the present invention will be described.
First, the manufacturing method of the alloy steel powder for powder metallurgy of this invention is demonstrated.
In the present invention, iron powder such as atomized iron powder and reduced iron powder, and Mo raw material powder that is a raw material of Mo-containing alloy powder are prepared as iron-based powder.

上記鉄基粉末としては、通常、粉末冶金法に用いられる鉄基粉末であれば、とくに限定はされないが、いわゆるアトマイズ生粉、アトマイズ鉄粉あるいは還元鉄粉が好ましい。アトマイズ鉄基粉末としては、溶鋼をアトマイズし、乾燥、分級したアトマイズ生粉、アトマイズ生粉を還元雰囲気下で還元したアトマイズ鉄粉、のいずれでも良い。   The iron-based powder is not particularly limited as long as it is an iron-based powder usually used in powder metallurgy, but so-called atomized raw powder, atomized iron powder, or reduced iron powder is preferable. The atomized iron-based powder may be any of atomized raw powder obtained by atomizing molten steel, dried and classified, and atomized iron powder obtained by reducing the atomized raw powder in a reducing atmosphere.

また、還元鉄粉は、鋼材の製造時に生成するミルスケールや鉄鉱石を還元して得られた還元鉄粉を用いるのが好ましい。なお、還元鉄粉の見掛密度としては、1.7Mg/m3から3.0Mg/m3程度であればよい。より好ましくは2.2〜2.8Mg/m3である。ここで、見掛密度とは、JIS Z 2504の試験方法で測定されるものである。 The reduced iron powder is preferably a reduced iron powder obtained by reducing mill scale or iron ore generated during the production of steel. The apparent density of the reduced iron powder may be about 1.7 Mg / m 3 to 3.0 Mg / m 3 . More preferably, it is 2.2 to 2.8 Mg / m 3 . Here, the apparent density is measured by the test method of JIS Z 2504.

一方、前記したMo原料粉末としては、目的とするMo含有合金粉末そのものを用いても良いし、Mo含有合金粉末に還元することが可能なMoの化合物を用いても良い。なお、Mo原料粉末の平均粒径は50μm以下、好ましくは20μm以下とする。ここで、平均粒径とは、体積基準のメジアン径(いわゆるd50)のことである。   On the other hand, as the Mo raw material powder, the target Mo-containing alloy powder itself may be used, or a Mo compound that can be reduced to the Mo-containing alloy powder may be used. The average particle diameter of the Mo raw material powder is 50 μm or less, preferably 20 μm or less. Here, the average particle diameter is a volume-based median diameter (so-called d50).

また、Mo含有合金粉末としては、Moの純金属粉末をはじめとして、酸化Mo粉末、あるいはFe-Mo(フェロモリブデン)粉末などのMo合金粉末が有利に適合する。他方、Moの化合物としては、Mo炭化物、Mo硫化物、Mo窒化物などが挙げられる。   As the Mo-containing alloy powder, Mo alloy powder such as Mo pure metal powder, oxidized Mo powder, or Fe-Mo (ferromolybdenum) powder is advantageously suitable. On the other hand, examples of the Mo compound include Mo carbide, Mo sulfide, and Mo nitride.

ついで、上記した鉄基粉末とMo原料粉末とを、所定の比率で混合して混合粉とするが、この比率は、最終的に、複合合金鋼粉中、Mo量が0.2〜1.5質量%の範囲となるように調整する。また、混合に際し、混合方法や、混合設備について特に制限はなく、例えばヘンシェルミキサーやコーン型ミキサーなどを用いて常法に従い行うことができる。 Next, the iron-based powder and the Mo raw material powder are mixed at a predetermined ratio to obtain a mixed powder. This ratio is finally obtained when the Mo amount in the composite alloy steel powder is 0.2 to 1.5 mass%. Adjust to be within range. In mixing, the mixing method and the mixing equipment are not particularly limited, and can be performed according to a conventional method using, for example, a Henschel mixer or a corn mixer.

さらに、この混合粉を高温で保持し、鉄基粉末とMo原料粉末の接触面でMoを鉄中に拡散させて接合(拡散付着処理)することによって、本発明に用いる複合合金鋼粉が得られる。
上記拡散付着処理の雰囲気としては、還元性雰囲気や水素含有雰囲気が好適であり、とりわけ水素雰囲気が適している。なお、真空下で熱処理を加えても良い。また、好適な拡散付着処理の温度は800〜1000℃の範囲である。
Furthermore, by holding this mixed powder at a high temperature and diffusing Mo into iron at the contact surface between the iron-based powder and the Mo raw material powder and bonding (diffusion adhesion treatment), a composite alloy steel powder used in the present invention is obtained. It is done.
As the atmosphere for the diffusion adhesion treatment, a reducing atmosphere or a hydrogen-containing atmosphere is suitable, and a hydrogen atmosphere is particularly suitable. Note that heat treatment may be applied under vacuum. Moreover, the temperature of a suitable diffusion adhesion process is the range of 800-1000 degreeC.

