JP3294980B2 - Alloy steel powder for high-strength sintered materials with excellent machinability - Google Patents

Alloy steel powder for high-strength sintered materials with excellent machinability

Info

Publication number
JP3294980B2
JP3294980B2 JP28207495A JP28207495A JP3294980B2 JP 3294980 B2 JP3294980 B2 JP 3294980B2 JP 28207495 A JP28207495 A JP 28207495A JP 28207495 A JP28207495 A JP 28207495A JP 3294980 B2 JP3294980 B2 JP 3294980B2
Authority
JP
Japan
Prior art keywords
powder
machinability
alloy steel
sintered
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28207495A
Other languages
Japanese (ja)
Other versions
JPH08209202A (en
Inventor
繁 宇波
聡 上ノ薗
邦明 小倉
楊  積彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Materials Corp
Original Assignee
JFE Steel Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Mitsubishi Materials Corp filed Critical JFE Steel Corp
Priority to JP28207495A priority Critical patent/JP3294980B2/en
Publication of JPH08209202A publication Critical patent/JPH08209202A/en
Application granted granted Critical
Publication of JP3294980B2 publication Critical patent/JP3294980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金用鉄粉に
係わり、とくに焼結後の矯正(サイジング)が可能で焼
結体の切削性に優れ、かつ焼入れ後に高強度が得られる
焼結材料用合金鋼粉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron powder for powder metallurgy, and more particularly to a sintering method capable of straightening (sizing) after sintering, excellent in machinability of a sintered body, and obtaining high strength after quenching. It relates to alloy steel powder for materials.

【0002】[0002]

【従来の技術】粉末冶金用鉄粉は、鉄粉にCu粉、黒鉛粉
などを添加混合し、金型中で圧粉成形して焼結し、通常
5.0 〜7.2g/cm3の密度を有する焼結機械部品などの製造
に用いられる。粉末冶金法は寸法精度が良く複雑な形状
の焼結体を製造できるが、寸法精度の厳しい部品を製造
する場合には、焼結後の切削加工、あるいはドリル孔明
け加工が必要となることがある。
2. Description of the Related Art Iron powder for powder metallurgy is obtained by adding and mixing Cu powder, graphite powder, etc. with iron powder, compacting in a mold and sintering.
It is used for manufacturing sintered machine parts having a density of 5.0 to 7.2 g / cm 3 . Although powder metallurgy can produce sintered bodies with complicated dimensions and good dimensional accuracy, cutting parts after sintering or drilling may be necessary when manufacturing parts with strict dimensional accuracy. is there.

【0003】粉末冶金製品は一般に切削性が劣り、溶製
材に比べると工具寿命が短い問題点を有しているため機
械加工時のコストが高価になる欠点を有している。粉末
冶金製品における切削性の劣化は、粉末冶金製品に含ま
れる気孔による断続切削あるいは熱伝導率の低下による
切削温度の上昇に起因すると言われている。切削性の改
善を行うために、S、MnS などの快削成分を鉄粉に混合
することが多い。これらのS、MnS は切り屑の破断を容
易にする効果、あるいは工具にS、MnS の薄い構成刃先
を形成し、工具すくい面での潤滑作用により切削性の向
上をもたらすといわれている。
[0003] Powder metallurgy products are generally inferior in machinability and have a problem that tool life is shorter than that of ingots, so that the cost of machining is high. It is said that the deterioration of the machinability of the powder metallurgy product is caused by intermittent cutting due to pores contained in the powder metallurgy product or an increase in cutting temperature due to a decrease in thermal conductivity. In order to improve the machinability, free cutting components such as S and MnS are often mixed with iron powder. These S and MnS are said to have the effect of facilitating the breakage of chips or to form a thin cutting edge of S and MnS on the tool, thereby improving the machinability by the lubricating action on the rake face of the tool.

【0004】特公平3-25481 号公報においては若干のMn
(0.1 〜0.5 %)とSi、Cなどを含む純鉄粉にさらにS
を0.03〜0.07%添加した溶湯を、水または気体で噴霧し
て製造した粉末冶金用鉄粉が提案されている。この方法
においては切削性は従来材の2倍弱しか向上しておら
ず、一層の向上が必要であった。また、成形性を改善す
る目的で粉末冶金用鉄粉にBを含有させる技術が特開昭
61-253301 号公報に述べられている。同発明において
は、C:0.10%以下、Mn:2.0 %以下、酸素量が0.30%
以下であり、更にCr:0.10〜5.0 %、Ni:0.10〜5.0
%、Si:2.0 %以下、Cu:0.10〜10.0%、Mo:0.01〜3.
0 %、W:0.01〜3.0%、V:0.01〜2.0 %、Ti:0.005
〜0.50%、Zr:0.005 〜0.50%、Nb:0.005〜0.50%、
P:0.03〜1.0 %及びB:0.0005〜1.0 %からなる群の
うち1種又は2種以上を含有し、更に必要に応じてS:
1.0 %以下を含み、残部が実質的にFeからなる合金鋼粉
が提案されている。
In Japanese Patent Publication No. 3-25481, some Mn
(0.1-0.5%) and pure iron powder containing Si, C, etc.
Iron powder for powder metallurgy has been proposed, which is produced by spraying molten metal containing 0.03 to 0.07% of water with water or gas. In this method, the machinability has been improved only less than twice that of the conventional material, and further improvement is required. Also, a technique for containing B in powdered metallurgy iron powder for the purpose of improving the moldability is disclosed in
No. 61-253301. In the present invention, C: 0.10% or less, Mn: 2.0% or less, oxygen content is 0.30%
And Cr: 0.10 to 5.0%, Ni: 0.10 to 5.0
%, Si: 2.0% or less, Cu: 0.1 to 10.0%, Mo: 0.01 to 3.
0%, W: 0.01 to 3.0%, V: 0.01 to 2.0%, Ti: 0.005
~ 0.50%, Zr: 0.005 ~ 0.50%, Nb: 0.005 ~ 0.50%,
One or more of the group consisting of P: 0.03-1.0% and B: 0.0005-1.0%, and if necessary, S:
An alloy steel powder containing 1.0% or less and the balance substantially consisting of Fe has been proposed.

