JPH0689363B2 - High strength alloy steel powder for powder metallurgy - Google Patents

High strength alloy steel powder for powder metallurgy

Info

Publication number
JPH0689363B2
JPH0689363B2 JP63299344A JP29934488A JPH0689363B2 JP H0689363 B2 JPH0689363 B2 JP H0689363B2 JP 63299344 A JP63299344 A JP 63299344A JP 29934488 A JP29934488 A JP 29934488A JP H0689363 B2 JPH0689363 B2 JP H0689363B2
Authority
JP
Japan
Prior art keywords
powder
alloy
less
strength
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63299344A
Other languages
Japanese (ja)
Other versions
JPH02145702A (en
Inventor
均 佐久間
宏卓 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63299344A priority Critical patent/JPH0689363B2/en
Publication of JPH02145702A publication Critical patent/JPH02145702A/en
Publication of JPH0689363B2 publication Critical patent/JPH0689363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば歯車,軸受部品等各種の焼結機械部品
の製造に使用される高圧縮性、高強度の粉末治金用合金
鋼粉に関する。なお、本発明の合金鋼粉は、所望形状に
圧縮成形された後、焼結(合金粉末同士の接合)され、
しかる後HIP(熱間静水圧成形)等で各種部品に加工さ
れる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an alloy steel powder for powder metallurgy having high compressibility and high strength, which is used for manufacturing various sintered machine parts such as gears and bearing parts. Regarding The alloy steel powder of the present invention is compression-molded into a desired shape and then sintered (bonding of alloy powders),
Then, it is processed into various parts by HIP (hot isostatic pressing).

〔従来の技術〕[Conventional technology]

近年、焼結部品の高強度化の要請がますます高まってお
り、この要請に対して合金化,高密度化等の手法によ
り、種々の高強度焼結材が開発されている。
In recent years, there has been an increasing demand for higher strength of sintered parts, and in response to this demand, various high-strength sintered materials have been developed by methods such as alloying and densification.

この高強度焼結材を得る手法の1つとして、純鉄粉を主
原料とし、これにNi,Cu,Mo等の合金用単体元素微粉末を
混合し、焼結時に合金元素を固溶させる、いわゆるプレ
ミックス法がある。しかし、このプレミックス法ではプ
レス成形時に、鉄粉と合金用微粉末とが比重差によって
分離,偏析したり、焼結中に合金用微粉末の拡散が不十
分であったりして組織が不均一化し、その結果、強度や
寸法のバラツキが生じるといった問題がある。
As one of the methods for obtaining this high-strength sintered material, pure iron powder is used as a main raw material, and fine powders of elemental elements for alloys such as Ni, Cu, Mo, etc. are mixed with this, and the alloy elements are solid-dissolved during sintering. There is a so-called premix method. However, in this premix method, the iron powder and the fine powder for alloy are separated and segregated due to the difference in specific gravity during press forming, or the fine powder for alloy is not sufficiently diffused during sintering, so that the structure is not good. There is a problem in that the strength is made uniform, and as a result, variations in strength and dimensions occur.

また他の手法として、アトマイズ法の発達により、上記
Ni,Cu,No等の合金元素をFe中に固溶させた合金鋼粉が製
造されるようになり、この合金鋼粉を用いる、いわゆる
プレアロイ法が提案されている。この合金鋼粉の場合、
組織の不均一化の問題は解消できるものの、粒子の硬度
が高くなるため圧縮性が低下し、従って高密度の焼結材
が得られず、十分な強度が得られない。
In addition, as another method, due to the development of the atomizing method,
An alloy steel powder in which alloy elements such as Ni, Cu, No, etc. are dissolved in Fe has been produced, and a so-called pre-alloy method using this alloy steel powder has been proposed. In the case of this alloy steel powder,
Although the problem of inhomogeneity of the structure can be solved, the hardness of the particles is increased, so that the compressibility is lowered, so that a high density sintered material cannot be obtained and sufficient strength cannot be obtained.

そこで上記問題点を解消して高密度、高強度の焼結材料
を得る他の手法として、従来例えば特公昭45−9649号公
報に記載されているように、純鉄粉にNi,Cu,No等の単体
元素の微粉末を部分的に拡散付着させた、いわゆる部分
拡散合金鋼粉がある(第2図参照)。この公報記載の手
法により鋼粉は、圧縮性を純鉄粉と同等であり、かつ高
い焼結体強度を有している。
Therefore, as another method for solving the above problems and obtaining a high-density, high-strength sintered material, as described in, for example, Japanese Patent Publication No. 45-9649, Ni, Cu, No. There is so-called partially diffused alloy steel powder in which fine powders of elemental elements such as the above are partially diffused and adhered (see FIG. 2). According to the method described in this publication, the steel powder has a compressibility equivalent to that of pure iron powder and has high sintered body strength.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記公報記載の手法により、例えば6〜10
wt%oNiを含有するような高Ni合金鋼粉を製造する場
合、この合金用元素の融点が高く、また鉄粉中への拡散
速度が遅いことから、未拡散の合金用元素が多く残り、
十分な強度が得られない。また十分に拡散させるために
は高温で長時間の焼結が必要となり、コスト高となる問
題点がある。
However, according to the method described in the above publication, for example, 6 to 10
When manufacturing a high Ni alloy steel powder containing wt% oNi, the melting point of this alloying element is high, and the diffusion rate into the iron powder is slow, so many undiffused alloying elements remain,
Sufficient strength cannot be obtained. Further, in order to sufficiently diffuse, it is necessary to sinter at a high temperature for a long time, which causes a problem of high cost.

