JPH08199201A - Production of partially alloyed steel powder for powder metallurgy - Google Patents

Production of partially alloyed steel powder for powder metallurgy

Info

Publication number
JPH08199201A
JPH08199201A JP7012781A JP1278195A JPH08199201A JP H08199201 A JPH08199201 A JP H08199201A JP 7012781 A JP7012781 A JP 7012781A JP 1278195 A JP1278195 A JP 1278195A JP H08199201 A JPH08199201 A JP H08199201A
Authority
JP
Japan
Prior art keywords
powder
mixture
iron powder
mixing
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7012781A
Other languages
Japanese (ja)
Inventor
Eiji Hatsuya
榮治 初谷
Yoshiaki Maeda
義昭 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7012781A priority Critical patent/JPH08199201A/en
Publication of JPH08199201A publication Critical patent/JPH08199201A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To produce a partially alloyed steel powder with which high-strength sintered parts are obtainable by low-temp. sintering at a low cost by uniformly mixing Ni powder with and sticking to a base iron powder uniformly mixed with a binder, then mixing and sticking Cu powder and MoO3 powder with and to this powder mixture and heating the mixture in a reducing atmosphere. CONSTITUTION: A binder is previously mixed uniformly with a base iron powder and 1.5 to 5wt.% Ni powder is added to this mixture and the mixture is uniformly mixed by a stationary vessel and rotary vane type high-speed mixing machine, by which the powder mixture is adhered to the base iron powder. On or more kinds of <=2wt.% Cu powder and 0.4 to 1.5wt.%, in terms of Mo, MoO3 powder are added to the mixture and the mixture is mixed to adhere these powders to the mixture and thereafter, the mixture is heated in the reducing atmosphere. The base iron powder is high-purity iron powder consisting of <=0.04wt.% Mn, <=0.003wt.% P and the balance iron with inevitable impurities. The Ni powder is preferably carbonyl Ni powder having the max. particle of <45μm and the average Fischer grain size of 3 to 5μm. As a result, the partially alloyed iron powder for powder metallurgy which yields the high-strength sintered parts by the low-temp. sintering at about 1130 to 1150 deg.C is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金用部分合金化
鋼粉の製造方法に関し、特に、1130〜1150℃程
度の低温度の焼結でも高強度の焼結部品が得られる粉末
冶金用部分合金化鋼粉の製造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a partially alloyed steel powder for powder metallurgy, and particularly for powder metallurgy in which a high-strength sintered part can be obtained even at a low temperature of about 1130 to 1150 ° C. The present invention relates to a method for producing partially alloyed steel powder.

【0002】[0002]

【従来の技術】粉末冶金プロセスにおいては、従来、純
鉄粉を主原料とした焼結部品が一般に製造されていた
が、この種の焼結部品は、強度レベルが低く、その用途
が限定されていた。そこで、最近では、高強度焼結部品
を対象とした粉末冶金用原料として、純鉄粉に替えて種
々の合金鋼粉を使用する技術が発達しつつある。
2. Description of the Related Art In powder metallurgical processes, conventionally, sintered parts made of pure iron powder as a main raw material have been generally manufactured, but this type of sintered part has a low strength level and its use is limited. Was there. Therefore, recently, as a raw material for powder metallurgy for high-strength sintered parts, a technique of using various alloy steel powders instead of pure iron powders has been developed.

【0003】ところで、合金化の方法には3種類あっ
て、まず、ある程度以上の合金成分を溶鋼段階で含有さ
せてからアトマイズし、合金鋼粉(以下、予合金鋼粉と
いう)を得る方法は、得られた合金鋼粉の圧縮性が低
く、その成形体及び焼結体は、焼結密度が高くならない
ので、強度が低いという問題があった。一方、純鉄粉と
合金元素の粉末を混合したままの状態で圧縮・成形し、
該成形体を焼結する際に合金元素粉末を純鉄粉と反応さ
せて固溶させる方法もある(以下、予混合という)。し
かしながら、この方法では、混合鋼粉の圧縮性はある程
度確保されるものの、成形性が低下したり、混合後の運
搬、貯蔵中や成形時の粉末偏析、さらには、焼結時の合
金元素の固溶及び拡散が充分でないことに起因して、焼
結体の組織が不均一となったりする問題があった。
By the way, there are three types of alloying methods. First, a method of obtaining alloy steel powder (hereinafter referred to as pre-alloyed steel powder) by containing a certain amount or more of alloy components at the molten steel stage and then atomizing The obtained alloy steel powder has low compressibility, and the molded body and the sintered body thereof have a problem that the strength is low because the sintered density does not increase. On the other hand, the pure iron powder and the alloy element powder are compressed and molded in a mixed state,
There is also a method of reacting the alloy element powder with pure iron powder to form a solid solution when the compact is sintered (hereinafter referred to as premixing). However, in this method, although the compressibility of the mixed steel powder is ensured to some extent, the formability is lowered, the powder is segregated during transportation after mixing, during storage or during molding, and further, the alloying elements during sintering are There is a problem that the structure of the sintered body becomes non-uniform due to insufficient solid solution and diffusion.

【0004】そこで、例えば特公昭45−9649号公
報に開示されているように、純鉄粉に合金粉末を拡散付
着させることによって上記の問題を克服することが提案
された。該公報記載の具体的な方法は、鉄粉と、1.5
0〜2.00%のカーボニルNi粉と、Mo換算で0.
40〜1.00%のMoO3 粉と、Cu換算で0.5〜
2.00%の酸化銅粉あるいは銅粉との混合物を、還元
性雰囲気下で704〜1010℃に加熱して、これら合
金元素粉を部分的に上記鉄粉に拡散付着させ、集合化粒
子の摩粉後、約732℃で再度歪み取り焼鈍をするもの
である。この合金鋼粉は、成形して焼結する際に、さら
に合金元素の拡散を図ることも可能である。
Therefore, as disclosed in, for example, Japanese Patent Publication No. 45-9649, it has been proposed to overcome the above problems by diffusing and depositing alloy powder on pure iron powder. A specific method described in the publication is iron powder and 1.5
Carbonyl Ni powder of 0 to 2.00% and Mo in terms of Mo.
40-1.00% MoO 3 powder and 0.5-Cu conversion
A 2.00% copper oxide powder or a mixture with copper powder is heated to 704 to 1010 ° C. under a reducing atmosphere to partially diffuse and adhere these alloy element powders to the iron powder to form aggregated particles. After milling, strain relief annealing is performed again at about 732 ° C. When this alloy steel powder is molded and sintered, it is possible to further diffuse the alloy elements.