【0005】しかしながら、この組成の合金鋼粉は、Cr
が0.10%以上と高い上に、この組成を得るには鉄鉱石、
ミルスケールなどの酸化鉄を粉コークスなどの還元剤で
粗還元した粉末に、予め合金化した水噴霧母合金粉末、
すなわちC:0.50%以下、Mn:5.0 %以下、酸素量が1.
5 %以下であり、さらにCr:0.10〜20.0%、Ni:0.15〜
20.0%、Si:5.0 %以下、Cu:0.15〜20.0%、Mo:0.01
5 〜15.0%、W:0.015 〜15.0%、V:0.015 〜5.0
%、Ti:0.01〜2.0 %、Zr:0.01〜2.0 %、Nb:0.01〜
2.0 %、P:0.04〜2.0 %、およびB:0.0010〜2.0 %
からなる群のうちの1種または2種以上を含有し、さら
に必要に応じてS:4%以下を含み、残部が実質的にFe
からなる水噴霧母合金粉末を、仕上げ還元後の合金元素
量が上記所望量になるように混合・調整し、しかる後に
該混合粉末を還元雰囲気中で仕上げ還元することが必要
とされ、非常に複雑でコストの高い製造方法をとらねば
ならない。
However, alloy steel powder of this composition is
Is higher than 0.10% and iron ore,
Water atomized mother alloy powder pre-alloyed to powder obtained by roughly reducing iron oxide such as mill scale with a reducing agent such as coke breeze,
That is, C: 0.50% or less, Mn: 5.0% or less, and oxygen content is 1.
5% or less, Cr: 0.10 to 20.0%, Ni: 0.15 to
20.0%, Si: 5.0% or less, Cu: 0.15 to 20.0%, Mo: 0.01
5 to 15.0%, W: 0.015 to 15.0%, V: 0.015 to 5.0
%, Ti: 0.01 to 2.0%, Zr: 0.01 to 2.0%, Nb: 0.01 to
2.0%, P: 0.04 to 2.0%, and B: 0.0010 to 2.0%
And one or more of the group consisting of: and, if necessary, S: 4% or less, with the balance being substantially Fe
It is necessary to mix and adjust the water-sprayed master alloy powder consisting of the alloy elements after the finish reduction to the above-mentioned desired amount, and then to finish-reduce the mixed powder in a reducing atmosphere. Complex and costly manufacturing methods must be adopted.

【0006】ところで、特に自動車部品としてのギヤな
どには高強度や高疲労特性が要求される。これらの部品
を粉末冶金法で製造する場合には、強度および疲労特性
を向上させるために合金成分を添加する方法が一般的で
ある。例えば、特公昭45−9649号公報では、純鉄粉にN
i、Cu、Moなどの粉末を拡散付着することによって合金
化成分として添加している。しかしながら、この製法に
よる鋼粉は圧縮性および焼結体強度に優れているが、そ
の焼結体の硬度が高いため、焼結後の矯正がほとんど不
可能でかつ切削性が悪いという問題点があった。
[0006] In particular, gears and the like as automobile parts are required to have high strength and high fatigue characteristics. When these parts are manufactured by a powder metallurgy method, a method of adding an alloy component in order to improve strength and fatigue characteristics is generally used. For example, in Japanese Patent Publication No. 45-9649, pure iron powder contains N
Powders such as i, Cu, and Mo are added as alloying components by diffusing and adhering. However, although the steel powder produced by this method is excellent in compressibility and strength of the sintered body, since the hardness of the sintered body is high, straightening after sintering is almost impossible and the cutability is poor. there were.

【0007】また、前述の特公平3−25481 号公報にお
いて開示された方法において製造した鉄粉を用い、Ni、
Cu、Moなどの合金化成分粉末を拡散付着させても、焼結
体生地が硬いためSの効果だけでは切削性は改善しな
い。
Further, using iron powder produced by the method disclosed in the above-mentioned Japanese Patent Publication No. 3-25481, Ni,
Even when alloying component powders such as Cu and Mo are diffused and adhered, the cutability is not improved only by the effect of S because the sintered body is hard.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
従来技術の欠点に鑑み、焼結後の矯正が可能で切削性に
優れかつ光輝焼入れあるいは浸炭処理後に高強度を有す
る焼結体を得ることができる粉末冶金用合金鋼粉を提供
することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, the present invention provides a sintered body which can be straightened after sintering, has excellent machinability, and has high strength after bright quenching or carburizing. It is an object of the present invention to provide an alloy steel powder for powder metallurgy that can be obtained.

【0009】[0009]

【課題を解決するための手段】本発明者らは、特願平6-
208949号、特願平6-235025号において、水を用いた噴霧
法により製造されたS、Cr、Mnを所定量含む粉末冶金用
鉄粉を焼結すると、焼結鋼の気孔に残留黒鉛が、鉄粒子
内および粒界に5μm 以内のMnSが存在し、切削性に優
れる焼結鋼が容易に得られることを提案した。
Means for Solving the Problems The present inventors have filed Japanese Patent Application No.
No. 208949, Japanese Patent Application No. 6-235025, when sintering powdered metallurgy iron powder containing a predetermined amount of S, Cr, Mn produced by spraying method using water, residual graphite remains in the pores of the sintered steel. It has been proposed that MnS within 5 μm is present in iron particles and in grain boundaries, and that a sintered steel excellent in machinability can be easily obtained.