そこで本発明者等は、上記問題点を解消できる粉末冶金
用高強度合金鋼粉として、高純度純鉄粉に、Ni,Cu,Noの
内2種類以上の元素を予め合金化した合金微粉末を拡散
付着させたものを開発している(特願昭62−136934号参
照)。
Therefore, the inventors of the present invention, as a high-strength alloy steel powder for powder metallurgy capable of solving the above-mentioned problems, a fine alloy powder obtained by previously alloying high purity pure iron powder with two or more elements of Ni, Cu and No. We are developing a product that diffuses and adheres (see Japanese Patent Application No. 62-136934).

上記開発に係る合金鋼粉は、第1図に示すように、純鉄
粉にNi−Cu粉末,Ni−Mo粉末,あるいはNi−Cu−Mo粉末
等の何れかが拡散付着しているものである。なお、この
合金鋼粉は、上記合金微粉末の他に上記元素の単体微粉
末が拡散付着していても良い。ここで拡散付着(ディフ
ュージョンボンディング)とは、上記合金微粉末が完全
に固溶しているでのはなく、該合金微粉末の例えばCu成
分が鉄粉中に拡散し、両者の界面では一部が合金化し、
この状態で付着していることを言う。
As shown in FIG. 1, the alloy steel powder according to the above development is pure iron powder to which any one of Ni-Cu powder, Ni-Mo powder, Ni-Cu-Mo powder, etc. is diffused and adhered. is there. In addition to the above-mentioned alloy fine powder, a simple powder of the above element may be dispersed and adhered to the alloy steel powder. Here, the diffusion adhesion (diffusion bonding) does not mean that the alloy fine powder is completely dissolved, but the Cu component of the alloy fine powder diffuses into the iron powder, and at the interface between the two, Alloyed
It means that they are attached in this state.

上記開発に係る合金鋼粉では、Ni,Cu,Moの合金微粉末の
拡散付着させるようにしたので、これらの単体元素の微
粉末の場合に比較して融点を低下させることができ、高
温長時間焼結を要することなく、短時間で十分に拡散さ
せることができ、焼結強度を向上できる。
In the alloy steel powder according to the above development, since the alloy fine powder of Ni, Cu, Mo is made to diffuse and adhere, the melting point can be lowered as compared with the case of fine powder of these simple elements, and the high temperature long It is possible to sufficiently diffuse in a short period of time without requiring time sintering and improve the sintering strength.

ところがその後の実験研究により、上述の合金微粉末を
採用しても、その母粉に対する成分割合の如何によって
は上述の効果が十分に現れない、あるいは逆に製品の寸
法変化のばらつきが大きくなる等の問題が生じる場合が
あることが判明した。
However, according to subsequent experimental research, even if the above alloy fine powder is adopted, the above effect does not sufficiently appear depending on the ratio of the components to the mother powder, or conversely, the variation in dimensional change of the product becomes large. It turns out that there may be problems.

そこで本発明は、上記状況に鑑みてなされたもので、添
加元素の最適成分範囲になるように合金用微粉末を拡散
付着させることにより、確実十分な拡散を実現し、焼結
体強度の向上及び寸法変化率のばらつきの抑制が図れる
粉末冶金用高強度合金鋼粉を提供することを目的として
いる。
Therefore, the present invention has been made in view of the above situation, and realizes sure and sufficient diffusion by improving the sintered body strength by diffusing and adhering the alloy fine powder so as to be in the optimum component range of the additive element. It is also an object of the present invention to provide a high-strength alloy steel powder for powder metallurgy, which is capable of suppressing variations in dimensional change rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、C:0.01wt%以下、Si:0.02wt%以下、Mn:0.10
wt%以下、P:0.01wt%以下、S:0.010wt%以下、O:0.15w
t%以下で残部鉄及び不可避的不純物からなる高純度純
鉄粉に、Ni−Cu,Ni−Mo,Ni−Cu−Moのうち少なくとも一
種の予め合金化した複合合金微粉末を、上記純鉄粉に対
してNi:6〜8wt%、Cu:0〜2wt%、Mo:0.5〜1.0wt%Moに
なるように拡散付着させることを特徴とする焼結合金用
高強度合金鋼粉である。
The present invention, C: 0.01 wt% or less, Si: 0.02 wt% or less, Mn: 0.10
wt% or less, P: 0.01 wt% or less, S: 0.010 wt% or less, O: 0.15w
High purity pure iron powder consisting of the balance iron and unavoidable impurities at t% or less, at least one pre-alloyed composite alloy fine powder of Ni-Cu, Ni-Mo, Ni-Cu-Mo, the above pure iron A high-strength alloy steel powder for a sintered alloy, characterized by being diffused and adhered to the powder so that Ni: 6 to 8 wt%, Cu: 0 to 2 wt% and Mo: 0.5 to 1.0 wt% Mo.