上述のようにして、拡散付着処理を行った場合、通常は、鉄基粉末とMo含有合金粉末が焼結して固まった状態となっているので、所望の粒径に粉砕・分級を行う。さらに、必要に応じて焼鈍を施してもよい。なお、複合合金鋼粉の粒径としては、180μm以下が好ましい。 When the diffusion adhesion treatment is performed as described above, the iron-based powder and the Mo-containing alloy powder are usually sintered and solidified, and thus pulverized and classified to a desired particle size. Furthermore, you may anneal as needed. The particle diameter of the composite alloy steel powder is preferably 180 μm or less.

本発明において、Mo含有合金粉末は、鉄基粉末表面に対し、均一に付着していることが好ましい。均一に付着していない場合、複合合金鋼粉を拡散付着処理後に粉砕する際や運搬等する際に、鉄基粉末表面から脱落しやすいので、遊離状態のMo含有合金粉末が特に増加しやすい。そのような状態の複合合金鋼粉から得た粉末冶金用合金鋼粉を成形し、焼結すると、炭化物の分散状態が偏析してしまう。従って、焼結体の強度、靭性を高めるためには、鉄基粉末の表面にMo含有合金粉末を均一に付着させ、脱落などにより発生する遊離状態のMo含有合金粉末を低減することが好ましい。 In the present invention, it is preferable that the Mo-containing alloy powder is uniformly attached to the surface of the iron-based powder. When not uniformly adhered, when the composite alloy steel powder is pulverized or transported after the diffusion adhesion treatment, it is easy to fall off from the iron-based powder surface, and thus the Mo-containing alloy powder in the free state is particularly likely to increase. When the alloy steel powder for powder metallurgy obtained from the composite alloy steel powder in such a state is molded and sintered, the dispersion state of carbides is segregated. Therefore, in order to increase the strength and toughness of the sintered body, it is preferable to uniformly attach the Mo-containing alloy powder to the surface of the iron-based powder, and to reduce the free Mo-containing alloy powder generated by dropping or the like.

拡散付着させるMo量は、複合合金鋼粉中、0.2〜1.5質量%(内数)の範囲とする。0.2質量%を下回ると、焼き入れ性向上効果が少なく、強度向上効果も少ない一方で、1.5%を超えると、焼き入れ性向上効果は飽和し、むしろ焼結体の組織の不均一性が高まるため、高い強度と靱性が得られなくなるからである。従って、拡散付着させるMo量は、複合合金鋼粉中、0.2〜1.5質量%の範囲とする。好ましくは0.3〜1.0質量%の範囲である。 The amount of Mo to be diffused and deposited is in the range of 0.2 to 1.5 mass% (inner number) in the composite alloy steel powder. When the content is less than 0.2% by mass, the effect of improving the hardenability is small and the effect of improving the strength is small. This is because high strength and toughness cannot be obtained. Therefore, the amount of Mo to be diffused and deposited is in the range of 0.2 to 1.5 mass% in the composite alloy steel powder. Preferably it is the range of 0.3-1.0 mass%.

他方、本発明に用いるMoを拡散付着させた複合合金鋼粉は、その比表面積を0.100m2/g以上に限定する。好ましくは0.150m2/g以上である。比表面積が0.100m2/g未満では、粗大な気孔が存在したり、焼結時の反応性が不十分であったり、あるいはそれらの理由が複合してしまうために、気孔の微細化が進まずに、靭性が低下するからである。比表面積の上限は、特に限定されないものの、0.5m2/gを超えると微粉を多く含むことになって、圧縮性が低下するために、0.5m2/g以下が好ましい。 On the other hand, the specific surface area of the composite alloy steel powder to which Mo is diffused and attached used in the present invention is limited to 0.100 m 2 / g or more. Preferably it is 0.150 m 2 / g or more. When the specific surface area is less than 0.100 m 2 / g, coarse pores exist, the reactivity during sintering is insufficient, or the reasons are compounded. First, it is because toughness falls. The upper limit of the specific surface area, although not particularly limited, taken to contain a large amount of fine powder exceeds 0.5 m 2 / g, for compressibility is lowered, 0.5 m 2 / g or less.

また、鉄基粉末表面にMoを拡散付着処理することによって、粉体の比表面積は低下するため、この点で、基となる鉄基粉末の比表面積は、0.150m2/g以上が好ましい。なお、本発明における比表面積とは、気体吸着法(BET法)により測定したものである。 In addition, since the specific surface area of the powder is reduced by subjecting Mo to the surface of the iron-based powder by diffusion, the specific surface area of the base iron-based powder is preferably 0.150 m 2 / g or more. The specific surface area in the present invention is measured by a gas adsorption method (BET method).