【0005】しかしながら、上記した部分拡散付着型合
金鋼粉は、1130〜1150℃程度の低温で焼結した
場合、その焼結体の浸炭焼入後に高い強度が得られない
という問題があった。これは、強度向上元素であるN
i、Moの融点が高く、また鉄粉中への拡散速度が遅い
ためであって、十分な拡散を得るには、高温かつ長時間
の焼結処理が必要となると考えられる。また、鉄粉と、
前記合金元素またはその酸化物粉末との混合物は、混合
から拡散付着するまでの間に、比重差によって合金元素
またはその酸化物の粉末が分離、偏析を起こすことも一
因と考えられる。
However, when the above partial diffusion adhesion type alloy steel powder is sintered at a low temperature of about 1130 to 1150 ° C., there is a problem that high strength cannot be obtained after carburizing and quenching the sintered body. This is N, which is a strength improving element.
This is because the melting points of i and Mo are high and the diffusion speed into the iron powder is slow, and it is considered that high temperature and long-time sintering treatment is required to obtain sufficient diffusion. Also, with iron powder,
It is also considered that the mixture of the alloy element or the oxide powder thereof causes separation and segregation of the powder of the alloy element or the oxide due to the difference in specific gravity between mixing and diffusion and adhesion.

【0006】そこで、近年、上記部分拡散付着問題の解
決策が盛んに研究されるようになり、以下に示す方法が
提案され、実用されている。 (1)高純度鉄粉に、Ni、Cu、Moのうち2種類以
上の元素を予め合金化した合金粉を拡散付着させる方法
で、予め合金化させることによって低融点化し、拡散、
合金化を容易にするものである(例えば、特開昭63−
297502号や特開平2−145702号公報等)。
Therefore, in recent years, solutions to the above partial diffusion adhesion problem have been actively studied, and the following methods have been proposed and put into practical use. (1) A high-purity iron powder is preliminarily alloyed by a method of diffusing and adhering an alloy powder in which two or more kinds of elements among Ni, Cu, and Mo are preliminarily alloyed.
It facilitates alloying (see, for example, Japanese Patent Laid-Open No. 63-
297502 and JP-A-2-145702).

【0007】(2)上記(1)の方法において、Ni;
6〜8wt%、Cu;2wt%以下、Mo;0.5〜
1.0wt%を目標として拡散付着するもので、これは
前記特公昭45−9649号公報開示の技術よりもNi
の配合量を著しく高めて強度向上を図ったものである
(特開平2−145702号公報)。 (3)高純度鉄粉に、Ni、Cu、Moの単体元素の微
粉あるいはこれら元素のうち2種類以上の元素を予め合
金化した合金微粉で、これら微粉のうち1種類以上のも
のが、平均粒径1〜5μm、比表面積が0.45〜0.
80m2 /gである合金用微粉を拡散付着させる方法で
あり、平均粒径1〜5μmの超微粉を用いることによっ
て、微粉末の鉄粉粒子間への分散を良好とし、組織の不
均一化の防止を図るとともに、比表面積を上記の範囲に
特定することによって、微粉同士の絡み合いによる凝集
塊の形成を防止しつつ、鉄粉と合金用粉の絡み性を良く
し、接触面積を大きくして拡散を促進しようとするもの
である(特開平2−145703号公報)。
(2) In the above method (1), Ni;
6-8 wt%, Cu; 2 wt% or less, Mo; 0.5-
The target is 1.0 wt% to diffuse and adhere, which is more Ni than the technique disclosed in Japanese Patent Publication No. 45-9649.
It is intended to improve the strength by remarkably increasing the compounding amount of (No. 2-145702). (3) High-purity iron powder, fine powder of a single element of Ni, Cu, Mo, or alloy fine powder in which two or more kinds of these elements are alloyed in advance, and one or more kinds of these fine powders are average. The particle size is 1 to 5 μm and the specific surface area is 0.45 to 0.
This is a method for diffusing and adhering 80 m 2 / g of fine powder for alloys. By using ultrafine powder with an average particle size of 1 to 5 μm, the fine powder is well dispersed between the iron powder particles, and the structure becomes non-uniform. In addition to preventing the above, by specifying the specific surface area within the above range, while preventing the formation of agglomerates due to the entanglement of the fine powder, improve the entanglement of the iron powder and the alloy powder, to increase the contact area To promote diffusion (Japanese Patent Laid-Open No. 2-145703).

【0008】(4)上記(1)〜(3)の方法に加え
て、有機溶剤あるいは有機溶剤にレジン等の結合剤を添
加した溶液を用いて湿式混合を行う方法や、鉄粉と、他
の金属粉末または合金粉末とを、ポリ酢酸ビニル、ニト
ロセルロース、ポリアクリル酸エステル及びポリメタク
リル酸エステルよりなる群から選択される少なくとも1
種を主成分とするバインダと共に均一に混合し、乾燥し
た後、還元性雰囲気下で750〜1000℃の温度で加
熱して拡散付着させる方法があり、湿式混合やバインダ
の作用によって、混合時あるいは混合後拡散付着迄の偏
析を防止し、拡散付着が均一、十分に行われるようにす
るものである(上記公報及び特開平3−97801号公
報)。
(4) In addition to the above methods (1) to (3), a method of wet mixing using an organic solvent or a solution obtained by adding a binder such as a resin to an organic solvent, iron powder, and others At least one selected from the group consisting of polyvinyl acetate, nitrocellulose, polyacrylic acid ester and polymethacrylic acid ester.
There is a method of uniformly mixing with a binder containing seeds as a main component, drying, and then heating at a temperature of 750 to 1000 ° C. in a reducing atmosphere to diffuse and adhere. It is intended to prevent the segregation after the mixing and to the diffusion and adhesion so that the diffusion and adhesion can be performed uniformly and sufficiently (the above-mentioned publication and JP-A-3-97801).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た改良技術にも未だ以下のような問題が内在している。
すなわち、 (A)Ni、Cu、Moのうち2種類以上の元素を予め
合金化した合金粉末を拡散付着させる方法では、予め合
金化した合金粉末の製造コストが高く、また、目標とす
る合金元素配合が多種にわたる場合、種々の合金粉末を
用意しなければならない。さらに、上記特開平2−14
5702号のように、Ni粉の配合量を高めると、製造
コストは更に上昇する。
However, the above-mentioned improved technology still has the following problems.
That is, (A) In the method of diffusing and depositing the alloy powder in which two or more kinds of elements among Ni, Cu, and Mo are alloyed in advance, the manufacturing cost of the alloy powder in which alloying is performed beforehand is high, and the target alloy element is In the case of various compounding, various alloy powders must be prepared. Further, the above-mentioned Japanese Patent Laid-Open No. 2-14
As in No. 5702, when the amount of Ni powder blended is increased, the manufacturing cost is further increased.