【0010】特願平6-208949号による粉末冶金用鉄粉を
純窒素雰囲気中での焼結途中で急冷し、残留黒鉛の分析
を行った結果、残留黒鉛は焼結中の浸炭が阻害された結
果生成することがわかった。さらに黒鉛の浸炭を阻害す
る効果は鉄粉表層部に存在するFeSが有効であり、また
さらにCrを併用して添加することにより、残留黒鉛量が
一層増加することを発見した。
[0010] The iron powder for powder metallurgy according to Japanese Patent Application No. 6-208949 was quenched during sintering in a pure nitrogen atmosphere, and the residual graphite was analyzed. As a result, carburization of the residual graphite was inhibited during sintering. As a result, it was found to be generated. Further, it has been found that FeS present in the surface layer of iron powder is effective in inhibiting the carburization of graphite, and that the amount of residual graphite is further increased by adding Cr in combination.

【0011】また、S以外に焼結中の浸炭を阻害し、残
留黒鉛量を増加させる合金元素の調査を行った結果、溶
製材料において鉄中への溶解度が少なく、結晶粒界に偏
析し易いSeおよびTeはSと同様に残留黒鉛を生成させる
効果があった。また、これとは別に、Bを含有する溶鋼
を水でアトマイズ噴霧すると、Bの一部が水により容易
に酸化されて鉄粉表面にB系酸化物が析出し、このB系
酸化物が焼結中に鉄粉中への黒鉛の浸炭を抑制するた
め、焼結体中の残留黒鉛量を増加させ、切削性を向上さ
せる作用があることを知見した。また、焼結体中のフェ
ライトの含有量が増加するので矯正も可能となった。ま
た、光輝焼入れ、浸炭熱処理後は残留黒鉛が鉄粒子内に
再固溶しベーナイトやマルテンサイトを主体とする組織
となり、高強度が得られる。
In addition to S, investigations were made on alloying elements that inhibit carburization during sintering and increase the amount of residual graphite. As a result, the smelting material has low solubility in iron and segregates at crystal grain boundaries. Se and Te, which are easy to produce, have the effect of producing residual graphite as in the case of S. Separately, when atomizing molten steel containing B with water, a part of B is easily oxidized by water and a B-based oxide precipitates on the surface of iron powder, and this B-based oxide is burned. In order to suppress the carburization of graphite into iron powder during sintering, it has been found that there is an effect of increasing the amount of residual graphite in the sintered body and improving machinability. In addition, since the content of ferrite in the sintered body increases, straightening is possible. After bright quenching and carburizing heat treatment, the residual graphite is re-dissolved in the iron particles to form a structure mainly composed of bainite and martensite, and high strength is obtained.

【0012】これらの知見を基に鋭意実験を行い、検討
を加えた結果、重量%でCr:0.02〜0.07%、Mn:0.1 %
未満で、残部がFeと不可避的不純物であるアトマイズ鉄
粉に、さらにBを0.001 〜0.3 %含有させた鉄粉に、重
量比でNi:0.5 〜7%、Cu:0.5 〜3%およびMo:0.05
〜3.5 %から選ばれる1種以上を拡散付着させた部分合
金化鋼粉を用いて得られた焼結材料は、浸炭処理、光輝
焼入れ後にはベーナイトやマルテンサイトを主体とする
組織となり高強度材料が得られるばかりでなく、焼結ま
までは矯正が可能で優れた切削性を示すことを見い出し
た。
Based on these findings, intensive experiments were conducted and examined. As a result, Cr: 0.02 to 0.07%, Mn: 0.1% by weight%
And the balance is Fe and atomized iron powder, which is an unavoidable impurity, and iron powder containing 0.001 to 0.3% of B. Ni: 0.5 to 7%, Cu: 0.5 to 3%, and Mo: 0.05
The sintered material obtained by using partially alloyed steel powder to which at least one selected from ~ 3.5% is diffused and attached becomes a structure mainly composed of bainite and martensite after carburizing treatment and bright quenching, resulting in a high strength material. Not only can be obtained, but also it can be straightened as it is and shows excellent cutting properties.

【0013】さらには、上記Bを含むアトマイズ鉄粉
に、さらにS、SeおよびTeから選ばれる1種以上を合計
で0.03〜0.15%含ませることで、Ni:0.5 〜7%、Cu:
0.5 〜3%およびMo:0.05〜3.5 %から選ばれる1種以
上を拡散付着させた部分合金化鋼粉を用いて得られた焼
結材料は、一層優れた切削性を示すことを見い出した。
すなわち本発明は、重量比でB:0.001 〜0.3 %、Cr:
0.02〜0.07%、Mn:0.1 %未満を含み、必要に応じてさ
らにS、SeおよびTeから選ばれる1種以上を合計で0.03
〜0.15%含み、残部がFeと不可避的不純物である鉄粉
に、重量比でNi:0.5 〜7%、Cu:0.5 〜3%およびM
o:0.05〜3.5 %から選ばれる1種以上が部分合金化さ
れていることを特徴とする切削性に優れた高強度焼結材
料用合金鋼粉である。
Further, by adding a total of 0.03 to 0.15% of one or more kinds selected from S, Se and Te to the atomized iron powder containing B, Ni: 0.5 to 7%, Cu:
It has been found that a sintered material obtained by using a partially alloyed steel powder to which at least one selected from 0.5 to 3% and Mo: 0.05 to 3.5% is diffused and adhered exhibits more excellent machinability.
That is, in the present invention, B: 0.001 to 0.3% by weight, Cr:
0.02 to 0.07%, Mn: less than 0.1%, and if necessary, one or more selected from S, Se and Te in a total amount of 0.03 to 0.03%.
To 0.15%, the balance being Fe and iron powder, which is an inevitable impurity, by weight: Ni: 0.5 to 7%, Cu: 0.5 to 3% and M
o: Alloy steel powder for a high-strength sintered material excellent in machinability, characterized in that at least one selected from 0.05 to 3.5% is partially alloyed.