本発明において、複合合金鋼粉の残部は鉄および不可避不純物である。複合合金鋼粉に含有される不純物としては、C、O、NおよびS等が挙げられるが、これらの含有量は、複合合金鋼粉中に、それぞれ、C:0.02質量%以下、O:0.3質量%以下、N:0.004質量%以下およびS:0.03質量%以下であれば特に問題はないが、Oは0.25質量%以下がより好ましい。不可避不純物量がこれらの範囲を超えると、複合合金鋼粉から得られる粉末冶金用合金鋼粉の圧縮性が低下してしまい、十分な密度を有する予備成形体に圧縮成形することが困難となるからである。 In the present invention, the balance of the composite alloy steel powder is iron and inevitable impurities. Examples of impurities contained in the composite alloy steel powder include C, O, N, and S. These contents are C: 0.02% by mass or less and O: 0.3 in the composite alloy steel powder, respectively. There is no particular problem as long as it is not more than% by mass, N: not more than 0.004% by mass, and S: not more than 0.03% by mass, but O is more preferably not more than 0.25% by mass. When the amount of inevitable impurities exceeds these ranges, the compressibility of the alloy steel powder for powder metallurgy obtained from the composite alloy steel powder will be reduced, and it will be difficult to compress the preform into a preform having a sufficient density. Because.

上記した複合合金鋼粉を主成分とする粉末冶金用合金鋼粉には、粉末冶金用合金鋼粉全体(100質量%)に対する比率で、黒鉛粉を0.1〜1.0質量%の範囲で添加することが肝要である。また、本発明では、粉末冶金用合金鋼粉全体(100質量%)に対する比率で、Cu粉を0.5〜4.0質量%添加することができる。
黒鉛粉の主成分であるCは、焼結時に鉄に固溶して、固溶強化や、焼入れ性向上などを図ることができ、焼結部品の強度を高めるために有用な元素である。本発明では、焼結後に浸炭熱処理等で、焼結体に外部から浸炭させる場合には、添加する黒鉛量は少なくても良いが、0.1質量%に満たないと上述の添加効果に乏しい。一方、焼結時に浸炭熱処理を行わない場合は、黒鉛粉を添加するが、1.0質量%を超えると過共析になるため、セメンタイトが析出して強度の低下を招く。従って、黒鉛粉は0.1〜1.0質量%の範囲に限定する。なお、黒鉛粉の平均粒径は、50μm以下が好ましい。
To the alloy steel powder for powder metallurgy mainly composed of the above composite alloy steel powder, graphite powder should be added in the range of 0.1 to 1.0% by mass in a ratio to the whole alloy steel powder for powder metallurgy (100% by mass). Is essential. Moreover, in this invention, 0.5-4.0 mass% of Cu powder can be added by the ratio with respect to the whole alloy steel powder for powder metallurgy (100 mass%).
C, which is the main component of the graphite powder, is a useful element for increasing the strength of the sintered part because it can be dissolved in iron during sintering to enhance solid solution and improve hardenability. In the present invention, when carburizing the sintered body from the outside by carburizing heat treatment or the like after sintering, the amount of graphite to be added may be small, but if the amount is less than 0.1% by mass, the above-described addition effect is poor. On the other hand, when carburizing heat treatment is not performed at the time of sintering, graphite powder is added, but when it exceeds 1.0 mass%, it becomes hypereutectoid, so that cementite is precipitated and the strength is reduced. Therefore, the graphite powder is limited to the range of 0.1 to 1.0% by mass. The average particle size of the graphite powder is preferably 50 μm or less.

他方、Cuは、鉄基粉末の固溶強化、焼入れ性向上により、焼結部品の強度を高める効果のある有用元素であり、鉄基粉末の焼結の際に溶融して液相となって、鉄基粉末の粒子を互いに固着させる作用もある。しかしながら、添加量が0.5質量%に満たないとその添加効果に乏しく、一方4.0質量%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、切削性の低下を招く。従って、Cu粉は0.5〜4.0質量%の範囲が好ましい。より好ましくは1.0〜3.0質量%の範囲である。なお、Cu粉の平均粒径は、50μm以下が好ましい。   On the other hand, Cu is a useful element that has the effect of increasing the strength of sintered parts by solid solution strengthening and hardenability improvement of iron-based powder, and melts into a liquid phase during sintering of iron-based powder. There is also an effect of fixing the particles of the iron-based powder to each other. However, if the addition amount is less than 0.5% by mass, the effect of addition is poor. On the other hand, if it exceeds 4.0% by mass, the effect of improving the strength of the sintered part is not only saturated but also machinability is reduced. Accordingly, the Cu powder is preferably in the range of 0.5 to 4.0 mass%. More preferably, it is the range of 1.0-3.0 mass%. The average particle size of the Cu powder is preferably 50 μm or less.