【0010】(B)Ni、Cu、Moの単体元素の微粉
を用いる場合、上記(3)や(4)の方法を採用すれ
ば、従来よりも焼結体の強度は向上するものの、高温、
長時間の焼結処理を行った場合に比べると十分な強度は
得られない。そして、低温焼結体の組織には、強度の低
い粗大なオーステナイト領域が多く観察され、これが強
度不足の原因となっていた。
(B) In the case of using fine powder of a single element of Ni, Cu, Mo, if the methods (3) and (4) are adopted, the strength of the sintered body is improved as compared with the conventional one, but at high temperature,
Sufficient strength cannot be obtained as compared with the case where the sintering process is performed for a long time. And, in the structure of the low temperature sintered body, many coarse austenite regions having low strength were observed, which was a cause of insufficient strength.

【0011】本発明は、かかる事情を鑑み、安価な製造
コストで、且つに1130〜1150℃程度の低温焼結
でも焼結浸炭熱処理体の強度を従来に比べて大幅に向上
させることのできる粉末冶金用部分合金化鋼粉の製造方
法を提供することを目的とする。
In view of such circumstances, the present invention is a powder which can be manufactured at a low cost and can significantly improve the strength of the sintered carburized heat-treated body even in the low temperature sintering of about 1130 to 1150 ° C. as compared with the conventional powder. An object of the present invention is to provide a method for producing a partially alloyed steel powder for metallurgy.

【0012】[0012]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究し、従来の部分拡散付着型合金鋼粉
を原料とした焼結体の組織中に粗大なオーステナイト領
域が多く観察されることに気が付き、この低強度の粗大
なオーステナイト領域をできるだけ小さくし、マルテン
サイト組織の領域を大きくすることを着想した。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and observed many coarse austenite regions in the structure of a sintered body using a conventional partial diffusion adhesion type alloy steel powder as a raw material. As a result, he found that the low-strength coarse austenite region was made as small as possible and the martensite structure region was made large.

【0013】その結果、合金元素Ni、Cu、Moのう
ち、Ni、Cuがオーテナイト形成元素であり、Niの
方がCuよりもその作用が強く、またNiはこれら3元
素のうち最もFe中で拡散速度が低いことから、焼結時
にNiをできるだけ均一に分布させておく必要性を見出
した。さらに、詳細な研究を進めた結果、Niの鉄粉粒
子の回りの均一な拡散付着は、部分合金化熱処理の前
の、鉄粉と各添加合金用粉の混合方法に大きく影響され
ることが判明した。つまり、混合時に先ずNi粉を鉄粉
粒子の回りの均一に付着させ、その状態を拡散付着処理
時、つまり還元性雰囲気での加熱まで維持しておくこと
が重要であることがわかった。
As a result, among the alloy elements Ni, Cu and Mo, Ni and Cu are auteneite forming elements, and Ni has a stronger action than Cu, and Ni is the most elemental Fe among these three elements. Since the diffusion rate is low, it was found necessary to distribute Ni as uniformly as possible during sintering. Furthermore, as a result of detailed research, the uniform diffusion and adhesion of the Ni powder particles around the iron powder particles is greatly influenced by the mixing method of the iron powder and the powders for each additive alloy before the partial alloying heat treatment. found. That is, it has been found that it is important that the Ni powder is first adhered uniformly around the iron powder particles during the mixing, and that state is maintained during the diffusion adhesion treatment, that is, until heating in the reducing atmosphere.

【0014】本発明は、上記の知見に基づきなされたも
ので、ベース鉄粉に、予めバインダを均一に混合し、次
いでNi粉を均一混合、付着させた後、難酸化性金属粉
及び/又は易還元性金属酸化物粉の1種以上を混合、付
着させ、還元性雰囲気で加熱することを特徴とする粉末
冶金用部分合金化鋼粉の製造方法である。また、本発明
は、ベース鉄粉に、予めバインダを均一に混合し、次い
で1.5〜5wt%のNi粉を均一混合、付着した後、
2重量%以下のCu粉及びMo換算で0.4〜1.5重
量%のMoO3 粉の1種以上を混合、付着させ、還元性
雰囲気で加熱することを特徴とする粉末冶金用部分合金
化鋼粉の製造方法である。さらに、本発明は、上記ベー
ス鉄粉が、Mn;0.04wt%以下、P;0.003
wt%以下、残部鉄及び不可避的不純物からなる高純度
鉄粉であったり、上記Ni粉が、最大粒子45μm未満
で平均フィッシャ(Fisher:人名)粒度3〜5μ
mのカーボニルNi粉であったり、あるいは上記混合を
固定容器回転翼形高速混合機で行うことを特徴とする粉
末冶金用部分合金化鋼粉の製造方法でもある。
The present invention has been made based on the above-mentioned findings. A base iron powder is uniformly mixed with a binder in advance, and then Ni powder is uniformly mixed and adhered to the base iron powder. A method for producing a partially alloyed steel powder for powder metallurgy, which comprises mixing and adhering one or more kinds of easily reducing metal oxide powders, and heating the mixture in a reducing atmosphere. Further, in the present invention, the base iron powder is uniformly mixed with a binder in advance, and then 1.5 to 5 wt% of Ni powder is uniformly mixed and adhered to the base iron powder.
Partial alloy for powder metallurgy, characterized in that 2% by weight or less of Cu powder and 0.4 to 1.5% by weight of MoO 3 powder in terms of Mo are mixed and adhered and heated in a reducing atmosphere. It is a method of producing a chemical steel powder. Furthermore, in the present invention, the above-mentioned base iron powder is Mn: 0.04 wt% or less, P: 0.003
High-purity iron powder consisting of less than wt%, balance iron and unavoidable impurities, or the above Ni powder has an average particle size of less than 45 μm and an average fisher (Fisher: person name) particle size of 3 to 5 μm.
m is a carbonyl Ni powder, or the above mixing is carried out by a fixed vessel rotary vane type high speed mixer, which is also a method for producing a partially alloyed steel powder for powder metallurgy.

【0015】なお、ベース鉄粉は、必ずしも純鉄を意味
せず、他の合金成分を含む所謂合金鋼粉であっても良
い。
The base iron powder does not necessarily mean pure iron but may be so-called alloy steel powder containing other alloy components.