【0014】なお、部分合金化する元素源としては、Ni
およびCuの場合はそれらの金属粉末が、Moの場合は金属
粉末だけでなくMoO3粉末が、それぞれ好適に使用でき
る。
The element source for partial alloying is Ni.
In the case of Cu and Cu, those metal powders can be suitably used, and in the case of Mo, not only metal powder but also MoO 3 powder can be suitably used.

【0015】[0015]

【発明の実施の形態】本発明は、B系酸化物ならびに
S、Se、Teによる浸炭防止作用により、焼結合金鋼の気
孔に生成する残留黒鉛の作用によって焼結合金鋼の切削
性を向上させるものである。また、Ni、Cu、Moのいずれ
か1種以上を拡散付着により部分合金化させているの
で、通常のFe−Cu−C系、Fe−C系の配合で成形、焼結
することにより、残留黒鉛を有する切削性の優れた高強
度焼結合金鋼を容易に得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention improves the machinability of a sintered alloy steel by the action of residual graphite generated in the pores of the sintered alloy steel by the carburization preventing action of B-based oxide and S, Se and Te. It is to let. In addition, since any one or more of Ni, Cu, and Mo are partially alloyed by diffusion adhesion, forming and sintering with a normal Fe-Cu-C-based or Fe-C-based compound will produce a residual alloy. A high-strength sintered alloy steel having graphite and excellent machinability can be easily obtained.

【0016】以下に本発明において重要な働きをする各
元素の作用および限定範囲について詳細に説明する。 B:0.001 〜0.3 % 前述したように、Bを含有する溶鋼を水でアトマイズ噴
霧すると、Bの一部が水により容易に酸化されて鉄粉表
面にB系酸化物が析出し、このB系酸化物が焼結中に鉄
粉中への黒鉛の浸炭を抑制するため、焼結体中の残留黒
鉛量を増加させ、結果として焼結合金鋼の切削性を向上
させるとともに焼結後の矯正を可能ならしめる。B系酸
化物は非常に安定でH2 と反応することがほとんどない
ので、H 2 を含む雰囲気で熱処理したとしても切削性が
低下することはない。
Hereinafter, each of the important functions in the present invention will be described.
The action and the limited range of the element will be described in detail. B: 0.001 to 0.3% As mentioned above, molten steel containing B is atomized by water.
When mist, a part of B is easily oxidized by water,
B-based oxide precipitates on the surface, and this B-based oxide
In order to suppress the carburization of graphite in the powder, the residual black
Increased lead content, resulting in improved machinability of sintered alloy steel
And at the same time correct after sintering. B-based acid
Is very stable and HTwoRarely reacts with
So H TwoEven when heat treated in an atmosphere containing
It does not decline.

【0017】Bが0.001 %未満では添加したことによる
切削性の向上は認められない。Bが0.3 %を超えた場合
には、固溶硬化のため焼結合金鋼の硬度が高くなり、切
削性を低下させる。なお、切削性と製造コストとの兼ね
合いで、好ましい範囲は0.005 〜0.03%である。また、
理由は明確でないが、焼結後の光輝焼入れや浸炭熱処理
後は残留した黒鉛が固溶し、マルテンサイトやベーナイ
トを生成せしめ、Ni、Moと相まって高強度が得られる。
If B is less than 0.001%, no improvement in machinability due to the addition of B is observed. If B exceeds 0.3%, the hardness of the sintered alloy steel increases due to solid solution hardening, and the machinability is reduced. A preferable range is 0.005 to 0.03% in consideration of the machinability and the manufacturing cost. Also,
Although the reason is not clear, after bright quenching after sintering or carburizing heat treatment, the remaining graphite forms a solid solution to form martensite or bainite, and high strength is obtained in combination with Ni and Mo.

【0018】なお、切削性の向上は残留黒鉛によるもの
であるから、Bを含有しない鉄粉にFe−B合金粉を混合
添加しても切削性は改善されない。 Cr:0.02〜0.07% 鉄粉中のCrは焼結時に生成する残留黒鉛を増加させる効
果を有する。Crが0.02%未満ではCrを添加したことによ
る切削性の向上が認められない。Crが0.07%を超えた場
合には、炭化物のため焼結合金鋼の硬度が高くなり、切
削性を低下させる。切削性と製造コストの兼ね合いで、
好ましい範囲は0.04〜0.06%である。
Since the improvement in the machinability is due to the residual graphite, the machinability is not improved even if the Fe-B alloy powder is mixed and added to the iron powder containing no B. Cr: 0.02 to 0.07% Cr in the iron powder has an effect of increasing residual graphite generated during sintering. If Cr is less than 0.02%, no improvement in machinability due to the addition of Cr is observed. If the Cr content exceeds 0.07%, the hardness of the sintered alloy steel increases due to carbides, and the machinability decreases. With the balance between machinability and manufacturing cost,
A preferred range is from 0.04 to 0.06%.