本発明に用いる鉄基粉末は、還元鉄粉を含み、かつ平均粒径80μm以下が好ましい。というのは、平均粒径が80μmを超えて大きい、すなわち、粒径の大きな粉末が含まれていると、焼結の際の駆動力が弱くなって、粗い鉄基粉末の周囲に粗大な空孔が形成されてしまうからである。そして、この粗大空孔は、焼結体の強度、靱性を低下させる原因となる。
ここで、上記平均粒径とは、質量基準のメジアン径(いわゆるd50)のことである。具体的には、JIS Z 8801に規定するふるいを用いてふるい分け、それぞれのふるい上に残った試料の質量を計測し、小さい側と大きい側が等量となる粒径として求めた。
The iron-based powder used in the present invention contains reduced iron powder and preferably has an average particle size of 80 μm or less. This is because if the average particle size is larger than 80 μm, that is, if a powder with a large particle size is included, the driving force during sintering becomes weak, and coarse iron-based powder is surrounded by coarse voids. This is because holes are formed. And this coarse hole becomes the cause which reduces the intensity | strength and toughness of a sintered compact.
Here, the average particle diameter is a mass-based median diameter (so-called d50). Specifically, sieving was performed using a sieve specified in JIS Z 8801, and the mass of the sample remaining on each sieve was measured to obtain a particle size in which the smaller side and the larger side were equivalent.

本発明では、目的に応じて特性を改善するための添加材を添加することができる。例えば、焼結体の強度を改善する目的で、Ni粉の添加を、また、焼結体の切削性を改善する目的で、MnSなどの切削性改善用粉末の添加を適宜することができる。なお、Ni粉は、粉末冶金用合金鋼粉全体(100質量%)に対する比率で、0.5〜5質量%の範囲とすることが好ましい。 In this invention, the additive for improving a characteristic can be added according to the objective. For example, for the purpose of improving the strength of the sintered body, Ni powder can be added, and for the purpose of improving the machinability of the sintered body, addition of a machinability improving powder such as MnS can be appropriately performed. In addition, it is preferable to make Ni powder into the range of 0.5-5 mass% in the ratio with respect to the whole alloy steel powder for powder metallurgy (100 mass%).

他方、MnSなどの切削性改善用粉末の添加量は、従来公知の添加量、すなわち、粉末冶金用合金鋼粉全体(100質量%)に対する比率で、0.1〜1質量%程度で良い。 On the other hand, the amount of the machinability improving powder such as MnS added may be about 0.1 to 1% by mass in a conventionally known amount, that is, a ratio to the whole alloy steel powder for powder metallurgy (100% by mass).

さらに、本発明の粉末冶金用合金鋼粉を用いて焼結体を製造する際に好適な成形条件、焼結条件について説明する。
本発明の粉末冶金用合金鋼粉を用いた加圧成形に際しては、他に、粉末状の潤滑剤を混合することができる。また、金型に潤滑剤を塗布あるいは付着させて成形することもできる。いずれの場合であっても、潤滑剤として、ステアリン酸亜鉛やステアリン酸リチウムなどの金属石鹸、エチレンビスステアリン酸アミドなどのアミド系ワックスおよびその他公知の潤滑剤のいずれもが好適に用いることができる。なお、潤滑剤を混合する場合は、粉末冶金用合金鋼粉:100質量部に対して、0.1〜1.2質量部程度(外添加)とすることが好ましい。
Further, the molding conditions and sintering conditions suitable for producing a sintered body using the alloy steel powder for powder metallurgy of the present invention will be described.
In the press molding using the alloy steel powder for powder metallurgy according to the present invention, a powdery lubricant can be mixed. It can also be molded by applying or adhering a lubricant to the mold. In any case, as the lubricant, any of metal soaps such as zinc stearate and lithium stearate, amide waxes such as ethylenebisstearic acid amide, and other known lubricants can be suitably used. . In addition, when mixing a lubrication agent, it is preferable to set it as about 0.1-1.2 mass part (external addition) with respect to 100 mass parts of alloy steel powder for powder metallurgy.

本発明の粉末冶金用合金鋼粉を加圧成形するに際しては、400〜1000MPaの加圧力で行うことが好ましい。というのは、加圧力が400MPaに満たないと、得られる成形体の密度が低くなって、焼結体の特性が低下する一方で、1000MPaを超えると金型の寿命が短くなって、経済的に不利になるからである。なお、加圧の際の温度は、常温(約20℃)〜約160℃の範囲とすることが好ましい。   When press-molding the alloy steel powder for powder metallurgy of the present invention, it is preferably performed with a pressure of 400 to 1000 MPa. This is because if the applied pressure is less than 400 MPa, the density of the resulting molded product will be low, and the properties of the sintered body will be reduced.On the other hand, if it exceeds 1000 MPa, the life of the mold will be shortened, which is economical. It is because it becomes disadvantageous. In addition, it is preferable that the temperature at the time of pressurization shall be the range of normal temperature (about 20 degreeC)-about 160 degreeC.