【0016】[0016]

【作用】本発明では、ベース鉄粉に、予めバインダを均
一に混合し、次いでNi粉を均一混合、付着させた後、
難酸化性金属粉及び/又は易還元性金属酸化物粉の1種
以上を混合、付着させ、還元性雰囲気で加熱するように
したので、鉄粉と合金粉の混合時に先ずNi粉を鉄粉粒
子の回りに均一に付着させ、その状態を拡散付着処理時
の加熱後まで維持しておけるようになる。その結果、得
られた合金鋼粉は、成形体として焼結中にNiと、M
o、Cu等拡散付着処理時酸化しない合金元素の1種以
上が鉄粉中に拡散し、さらに、その後の浸炭熱処理によ
って、焼結体組織は、Ni含有量の大きい残留オーステ
ナイト相が減少し、マルテンサイト相が増加するように
なる。
In the present invention, the base iron powder is uniformly mixed with the binder in advance, and then the Ni powder is uniformly mixed and adhered to the base iron powder.
Since at least one kind of non-oxidizing metal powder and / or easily reducing metal oxide powder is mixed and adhered and heated in a reducing atmosphere, Ni powder is first mixed with iron powder when mixing iron powder and alloy powder. The particles can be uniformly attached around the particles, and the state can be maintained until after heating during the diffusion attachment process. As a result, the alloy steel powder obtained was mixed with Ni and M during sintering as a compact.
One or more of the alloying elements that do not oxidize during the diffusion adhesion treatment such as o and Cu are diffused in the iron powder, and the subsequent carburizing heat treatment reduces the retained austenite phase having a large Ni content in the sintered body structure, The martensite phase will increase.

【0017】また、本発明では、ベース鉄粉に、予めバ
インダを均一に混合し、次いで1.5〜5wt%のNi
粉を均一混合、付着した後、2重量%以下のCu粉及び
Mo換算で0.4〜1.5重量%のMoO3 粉の1種以
上を混合、付着させ、還元性雰囲気で加熱するようにし
たので、上記効果が一層確実に達成できるようになる。
In the present invention, the base iron powder is uniformly mixed with a binder in advance, and then 1.5 to 5 wt% of Ni is mixed.
After uniformly mixing and adhering the powders, at least 2% by weight of Cu powder and 0.4 to 1.5% by weight of MoO 3 powder in terms of Mo are mixed and adhered, and heated in a reducing atmosphere. Therefore, the above effect can be achieved more reliably.

【0018】さらに、本発明では、上記ベース鉄粉が、
Mn;0.04wt%以下、P;0.003wt%以
下、残部鉄及び不可避的不純物からなる高純度鉄粉であ
ったり、上記Ni粉が、最大粒子45μm未満で、平均
フィッシャ(Fisher)粒度3〜5μmのカーボニ
ルNi粉であったり、あるいは上記混合を固定容器回転
翼形高速混合機で行うようにしたので、比較的入手が容
易な原料及び設備で製造コストを高めず、容易に所定の
目的が達成できるようになる。以下に、本発明の内容補
足と合金成分の限定理由について述べておく。
Further, in the present invention, the base iron powder is
Mn: 0.04 wt% or less, P: 0.003 wt% or less, high-purity iron powder composed of the balance iron and unavoidable impurities, or the Ni powder has a maximum particle size of less than 45 μm and an average Fisher particle size of 3 Carbonyl Ni powder having a particle size of up to 5 μm, or the above mixing was carried out in a fixed vessel rotary vane type high-speed mixer, so that it is possible to easily achieve a predetermined purpose without increasing manufacturing costs with relatively easily available raw materials and equipment. Can be achieved. The supplementary content of the present invention and the reasons for limiting the alloy components will be described below.

【0019】まず、実際の大量生産を行う工程では、単
に混合機で鉄粉とNi粉等を均一に混合することは困難
であり、コストの上昇も可能な限り低く抑えた方が良
い。そこで、本発明では、バインダを使用することで特
に特殊な機能を有するミキサの使用を排除した。また、
その際、ベース鉄粉に、予めバインダを均一に混合して
おく方が、Ni粉等の合金用粉と同時に添加、混合する
よりも、均一混合、均一付着に効果が大きい。さらに、
バインダの使用によって、一旦均一に付着したNi粉
等、その他の合金用粉が拡散付着処理時まで分離、偏析
を起こすことがなく、拡散付着時の均一な付着が保証さ
れるのである。
First, in the process of actual mass production, it is difficult to simply mix the iron powder and the Ni powder with a mixer, and it is better to keep the cost increase as low as possible. Therefore, the present invention eliminates the use of a mixer having a special function by using a binder. Also,
At that time, it is more effective to uniformly mix the binder with the base iron powder in advance than to simultaneously add and mix with the alloy powder such as Ni powder to achieve uniform mixing and uniform adhesion. further,
By using the binder, the Ni powder and other alloy powders that have been once uniformly adhered do not separate and segregate until the diffusion adhesion treatment, and the uniform adhesion during the diffusion adhesion is guaranteed.

【0020】使用するバインダは、拡散付着処理により
除去される成分でなければならない。その意味で、安価
で粘性が低く、扱い易いスピンドル油が優れているが、
他のオイルやオレイン酸等であっても良い。その添加量
は、Ni粉やその他の合金用粉をベース鉄粉に付着させ
るに足る必要最小限の量で良く、多過ぎると拡散付着処
理時においてNiが鉄粉表面へ拡散し難くなる。Ni粉
やその他の合金用粉の添加量及び鉄粉の粒度によりバイ
ンダの最適量は変化するので、この必要最小限量を本発
明では特に限定しない。そして、バインダを使用するの
で、混合機としてはかかる場合に広く使用されているダ
ブルコーン型ミキサやV型ブレンダ等、容器回転型のも
ので良いが、内部に回転翼を持つ容器固定回転翼型高速
混合機、例えばヘンシェル・ミキサの使用が均一混合の
観点から最も好適である。
The binder used must be a component that is removed by the diffusion deposition process. In that sense, spindle oil that is cheap, low in viscosity, and easy to handle is excellent,
Other oils such as oleic acid may be used. The amount of addition may be the minimum necessary amount for adhering the Ni powder or other alloy powder to the base iron powder, and if it is too large, it becomes difficult for Ni to diffuse to the iron powder surface during the diffusion adhesion treatment. Since the optimum amount of the binder changes depending on the added amount of the Ni powder or other alloy powder and the particle size of the iron powder, the required minimum amount is not particularly limited in the present invention. Since a binder is used, a container rotating type such as a double cone type mixer or a V type blender which is widely used in such a case as the mixer may be used, but a container fixed rotating blade type having a rotating blade inside. The use of a high speed mixer, such as a Henschel mixer, is most preferred from a homogenous mixing perspective.