ここで本発明における各構成要件の限定理由について説
明する。
Here, the reasons for limiting each constituent element in the present invention will be described.

(1)母粉である純鉄粉の組成を、C:0.01wt%以下、S
i:0.02wt%以下、Mn:0.10wt%以下、P:0.01wt%以下、
S:0.010wt%以下、O:0.15wt%以下で残部鉄及び不可避
的不純物からなる、として許容限界を定めたのは優れた
圧縮性を確保するためである。
(1) The composition of pure iron powder, which is the mother powder, is C: 0.01 wt% or less, S
i: 0.02wt% or less, Mn: 0.10wt% or less, P: 0.01wt% or less,
The reason why the allowable limit is defined as S: 0.010 wt% or less and O: 0.15 wt% or less and the balance being iron and unavoidable impurities is to ensure excellent compressibility.

Si,Mn:純鉄粉の製造過程において溶鋼の脱酸を行うため
に、少量のSiあるいはMnを添加するが、これらのOとの
親和力の強い元素は、水アトマンズ時に酸化され、酸化
介在物となって鉄粉中に残存して圧縮性を阻害する。従
ってMn,Siの添加量が多くなると酸化介在物も多くなっ
り、次の還元行程においてもこれらの酸化介在物は還元
されずに残存して圧縮性を低下させることから、Siは0.
02wt%以下、Mnが0.1wt%以下と極力少なくすることが
望ましい。
Si, Mn: A small amount of Si or Mn is added in order to deoxidize molten steel in the process of producing pure iron powder, but these elements having a strong affinity with O are oxidized during water atomization and oxidized inclusions And remains in the iron powder to impair the compressibility. Therefore, as the amount of Mn and Si added increases, the amount of oxidizing inclusions also increases, and even in the subsequent reduction process, these oxidizing inclusions remain without being reduced and reduce the compressibility, so Si is 0.
It is desirable to reduce the amount to 02 wt% or less and the Mn to 0.1 wt% or less as much as possible.

P,S:溶鋼の精練時にP,Sが残存すると鉄粉粒子を硬化さ
せ、圧縮性を低下させる。そしてこのP,Sが多いと、還
元処理後においても粒子が軟らかくならない。この鉄粉
粒子の硬化を防止するため、P,S共に0.010wt%以下とし
た。
P, S: If P, S remain during refining of molten steel, the iron powder particles are hardened and the compressibility is reduced. When the amount of P and S is large, the particles do not become soft even after the reduction treatment. In order to prevent the iron powder particles from hardening, both P and S were set to 0.010 wt% or less.

C,O:このC,Oについては還元雰囲気中で加熱する還元行
程において、脱炭,脱酸反応により低減させることが可
能であるが、還元後の鉄粉中にCが多量に残存すると圧
縮性を著しく低下させることから、Cは0.01wt%以下と
した。またOが多いと圧縮性を低下させるだけでなく、
通常の粉末冶金法において混合使用される黒鉛粉の歩留
を低下させ、さらに組織のばらつきの原因になることか
ら、Oは0.15wt%以下とした。
C, O: This C, O can be reduced by decarburization and deoxidation in the reduction process of heating in a reducing atmosphere, but if a large amount of C remains in the iron powder after reduction, it will be compressed. Therefore, the content of C is set to 0.01 wt% or less. Also, if the amount of O is large, not only will the compressibility decrease, but
O is set to 0.15 wt% or less because it reduces the yield of graphite powder mixed and used in the usual powder metallurgy method and causes the variation of the structure.

(2)上記母粉に、Ni,Cu,Moのうち2種類以上の元素を
予め合金化した合金微粉末を、上記母粉に対してNiが6
〜8wt%、Cuが0〜2wt%、Moが0.5〜1.0wt%となるよう
に拡散付着させるようにしたのは、以下の理由による。
(2) An alloy fine powder obtained by pre-alloying two or more kinds of elements among Ni, Cu and Mo is added to the above mother powder.
The reason for diffusing and adhering so as to be -8 wt%, Cu 0-2 wt% and Mo 0.5-1.0 wt% is as follows.

Niは靱性、焼入性を改善する効果があり、Moは焼入
性を高め、焼入,焼戻処理時の軟化を防止する。またCu
は強度を向上させる効果がある。
Ni has the effect of improving toughness and hardenability, and Mo enhances hardenability and prevents softening during quenching and tempering. Also Cu
Has the effect of improving strength.