また、本発明の粉末冶金用合金鋼粉の焼結は、1100〜1300℃の温度域で行うことが好ましい。というのは、焼結温度が1100℃に満たないと焼結が進行しなくなって、焼結体の特性が低下するからであり、一方、1300℃を超えると焼結炉の寿命が短くなって、経済的に不利になるからである。なお、焼結時間は10〜180分の範囲とすることが好ましい。   Moreover, it is preferable to sinter the alloy steel powder for powder metallurgy of the present invention in a temperature range of 1100 to 1300 ° C. This is because if the sintering temperature is less than 1100 ° C., the sintering does not proceed and the characteristics of the sintered body deteriorate, whereas if it exceeds 1300 ° C., the life of the sintering furnace is shortened. Because it becomes economically disadvantageous. The sintering time is preferably in the range of 10 to 180 minutes.

得られた焼結体には必要に応じて、浸炭焼入れ、光輝焼入れ、高周波焼入れおよび浸炭窒化処理等の強化処理を施すことができるが、強化処理を施さない場合であっても、本発明に従う粉末冶金用合金鋼粉を用いた焼結体は、従来の焼結体(強化処理を施さないもの)に比べて強度および靭性が改善されている。なお、各強化処理は常法に従って施せば良い。   The obtained sintered body can be subjected to strengthening treatment such as carburizing quenching, bright quenching, induction quenching, and carbonitriding as required, but according to the present invention even when the strengthening treatment is not performed. The sintered body using the alloy steel powder for powder metallurgy has improved strength and toughness compared to a conventional sintered body (one not subjected to strengthening treatment). In addition, what is necessary is just to give each reinforcement | strengthening process according to a conventional method.

以下、実施例により、本発明をさらに詳細に説明するが、本発明は、以下の例に何ら限定されるものではない。
本実施例において、鉄基粉末には、見掛密度:2.65Mg/m3あるいは見掛密度:2.80Mg/m3、見掛密度:3.25Mg/m3のアトマイズ生粉、また、見掛密度:2.60Mg/m3あるいは見掛密度:2.75Mg/m3の還元鉄粉、さらに見掛密度:2.60Mg/m3あるいは見掛密度:2.80Mg/m3、見掛密度:3.30Mg/m3のアトマイズ鉄粉を用いた。
これらの鉄基粉末に酸化Mo粉末(平均粒径:10μm)を所定の比率で添加し、V型混合機で15分間混合し、混合粉としたのち、露点:30℃の水素雰囲気で熱処理(保持温度:880℃、保持時間:1h)して、鉄基粉末の表面に表1に示す所定量のMoを拡散付着させた複合合金鋼粉を製造した。
ついで、これらの複合合金鋼粉(Mo拡散付着合金鋼粉)に対して、表1に示す量の銅粉(平均粒径:30μm)、黒鉛粉(平均粒径:5μm)を添加し、粉末冶金用合金鋼粉を得た。さらに、これら粉末冶金用合金鋼粉:100質量部に対しエチレンビスステアリン酸アミドを0.6質量部添加したのち、V型混合機で15分間混合した。引続き、成形体の密度が7.0Mg/m3となるように加圧成形して、長さ:55mm、幅:10mm、厚さ:10mmのタブレット状成形体を作製した。
このタブレット状成形体に焼結を施して、焼結体とした。なお、この焼結は、プロパン変成ガス雰囲気中にて、焼結温度:1130℃、焼結時間:20分の条件で行った。
引続き、得られた焼結体を、JIS Z 2241で規定される引張試験用に平行部径:5mmの丸棒引張試験片に加工した。また、JIS Z 2242で規定されるシャルピー衝撃試験用には、得られた焼結体を、焼結したままの形状で、カーボンポテンシャル:0.8mass%でガス浸炭(保持温度:870℃、保持時間:60分)した後、焼入れ(60℃、油焼入れ)と焼戻し(180℃、60分)を行ったものを用いた。
これらの焼結体をJIS Z 2241で規定される引張試験およびJIS Z 2242で規定されるシャルピー衝撃試験によって引張強さ(MPa)および衝撃値(J/cm2)を測定した。それぞれの測定結果を、表1に併せて示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following examples at all.
In this example, the iron-based powder includes an atomized raw powder having an apparent density of 2.65 Mg / m 3 or an apparent density of 2.80 Mg / m 3 and an apparent density of 3.25 Mg / m 3 , and an apparent density. : 2.60Mg / m 3 or apparent density: 2.75Mg / m 3 reduced iron powder, apparent density: 2.60Mg / m 3 or apparent density: 2.80Mg / m 3 , apparent density: 3.30Mg / m 3 atomized iron powder was used.
Mo oxide powder (average particle size: 10 μm) was added to these iron-based powders at a predetermined ratio, mixed for 15 minutes with a V-type mixer to form mixed powders, and then heat-treated in a hydrogen atmosphere with a dew point of 30 ° C ( Holding temperature: 880 ° C., holding time: 1 h), a composite alloy steel powder was produced in which a predetermined amount of Mo shown in Table 1 was diffused and adhered to the surface of the iron-based powder.
Next, copper powder (average particle size: 30 μm) and graphite powder (average particle size: 5 μm) in the amounts shown in Table 1 are added to these composite alloy steel powders (Mo diffusion adhesion alloy steel powders) , and powder Alloy steel powder for metallurgy was obtained. Further, 0.6 parts by mass of ethylenebisstearic acid amide was added to 100 parts by mass of these alloy steel powders for powder metallurgy, and then mixed for 15 minutes with a V-type mixer. Subsequently, press molding was performed so that the density of the molded body was 7.0 Mg / m 3, and a tablet-shaped molded body having a length of 55 mm, a width of 10 mm, and a thickness of 10 mm was produced.
The tablet-like molded body was sintered to obtain a sintered body. This sintering was performed in a propane modified gas atmosphere under conditions of sintering temperature: 1130 ° C. and sintering time: 20 minutes.
Subsequently, the obtained sintered body was processed into a round bar tensile test piece having a parallel part diameter of 5 mm for a tensile test specified by JIS Z 2241. In addition, for Charpy impact test specified in JIS Z 2242, the obtained sintered body is in the as-sintered shape and is carburized with carbon potential: 0.8 mass% (holding temperature: 870 ° C, holding time) : 60 minutes), and then subjected to quenching (60 ° C., oil quenching) and tempering (180 ° C., 60 minutes).
These sintered bodies were measured for tensile strength (MPa) and impact value (J / cm 2 ) by a tensile test specified by JIS Z 2241 and a Charpy impact test specified by JIS Z 2242. The respective measurement results are also shown in Table 1.