【0021】次に、付着合金元素の混合順であるが、最
もオーステナイト生成能が大きく、かつFe中での拡散
の遅いNi粉を先に混合し、その後にMo,Cu等の他
の合金用粉を混合させることが、前記ベース鉄粉にNi
粉を均一に付着させるのに都合が良かった。また、Ni
粉としては、フィッシャ(Fisher)平均粒度で3
〜5μmのカーボニルNiを使うことが好ましいが、そ
のままでは粗粒粉や疑似粒子が混入しているため、目開
き45μmの篩でこれらを除去したカーボニルNiを使
うと、均一混合、均一付着に効果がある他に、鉄中への
Niの拡散を促進するので、前記の均一付着のための方
法と併用すると効果が大きい。粗大なNi粒子や擬似粒
子が混入していると、焼結時に十分に拡散せず、オース
テナイトを安定化するので、前記のように、予め篩で除
去しておく方がよい。篩で篩うことはまた絡み合ってい
るNi粉粒子がほぐれて分散しやすくなるので、均一混
合、均一付着し易くなるという効果もある。Ni粉の平
均粒子径がフィッシャ(Fisher)粒度で3μm未
満では、微粉の飛散によって合金歩留りが低下し、5μ
mを超えると微粉粒子の鉄粉粒子間への分散が悪くな
り、かつ、焼結時に拡散しにくくなるため、焼結体組織
の不均一化が起こりやすくなる。そこで、本発明では、
平均フィッシャ(Fisher)粒度で3〜5μmのカ
ーボニルNiを使うことが好ましい。
Next, in the order of admixing the deposited alloy elements, Ni powder having the highest austenite forming ability and slow diffusion in Fe is first mixed, and thereafter, for other alloys such as Mo and Cu. To mix powder, it is possible to mix the base iron powder with Ni.
It was convenient to evenly attach the powder. In addition, Ni
The powder has a Fisher average particle size of 3
It is preferable to use carbonyl Ni of ~ 5 μm, but since coarse powder and pseudo particles are mixed in as it is, using carbonyl Ni that has removed them with a sieve of 45 μm opening is effective for uniform mixing and uniform adhesion. In addition to this, since it promotes the diffusion of Ni into iron, it is very effective when used in combination with the above method for uniform deposition. If coarse Ni particles or pseudo particles are mixed, they do not sufficiently diffuse during sintering and stabilize austenite, so it is better to remove them with a sieve beforehand as described above. Sieving with a sieve also has the effect of facilitating uniform mixing and uniform adhesion because the entangled Ni powder particles are easily disentangled and dispersed. If the average particle size of the Ni powder is less than 3 μm in terms of Fisher particle size, the alloy yield will decrease due to the scattering of fine powder, and
When it exceeds m, the fine powder particles are not well dispersed between the iron powder particles, and it is difficult for the fine powder particles to diffuse at the time of sintering, so that the structure of the sintered body tends to be nonuniform. Therefore, in the present invention,
It is preferred to use carbonyl Ni with an average Fisher grain size of 3-5 μm.

【0022】ベース鉄粉の純度を高めることも、Niの
鉄粉への拡散を促進する手段として効果があるが、前記
のようなNi粉の均一付着のための方法と併用して、M
n;0.04wt%以下、P;O.OO3%以下その他
鉄及び不可避的不純物からなる高純度鉄粉を使用すると
Niの均一拡散に特に有効であった。最後に、ベース鉄
粉に拡散付着させる合金元素を、Ni;1.5〜5wt
%を必須として、MoO3 をMo換算で0.4〜1.5
wt%、Cu:2%以下の1種以上としたのは以下の理
由による。
Increasing the purity of the base iron powder is also effective as a means for promoting the diffusion of Ni into the iron powder, but in combination with the above-mentioned method for uniformly depositing the Ni powder, M
n: 0.04 wt% or less, P: O. The use of high-purity iron powder composed of OO 3% or less, other iron, and unavoidable impurities was particularly effective for uniform diffusion of Ni. Finally, the alloy element to be diffused and adhered to the base iron powder is Ni: 1.5 to 5 wt
% Is essential, MoO 3 is 0.4 to 1.5 in terms of Mo.
The reason for using one or more of wt% and Cu: 2% or less is as follows.

【0023】Ni;焼結体中に拡散するNiは、該焼結
体の焼入性を改善して強度を向上させ、また靱性を改善
する。また、Niは、収縮を促進させる元素であり、焼
結時の寸法変化の調整に重要な元素である。そして、N
iの添加量が5wt%を越えると、合金鋼粉の圧縮性が
低下し実用上好ましくないので、5wt%以下とする。
さらに、Niが1.5wt%未満では、焼結時の寸法収
縮が少なく焼結密度が低下し、実用上好ましくないので
1.5wt%以上とする。
Ni: Ni that diffuses into the sintered body improves the hardenability of the sintered body to improve its strength and toughness. Ni is an element that promotes shrinkage, and is an important element for adjusting the dimensional change during sintering. And N
If the addition amount of i exceeds 5 wt%, the compressibility of the alloy steel powder decreases, which is not preferable in practice, so the content is set to 5 wt% or less.
Further, when Ni is less than 1.5 wt%, dimensional shrinkage during sintering is small and the sintered density is lowered, which is not preferable in practical use.

【0024】Mo;焼結体の焼入性を高め、焼入れ、焼
戻しの処理時の軟化を防止する。Moが0.4wt%未
満では強度が低く、1.5wt%を越えると、焼結体の
硬度が高く成りすぎ,該焼結体の加工性に問題が生じる
ので、0.4〜1.5wt%の範囲とした。 Cu;Cuは、Mo、Niに比べ最も焼入性改善効果が
小さいが、その添加によって通常の焼結温度で液相を出
現させ、焼結の進行を促進し、強度の向上に寄与する。
あわせてCu膨張とよばれる作用により、焼結時の寸法
変化を膨張気味とする。このため圧縮性に害を及ぼさな
い範囲で寸法変化を考慮して選択的に添加すれば良く2
%以下とする。
Mo: Improves the hardenability of the sintered body and prevents softening during quenching and tempering. If the Mo content is less than 0.4 wt%, the strength is low, and if it exceeds 1.5 wt%, the hardness of the sintered body becomes too high and the workability of the sintered body becomes problematic. The range is%. Cu; Cu has the smallest hardenability improving effect as compared with Mo and Ni, but its addition causes a liquid phase to appear at a normal sintering temperature, promotes the progress of sintering, and contributes to the improvement of strength.
In addition, due to the action called Cu expansion, the dimensional change during sintering is likely to expand. Therefore, it may be added selectively in consideration of the dimensional change within the range that does not affect the compressibility.
% Or less.