この場合、Niが6wt%未満の場合は強度が不十分であ
り、一方8wt%を越えると残留オーステナイトの増加に
より強度が劣化する。Moが0.5wt%未満場合は焼入性向
上効果が得られず、1.0wt%を越えると靱性(衝撃値)
が低下する。またCuが2%を越えると焼結時の寸法変化
率のばらつき(標準偏差)が大幅に増加する。従ってN
i:6〜8wt%、Cu:0〜2wt%、Mo:0.5〜1.0wt%とする必要
がある。
In this case, if the Ni content is less than 6 wt%, the strength is insufficient, while if it exceeds 8 wt%, the strength deteriorates due to an increase in retained austenite. If Mo is less than 0.5 wt%, the effect of improving hardenability cannot be obtained, and if it exceeds 1.0 wt%, toughness (impact value) is obtained.
Is reduced. Further, when Cu exceeds 2%, the variation (standard deviation) of the dimensional change rate during sintering is significantly increased. Therefore N
i: 6 to 8 wt%, Cu: 0 to 2 wt%, Mo: 0.5 to 1.0 wt% are required.

上述のようにNi,Moは鉄粉中に拡散固溶されると、
焼結材,あるいは熱処理材の強度を著しく向上できる。
しかしこのNi,Moは融点が高く、また鉄粉中への拡散速
度が遅く、そのため十分な拡散を得るには、高温かつ長
時間の焼結処理が必要となる。また、Ni,Cu,Moをそれぞ
れ単体元素粉末のまま使用した場合、ある場所にそれぞ
れの元素粉末が存在する場合と、ある元素粉末だけが存
在する場合とがる確率で発生し、組織的に不均一とな
る。さらにCuを単体粉末として添加すると、Cuの溶出に
よる異常膨張が発生し、製品の寸法精度が低下する。
As described above, when Ni and Mo are solid-dissolved in iron powder,
The strength of sintered or heat-treated materials can be significantly improved.
However, Ni and Mo have a high melting point and a slow diffusion rate into the iron powder. Therefore, a high temperature and long time sintering process is required to obtain sufficient diffusion. Also, when Ni, Cu, Mo are used as they are as elemental element powders, they occur with the probability that each elemental powder exists at a certain place, or only one certain elemental powder exists, and systematically occurs. It becomes uneven. Furthermore, if Cu is added as a simple substance powder, abnormal expansion due to Cu elution occurs, and the dimensional accuracy of the product deteriorates.

そこで本発明では、Ni,Cu,Moの内2種類以上の元素を予
め合金化した合金微粉末、例えばNi−Mo粉末,Ni−Cu粉
末、あるいはNi−Cu−Mo粉末を使用するようにしたもの
であり、この合金化された微粉末は、Ni,Moの単体粉末
の場合より融点を低下させることとなり、また拡散性を
向上できる。
Therefore, in the present invention, alloy fine powder in which two or more kinds of elements among Ni, Cu and Mo are alloyed in advance, for example, Ni-Mo powder, Ni-Cu powder, or Ni-Cu-Mo powder is used. This alloyed fine powder has a lower melting point than the case of a single powder of Ni and Mo and can improve the diffusibility.

またCuを合金微粉末として添加することにより、単体添
加時に見られるCuの溶出による異常膨張がないため、寸
法精度が向上し、焼結後の密度も上昇し強度が向上す
る。
Further, by adding Cu as an alloy fine powder, there is no abnormal expansion due to elution of Cu which is observed when a simple substance is added, so that the dimensional accuracy is improved, the density after sintering is increased, and the strength is improved.

ここで本発明に使用される合金微粉末自体の成分割合は
特に限定されるものではないが、以下の組成が好まし
い。
Here, the component ratio of the alloy fine powder itself used in the present invention is not particularly limited, but the following composition is preferable.

Ni−Mo系:Moの高融点をNi−Mo合金粉とすることにによ
り低下させ、鉄粉中への拡散性を向上させることができ
る。しかしMoが50wt%以上になると、この融点低下効果
がほとんどなくなるので、Moは50wt%以下にするのが望
ましい。
Ni-Mo system: The high melting point of Mo can be lowered by using Ni-Mo alloy powder, and the diffusibility into iron powder can be improved. However, when Mo is 50 wt% or more, this melting point lowering effect almost disappears, so Mo is preferably 50 wt% or less.

Ni−Cu系:この系では全固溶型の合金粉が得られ、Cuwt
%が増加するほど融点を下げることができ、鉄粉中への
拡散を容易化できる。しかしCuが40wt%以上になると焼
結後の寸法が膨張するため実用性の点で効果がなくな
る。従ってCuは40wt%以下が望ましい。
Ni-Cu system: In this system, all solid solution type alloy powder is obtained,
As the percentage increases, the melting point can be lowered and diffusion into the iron powder can be facilitated. However, if the Cu content is 40 wt% or more, the size after sintering expands and the effect is lost in terms of practicality. Therefore, Cu is preferably 40 wt% or less.