Figure 0005949952
Figure 0005949952

表1に示したとおり、発明例と比較例の引張強さおよび衝撃値を比べると、発明例はいずれも、引張強さ:1000MPa以上であって衝撃値:14.0J/cm2以上を示し、強度と靭性を高いレベルで両立できたのに対し、比較例は、いずれも衝撃値が14.0J/cm2未満であって、引張強さと衝撃値の少なくともいずれかにおいて、発明例に比べて劣っていた。 As shown in Table 1, when the tensile strength and impact value of the inventive example and the comparative example were compared, all of the inventive examples showed a tensile strength of 1000 MPa or more and an impact value of 14.0 J / cm 2 or more. While both strength and toughness could be achieved at a high level, the comparative examples all had impact values of less than 14.0 J / cm 2 and were inferior to the inventive examples in at least one of tensile strength and impact value. It was.

なお、表1には、従来材として4Ni材(4Ni-1.5Cu-0.5Mo、原料粉の最大粒径:180μm)の結果を合わせて示した。発明例は、従来の4Ni材以上の特性が得られることが分かる。


Table 1 also shows the results of a 4Ni material (4Ni-1.5Cu-0.5Mo, maximum particle size of raw material powder: 180 μm) as a conventional material. It turns out that the example of an invention can obtain the characteristic more than conventional 4Ni material.


Claims (4)