【0025】[0025]

【実施例】【Example】

(実施例−1)まず、ベース鉄粉1.5トンに対しバイ
ンダとしてスピンドル油を0〜200ccの範囲で添加し
た。このベース鉄粉は、(A)Mn;0.05〜O.0
7wt%、P;0.004〜0.010wt%、残部鉄
及び不可避的不純物よりなるものと、(B)Mn;0.
04wt%以下、P;0.003wt%以下、残部鉄及
び不可避的不純物よりなる高純度鉄粉の2種類使用す
る。一方、合金元素源のNi粉も、(a)フィッシャ
(Fisher)平均粒度3〜5μmのカーボニルNi
粉市販品と、(b)前記市販品を目開き45μmの篩で
篩い、45μm以上の粗粒、擬似粒子を除去したカーボ
ニルNi粉の2種類準備し、混合機も回転容器形のダブ
ルコーン・ミキサと容器固定回転翼形のヘンシェル・ミ
キサの2種類採用することにした。
(Example-1) First, spindle oil as a binder was added to the base iron powder of 1.5 tons in the range of 0 to 200 cc. This base iron powder has (A) Mn; 0
7% by weight, P; 0.004 to 0.010% by weight, the balance iron and inevitable impurities, and (B) Mn;
Two types of high-purity iron powder are used: 04 wt% or less, P: 0.003 wt% or less, the balance iron and inevitable impurities. On the other hand, Ni powder as an alloy element source is also (a) Carbonyl Ni having a Fisher average particle size of 3 to 5 μm.
Powder commercial product, and (b) the commercial product is sieved with a sieve having an opening of 45 μm to prepare two types of carbonyl Ni powder from which coarse particles of 45 μm or more and pseudo particles have been removed. We decided to adopt two types of mixer, a fixed-rotating blade Henschel mixer.

【0026】次に、混合方法として、(ア)ベース鉄
粉、バインダ、合金用添加粉の同時混合(比較例)、
(イ)鉄粉とバインダを事前混合後に合金用添加粉の同
時混合(比較例)、(ウ)鉄粉とバインダ事前混合後に
Ni粉を混合し、その後に他の合金用添加粉の混合(本
発明に対応)の3水準行い、鉄粉とNi粉末、MoO3
粉末、Cu粉末を4wt%Ni−1.5wt%Cu−
0.5wt%Mo−残りFeの組成になるよう乾式もし
くは湿式で混合し、得られた混合粉を水素雰囲気中で8
50〜900℃の温度で30〜60分間拡散焼鈍後、解
砕、分級するという工程で種々の部分合金化鋼粉を得
た。
Next, as a mixing method, (a) simultaneous mixing of base iron powder, binder, and additive powder for alloy (comparative example),
(A) Simultaneous mixing of the additive powder for alloy after pre-mixing the iron powder and the binder (comparative example), (c) Mixing Ni powder after pre-mixing the iron powder and the binder, and then mixing of the additive powder for other alloys ( (Corresponding to the present invention), iron powder, Ni powder, MoO 3
Powder, Cu powder 4 wt% Ni-1.5 wt% Cu-
Dry or wet mixing was carried out so that the composition was 0.5 wt% Mo-remaining Fe, and the resulting mixed powder was mixed in a hydrogen atmosphere for 8 hours.
Various partially alloyed steel powders were obtained by a process of crushing and classifying after diffusion annealing at a temperature of 50 to 900 ° C. for 30 to 60 minutes.

【0027】これらの部分合金化鋼粉の使用成績を調べ
るために、該部分合金化鋼粉のそれぞれに黒鉛粉0.5
wt%と潤滑剤としてステアリン酸亜鉛を0.8wt%
添加し、密度が7Mg/m3 となるように外径35m
m、内径14mm、高さ10mmの中空円筒体に成形
し、1130℃で20分間、RXガス雰囲気中で焼結し
た。その後、該焼結体を900℃、カーボン・ポテンシ
ャル0.9%で60分間浸炭処理し、温度60℃の油で
焼き入れ、200℃×60分の条件で焼戻しを行い、得
られた中空円筒試料を円筒長さ方向に圧縮試験を行って
それぞれの圧環強さを測定した。
In order to investigate the use results of these partially alloyed steel powders, graphite powder 0.5 was added to each of the partially alloyed steel powders.
wt% and zinc stearate as a lubricant 0.8 wt%
35m outside diameter to make the density 7Mg / m 3
m, an inner diameter of 14 mm, and a height of 10 mm were molded into a hollow cylindrical body, and sintered at 1130 ° C. for 20 minutes in an RX gas atmosphere. Then, the sintered body was carburized at 900 ° C. for 60 minutes at a carbon potential of 0.9%, quenched with oil at a temperature of 60 ° C., and tempered at 200 ° C. for 60 minutes to obtain a hollow cylinder. The sample was subjected to a compression test in the length direction of the cylinder to measure the radial crushing strength of each sample.

【0028】上記の混合条件と、測定した圧環強さを表
1に示す。
Table 1 shows the above mixing conditions and the measured radial crushing strength.

【0029】[0029]

【表1】 [Table 1]

【0030】表1によれば、鉄粉にNi粉末、MoO3
粉末、Cu粉末を4wt%Ni−1.5wt%Cu−
0.5wt%Mo−残りFeの組成になるように拡散附
着させた部分合金化鋼粉の製造方法において、拡散附着
させる前の混合工程で、ベース鉄粉とバインダを適量事
前混合後に、先ずNi粉を混合し、その後にその他の合
金用添加粉を混合する(上記(ウ)の方法)ことによ
り、1130℃の低温焼結、浸炭・焼入体において高い
焼結体強度が得られることがわかる。ただし、比較例2
と3、比較例4と5、発明例1と2とをそれぞれ比較す
れば明らかなように、バインダ量が多過ぎると、部分合
金化熱処理時にFeとNiの相互拡散を阻害するため、
かえって焼結体強度が低くなっており、バインダ添加量
には最適量があることもわかった。
According to Table 1, iron powder, Ni powder, MoO 3
Powder, Cu powder 4 wt% Ni-1.5 wt% Cu-
In a method for producing a partially alloyed steel powder diffusion-adhered to have a composition of 0.5 wt% Mo-remaining Fe, in a mixing step before diffusion-adhesion, an appropriate amount of base iron powder and a binder are pre-mixed, and then Ni By mixing the powders and then mixing the other additive powders for alloys (method (c) above), it is possible to obtain high sintered body strength in low-temperature sintering at 1130 ° C and carburizing / quenching. Recognize. However, Comparative Example 2
3 and Comparative Examples 4 and 5, respectively, and Invention Examples 1 and 2, as is clear, when the binder amount is too large, the mutual diffusion of Fe and Ni is hindered during the partial alloying heat treatment.
On the contrary, the strength of the sintered body was low, and it was also found that there was an optimum amount of binder added.