Ni−Cu−Mo系:この系においては、上述の点から、Moは
50wt%以下、Cuは40wt%以下の組成にするのが望まし
い。
Ni-Cu-Mo system: In this system, Mo is
The composition is preferably 50 wt% or less and Cu is 40 wt% or less.

ところで本発明の合金鋼粉は例えば以下の方法で製造す
ることができる。即ち、上記高純度純鉄粉と、上記合金
微粉末とを有機溶媒中にて湿式混合し、しかる後該混合
粉を還元性雰囲気中にて75℃を越え、かつ1000℃未満の
温度で還元焼鈍し、上記純鉄粉に上記合金微粉末及び単
体元素微粉末を拡散付着させることを特徴としている。
The alloy steel powder of the present invention can be manufactured, for example, by the following method. That is, the high-purity pure iron powder and the alloy fine powder are wet-mixed in an organic solvent, and then the mixed powder is reduced in a reducing atmosphere at a temperature higher than 75 ° C and lower than 1000 ° C. It is characterized in that the alloy fine powder and the elemental element fine powder are diffused and adhered to the pure iron powder by annealing.

ここで上記製造方法において、純鉄粉と合金粉とを有機
溶媒中で湿式混合するようにしたのは、純鉄粉の表面に
合金粉末を均一かつ十分に付着させるためである。金属
粉末の混合には、金属粉末を一対の円錐型コーンの底面
同士を接続してなるダブルコーン型混合機内に装入し、
該コーンを水平軸廻りに回転させるようにした乾式混合
法があるが、この方法では、各金属粉の比重差によって
層状に分離され易く、均一な混合は困難である。これに
対して上記製造方法では、例えばエチルアルコール等の
有機溶媒に合金粉末を分散させたものと、母粉の純鉄粉
とを混合攪拌する湿式混合法を採用したので、純鉄粉末
に合金粉末が均一に分散され、かつ各粉末の表面に形成
された溶媒の薄膜の濡れ性により、均一に分散された状
態で付着する。従って上記乾式の場合のような比重差で
各粉末が分離することはない。その結果次の還元工程で
の拡散付着が均一かつ十分に行われ、焼結強度が向上す
る。
Here, in the above manufacturing method, the pure iron powder and the alloy powder are wet-mixed in an organic solvent in order to uniformly and sufficiently adhere the alloy powder to the surface of the pure iron powder. To mix the metal powders, the metal powders are charged into a double-cone mixer in which the bottom surfaces of a pair of conical cones are connected together,
There is a dry mixing method in which the cone is rotated around a horizontal axis, but in this method, the metal powders are easily separated into layers due to the difference in specific gravity, and uniform mixing is difficult. On the other hand, in the above-mentioned manufacturing method, for example, the wet mixing method in which the alloy powder is dispersed in the organic solvent such as ethyl alcohol and the pure iron powder of the mother powder are mixed and stirred is used. The powder is uniformly dispersed and adheres in a uniformly dispersed state due to the wettability of the thin film of the solvent formed on the surface of each powder. Therefore, the powders do not separate due to the difference in specific gravity as in the dry method. As a result, the diffusion adhesion in the subsequent reduction step is performed uniformly and sufficiently, and the sintering strength is improved.

なお、上記湿式混合法を工業化した場合、混合後、次の
還元工程までの間にある程度時間が経過し、上記溶媒が
蒸発し、上記付着した合金粉が分離してしまう恐れがあ
る。そこで上記付着状態を保持するために、上記溶媒中
にレジン等の結合剤を添加しておくことが望ましい。
When the wet mixing method is industrialized, a certain amount of time may elapse between the mixing and the next reduction step, the solvent may evaporate, and the adhered alloy powder may be separated. Therefore, in order to maintain the above adhered state, it is desirable to add a binder such as a resin to the solvent.

また上記還元焼鈍温度を750〜1000℃としたのは以下の
理由による。
The reason why the reduction annealing temperature is set to 750 to 1000 ° C. is as follows.

還元焼鈍温度が750℃より低い場合は、還元ケーキが硬
くならないため見掛け密度の高いものが得られ、成形体
密度も優れているが、焼結強度が若干低くなる。これは
処理温度が低いため合金粉末の拡散付着(合金化)が少
ないためと思われる。一方、1000℃より高くなると、成
形体密度が低くなる。これは合金元素の鉄粉中への拡散
固溶が進み、鉄粉粒子が硬くなり、圧縮性が低下するた
めであると考えられる。
When the reduction annealing temperature is lower than 750 ° C., the reduction cake does not become hard and a high apparent density is obtained, and the compact density is excellent, but the sintering strength is slightly low. This is probably because the treatment temperature is low and the diffusion and adhesion (alloying) of the alloy powder is small. On the other hand, if the temperature is higher than 1000 ° C, the density of the compact will be low. It is considered that this is because the diffusion and solid solution of the alloying elements into the iron powder proceed, the iron powder particles become hard, and the compressibility decreases.