平均粒径が76〜96μmの鉄基粉末の表面にMo含有合金粉末を付着させた複合合金鋼粉と黒鉛粉とを含む粉末冶金用合金鋼粉であって、前記複合合金鋼粉の比表面積が0.100m2/g以上0.5m2/g以下で、かつ前記複合合金鋼粉中のMo量が0.2〜1.5質量%の範囲であって、さらに、前記粉末冶金用合金鋼粉:100質量%に対する前記黒鉛粉の含有量が0.1〜1.0質量%の範囲である粉末冶金用合金鋼粉に、潤滑剤を添加して混合した後、加圧成形処理、焼結処理を1回行って鉄基焼結体とする鉄基焼結体の製造方法。 An alloy steel powder for powder metallurgy comprising a composite alloy steel powder having a mean particle size of 76-96 μm and a Mo-containing alloy powder adhered to the surface of an iron-based powder and a graphite powder, the specific surface area of the composite alloy steel powder there in 0.100M 2 / g or more 0.5 m 2 / g or less, and a range Mo amount of 0.2 to 1.5 mass% of the composite alloy steel powder in further the powder metallurgy alloy steel powder: 100 wt% After adding a lubricant to the alloy powder for powder metallurgy having a graphite powder content of 0.1 to 1.0% by mass with respect to the iron powder, the pressure forming treatment and the sintering treatment are carried out once and the iron base A method for producing an iron-based sintered body as a sintered body. 前記粉末冶金用合金鋼粉に、さらに、該粉末冶金用合金鋼粉:100質量%に対して、Cu粉が0.5〜4.0質量%の範囲で含有している、請求項1に記載の鉄基焼結体の製造方法。 The iron base according to claim 1, wherein the alloy steel powder for powder metallurgy further contains Cu powder in a range of 0.5 to 4.0% by mass with respect to 100% by mass of the alloy steel powder for powder metallurgy. A method for producing a sintered body . 前記粉末冶金用合金鋼粉において、前記鉄基粉末が還元鉄粉を含み、かつ該鉄基粉末の平均粒径が80μm以下である、請求項1または2に記載の鉄基焼結体の製造方法。 The iron-based sintered body according to claim 1 or 2, wherein in the alloy steel powder for powder metallurgy, the iron-based powder includes reduced iron powder, and the average particle size of the iron-based powder is 80 µm or less. Method. 前記粉末冶金用合金鋼粉において、前記鉄基粉末の酸素含有量が0.3質量%以下である、請求項1乃至3のいずれかに記載の鉄基焼結体の製造方法。 The method for producing an iron-based sintered body according to any one of claims 1 to 3, wherein in the alloy steel powder for powder metallurgy, the oxygen content of the iron-based powder is 0.3 mass% or less.
JP2014557657A 2013-09-26 2014-08-26 Method for producing iron-based sintered body Active JP5949952B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013200039 2013-09-26
JP2013200039 2013-09-26
PCT/JP2014/004383 WO2015045273A1 (en) 2013-09-26 2014-08-26 Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object

Publications (2)

Publication Number Publication Date
JP5949952B2 true JP5949952B2 (en) 2016-07-13
JPWO2015045273A1 JPWO2015045273A1 (en) 2017-03-09

Family

ID=52742450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014557657A Active JP5949952B2 (en) 2013-09-26 2014-08-26 Method for producing iron-based sintered body

Country Status (7)

Country Link
US (1) US20160214171A1 (en)
JP (1) JP5949952B2 (en)
KR (1) KR20160045825A (en)
CN (1) CN105555440A (en)
CA (1) CA2922018C (en)
SE (1) SE540965C2 (en)
WO (1) WO2015045273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047100A1 (en) * 2015-09-18 2017-03-23 Jfeスチール株式会社 Mixed powder for powder metallurgy, sintered compact, and method for producing sintered compact

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047101A1 (en) * 2015-09-18 2017-03-23 Jfeスチール株式会社 Iron-based sintered compact and method for producing same
US10697495B2 (en) 2016-07-29 2020-06-30 Diamet Corporation Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JP6817094B2 (en) * 2016-07-29 2021-01-20 株式会社ダイヤメット Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
JP6431012B2 (en) * 2016-09-16 2018-11-28 トヨタ自動車株式会社 Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
CN110267754B (en) * 2017-02-02 2021-10-29 杰富意钢铁株式会社 Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
CN111432957B (en) * 2017-12-05 2022-03-29 杰富意钢铁株式会社 Alloy steel powder
CA3084618C (en) * 2017-12-05 2023-03-07 Jfe Steel Corporation Partially diffusion-alloyed steel powder
CN114082960B (en) * 2021-11-11 2023-01-17 江苏徐工工程机械研究院有限公司 Preparation method of shaft sleeve, shaft sleeve and excavator
JP2023121011A (en) * 2022-02-18 2023-08-30 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy and iron-based sintered body
CN114871424A (en) * 2022-05-10 2022-08-09 辽宁晟钰新材料科技有限公司 Nickel-free diffusion alloy steel powder for powder metallurgy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127602A (en) * 1987-11-09 1989-05-19 Mitsubishi Metal Corp Wear resistant alloy steel powder for powder metallurgy having superior sinterability and formability
JPH02145703A (en) * 1988-11-26 1990-06-05 Kobe Steel Ltd High strength alloy steel powder for powder metallurgy
JP2002146403A (en) * 2000-08-31 2002-05-22 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JP2005330573A (en) * 2003-08-18 2005-12-02 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2006257539A (en) * 2004-04-22 2006-09-28 Jfe Steel Kk Mixed powder for powder metallurgy
JP2007169736A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
JP2012007205A (en) * 2010-06-24 2012-01-12 Seiko Epson Corp Metal powder for powder metallurgy and sintered body
WO2014196123A1 (en) * 2013-06-07 2014-12-11 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and production method for iron-based sintered body