【0031】ベース鉄粉にバインダを事前混合後、他の
合金用添加粉の混合に先立ってNi粉の混合を行う本発
明に係る製造方法で得た鋼粉からは、ベース鉄粉の高純
度化、45μm以上の粗粒、擬似粒子を篩で除去した3
〜5μmの微細なカーボニルNi粉の使用、容器固定回
転翼形高速ミキサ使用等により相乗作用を発揮して、さ
らに高強度の焼結体を得ている。
From the steel powder obtained by the manufacturing method according to the present invention, in which the binder is premixed with the base iron powder, and then the Ni powder is mixed prior to the mixing with other alloy additive powder, the high purity of the base iron powder is obtained. And removing coarse particles of 45 μm or more and pseudo particles with a sieve 3
By using a fine carbonyl Ni powder of ˜5 μm, using a container fixed rotary vane type high-speed mixer, etc., a synergistic effect is exerted to obtain a sintered body of higher strength.

【0032】高純度のベース鉄粉、スピンドル油100
ccをダブルコーン・ミキサで事前混合し、次いで、4
5μm以上の粗粒、擬似粒子を篩で除去した3〜5μm
の微細なカーボニルNi粉を混合、その後他の合金用添
加粉を混合した発明例5の焼結体圧環強さは、1494
MPaであり、非高純度のベース鉄粉、スピンドル油1
00cc、45μm以上の粗粒、擬似粒子を篩で除去し
ない3〜5μmの市販のカーボニルNi粉、その他の合
金用添加粉をダブルコーン・ミキサで同時混合した比較
例2の焼結体圧環強さ1338MPaよりも約12%の
強度向上が得られた。さらに、発明例5のダブルコーン
型に代えてヘンシェル・ミキサを用いた発明例9の焼結
体圧環強さは、1525MPaで、前記比較例2よりも
約14%の強度向上が得られている。 (実施例−2)まず、鉄粉1.5トンに対しバインダと
してスピンドル油を200cc添加した。このベース鉄
粉は、Mn;0.05〜O.07wt%、P;0.00
4〜0.010wt%、残部鉄及び不可避的不純物より
なるもの、Ni粉は、フィッシャ(Fisher)平均
粒度3〜5μmのカーボニルNi粉市販品を目開き45
μmの篩で篩い、45μm以上の粗粒、擬似粒子を除去
したものを準備し、混合機は、回転容器型ダブルコーン
・ミキサを用いた。
High-purity base iron powder, spindle oil 100
cc premixed in a double cone mixer, then 4
3 to 5 μm after removing coarse particles and pseudo particles of 5 μm or more with a sieve
The crush strength of the sintered compact of Inventive Example 5 in which the fine carbonyl Ni powder of No. 1 was mixed, and then the other additive powder for alloy was mixed was 1494.
MPa, non-high purity base iron powder, spindle oil 1
00cc, coarse particles of 45 μm or more, commercial carbonyl Ni powder of 3 to 5 μm in which pseudo particles are not removed by a sieve, and other alloy additive powders are simultaneously mixed in a double cone mixer, and the radial crushing strength of a sintered body of Comparative Example 2 A strength improvement of about 12% was obtained over 1338 MPa. Further, the radial crushing strength of the sintered body of Inventive Example 9 using a Henschel mixer in place of the double cone type of Inventive Example 5 was 1525 MPa, which was about 14% higher than that of Comparative Example 2. . (Example-2) First, 200 cc of spindle oil was added as a binder to 1.5 tons of iron powder. This base iron powder has a Mn of 0.05 to O. 07 wt%, P; 0.00
4 to 0.010 wt%, the balance consisting of iron and unavoidable impurities, and Ni powder is a commercially available carbonyl Ni powder having a Fisher average particle size of 3 to 5 μm.
A sieve in which coarse particles of 45 μm or more and pseudo particles were removed was prepared, and a rotating container type double cone mixer was used as a mixer.

【0033】混合方法は、(I)ベース鉄粉とバインダ
を事前混合後に合金用添加粉の同時混合(比較例)、
(II)ベース鉄粉とバインダの事前混合後にNi粉を
混合し、その後に他の合金用添加粉の混合(本発明に対
応)の2水準行った。そして、ベース鉄粉とNi粉末、
MoO3 粉末を2wt%Ni−1.0wt%Mo−残り
Feの組成になるように湿式混合し、得られた混合粉を
水素雰囲気中で850〜900℃の温度で30〜60分
間拡散焼鈍後、解砕、分級するという工程で部分合金化
鋼粉を得た。
The mixing method is as follows: (I) Base iron powder and binder are pre-mixed and then alloy additive powder is simultaneously mixed (comparative example),
(II) After mixing the base iron powder and the binder in advance, the Ni powder was mixed, and thereafter, two levels of mixing of other alloy additive powder (corresponding to the present invention) were performed. And base iron powder and Ni powder,
MoO 3 powder was wet mixed so as to have a composition of 2 wt% Ni-1.0 wt% Mo-remaining Fe, and the obtained mixed powder was subjected to diffusion annealing in a hydrogen atmosphere at a temperature of 850 to 900 ° C. for 30 to 60 minutes. Partially alloyed steel powder was obtained by the steps of crushing and classifying.

【0034】これらの部分合金化鋼粉に、黒鉛粉0.3
wt%と潤滑材としてステアリン酸亜鉛を0.8wt%
添加後、成形圧力686MPaで中空円筒状に成形し、
1150℃で60分間、RXガス雰囲気中で焼結した。
その後、該焼結体を920℃、カーボン・ポテンシャル
0.9%で150分間浸炭処理し、温度60℃の油で焼
入れ、180℃×60分の条件で焼戻しを行い、得られ
た試料の引張試験を行ってそれぞれの引張強さを測定し
た。
Graphite powder 0.3% was added to these partially alloyed steel powders.
wt% and zinc stearate as a lubricant 0.8 wt%
After the addition, it is molded into a hollow cylinder at a molding pressure of 686 MPa,
Sintering was performed in an RX gas atmosphere at 1150 ° C. for 60 minutes.
Then, the sintered body was carburized at 920 ° C. and a carbon potential of 0.9% for 150 minutes, quenched with oil at a temperature of 60 ° C., and tempered under the conditions of 180 ° C. × 60 minutes to obtain a tensile sample. A test was conducted to measure the tensile strength of each.

【0035】ベース鉄粉とバインダの事前混合後に合金
用添加粉を同時混合した部分合金化鋼粉を用いた試料の
引張強さは、1150N/mm2 であったのに対して、
ベース鉄粉とバインダの事前混合後に先ずNi粉を混合
し、その後にMoO3 粉末を混合した部分合金化鋼粉
(本発明に対応)を用いた試料の引張強さは、1260
N/mm2 で約6%の焼結体強度の向上が見られた。
The tensile strength of the sample using the partially alloyed steel powder obtained by premixing the base iron powder and the binder with the alloy additive powder was 1150 N / mm 2 , whereas
The tensile strength of the sample using the partially alloyed steel powder (corresponding to the present invention) in which the Ni powder was first mixed after the base iron powder and the binder were premixed and then the MoO 3 powder was mixed was 1260.
An improvement of about 6% in strength of the sintered body was observed at N / mm 2 .