【0019】Mn:0.1 %未満 Mnは0.1 %未満とする。Mnが0.1 %以上では、焼結鋼中
の残留黒鉛が少なく切削性が悪い。この理由はMn自体が
残留黒鉛を減少させる合金元素であることと、鉄粉が
S、SeないしTeを含む場合には粉末中のMnがS、Se、Te
と結合しやすく、焼結鋼中の残留黒鉛を増加させるのに
有効なS、Se、Teが減少するからである。なお、転炉に
おけるMn低減のための精錬コストと切削性の観点から、
好ましいMnの範囲は0.04〜0.08%である。
Mn: less than 0.1% Mn is less than 0.1%. When Mn is 0.1% or more, the residual graphite in the sintered steel is small and the machinability is poor. The reason for this is that Mn itself is an alloying element that reduces residual graphite, and when iron powder contains S, Se or Te, Mn in the powder is S, Se, Te.
This is because S, Se, and Te, which are effective in increasing the residual graphite in the sintered steel, tend to be reduced. From the viewpoint of refining cost and Mn reduction for Mn reduction in the converter,
The preferred range of Mn is 0.04 to 0.08%.

【0020】Ni:0.5 〜7%、Cu:0.5 〜3%、Mo:0.
05〜3.5 %のいずれか1種以上 Ni、Cu、Moは、強度を高めるために添加する。添加量は
それぞれNi:0.5 〜7%、Cu:0.5 〜3%、Mo:0.05〜
3.5 %に限定される。各元素が下限未満では添加したこ
とによる強度の向上が認められない。また、各元素が上
限を超えた場合、切削性が急激に低下する。
Ni: 0.5 to 7%, Cu: 0.5 to 3%, Mo: 0.
Any one or more of 05 to 3.5% Ni, Cu, and Mo are added to increase the strength. The addition amounts of Ni: 0.5 to 7%, Cu: 0.5 to 3%, Mo: 0.05 to respectively
Limited to 3.5%. If each element is less than the lower limit, no improvement in strength due to the addition is observed. When each element exceeds the upper limit, the machinability sharply decreases.

【0021】S、Se、Teのうちの1種以上の合計:0.03
〜0.15% 水を用いた噴霧法により製造される粉末冶金用鉄粉の
S、Se、Teは焼結鋼中の残留黒鉛を生成させるために添
加する。その添加量の合計量は0.03〜0.15%に限定す
る。0.03%未満では、残留黒鉛生成による切削性向上の
効果がない。0.15%を超えると焼結中すすを発生しやす
く、焼結炉を傷めることが懸念される。なお、切削性お
よび合金コストの理由で、好ましい範囲は0.08〜0.13%
とする 以上述べたように、BおよびS、Se、Teはそれぞれ単独
で焼結時に残留黒鉛を生成させる効果を有する。そし
て、BとS、Se、Teの1種以上を併用すると、各々を単
独添加した時の効果の和以上の複合効果を発揮する。
The sum of at least one of S, Se and Te: 0.03
、 0.15% S, Se and Te of powdered iron for powder metallurgy produced by a spraying method using water are added to generate residual graphite in sintered steel. The total amount of the addition is limited to 0.03 to 0.15%. If it is less than 0.03%, there is no effect of improving machinability due to the generation of residual graphite. If it exceeds 0.15%, soot is easily generated during sintering, and there is a concern that the sintering furnace may be damaged. The preferred range is 0.08-0.13% for reasons of machinability and alloy cost.
As described above, B, S, Se, and Te each independently have an effect of generating residual graphite during sintering. When B is used in combination with one or more of S, Se, and Te, a combined effect that is equal to or greater than the sum of the effects obtained when each is added alone is exhibited.

【0022】[0022]

【実施例】【Example】

(実施例1)表1に元粉となる鉄粉の化学組成および拡
散付着させた合金鋼粉中の拡散付着成分の含有量を示
す。これらの合金鋼粉は、酸素量150ppm以下の溶鋼を水
噴霧して得た生粉を窒素雰囲気中で 140℃で60分乾燥し
た後、純水素雰囲気中 930℃で20分還元したのち、粉砕
分級した鉄粉に、カーボニルNi粉、三酸化Mo粉、Cu粉を
所定の割合で混合し、H2 ガス中 875℃で60分焼鈍して
拡散付着させた。
(Example 1) Table 1 shows the chemical composition of the iron powder as the base powder and the content of the diffusion-adhering component in the alloy steel powder which is diffused and adhered. These alloy steel powders are obtained by spraying raw powder obtained by spraying molten steel with an oxygen content of 150 ppm or less in water at 140 ° C for 60 minutes in a nitrogen atmosphere, reducing it in a pure hydrogen atmosphere at 930 ° C for 20 minutes, and then pulverizing. Carbonyl Ni powder, Mo trioxide powder, and Cu powder were mixed at a predetermined ratio with the classified iron powder, and annealed at 875 ° C. for 60 minutes in H 2 gas to cause diffusion adhesion.