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130401A (en) 1984-11-28 1986-06-18 Kawasaki Steel Corp Alloy steel powder for powder metallurgy and its production
JPS6366362A (en) 1987-05-22 1988-03-25 倉敷紡績株式会社 Reinforcing base cloth
JP3215176B2 (en) 1992-09-07 2001-10-02 株式会社東芝 Document image processing apparatus and document image processing method
JPH07233401A (en) * 1993-09-01 1995-09-05 Kawasaki Steel Corp Atomized steel powder excellent in machinability and dimensional precision and sintered steel
JP3294980B2 (en) * 1994-11-28 2002-06-24 川崎製鉄株式会社 Alloy steel powder for high-strength sintered materials with excellent machinability
JPH08199201A (en) * 1995-01-30 1996-08-06 Kawasaki Steel Corp Production of partially alloyed steel powder for powder metallurgy
JP4060092B2 (en) * 2002-02-20 2008-03-12 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and sintered body thereof
WO2005102564A1 (en) * 2004-04-22 2005-11-03 Jfe Steel Corporation Mixed powder for powder metallurgy
GB2418499A (en) * 2004-09-24 2006-03-29 Advanced Forensic Solutions Lt Information analysis arrangement
DK2308900T3 (en) * 2005-10-25 2014-05-12 Artificial Cell Technologies Inc Immunogenic compositions and methods of use
CN100441711C (en) * 2006-08-09 2008-12-10 海门市常乐粉末冶金厂 Manufacture method of high-strength powder metallurgy bevel gear and copper seeping agent for the same
JP4886543B2 (en) * 2007-02-09 2012-02-29 株式会社東芝 Communication apparatus and communication method
JP2010053409A (en) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP2011094187A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Method for producing high strength iron based sintered compact
JP5504971B2 (en) * 2010-02-26 2014-05-28 Jfeスチール株式会社 Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
CN101844227B (en) * 2010-05-19 2012-07-25 株洲钻石切削刀具股份有限公司 Application of adhesive for hard alloy injection molding
JP2014520161A (en) * 2011-06-22 2014-08-21 バーテックス ファーマシューティカルズ インコーポレイテッド Compounds useful as ATR kinase inhibitors
CN103143704B (en) * 2013-04-03 2014-11-05 中南大学 Mn-containing iron-based premix for powder metallurgy and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127602A (en) * 1987-11-09 1989-05-19 Mitsubishi Metal Corp Wear resistant alloy steel powder for powder metallurgy having superior sinterability and formability
JPH02145703A (en) * 1988-11-26 1990-06-05 Kobe Steel Ltd High strength alloy steel powder for powder metallurgy
JP2002146403A (en) * 2000-08-31 2002-05-22 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JP2005330573A (en) * 2003-08-18 2005-12-02 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2006257539A (en) * 2004-04-22 2006-09-28 Jfe Steel Kk Mixed powder for powder metallurgy
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
JP2007169736A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk Alloy steel powder for powder metallurgy
JP2012007205A (en) * 2010-06-24 2012-01-12 Seiko Epson Corp Metal powder for powder metallurgy and sintered body
WO2014196123A1 (en) * 2013-06-07 2014-12-11 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and production method for iron-based sintered body
JP2014237878A (en) * 2013-06-07 2014-12-18 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and manufacturing method of iron-based sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047100A1 (en) * 2015-09-18 2017-03-23 Jfeスチール株式会社 Mixed powder for powder metallurgy, sintered compact, and method for producing sintered compact
US10710155B2 (en) 2015-09-18 2020-07-14 Jfe Steel Corporation Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body

Also Published As

Publication number Publication date
WO2015045273A8 (en) 2016-01-21
CN105555440A (en) 2016-05-04
KR20160045825A (en) 2016-04-27
CA2922018C (en) 2018-01-16
CA2922018A1 (en) 2015-04-02
SE1650273A1 (en) 2016-03-02
US20160214171A1 (en) 2016-07-28
WO2015045273A1 (en) 2015-04-02
JPWO2015045273A1 (en) 2017-03-09
SE540965C2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
JP5949952B2 (en) Method for producing iron-based sintered body
JP6146548B1 (en) Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body
JP6394768B2 (en) Alloy steel powder and sintered body for powder metallurgy
JP5929967B2 (en) Alloy steel powder for powder metallurgy
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
WO2016088333A1 (en) Alloy steel powder for powder metallurgy, and sintered compact
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
WO2018142778A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP6044492B2 (en) Method for producing Mo-containing sponge iron and Mo-containing reduced iron powder
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
JP2012126972A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP7039692B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP2007100115A (en) Alloy steel powder for powder metallurgy
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JP2012126971A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for producing the same
JP2007126695A (en) Alloy steel for powder metallurgy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250