〔作用〕[Action]

本発明に係る粉末冶金用高強度合金鋼粉によれば、高純
度純鉄粉に拡散付着させる強化用粉末としてNi−Cu,Ni
−Mo,Ni−Cu−Moのうち少なくとも一種の予め合金化し
た複合合金微純末を採用したので、合金微粉末の融点が
合金元素単体の微粉末より低くなることから、鉄粉への
拡散、即ち合金化が容易確実に行われる。
According to the high-strength alloy steel powder for powder metallurgy according to the present invention, Ni-Cu, Ni as a strengthening powder to be diffused and adhered to high-purity pure iron powder
-Mo, Ni-Cu-Mo at least one pre-alloyed composite alloy fine powder was adopted, so the melting point of the alloy fine powder is lower than that of the fine powder of the alloying element alone, so diffusion to iron powder That is, alloying is performed easily and surely.

また、上記合金元素を添加するにあたって、該合金元素
の純鉄粉に対する成分割合を所定範囲に規制したので、
Ni,Cuによる強度向上効果(実施例1参照)、Moによる
靱性(衝撃値)向上効果(実施例2参照)が得られ、ま
た、Cuの単体添加時に見られるCu溶出による異常膨張を
抑制できる効果(実施例3参照)が得られる。
Further, when adding the alloying elements, the component ratio of the alloying elements to the pure iron powder was regulated within a predetermined range,
The effect of improving strength by Ni and Cu (see Example 1) and the effect of improving toughness (impact value) by Mo (see Example 2) are obtained, and abnormal expansion due to Cu elution observed when Cu alone is added can be suppressed. The effect (see Example 3) is obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 本実施例は、予めNiをCuと合金化した微粉末を、Niが所
定の成分範囲になるよう純鉄粉に拡散付着させる本発明
の焼結体強度向上効果を効果を確認するために、以下の
手順で行った。
Example 1 In this example, the effect of improving the strength of the sintered body of the present invention is confirmed, in which fine powder obtained by previously alloying Ni with Cu is diffused and adhered to pure iron powder so that Ni falls within a predetermined component range. In order to do so, the following procedure was performed.

Ni−Cu合金微粉およびNi,Cu,Moの単体粉末を第1表の
A〜Fに示す組成になるように高純度純鉄粉に湿式混合
した後、該混合粉をAXガス(アンモニア分解ガス−H2:7
5%,N2:25%)雰囲気中で850℃×30分間還元焼鈍処理
し、しかる後に解粒した。また比較のため、Ni,Cu,Moの
単体粉末だけを使用して、第1表のG〜Iに示す組成に
なるように湿式混合し、還元焼鈍熱処理,解粒を行っ
た。
Ni-Cu alloy fine powder and Ni, Cu, Mo simple substance powder are wet-mixed with high-purity pure iron powder so as to have the compositions shown in Tables A to F, and then the mixed powder is mixed with AX gas (ammonia decomposition gas). −H 2 : 7
5%, N 2 : 25%) atmosphere, reduction annealing treatment was performed at 850 ° C. for 30 minutes, and then crushed. Further, for comparison, only Ni, Cu and Mo simple substance powders were used, wet-mixed so as to have compositions shown in G to I of Table 1, reduction annealing heat treatment, and granulation.

上記解粒した各鋼粉に黒鉛粉末0.6wt%と潤滑剤とし
てのステアリン酸亜鉛粉末0.75wt%とを添加した後、V
型混合器により30分間混合し、この混合粉末を金型を用
いて6TON/cm2の圧力で成形して10×10×55mmの成形体を
得た。
After adding 0.6 wt% of graphite powder and 0.75 wt% of zinc stearate powder as a lubricant to each of the disintegrated steel powders, V
The mixture was mixed for 30 minutes with a mold mixer, and this mixed powder was molded with a mold at a pressure of 6 TON / cm 2 to obtain a molded product of 10 × 10 × 55 mm.

上記成形体をAXガス雰囲気中で1120℃×30分間焼結し
た。この焼結体から平行部6φの引張り試験片を形成
し、これの引張り強度を測定した。
The molded body was sintered in an AX gas atmosphere at 1120 ° C for 30 minutes. A tensile test piece having a parallel portion of 6φ was formed from this sintered body, and the tensile strength of this was measured.

以上の実験より、得られたデータを第2表に示す。The data obtained from the above experiments are shown in Table 2.

同表から明らかなように、本発明に従った鋼粉(A〜F
欄)に比較して、比較例鋼粉(G〜I欄)は若干Ni成分
が低くなっており、本発明の予め合金化したNi−Cu合金
微粉を用いる方法が、Ni,Cuの単体微粉末を用いた場合
より拡散付着性に優れていることが判る。
As is clear from the table, the steel powders according to the present invention (A to F)
Column), the comparative example steel powders (columns G to I) have a slightly lower Ni content, and the method using the pre-alloyed Ni-Cu alloy fine powder of the present invention is a simple substance of Ni and Cu. It can be seen that the diffusion adhesion is superior to the case of using the powder.

また例えば8Ni−1.5 Cu−1.0 Mo(B,E,H欄)を見ると、
焼結体強度はB>E>Hとなっており、合金微粉の使用
比率を高くすると強度が向上することを示している。ま
たNiが8%時において強度が最高となり、6%より少な
く10%より多くなると強度は著しく低下することが理解
できる。
For example, looking at 8Ni-1.5 Cu-1.0 Mo (columns B, E, H),
The strength of the sintered body is B>E> H, which shows that the strength is improved by increasing the use ratio of the alloy fine powder. Further, it can be understood that the strength becomes the highest when Ni is 8% and the strength is remarkably lowered when it is less than 6% and more than 10%.

実施例2 本実施例は、Moを本発明範囲内で添加することによる靱
性向上効果を確認するためのもので、上記実施例1の手
順に従い、Moの含有量が0.5〜2.0wt%の試験片を作成
し、シャルピー衝撃試験(ノッチなし)を行い、衝撃値
を測定した。なお、この試験片の焼結体密度は7.20g/cm
3であった。
Example 2 This example is for confirming the toughness improving effect by adding Mo within the range of the present invention. According to the procedure of Example 1 described above, a test with a Mo content of 0.5 to 2.0 wt% is performed. A piece was prepared, a Charpy impact test (without notch) was performed, and the impact value was measured. The sintered body density of this test piece is 7.20 g / cm.
Was 3 .

測定結果を第3図に示す。同図からも明らかなように、
Mo添加量が0.5,1.0wt%の場合は、衝撃値は高い水準に
あるが、1.0wt%を越えると急に低下していることが判
る。
The measurement results are shown in FIG. As is clear from the figure,
It can be seen that when the Mo addition amount is 0.5 and 1.0 wt%, the impact value is at a high level, but when it exceeds 1.0 wt%, it suddenly decreases.

実施例3 本実施例は、Cuを合金化した微粉末を純鉄粉に本発明範
囲内で拡散付着させることによる寸法変化率のばらつき
の抑制効果を確認するためのもので、上記実施例1の手
順に従い、Ni−Cu合金の形で添加したCuの含有量が0〜
2.5wt%の試験片(64Φ〜24Φ)を作成し、焼結時の寸
法変化率の標準偏差を求めた。比較のために、Cuを上記
含有量になるよう単体で添加した試験片についても同様
に測定した。
Example 3 This example is for confirming the effect of suppressing the variation in the dimensional change rate by diffusing and adhering fine powder alloyed with Cu to pure iron powder within the scope of the present invention. According to the procedure of 1), the content of Cu added in the form of Ni-Cu alloy is 0 to
A 2.5 wt% test piece (64Φ to 24Φ) was prepared and the standard deviation of the dimensional change rate during sintering was determined. For comparison, the same measurement was also performed on the test piece in which Cu was added alone so as to have the above content.

測定結果を第4図に示す。同図からも明らかなように、
CuをNi−Cu合金の形で添加した場合はCu単体で添加した
場合に比較して、何れの含有量においても寸法変化率の
標準偏差が小さくなっている。また、添加量が2.0wt%
を越えると、Cu単体で添加した場合だけでなくNi−Cu合
金で添加した場合にも、急激に寸法変化率の標準偏差が
大きくなっている。
The measurement results are shown in FIG. As is clear from the figure,
When Cu is added in the form of Ni-Cu alloy, the standard deviation of the dimensional change rate is smaller at any content than when Cu is added alone. The addition amount is 2.0 wt%
Beyond, the standard deviation of the dimensional change rate rapidly increases not only when Cu is added alone but also when Ni-Cu alloy is added.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明に係る粉末冶金用高強度合金鋼粉
によれば、Ni−Cu,Ni−Mo,Ni−Cu−Moのうち少なくとも
一種の予め合金化した複合合金微粉末を、それぞれ6〜
8wt%,0〜2wt%,0.5〜1.0wt%の組成になるように高純
度純鉄粉に拡散付着させたので、合金微粉末の融点が合
金元素単体より低いことから、鉄粉への拡散,即ち合金
化を容易化でき、圧縮性を向上できるとともに、焼結体
強度を大きく向上できる効果がある。
As described above, according to the high-strength alloy steel powder for powder metallurgy according to the present invention, at least one pre-alloyed composite alloy fine powder among Ni-Cu, Ni-Mo, and Ni-Cu-Mo, respectively, 6 ~
Since it was diffused and adhered to high-purity pure iron powder so as to have a composition of 8 wt%, 0 to 2 wt%, 0.5 to 1.0 wt%, the melting point of the fine alloy powder was lower than that of the alloy element alone, so it was diffused into the iron powder. That is, alloying can be facilitated, the compressibility can be improved, and the strength of the sintered body can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る合金鋼粉の純鉄粉に合金粉が拡散
付着している状態を示す模式図、第2図は従来の合金鋼
粉の模式図、第3図及び第4図は本発明の効果を説明す
るための図であり、第3図はMo添加量−衝撃値特性図、
第4図はCu添加量−寸法変化率標準偏差特性図である。
FIG. 1 is a schematic diagram showing a state in which the alloy powder is diffused and adhered to pure iron powder of the alloy steel powder according to the present invention, and FIG. 2 is a schematic diagram of a conventional alloy steel powder, FIGS. 3 and 4. Is a diagram for explaining the effect of the present invention, FIG. 3 is a Mo addition amount-impact value characteristic diagram,
FIG. 4 is a characteristic diagram of Cu addition amount-dimensional change rate standard deviation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C:0.01wt%以下、Si:0.02wt%以下、Mn:0.
10wt%以下、P:0.01wt%以下、S:0.010wt%以下、O:0.1
5wt%以下で残部Fe及び不可避的不純物からなる高純度
純鉄粉に、Ni−Cu,Ni−Mo,Ni−Cu−Moのうち少なくとも
一種の予め合金化した複合合金微粉末を、Ni:6〜8wt
%、Cu:0〜2wt%、Mo:0.5〜1.0wt%になるように拡散付
着(ディフュージョンボンディング)させたことを特徴
とする粉末冶金用高強度鋼粉。
1. C: 0.01 wt% or less, Si: 0.02 wt% or less, Mn: 0.
10wt% or less, P: 0.01wt% or less, S: 0.010wt% or less, O: 0.1
High-purity pure iron powder consisting of balance Fe and unavoidable impurities at 5 wt% or less, Ni-Cu, Ni-Mo, Ni-Cu-Mo at least one pre-alloyed composite alloy fine powder, Ni: 6 ~ 8wt
%, Cu: 0 to 2 wt%, Mo: 0.5 to 1.0 wt% by diffusion bonding (diffusion bonding), a high strength steel powder for powder metallurgy.
JP63299344A 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy Expired - Lifetime JPH0689363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299344A JPH0689363B2 (en) 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299344A JPH0689363B2 (en) 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JPH02145702A JPH02145702A (en) 1990-06-05
JPH0689363B2 true JPH0689363B2 (en) 1994-11-09

Family

ID=17871336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299344A Expired - Lifetime JPH0689363B2 (en) 1988-11-26 1988-11-26 High strength alloy steel powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH0689363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540851A (en) * 2013-10-11 2014-01-29 芜湖市鸿坤汽车零部件有限公司 High-performance powder metallurgy material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447030B2 (en) * 1996-01-19 2003-09-16 日立粉末冶金株式会社 Wear resistant sintered alloy and method for producing the same
EP2379764B1 (en) * 2008-12-23 2016-08-03 Höganäs Ab (publ) A method of producing a diffusion alloyed iron or iron-based powder, a diffusion alloyed powder and a composition including this powder
CN102672180A (en) * 2012-06-07 2012-09-19 太仓市锦立得粉末冶金有限公司 Powdery metallurgical finished product process
CN106086659A (en) * 2016-06-24 2016-11-09 江阴市宝能特种钢线有限公司 A kind of high-strength alloy steel wire and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338696B2 (en) * 1972-06-05 1978-10-17
JPS5427818B2 (en) * 1973-09-03 1979-09-12
JPS61223101A (en) * 1985-03-28 1986-10-03 Kobe Steel Ltd Atomized iron powder for green compact magnetic powder and production thereof
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPH0745683B2 (en) * 1987-09-30 1995-05-17 川崎製鉄株式会社 Composite steel powder with excellent compressibility and homogeneity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540851A (en) * 2013-10-11 2014-01-29 芜湖市鸿坤汽车零部件有限公司 High-performance powder metallurgy material and preparation method thereof

Also Published As

Publication number Publication date
JPH02145702A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
JP5147184B2 (en) Iron-based sintered alloy and method for producing the same
US7384446B2 (en) Mixed powder for powder metallurgy
CA2922018C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
SE1551574A1 (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
CA1337468C (en) Alloyed steel powder for powder metallurgy
JP5929967B2 (en) Alloy steel powder for powder metallurgy
JP2013519792A (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
JP2010133016A (en) Iron-based sintered alloy, manufacturing method therefor, and iron-based sintered alloy member
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JPS6366362B2 (en)
JPH044362B2 (en)
CN100449024C (en) Alloy steel powder for powder metallurgy
JPH0645802B2 (en) High strength alloy steel powder for powder metallurgy
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
JPH0751721B2 (en) Low alloy iron powder for sintering
JP2910326B2 (en) Mixed powder for powder metallurgy and its sintered body
JPH0633101A (en) Production of high-strength alloy steel powder for powder metallurgy
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
JP2007100115A (en) Alloy steel powder for powder metallurgy