【0036】[0036]

【発明の効果】以上述べたように、本発明に係る粉末冶
金用部分合金化鋼粉の製造方法により、鉄粉にNi粉を
均一に混合、付着できるようにした。その結果、この方
法で製造した部分合金化粉を用いれば、製造コストの高
い予め完全合金化した合金微粉末を用いたり、また値段
の高いNi粉の配合量を高めこともなく、粉末冶金プロ
セスによる焼結部品の製造に際して、圧縮・成形が容易
で、かつ広く普及している1130〜1150℃の低温
焼結でも、高い強度が得られ、大量生産焼結部品の高強
度化に大きく貢献できる。
As described above, the method for producing a partially alloyed steel powder for powder metallurgy according to the present invention enables the Ni powder to be uniformly mixed and adhered to the iron powder. As a result, if the partially alloyed powder produced by this method is used, it is not necessary to use a fine alloy powder that has been completely alloyed in advance, which is high in manufacturing cost, or to increase the amount of expensive Ni powder compounded. In the production of sintered parts by, the high strength can be obtained even in the low temperature sintering of 1130 ~ 1150 ° C, which is easy to compress / mold and is widely used, and it can greatly contribute to the high strength of mass produced sintered parts. .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ベース鉄粉に、予めバインダを均一に混
合し、次いでNi粉を均一混合、付着させた後、難酸化
性金属粉及び/又は易還元性金属酸化物粉の1種以上を
混合、付着させ、還元性雰囲気で加熱することを特徴と
する粉末冶金用部分合金化鋼粉の製造方法。
1. A base iron powder is uniformly mixed with a binder in advance, and then Ni powder is uniformly mixed and adhered thereto. Then, at least one of non-oxidizable metal powder and / or easily reducible metal oxide powder is added. A method for producing a partially alloyed steel powder for powder metallurgy, which comprises mixing, adhering, and heating in a reducing atmosphere.
【請求項2】 ベース鉄粉に、予めバインダを均一に混
合し、次いで1.5〜5wt%のNi粉を均一混合、付
着した後、2重量%以下のCu粉及びMo換算で0.4
〜1.5重量%のMoO3 粉の1種以上を混合、付着さ
せ、還元性雰囲気で加熱することを特徴とする粉末冶金
用部分合金化鋼粉の製造方法。
2. A base iron powder is uniformly mixed with a binder in advance, then 1.5 to 5 wt% of Ni powder is uniformly mixed and adhered thereto, and then 2 wt% or less of Cu powder and 0.4 in Mo conversion.
A method for producing a partially alloyed steel powder for powder metallurgy, which comprises mixing and adhering one or more kinds of MoO 3 powder of up to 1.5% by weight and heating the mixture in a reducing atmosphere.
【請求項3】 上記ベース鉄粉が、Mn;0.04wt
%以下、P;0.003wt%以下、残部鉄及び不可避
的不純物からなる高純度鉄粉であることを特徴とする請
求項1又は2記載の粉末冶金用部分合金化鋼粉の製造方
法。
3. The base iron powder is Mn; 0.04 wt.
% Or less, P: 0.003 wt% or less, and a high-purity iron powder consisting of the balance iron and inevitable impurities, The method for producing a partially alloyed steel powder for powder metallurgy according to claim 1 or 2.
【請求項4】 上記Ni粉が、最大粒子が45μm未満
で、平均フィッシャ(Fisher)粒度3〜5μmの
カーボニルNi粉であることを特徴とする請求項1又は
2記載の粉末冶金用部分合金化鋼粉の製造方法。
4. The partial alloying for powder metallurgy according to claim 1, wherein the Ni powder is carbonyl Ni powder having a maximum particle size of less than 45 μm and an average Fisher particle size of 3 to 5 μm. Steel powder manufacturing method.
【請求項5】 上記混合を固定容器回転翼形高速混合機
で行うことを特徴とする請求項1又は2記載の粉末冶金
用部分合金化鋼粉の製造方法。
5. The method for producing a partially alloyed steel powder for powder metallurgy according to claim 1 or 2, wherein the mixing is performed by a fixed vessel rotary blade type high speed mixer.
JP7012781A 1995-01-30 1995-01-30 Production of partially alloyed steel powder for powder metallurgy Withdrawn JPH08199201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7012781A JPH08199201A (en) 1995-01-30 1995-01-30 Production of partially alloyed steel powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7012781A JPH08199201A (en) 1995-01-30 1995-01-30 Production of partially alloyed steel powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JPH08199201A true JPH08199201A (en) 1996-08-06

Family

ID=11814950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7012781A Withdrawn JPH08199201A (en) 1995-01-30 1995-01-30 Production of partially alloyed steel powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH08199201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045273A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object
US10265766B2 (en) 2013-06-07 2019-04-23 Jfe Steel Corporation Alloy steel powder for powder metallurgy and method of producing iron-based sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10265766B2 (en) 2013-06-07 2019-04-23 Jfe Steel Corporation Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
WO2015045273A1 (en) * 2013-09-26 2015-04-02 Jfeスチール株式会社 Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object

Similar Documents

Publication Publication Date Title
KR20170080668A (en) Alloy steel powder for powder metallurgy, and sintered body
CN105263653A (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
US20160214171A1 (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
JPH10140206A (en) Low alloy steel powder for sintering and hardening
JPH044362B2 (en)
CN100449024C (en) Alloy steel powder for powder metallurgy
JP4371003B2 (en) Alloy steel powder for powder metallurgy
EP3722022B1 (en) A pre-alloyed water atomized steel powder
EP3722021B1 (en) Partially diffusion-alloyed steel powder
JPH08199201A (en) Production of partially alloyed steel powder for powder metallurgy
EP0516404A1 (en) Mixed powder for powder metallurgy and sintered product thereof
EP3778963B1 (en) Alloyed steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JPH059641A (en) Fine crystal-grained tungsten alloy and production thereof
JPH0751721B2 (en) Low alloy iron powder for sintering
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
JP2910326B2 (en) Mixed powder for powder metallurgy and its sintered body
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JP3270970B2 (en) High strength sintered iron material and method of manufacturing the same
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
JPH09310159A (en) High strength sintered steel and its production
JP2004232004A (en) Alloy steel powder for iron-based sintered, heat-treated material superior in bearing fatigue characteristic

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402