【0023】[0023]

【表1】 [Table 1]

【0024】黒鉛粉末 0.6%を混合した合金鋼粉 100重
量部に対して、ステアリン酸亜鉛1重量部を混合後、圧
粉密度7.0g/cm3になるように成形し、窒素気流中で1250
℃60分焼結後、焼結まま材の切削性の評価および矯正の
可能性を評価した。切削性の評価は外径60φ、高さ10mm
の円板形状とし、上記の条件で焼結後、直径1mmφのハ
イス製ドリルを用いて10000rpm、0.012mm/rev の条件で
加工が不可能になるまでに加工した穴の平均個数(ドリ
ル3本の平均値)を工具寿命として評価した。矯正の可
否は、焼結まま材を5t/cm2 でプレスし、変形したも
のを可、変形の小さなものを不可とした。
After mixing 1 part by weight of zinc stearate with 100 parts by weight of alloy steel powder mixed with 0.6% of graphite powder, the mixture was molded so as to have a green density of 7.0 g / cm 3.
After sintering at 60 ° C. for 60 minutes, the as-sintered material was evaluated for its machinability and its potential for correction. Evaluation of machinability is outer diameter 60φ, height 10mm
After sintering under the above conditions, the average number of holes (three drills) processed using a high-speed steel drill with a diameter of 1 mmφ until it became impossible to process at 10,000 rpm and 0.012 mm / rev The average value of the tool life was evaluated as the tool life. As for the possibility of straightening, the material was pressed as sintered at 5 t / cm 2 , and the deformed one was acceptable, and the one with small deformation was not acceptable.

【0025】焼結鋼の残留黒鉛量は、硝酸溶解残渣をガ
ラスフィルタでろ過し、赤外線吸収法で定量化した。ま
た、焼結体をカーホンポテンシャル 0.8%、 850℃×30
分加熱後 160℃の油中で光輝焼入れし、引張り強度を測
定した。表1に焼結体の残留黒鉛量、工具寿命、光輝焼
入れ後の引張強さをまとめて示した。表1の各実施例か
らわかるように、B:0.001 〜0.3 %、Cr:0.02〜0.07
%、Mn:0.1 %未満、さらに、Feの一部に代えてNi:0.
5 〜7%、Cu:0.5 〜3%およびMo:0.05〜3.5 %のい
ずれか1種以上を鉄粉の表面に拡散付着させた粉末冶金
用鉄粉から得られた焼結鋼の残留黒鉛は0.2 %以上、工
具寿命は60個以上であった。一方、Ni、Cu、Mo添加量の
増加とともに引張強さが 960〜1030MPa に上昇した。ま
た、すべての実施例において矯正が可能であった。
The amount of graphite remaining in the sintered steel was quantified by filtering the residue dissolved in nitric acid through a glass filter and using an infrared absorption method. In addition, the sintered body has a car phone potential of 0.8% and 850 ° C x 30
After heating for one minute, bright quenching was performed in oil at 160 ° C., and the tensile strength was measured. Table 1 summarizes the residual graphite content, tool life, and tensile strength after bright quenching of the sintered body. As can be seen from the examples in Table 1, B: 0.001 to 0.3%, Cr: 0.02 to 0.07
%, Mn: less than 0.1%, and Ni: 0.
Residual graphite of sintered steel obtained from iron powder for powder metallurgy obtained by diffusing and adhering at least one of 5 to 7%, Cu: 0.5 to 3% and Mo: 0.05 to 3.5% to the surface of iron powder The tool life was more than 0.2% and the tool life was more than 60 pieces. On the other hand, the tensile strength increased to 960 to 3030 MPa with increasing amounts of Ni, Cu and Mo. In all the examples, the correction was possible.

【0026】比較例1はBを含まず、焼結体の残留黒鉛
は0.02%、工具寿命は1個であり矯正不可能であった。
実施例との比較からBの添加により切削性が向上したこ
とがわかる。比較例2、5に示すようにBの含有量が
0.3%を、またはNiの含有量が7%を超えると切削性が
劣化する。また、比較例3、4に示すようにCrの含有量
が0.07%を超えあるいはMnの含有量が 0.1%以上になる
と切削性が劣化している。また、比較例5、6、7に示
すようにNi、Cu、Moの付着量が多いと切削性の向上が望
めない。また、すべての比較例で焼結後の矯正が不可能
であった。 (実施例2)表2に元粉となる鉄粉の化学組成および拡
散付着させた合金鋼粉中の拡散付着成分の含有量を示
す。これらの合金鋼粉は、溶鋼を水噴霧して得た生粉を
窒素雰囲気中で 140℃で60分乾燥した後、純水素雰囲気
中 930℃で20分還元したのち、粉砕分級した鉄粉に、カ
ーボニルNi粉、三酸化Mo粉、Cu粉を所定の割合で混合
し、H2 ガス中 875℃で60分焼鈍して拡散付着させた。
In Comparative Example 1, B was not contained, the residual graphite of the sintered body was 0.02%, and the tool life was one piece, which was uncorrectable.
It can be seen from the comparison with the examples that the addition of B improved the machinability. As shown in Comparative Examples 2 and 5, the content of B was
If the content exceeds 0.3% or the content of Ni exceeds 7%, the machinability deteriorates. Further, as shown in Comparative Examples 3 and 4, when the Cr content exceeds 0.07% or the Mn content exceeds 0.1%, the machinability is deteriorated. Further, as shown in Comparative Examples 5, 6, and 7, when the amount of Ni, Cu, and Mo adhered is large, improvement in machinability cannot be expected. In addition, straightening after sintering was impossible in all comparative examples. (Example 2) Table 2 shows the chemical composition of the iron powder as the base powder and the content of the diffusion-adhered component in the alloy steel powder which was diffuse-adhered. These alloy steel powders are obtained by drying raw powder obtained by spraying molten steel with water at 140 ° C for 60 minutes in a nitrogen atmosphere, reducing it at 930 ° C for 20 minutes in a pure hydrogen atmosphere, and then pulverizing and classifying the iron powder. , Carbonyl Ni powder, Mo trioxide powder, and Cu powder were mixed at a predetermined ratio, and annealed at 875 ° C. for 60 minutes in H 2 gas to cause diffusion adhesion.

