JPH0751721B2 - Low alloy iron powder for sintering - Google Patents

Low alloy iron powder for sintering

Info

Publication number
JPH0751721B2
JPH0751721B2 JP60138116A JP13811685A JPH0751721B2 JP H0751721 B2 JPH0751721 B2 JP H0751721B2 JP 60138116 A JP60138116 A JP 60138116A JP 13811685 A JP13811685 A JP 13811685A JP H0751721 B2 JPH0751721 B2 JP H0751721B2
Authority
JP
Japan
Prior art keywords
sintering
powder
iron powder
low alloy
compressibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60138116A
Other languages
Japanese (ja)
Other versions
JPS61295302A (en
Inventor
義孝 高橋
明 真鍋
俊太郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60138116A priority Critical patent/JPH0751721B2/en
Publication of JPS61295302A publication Critical patent/JPS61295302A/en
Publication of JPH0751721B2 publication Critical patent/JPH0751721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は構造用機械部品等に使用する高強度焼結材料の
製造に適した焼結用低合金鉄粉末に関するものである。
Description: TECHNICAL FIELD The present invention relates to a low-alloy iron powder for sintering suitable for producing a high-strength sintered material used for structural machine parts and the like.

〔従来の技術〕[Conventional technology]

焼結材料の使用方法としては、従来は焼結プロセスの持
つ高い歩留りと、切削加工の大幅な省略が可能という特
徴を生かして、製造コストの低減を目的とした使用方法
が主であった。しかし、近年は機能材料として使用され
ることも多い。例えば、強度を必要とする部位に用いる
機械部品への採用も検討されており、既に使用されてい
るものもある。焼結材料に対する高強度化の要求は年々
高まりつつあるが、この要求に適合する材料は少ない。
Conventionally, as a method of using the sintered material, a method of using the sintered material has been mainly used for the purpose of reducing the manufacturing cost by taking advantage of the high yield of the sintering process and the feature that cutting can be largely omitted. However, in recent years, it is often used as a functional material. For example, adoption in mechanical parts used in parts requiring strength is also under study, and some have already been used. The demand for higher strength of sintered materials is increasing year by year, but few materials meet this requirement.

高強度焼結材料を得るため、合金化、均質化及び高密度
化等の種々の強化方法が検討されている。この中で合金
化により強度を向上させるため、銅(Cu),ニッケル
(Ni),モリブデン(Mo),マンガン(Mn),クロム
(Cr)等を鉄中に固溶させ強化させる予合金化法あるい
は混合法が知られているが、それぞれ問題点を含んでお
り、解決すべき点が多い。
In order to obtain a high-strength sintered material, various strengthening methods such as alloying, homogenization and densification have been studied. A prealloying method in which copper (Cu), nickel (Ni), molybdenum (Mo), manganese (Mn), chromium (Cr), etc. are solid-dissolved in iron and strengthened in order to improve strength by alloying. Alternatively, a mixing method is known, but each has its own problems and there are many points to be solved.

すなわち、混合法においては添加した合金元素を鉄中に
拡散させるのに高温で長時間加熱することが必要とな
り、又、活性金属であるCrやMn等は焼結雰囲気を厳密に
コントロールしないと酸化をおこし拡散が妨げられる。
このため均質な材料が得られ難く、合金元素添加の割に
は強度は向上しない。
That is, in the mixing method, it is necessary to heat the added alloy elements at a high temperature for a long time in order to diffuse into the iron, and the active metals such as Cr and Mn are oxidized unless the sintering atmosphere is strictly controlled. It prevents the diffusion.
Therefore, it is difficult to obtain a homogeneous material, and the strength is not improved despite the addition of alloying elements.

一方、予合金化法においては、合金化による固溶硬化に
よって粉末の硬さが上昇し、圧縮性を低下させるため高
強度化に対しては不利となる。したがって、再圧縮等の
方法により密度を更に上げることも必要となる。
On the other hand, in the pre-alloying method, the hardness of the powder increases due to the solid solution hardening due to alloying, and the compressibility decreases, which is disadvantageous for increasing the strength. Therefore, it is necessary to further increase the density by a method such as recompression.

上述のように、合金化による強度向上方法は問題を含ん
でいるものの他の強化方法に比べて最も有利な方法と考
えられているため、種々の検討がなされている。例えば
特公昭45−9649号公報「低合金粉末鉄の製法」の明細書
中には合金元素例えば還元が容易なMo,Ni,Cuを特殊還元
法により鉄粉の表面に付着させることにより予合金化粉
末を製造する方法が開示されている。これは予合金化の
際の酸化による圧縮性低下の改良を計ったものであり、
圧縮性は純鉄粉並みとなっているが、合金元素の拡散に
問題があり、十分均質化されてはいない。又、焼入性は
CrやMnを含む材料料よりやや劣る。
As described above, the method for improving strength by alloying is considered to be the most advantageous method as compared with other strengthening methods although it involves problems, and therefore various studies have been made. For example, in the specification of JP-B-45-9649, "Production Method of Low-Alloy Powder Iron", alloying elements such as Mo, Ni, and Cu that can be easily reduced are attached to the surface of iron powder by a special reduction method to pre-alloy A method of making a pulverized powder is disclosed. This is an improvement of compressibility deterioration due to oxidation during prealloying,
The compressibility is similar to that of pure iron powder, but there is a problem with the diffusion of alloying elements and it is not sufficiently homogenized. Also, the hardenability is
It is slightly inferior to the material charge containing Cr and Mn.

CrやMnは焼入性への寄与が高く、高強度化には有効な合
金化元素であるが、還元性が悪いため従来はほとんど用
いられなかった。しかし、粉末化における噴霧法の改善
や噴霧後の還元法の改善により、Cr及びMnを主成分とす
る低合金粉末も市販されるに至っている。
Cr and Mn have a large contribution to the hardenability and are alloying elements effective for strengthening, but they have not been used so far because of their poor reducibility. However, due to the improvement of the atomization method in pulverization and the improvement of the reduction method after atomization, low-alloy powders containing Cr and Mn as the main components have been commercially available.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、Cr及びMnを含む粉末の焼結は、還元性の
高い雰囲気例えば高価な水素中や真空中で、なお且つ還
元炉の状態を厳密にコントロールして行う必要がある。
現在市販されている低合金粉末は、いずれも粉末コスト
が高かったり、焼結時のコストが高い等の問題点を有し
ており、製造の難かしさ及び経済的な面で問題がある。
However, it is necessary to sinter the powder containing Cr and Mn in an atmosphere having a high reducing property, for example, in expensive hydrogen or vacuum, and strictly controlling the state of the reducing furnace.
All of the low alloy powders currently on the market have problems such as high powder cost and high cost at the time of sintering, and there are problems in manufacturing difficulty and economical aspect.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは圧縮性に優れ、焼
結後の強度が高く且つ製造が容易で従来に比べて低コス
トな焼結用低合金鉄粉末を提供することにある。
The present invention is intended to solve the above problems in the prior art, and an object of the present invention is excellent in compressibility, high strength after sintering, easy to manufacture, and lower cost than conventional ones. To provide a low alloy iron powder for use.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明の焼結用低合金鉄粉末は、重量比でモリ
ブデン(Mo)0.2〜1.5%、マンガン(Mn)0.05〜0.25%
を含有し、不純物としての炭素(C)を0.1%以下、酸
素(O)を0.3%以下と規制し、残部実質的に鉄(Fe)
よりなり、水噴霧法によって製造されてなることを特徴
とする。Moは焼結体組織をベイナイト化し、強度を向上
させ、且つ熱処理時の焼入性を向上させる効果がある
が、重量比で0.2%未満では効果が少なく、1.5%を超え
ると圧縮性の低下を招き、又、焼入性の向上にさほどの
効果が見られなくなり、且つコスト高となるため、0.2
%〜1.5%の範囲が好ましい。MnはMoと類似の効果を有
するが、重量比で0.05%未満では効果が期待できず、0.
25%を超えると圧縮性の低下や強度の低下を招く恐れが
あり、0.05%〜0.25%の範囲が好ましい。Cは重量比で
0.1%を超えると圧縮性を低下させるため0.1%以下が好
ましい。又、Oは0.3%を超えると圧縮性を低下させ、
焼結体の特性に対しても少なからず悪影響を及ぼすため
0.3%以下が好ましい。
That is, the low alloy iron powder for sintering of the present invention contains molybdenum (Mo) 0.2 to 1.5% and manganese (Mn) 0.05 to 0.25% by weight.
Containing 0.1% or less of carbon (C) as impurities and 0.3% or less of oxygen (O), and the balance substantially iron (Fe)
And is manufactured by a water atomization method. Mo has the effect of bainite the sintered structure, improving the strength, and improving the hardenability during heat treatment, but if the weight ratio is less than 0.2%, the effect is small, and if it exceeds 1.5%, the compressibility decreases. In addition, since the effect of improving the hardenability is not so great and the cost is high, 0.2
% -1.5% range is preferred. Mn has an effect similar to that of Mo, but if less than 0.05% by weight, no effect can be expected, and
If it exceeds 25%, the compressibility and the strength may be deteriorated, so the range of 0.05% to 0.25% is preferable. C is the weight ratio
If it exceeds 0.1%, the compressibility is lowered, so 0.1% or less is preferable. Also, if O exceeds 0.3%, the compressibility decreases,
It has a considerable adverse effect on the properties of the sintered body.
0.3% or less is preferable.

本発明の焼結用低合金鉄粉末は水噴霧法を用いて溶湯よ
り製造される。平均粒径や粒径分布等の性状は得られる
粉末の使用目的に応じて、製造条件を選択するか、又は
分級手段等によって変化させることができる。
The low alloy iron powder for sintering of the present invention is produced from molten metal by using a water spray method. Properties such as average particle size and particle size distribution can be changed by selecting manufacturing conditions or by classifying means depending on the intended use of the obtained powder.

〔実施例〕〔Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
The present invention will be described in more detail in the following examples and comparative examples. The present invention is not limited to the examples below.

実施例1: 溶解炉で目標成分割合に調整した溶湯を作り、この溶湯
をタンディッシュより流出させた後、この溶湯流に噴霧
媒として高圧水を作用させる水噴霧法によって粉末化し
た。この水噴霧法によって製造した粉末をH2−N2混合雰
囲気中で1203Kで1800秒還元処理を施した後凝固した塊
を粉砕し、次いでJIS80メッシュの標準ふるいで分級
し、80メッシュ以下の粉末を捕集した。
Example 1: A molten metal adjusted to a target component ratio was prepared in a melting furnace, the molten metal was allowed to flow out of a tundish, and then powdered by a water spray method in which high-pressure water was acted as a spray medium on the molten metal flow. The water spray method powder produced by the grinding the solidified mass was subjected to 1800 seconds reduced at 1203K in H 2 -N 2 mixed atmosphere and then classified with a standard sieve JIS80 mesh, 80 mesh or less powder Was collected.

実施例2〜3: 各合金成分の添加比率を変える以外は実施例1と同様の
方法で80メッシュ以下の粉末を捕集した。
Examples 2-3: Powders of 80 mesh or less were collected by the same method as in Example 1 except that the addition ratio of each alloy component was changed.

比較例1: 鉄粉の表面にNi,Mo,Cuをそれぞれ付着させ且つ拡散させ
た市販の合金粉末を用いた。
Comparative Example 1: A commercially available alloy powder in which Ni, Mo, and Cu were attached to and diffused on the surface of iron powder was used.

比較例2〜4: 各合金成分の組成を変えた以外は実施例1〜3と同様の
方法で調製した。
Comparative Examples 2 to 4: Preparation was performed in the same manner as in Examples 1 to 3 except that the composition of each alloy component was changed.

前記実施例1〜3及び比較例1〜4の焼結用低合金鉄粉
末の組成を下記第1表にまとめて示す。
The compositions of the low alloy iron powders for sintering of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 1 below.

物性比較試験: 高強度焼結材料用原料粉末としては、良好な圧縮性と焼
結体とした場合、あるいは焼結体に熱処理を施こした場
合に良好な機械的性質を有することが要求されている。
Physical property comparison test: As a raw material powder for high-strength sintered materials, it is required to have good compressibility and good mechanical properties when made into a sintered body or when a heat treatment is applied to the sintered body. ing.

第1表に示す各種材料の圧縮性をJSPM標準1−64金属粉
の圧縮性試験法に準拠して測定した。試験片の成形は圧
力588MPaで行った。結果を第1図に示す。又、引張強さ
の測定を行った。すなわち、実施例及び比較例の各粉末
に対し黒鉛粉0.6重量%と潤滑剤0.8重量%を加え、混合
した後、6.9Mg/m3の圧粉体密度を有する引張試験片(JS
PM2−64焼結金属用引張試験片)を成形し、次いでこれ
を分解アンモニアガス雰囲気中1423Kで3600秒焼結を行
った試験片と、この試験片を更に真空中で1143Kで2400
秒加熱後油焼入を行い、つづいて443Kで4800秒焼戻しを
行った試験片を作成し、前記両試験片をクロスヘッドス
ピード3.3×10-5m/sで引張試験を行い、引張強さを求め
た。第2図に結果をまとめて示す。
The compressibility of each material shown in Table 1 was measured in accordance with the JSPM standard 1-64 metal powder compressibility test method. The test piece was molded at a pressure of 588 MPa. The results are shown in Fig. 1. Also, the tensile strength was measured. That is, 0.6% by weight of graphite powder and 0.8% by weight of lubricant were added to each powder of Examples and Comparative Examples, and after mixing, a tensile test piece having a green compact density of 6.9 Mg / m 3 (JS
A PM2-64 tensile test piece for sintered metal) was molded and then sintered in a decomposed ammonia gas atmosphere at 1423K for 3600 seconds, and this test piece was further vacuumed at 1143K for 2400 seconds.
After heating for 2 seconds, oil quenching is performed, and then test pieces are tempered at 443K for 4800 seconds, and a tensile test is performed on both test pieces at a crosshead speed of 3.3 × 10 -5 m / s to obtain tensile strength. I asked. The results are summarized in FIG.

第1図より明らかなように、実施例1〜3は密度7.07〜
7.12Mg/m3と良好な圧縮性を示している。この値は市販
の低合金鉄中で最も高い圧縮性を持つと言われている比
較例1と比べても同程度である。比較例2は実施例2よ
りMnを増加した粉末であるが、圧縮性は実施例2よりも
相当低くなっている。比較例3は実施例2にCrを0.4重
量%添加した粉末であり、Crにより圧縮性が大幅に低下
しているのが判る。比較例4はMnの量を0.03重量%と少
なくした粉末であり、実施例2に比べて圧縮性はわずか
に高い。
As is clear from FIG. 1, Examples 1 to 3 have a density of 7.07 to
It shows a good compressibility of 7.12 Mg / m 3 . This value is comparable to Comparative Example 1 which is said to have the highest compressibility among commercially available low alloy irons. Comparative Example 2 is a powder in which Mn is increased as compared with Example 2, but the compressibility is considerably lower than that of Example 2. Comparative Example 3 is a powder obtained by adding 0.4% by weight of Cr to Example 2, and it can be seen that the compressibility is significantly lowered by Cr. Comparative Example 4 is a powder in which the amount of Mn is reduced to 0.03% by weight, and the compressibility is slightly higher than that of Example 2.

又、第2図より、焼結体の引張強さは実施例1が約530M
Paであり実施例1〜3を比べるとMo量が増加するに伴い
引張強さも高くなっているのが判る。実施例1と比較例
1とを比べる、焼結体の引張強さは同じ値を示したが、
比較例1は実施例1には含まれていない高価なCuやNiを
多く含んでいることより、実施例1は特にコスト面で有
利である。これは、本発明材がMoを完全予合金化してい
るのに対し、比較材1は合金元素を不完全予合金化して
いるため、該合金元素の鉄中への拡散が十分になされて
いないことに起因する固溶量の差によるものと推定され
る。実施例2と比較例2とはMn量が異なるほかはほぼ同
一組成であるが、Mn0.2重量%を含む実施例2が、Mn0.0
3重量%を含む比較例2より高い引張強さを示してい
る。これはMnによる固溶強化の効果の大きさが影響して
いるものと推定される。
Further, from FIG. 2, the tensile strength of the sintered body is about 530M in Example 1.
It is Pa, and comparing Examples 1 to 3, it can be seen that the tensile strength increases as the amount of Mo increases. Comparing Example 1 and Comparative Example 1, the tensile strength of the sintered body showed the same value,
Comparative Example 1 contains a large amount of expensive Cu and Ni, which are not contained in Example 1, so that Example 1 is particularly advantageous in terms of cost. This is because the material of the present invention completely pre-alloys Mo, whereas the comparative material 1 has an incomplete pre-alloying of alloying elements, and therefore the alloying elements are not sufficiently diffused into iron. It is estimated that this is due to the difference in the amount of solid solution due to this. Example 2 and Comparative Example 2 have almost the same composition except that the amount of Mn is different, but Example 2 containing 0.2% by weight of Mn has Mn0.0.
It shows a higher tensile strength than Comparative Example 2 containing 3% by weight. It is presumed that this is due to the magnitude of the effect of solid solution strengthening by Mn.

次に熱処理後の引張強さを比較する。焼結体の引張強さ
が同等であった実施例1と比較例1とを比べると、実施
例1が約60MPaほど高い引張強さを示しており、実施例
1中に含まれるMo及びMnの焼入性向上効果が十分に発揮
されているのが判る。一方、比較例1ではMoをはじめC
u,Niが完全に予合金化されていないため、合金元素の持
っている固溶強化能が十分に発揮されず、実施例1より
低い値となったものと考えられる。実施例2と比較例2
及び4では、Mn含有量が異なっている。比較例4はMn含
有量が0.03重量%であり、Mnによる焼入性向上が望めな
いため、実施例2よりも低い引張強さを示した。一方、
比較例2はMn0.8重量%を含むものの実施例2より引張
強さは低下している。これはMnの酸化物が実施例2より
多量に存在するためと考えられ、Mnには適当な添加範囲
が存在することを示している。
Next, the tensile strength after heat treatment is compared. Comparing Example 1 and Comparative Example 1 in which the tensile strengths of the sintered bodies were the same, Example 1 showed a tensile strength as high as about 60 MPa, and Mo and Mn contained in Example 1 were It can be seen that the effect of improving the hardenability is fully exhibited. On the other hand, in Comparative Example 1, Mo and C
It is considered that since u and Ni were not completely prealloyed, the solid solution strengthening ability of the alloy elements was not sufficiently exerted and the value was lower than that in Example 1. Example 2 and Comparative Example 2
And 4 have different Mn contents. In Comparative Example 4, the Mn content was 0.03% by weight, and it was not possible to expect the improvement of the hardenability by Mn, so the tensile strength was lower than that of Example 2. on the other hand,
Comparative Example 2 contains 0.8% by weight of Mn, but the tensile strength is lower than that of Example 2. It is considered that this is because the oxide of Mn is present in a larger amount than in Example 2, and indicates that Mn has an appropriate addition range.

〔発明の効果〕〔The invention's effect〕

上述のように、本発明の焼結用低合金鉄粉末は、Mo,Mn,
C,Oの各成分元素を鉄中に所定比率で含むものであるた
め、機械構成部品の原材料として用いた場合、圧縮性が
良いため高密度の成形体を得ることができ、引張強さな
どの機械的性質の優れた部品を得ることができる。
As described above, the low alloy iron powder for sintering of the present invention is Mo, Mn,
Since each component element of C and O is contained in iron in a predetermined ratio, when used as a raw material for machine component parts, it is possible to obtain a high-density molded product because of its good compressibility, and to improve the mechanical properties such as tensile strength. It is possible to obtain parts having excellent properties.

又、本発明の焼結用低合金鉄粉末は、水噴霧法によって
容易に製造され且つCrやNi等の高価な成分を含まないた
め、コスト的に有利であり、種々の用途に広く用いるこ
とができる。
Further, the low alloy iron powder for sintering of the present invention is easily manufactured by a water atomization method and does not contain expensive components such as Cr and Ni, so that it is cost-effective and widely used for various applications. You can

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例及び比較例の焼結用低合金鉄粉
末を用いた場合の同一成形条件下における成形体密度を
示すグラフ、 第2図は本発明の実施例及び比較例の焼結用低合金鉄粉
末を用いて製作した焼結体の引張試験結果を示すグラフ
である。
FIG. 1 is a graph showing the density of compacts under the same molding conditions when the low alloy iron powder for sintering of the examples and comparative examples of the present invention is used, and FIG. 2 shows the examples of the present invention and comparative examples. It is a graph which shows the tensile test result of the sintered compact produced using the low alloy iron powder for sintering.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 俊太郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (56)参考文献 特開 昭57−73154(JP,A) 特開 昭57−164901(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuntaro Sudo 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Corporation (56) References JP-A-57-73154 (JP, A) JP-A-57-164901 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量比でモリブデン(Mo)0.2〜1.5%、マ
ンガン(Mn)0.05〜0.25%を含有し、不純物としての炭
素(C)を0.1%以下、酸素(O)を0.3%以下と規制
し、残部実質的に鉄(Fe)よりなり、水噴霧法によって
製造されてなることを特徴とする焼結用低合金鉄粉末。
1. A weight ratio of molybdenum (Mo) is 0.2 to 1.5% and manganese (Mn) is 0.05 to 0.25%. Carbon (C) as impurities is 0.1% or less and oxygen (O) is 0.3% or less. A low alloy iron powder for sintering characterized in that it is regulated and the balance consists essentially of iron (Fe), and is produced by a water atomization method.
JP60138116A 1985-06-25 1985-06-25 Low alloy iron powder for sintering Expired - Lifetime JPH0751721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138116A JPH0751721B2 (en) 1985-06-25 1985-06-25 Low alloy iron powder for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138116A JPH0751721B2 (en) 1985-06-25 1985-06-25 Low alloy iron powder for sintering

Publications (2)

Publication Number Publication Date
JPS61295302A JPS61295302A (en) 1986-12-26
JPH0751721B2 true JPH0751721B2 (en) 1995-06-05

Family

ID=15214332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138116A Expired - Lifetime JPH0751721B2 (en) 1985-06-25 1985-06-25 Low alloy iron powder for sintering

Country Status (1)

Country Link
JP (1) JPH0751721B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347884B2 (en) 2003-08-18 2008-03-25 Jfe Steel Corporation Alloy steel powder for powder metallurgy
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
CN102950278A (en) * 2011-08-22 2013-03-06 六安市凯乐特新材料有限公司 Iron-based low-alloy-steel powder for powder metallurgy and preparation method of iron-based low-alloy-steel powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651420B2 (en) 2000-08-31 2005-05-25 Jfeスチール株式会社 Alloy steel powder for powder metallurgy
EP3722022B1 (en) * 2017-12-05 2022-11-30 JFE Steel Corporation A pre-alloyed water atomized steel powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773154A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Manufacture of iron-base sintered machine parts with high strength and wear resistance
JPS57164901A (en) * 1981-02-24 1982-10-09 Sumitomo Metal Ind Ltd Low alloy steel powder of superior compressibility, moldability and hardenability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347884B2 (en) 2003-08-18 2008-03-25 Jfe Steel Corporation Alloy steel powder for powder metallurgy
US7384446B2 (en) 2004-04-22 2008-06-10 Jfe Steel Corporation Mixed powder for powder metallurgy
CN102950278A (en) * 2011-08-22 2013-03-06 六安市凯乐特新材料有限公司 Iron-based low-alloy-steel powder for powder metallurgy and preparation method of iron-based low-alloy-steel powder

Also Published As

Publication number Publication date
JPS61295302A (en) 1986-12-26

Similar Documents

Publication Publication Date Title
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JPH0751721B2 (en) Low alloy iron powder for sintering
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
KR960003721B1 (en) Mixed powder for powder metallurgy and the sintered product thereof
WO2019111834A1 (en) Partial diffusion alloyed steel powder
JP2007169736A (en) Alloy steel powder for powder metallurgy
KR20100117180A (en) Manufacturing method of maganese added sintered ferrous alloy
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JP2012126972A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JP3392228B2 (en) Alloy steel powder for powder metallurgy
JPH0459362B2 (en)
JP2007100115A (en) Alloy steel powder for powder metallurgy
JPS61183444A (en) High strength sintered alloy and its manufacture
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
JPH01283340A (en) Manufacture of high density and high strength sintered body
JPH11229001A (en) Production of high strength sintered parts
JPS6389602A (en) Production of alloy steel powder for powder metallurgy
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JP2000282103A (en) Iron-base powder mixture for high strength sintered parts
JPH03264642A (en) Production of iron-based high-strength sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term