【0027】[0027]

【表2】 [Table 2]

【0028】黒鉛粉末 0.6%を混合した合金鋼粉 100重
量部に対して、ステアリン酸亜鉛1重量部を混合後、圧
粉密度7.0g/cm3になるように成形し、窒素気流中で1250
℃60分焼結し、残留黒鉛量、切削性、矯正の可否を評価
した。切削性の評価は外径60φ、高さ10mmの円板形状と
し、上記の条件で焼結後、直径1mmφのハイス製ドリル
を用いて10000rpm、0.012mm/rev の条件で加工が不可能
になるまでに加工した穴の平均個数(ドリル3本の平均
値)を工具寿命として評価した。
After mixing 1 part by weight of zinc stearate with 100 parts by weight of alloy steel powder mixed with 0.6% of graphite powder, the mixture was molded to a green compact density of 7.0 g / cm 3 , and mixed in a nitrogen stream at 1250 parts by weight.
After sintering at 60 ° C for 60 minutes, the amount of residual graphite, machinability and correctability were evaluated. The evaluation of the machinability was made into a disk shape with an outer diameter of 60φ and a height of 10mm, and after sintering under the above conditions, it became impossible to machine with a 1mmφ high-speed drill at 10,000rpm and 0.012mm / rev. The average number of holes processed up to (the average value of three drills) was evaluated as the tool life.

【0029】焼結鋼の残留黒鉛量は、硝酸溶解残渣をガ
ラスフィルタでろ過し、赤外線吸収法で定量化した。表
2に焼結後残留黒鉛量、工具寿命、光輝焼入れ後引張強
さをまとめて示した。また、焼結体は実施例1と同じ条
件で光輝焼入れし、引張り強さを測定した。表2の各実
施例からわかるように、B:0.001 〜0.3 %、Cr:0.02
〜0.07%、Mn:0.1 %未満、S、Se、Teの1種以上の合
計が0.03〜0.15%、さらに、Feの一部に代えてNi:0.5
〜7%、Cu:0.5 〜3%およびMo:0.05〜3.5 %のいず
れか1種以上を鉄粉の表面に拡散付着させた粉末冶金用
鉄粉から得られた焼結鋼の残留黒鉛は0.2 %以上、工具
寿命は60個以上であった。一方、Ni、Cu、Mo添加量の増
加とともに光輝焼入れ後の引張強さが 950〜1050MPa に
上昇した。また、すべての実施例において焼結体の矯正
が可能であった。
The residual graphite content of the sintered steel was quantified by filtering the residue dissolved in nitric acid through a glass filter and using an infrared absorption method. Table 2 summarizes the residual graphite content after sintering, the tool life, and the tensile strength after bright quenching. The sintered body was bright quenched under the same conditions as in Example 1 and the tensile strength was measured. As can be seen from the examples of Table 2, B: 0.001 to 0.3%, Cr: 0.02
0.07%, Mn: less than 0.1%, the total of one or more of S, Se, and Te is 0.03 to 0.15%, and Ni: 0.5 instead of part of Fe.
-7%, Cu: 0.5-3%, and Mo: 0.05-3.5%, and the residual graphite of the sintered steel obtained from the iron powder for powder metallurgy obtained by diffusing and adhering at least one of them to the surface of the iron powder is 0.2 % And the tool life was 60 pieces or more. On the other hand, the tensile strength after bright quenching increased to 950 to 5050 MPa with increasing amounts of Ni, Cu and Mo added. In all the examples, the correction of the sintered body was possible.

【0030】比較例8はBを含まず、残留黒鉛は0.02
%、工具寿命は10個であり、実施例との比較からBの添
加により切削性が向上したことが分かる。比較例9、19
に示すようにBの含有量が 0.3%を、またはNiの含有量
が7%を超えると切削性が劣化する。また、比較例10〜
13に示すようにS、Se、Teの1種以上の合計が0.03%未
満では切削性が悪く、比較例14〜17に示すようにS、S
e、Teの1種以上の合計が0.15%を超えると引張強さが
低下し、焼結中すすを発生した。また、比較例18に示す
ようにMnの含有量が0.1 %以上では切削性が劣化してい
る。また、比較例19、20、21に示すようにNi、Cu、Moの
付着量が多いと切削性の向上が望めない。
Comparative Example 8 did not contain B, and the residual graphite was 0.02.
%, And the tool life was 10, and it can be seen from the comparison with the examples that the addition of B improved the machinability. Comparative Examples 9 and 19
As shown in Fig. 5, when the content of B exceeds 0.3% or the content of Ni exceeds 7%, the machinability deteriorates. Comparative Examples 10 to
When the total of one or more of S, Se, and Te is less than 0.03% as shown in FIG. 13, the machinability is poor, and as shown in Comparative Examples 14 to 17, S, S
If the total of one or more of e and Te exceeds 0.15%, the tensile strength decreased, and soot was generated during sintering. Further, as shown in Comparative Example 18, when the content of Mn is 0.1% or more, the machinability is deteriorated. Further, as shown in Comparative Examples 19, 20, and 21, when the amount of Ni, Cu, and Mo adhered is large, improvement in machinability cannot be expected.

【0031】[0031]

【発明の効果】本発明によれば、水を用いた噴霧法によ
り製造される粉末冶金用鉄粉にNi、Cu、Moを拡散付着し
た合金鋼粉を焼結した場合、焼結後の矯正が可能で切削
性に優れた焼結体が得られ、焼入れ処理後に高強度およ
び靭性を有する焼結鋼を、すすの発生を伴わずに容易に
製造することができる。
According to the present invention, in the case of sintering alloy steel powder obtained by diffusing and adhering Ni, Cu and Mo to powdered metallurgy iron powder produced by a spraying method using water, straightening after sintering is performed. Thus, a sintered body excellent in machinability can be obtained, and a sintered steel having high strength and toughness after quenching can be easily produced without generating soot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小倉 邦明 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 楊 積彬 新潟県新潟市小金町3−10 三菱マテリ アル株式会社 新潟製作所内 (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 B22F 1/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kuniaki Ogura, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (72) Inventor Sekiaki Yang 3-10 Koganecho, Niigata, Niigata Mitsubishi Materi Al Niigata Works (58) Fields surveyed (Int. Cl. 7 , DB name) B22F 1/00 B22F 1/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比でB:0.001 〜0.3 %、Cr:0.02
〜0.07%、Mn:0.1%未満を含み、残部がFeと不可避的
不純物である鉄粉に、重量比でNi:0.5 〜7%、Cu:0.
5 〜3%およびMo:0.05〜3.5 %から選ばれる1種以上
が部分合金化されていることを特徴とする切削性に優れ
た高強度焼結材料用合金鋼粉。
1. A weight ratio of B: 0.001 to 0.3%, Cr: 0.02
0.00.07%, Mn: less than 0.1%, the balance being Fe and iron powder which is an unavoidable impurity, Ni: 0.5Ni7%, Cu: 0.
Alloy steel powder for high-strength sintered materials excellent in machinability, characterized in that at least one selected from 5 to 3% and Mo: 0.05 to 3.5% is partially alloyed.
【請求項2】 重量比でB:0.001 〜0.3 %、Cr:0.02
〜0.07%、Mn:0.1%未満を含み、さらにS、SeおよびT
eから選ばれる1種以上を合計で0.03〜0.15%含み、残
部がFeと不可避的不純物である鉄粉に、重量比でNi:0.
5 〜7%、Cu:0.5 〜3%およびMo:0.05〜3.5 %から
選ばれる1種以上が部分合金化されていることを特徴と
する切削性に優れた高強度焼結材料用合金鋼粉。
2. B: 0.001 to 0.3% by weight, Cr: 0.02 by weight ratio
0.00.07%, Mn: contains less than 0.1%, and further contains S, Se and T
e containing at least one selected from the group consisting of 0.03 to 0.15%, the balance being Fe and iron powder, which is an inevitable impurity, in a weight ratio of Ni: 0.
Alloy steel powder for high-strength sintered material excellent in machinability, characterized in that at least one selected from 5 to 7%, Cu: 0.5 to 3% and Mo: 0.05 to 3.5% is partially alloyed. .
JP28207495A 1994-11-28 1995-10-30 Alloy steel powder for high-strength sintered materials with excellent machinability Expired - Fee Related JP3294980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28207495A JP3294980B2 (en) 1994-11-28 1995-10-30 Alloy steel powder for high-strength sintered materials with excellent machinability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-293348 1994-11-28
JP29334894 1994-11-28
JP28207495A JP3294980B2 (en) 1994-11-28 1995-10-30 Alloy steel powder for high-strength sintered materials with excellent machinability

Publications (2)

Publication Number Publication Date
JPH08209202A JPH08209202A (en) 1996-08-13
JP3294980B2 true JP3294980B2 (en) 2002-06-24

Family

ID=26554460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28207495A Expired - Fee Related JP3294980B2 (en) 1994-11-28 1995-10-30 Alloy steel powder for high-strength sintered materials with excellent machinability

Country Status (1)

Country Link
JP (1) JP3294980B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192102A (en) 1998-12-25 2000-07-11 Kawasaki Steel Corp Ferrous powdery mixture for powder metallurgy
SE0101776D0 (en) * 2001-05-18 2001-05-18 Hoeganaes Ab Metal powder
US6756083B2 (en) 2001-05-18 2004-06-29 Höganäs Ab Method of coating substrate with thermal sprayed metal powder
TWI482865B (en) 2009-05-22 2015-05-01 胡格納斯股份有限公司 High strength low alloyed sintered steel
JP2011094187A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Method for producing high strength iron based sintered compact
JP6227903B2 (en) 2013-06-07 2017-11-08 Jfeスチール株式会社 Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
KR20160045825A (en) * 2013-09-26 2016-04-27 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body

Also Published As

Publication number Publication date
JPH08209202A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
KR101382304B1 (en) Process for production of sintered compact by powder metallurgy
KR20180022903A (en) Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact
JPH10324944A (en) Iron-base powder mixture for powder metallurgy
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
EP0677591A1 (en) Alloy steel powders, sintered bodies and method
JP3294980B2 (en) Alloy steel powder for high-strength sintered materials with excellent machinability
JPH0681001A (en) Alloy steel powder
JP3957331B2 (en) Method for producing water atomized iron powder for powder metallurgy
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JP3446322B2 (en) Alloy steel powder for powder metallurgy
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JPS6318001A (en) Alloy steel powder for powder metallurgy
JPH1180803A (en) Ferrous mixed powder for powder metallurgy
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH07233401A (en) Atomized steel powder excellent in machinability and dimensional precision and sintered steel
JPH1150103A (en) Production of iron powder for powder metallurgy
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
US5599377A (en) Mixed iron powder for powder metallurgy
JP4093070B2 (en) Alloy steel powder
JPH10280083A (en) Iron-base powder mixture for powder metallurgy use
JPH07233402A (en) Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
JPH0717923B2 (en) Low alloy iron powder for sintering and method for producing the same
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP2606928B2 (en) High-strength, high-toughness, high-precision alloy steel powder for parts and method for producing sintered alloy steel using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020326

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees