JPH10280083A - Iron-base powder mixture for powder metallurgy use - Google Patents

Iron-base powder mixture for powder metallurgy use

Info

Publication number
JPH10280083A
JPH10280083A JP9089257A JP8925797A JPH10280083A JP H10280083 A JPH10280083 A JP H10280083A JP 9089257 A JP9089257 A JP 9089257A JP 8925797 A JP8925797 A JP 8925797A JP H10280083 A JPH10280083 A JP H10280083A
Authority
JP
Japan
Prior art keywords
powder
compound
iron
graphite
powder containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9089257A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
聡 上ノ薗
Kuniaki Ogura
邦明 小倉
Masashi Fujinaga
政志 藤長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Kawasaki Steel Corp filed Critical Mitsubishi Materials Corp
Priority to JP9089257A priority Critical patent/JPH10280083A/en
Publication of JPH10280083A publication Critical patent/JPH10280083A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an iron-base powder mixture for powder metallugy use, capable of producing a sintered compact excellent in machinability and sliding characteristic by mixing, with an atomized iron powder containing specific amounts of Mn, a powder of compound containing specific amounts of B and a powder of S-containing compound or further a graphite powder, a copper powder, a lubricant, etc. SOLUTION: The iron-base powder mixture for powder metallurgy use is obtained by mixing a B-containing compound powder and an S-containing compound powder or further a graphite powder, a copper powder, and a lubricant with an iron powder. It is preferable to use, as the above iron powder, an atomized iron powder containing 0.05-0.40 wt.% Mn and further containing, if necessary, as an alloy component for improving strength, 0.5-7.0% Ni or 0.05-6.0% Mo in partially alloyed state. As to the B-containing compound, its mixing amount is 0.001-0.3% expressed in terms of B, and H3 BO3 , B2 O3 , BN, etc., are used. As to the S-containing compound, its mixing amount is 0.03-0.3% expressed in terms of S, and S, FeS, MnS, etc., are properly used. Further, preferred mixing amounts of the graphite powder and the copper powder are 0.05-3.0% and <= about 4%, respectively, and proper amounts of zinc stearate, etc., are used as the lubricant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金用鉄基混
合粉に関し、とくに焼結体としても優れた切削性、摺動
特性を発揮し、またNi、Mo、Cu等を含有する場合でも焼
結のままで矯正可能な粉末冶金用鉄基混合粉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based mixed powder for powder metallurgy, and in particular, exhibits excellent machinability and sliding properties even as a sintered body, and even when containing Ni, Mo, Cu, etc. The present invention relates to an iron-based mixed powder for powder metallurgy that can be straightened as it is.

【0002】[0002]

【従来の技術】一般に、粉末冶金は、金属粉を金型内で
加圧して成形体としたのち、焼結して機械部品等を製造
する技術である。例えば、金属粉に鉄粉を用いる場合に
は、鉄粉にCu粉、黒鉛粉等を混合し、成形、焼結を行
い、通常5.0 〜7.2 g/cm3 程度の密度を有する焼結体に
する。このような粉末冶金法を利用すれば、かなり複雑
な形状の機械部品を寸法精度良く製造できる。しかし、
さらに寸法精度の厳しい機械部品を製造する場合には、
焼結体に、さらに、切削あるいはドリル孔開け等の機械
加工を施すことがある。
2. Description of the Related Art In general, powder metallurgy is a technique in which a metal powder is pressurized in a mold to form a compact, and then sintered to produce a machine part or the like. For example, when iron powder is used for the metal powder, Cu powder, graphite powder, etc. are mixed with the iron powder, molded and sintered, and usually a sintered body having a density of about 5.0 to 7.2 g / cm 3 is obtained. I do. If such a powder metallurgy method is used, a mechanical part having a considerably complicated shape can be manufactured with high dimensional accuracy. But,
When manufacturing machine parts with stricter dimensional accuracy,
The sintered body may be further subjected to machining such as cutting or drilling.

【0003】また、焼結体は、一般に切削性が劣るの
で、溶製材(例えば、連続鋳造で製造した鋳片を圧延し
て得た材料)を切削する場合に比べると、切削に使用す
る工具の寿命が短くなる。そのため、機械加工時のコス
トが高くなるという問題が生じる。焼結体の切削性が低
い原因は、焼結体に含まれる気孔にある。気孔によっ
て、切削が断続的になったり、あるいは、焼結体の熱伝
導率が低下して、切削部の温度が上昇するためである。
[0003] Further, since the sintered body is generally inferior in machinability, a tool used for cutting is in comparison with a case of cutting an ingot (for example, a material obtained by rolling a slab manufactured by continuous casting). Life is shortened. Therefore, there arises a problem that the cost for machining becomes high. The cause of the low machinability of the sintered body lies in the pores contained in the sintered body. This is because the pores cause intermittent cutting, or the thermal conductivity of the sintered body is reduced, and the temperature of the cut portion is increased.

【0004】そこで、焼結体の切削性を改善するため、
従来は、SやMnS を鉄粉に混合する場合が多かった。こ
れらSやMnS は、切り屑の破断を容易にしたり、あるい
は工具すくい面にSやMnS の薄膜を形成し、該薄膜が切
削時に潤滑作用を発揮するからである。例えば、特公平
3-25481 号公報には、Mnを0.1 〜0.5wt %とさらにSi、
Cなどを含有する純鉄に、さらにSを0.03〜0.07wt%添
加した溶鋼を、水または気体でアトマイズして製造する
粉末冶金用鉄粉が提案されている。しかしながら、この
鉄粉を用いて製造した焼結体の切削性は、従来の鉄粉で
製造した焼結体の2倍弱程度しか向上しておらず、より
一層の改良が要望されていた。
Therefore, in order to improve the machinability of the sintered body,
Conventionally, S and MnS have often been mixed with iron powder. This is because S or MnS facilitates breakage of chips or forms a thin film of S or MnS on the tool rake face, and the thin film exerts a lubricating action during cutting. For example, Tokufair
No. 3-25481 discloses that Mn is 0.1 to 0.5 wt%,
Iron powder for powder metallurgy has been proposed, which is produced by atomizing molten steel obtained by adding 0.03 to 0.07% by weight of S to pure iron containing C or the like with water or gas. However, the machinability of a sintered body manufactured using this iron powder has been improved by only about two times less than that of a sintered body manufactured using conventional iron powder, and further improvement has been demanded.

【0005】また、特開平7-233401号公報、特開平7-23
3402号公報には、S、Cr、Mnを含むアトマイズ鋼粉が提
案されているが、この鋼粉を焼結すると、焼結体の気孔
内に黒鉛が残留し、同時にMnS が鉄粒子内に析出し、焼
結体の切削性が飛躍的に増加するとされている。なお、
この黒鉛の残留は、焼結中に、CrとSが鉄粉粒子内の黒
鉛の拡散を抑制するために生ずると考えられている。
[0005] Also, JP-A-7-233401, JP-A-7-23
No. 3402 proposes an atomized steel powder containing S, Cr and Mn, but when this steel powder is sintered, graphite remains in the pores of the sintered body, and at the same time, MnS becomes contained in the iron particles. It is said to precipitate and dramatically increase the machinability of the sintered body. In addition,
It is believed that this residual graphite occurs during sintering because Cr and S suppress the diffusion of graphite in the iron powder particles.

【0006】しかしながら、このような鋼粉であって
も、焼結時の雰囲気ガス中にH2が含まれると、その焼結
体の切削性、耐摩耗性が低下するという問題があり、さ
らなる改良が熱望されていた。さらに、特開平8-176604
号公報には、B:0.001 〜0.03wt%、Cr:0.02〜0.07wt
%、Mn:0.1wt %未満、S、Se、Teの1種以上を合計で
0.03〜0.15wt%を含有する鉄粉を焼結することにより、
一層残留黒鉛量が増加し、切削性が向上することが開示
されている。しかしながら、特開平8-176604号公報に開
示された技術では、残留する黒鉛量は最高で0.42wt%程
度であり、さらに多量の黒鉛量を焼結体中に残留させる
ことができる鉄粉が望まれていた。
However, even with such steel powder, if the atmosphere gas during sintering contains H 2 , there is a problem that the cutability and abrasion resistance of the sintered body are reduced. Improvement was aspired. Further, JP-A-8-176604
In the official gazette, B: 0.001 to 0.03 wt%, Cr: 0.02 to 0.07 wt%
%, Mn: less than 0.1 wt%, at least one of S, Se, Te
By sintering iron powder containing 0.03-0.15wt%,
It is disclosed that the amount of residual graphite is further increased and the machinability is improved. However, in the technique disclosed in Japanese Patent Application Laid-Open No. 8-176604, the amount of residual graphite is at most about 0.42 wt%, and iron powder capable of retaining a larger amount of graphite in a sintered body is desired. Was rare.

【0007】一方、高強度や高疲労特性が要求される自
動車部品としてのギヤを粉末冶金法で製造する場合に
は、強度および疲労特性を向上させるために、合金元素
を添加する方法が一般的である。例えば、特公昭45-964
9 号公報では、純鉄粉に合金成分としてNi、Cu、Moなど
の粉末を拡散付着させることにより添加している。この
製法による鋼粉は圧縮性および焼結体の強度に優れてい
るが、その焼結体の硬度が高いため、焼結後の矯正がほ
とんど不可能でかつ切削性が悪いという問題があった。
On the other hand, when a gear as an automobile part requiring high strength and high fatigue properties is manufactured by a powder metallurgy method, a method of adding an alloy element to improve strength and fatigue properties is generally used. It is. For example, Japanese Patent Publication No. 45-964
In JP-A-9, powder such as Ni, Cu, or Mo is added as an alloy component to pure iron powder by diffusing and attaching. Although the steel powder produced by this method is excellent in compressibility and strength of the sintered body, since the hardness of the sintered body is high, there is a problem that straightening after sintering is almost impossible and the machinability is poor. .

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記した従
来技術の問題に鑑み、従来より一層優れた切削性および
摺動特性を発揮する焼結体、および合金元素を含有し高
強度で焼結後の矯正が可能な切削性および摺動特性に優
れた焼結体、の製造が可能な粉末冶金用混合粉を提供す
ることを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a sintered body exhibiting more excellent machinability and sliding characteristics, and a high strength sintered body containing an alloy element. An object of the present invention is to provide a powder mixture for powder metallurgy capable of producing a sintered body having excellent machinability and sliding properties capable of correcting after sintering.

【0009】[0009]

【課題を解決するための手段】本発明者らは、特開平8-
176604号公報に記載されたことを参考に、焼結体の切削
性および摺動特性をさらに一層向上させるため、鋭意検
討した。その結果、Bを含有する鉄粉は、Bの形態分析
から、鉄粉中のBのほぼ100 %が鉄粉表面にほう酸とし
て偏析しているという新規な知見を得た。そこで、鉄粉
に、ほう酸粉末、S粉末、黒鉛粉末および潤滑剤を添加
・混合し、成形、焼結して焼結体を作製したところ、B
を含有する鉄粉と黒鉛粉末および潤滑剤からなる成形体
を焼結した場合に比べ、得られた焼結体中の遊離黒鉛量
が増加するという新しい知見を得た。また、遊離黒鉛量
が1wt%を超えると摺動特性が格段に向上するという知
見も得ている。
Means for Solving the Problems The present inventors disclosed in Japanese Patent Laid-Open No.
With reference to the description in Japanese Patent No. 176604, intensive studies were conducted to further improve the machinability and sliding properties of the sintered body. As a result, it was found from the morphological analysis of B that the iron powder containing B had a new finding that almost 100% of B in the iron powder was segregated as boric acid on the surface of the iron powder. Therefore, boric acid powder, S powder, graphite powder and a lubricant were added to and mixed with iron powder, and the mixture was molded and sintered to produce a sintered body.
New finding that the amount of free graphite in the obtained sintered body increases as compared with the case where a molded body composed of iron powder, graphite powder and a lubricant containing sintering is sintered. It has also been found that when the amount of free graphite exceeds 1% by weight, the sliding characteristics are remarkably improved.

【0010】また、本発明者らは、偏析防止処理を施
し、Bを含む化合物およびSを含む化合物を鉄粉表面上
に付着させるとさらに特性が向上するという知見を得
た。本発明は、上記した知見に基づいて構成されたもの
である。すなわち、本発明は、鉄粉と、Bを含む化合物
粉と、Sを含む化合物粉と、あるいはさらに黒鉛粉、ま
たは黒鉛粉および潤滑剤とを混合した粉末冶金用鉄基混
合粉であって、前記Bを含む化合物粉が1種以上のBを
含む化合物粉からなり、また前記Sを含む化合物粉が1
種以上のSを含む化合物粉からなり、前記Bを含む化合
物粉を、前記鉄粉と前記Bを含む化合物粉と前記Sを含
む化合物粉とあるいはさらに前記黒鉛粉との合計量に対
し重量%で、B換算で0.001 〜0.3 %、さらに前記Sを
含む化合物粉を、前記鉄粉と前記Bを含む化合物粉と前
記Sを含む化合物粉とあるいはさらに前記黒鉛粉との合
計量に対し重量%で、S換算で0.03〜0.3 %混合したこ
とを特徴とする粉末冶金用鉄基混合粉である。
Further, the present inventors have found that the properties are further improved when a segregation preventing treatment is applied and a compound containing B and a compound containing S are adhered on the surface of iron powder. The present invention has been made based on the above findings. That is, the present invention is an iron-based mixed powder for powder metallurgy obtained by mixing iron powder, compound powder containing B, compound powder containing S, or further graphite powder, or graphite powder and a lubricant, The compound powder containing B is composed of one or more compound powders containing B, and the compound powder containing S is one or more.
A compound powder containing at least one kind of S, wherein the compound powder containing B is in a weight% with respect to the total amount of the iron powder, the compound powder containing B, the compound powder containing S, and further the graphite powder. 0.001 to 0.3% in terms of B, and the compound powder containing S is further added to the iron powder, the compound powder containing B, the compound powder containing S, or the weight of the total amount of the graphite powder. And an iron-based mixed powder for powder metallurgy characterized by being mixed in an amount of 0.03 to 0.3% in terms of S.

【0011】また、本発明では、前記鉄粉を、重量%
で、Mn:0.05〜0.40%を含有し残部Feおよび不可避的不
純物からなるアトマイズ鉄粉とするのが好ましい。ま
た、前記鉄粉を、重量%で、Mn:0.05〜0.40%を含み、
さらにNi:0.5 〜7.0 %、Mo:0.05〜6.0 %の中から選
ばれた1種または2種を含有し残部Feおよび不可避的不
純物からなるアトマイズ鉄粉としてもよく、また、前記
鉄粉を、重量%で、Mn:0.05〜0.40%を含有し残部Feお
よび不可避的不純物からなるアトマイズ鉄粉に、重量%
で、Ni:0.5 〜7.0 %、Cu:0.5 〜7.0 %およびMo:0.
05〜3.5 %の中から選ばれた1種または2種以上が部分
合金化されてなる鉄粉としてもよい。
Further, in the present invention, the iron powder is contained in a
It is preferable to use atomized iron powder containing Mn: 0.05 to 0.40%, the balance being Fe and unavoidable impurities. Further, the iron powder contains, by weight%, Mn: 0.05 to 0.40%,
Further, it may be an atomized iron powder containing one or two selected from Ni: 0.5 to 7.0% and Mo: 0.05 to 6.0%, with the balance being Fe and unavoidable impurities. % By weight, atomized iron powder containing Mn: 0.05 to 0.40%, the balance being Fe and unavoidable impurities;
Ni: 0.5 to 7.0%, Cu: 0.5 to 7.0%, and Mo: 0.
Iron powder obtained by partially alloying one or more selected from 05 to 3.5% may be used.

【0012】また、本発明は、鉄粉と、Bを含む化合物
粉と、Sを含む化合物粉と、銅粉と、あるいはさらに黒
鉛粉、または黒鉛粉および潤滑剤とを混合した粉末冶金
用鉄基混合粉であって、前記Bを含む化合物粉が1種以
上のBを含む化合物粉からなり、また前記Sを含む化合
物粉が1種以上のSを含む化合物粉からなり、前記Bを
含む化合物粉を、前記鉄粉と前記Bを含む化合物粉と前
記Sを含む化合物粉と前記銅粉と前記黒鉛粉との合計量
に対し重量%で、B換算で0.001 〜0.3 %、前記Sを含
む化合物粉を、前記鉄粉と前記Bを含む化合物粉と前記
Sを含む化合物粉とあるいはさらに前記黒鉛粉との合計
量に対し重量%で、S換算で0.03〜0.3%、および前記
銅粉を4%以下混合したことを特徴とする粉末冶金用鉄
基混合粉であり、前記鉄粉を、重量%で、Mn:0.05〜0.
40%を含有し残部Feおよび不可避的不純物からなるアト
マイズ鉄粉とするのが好ましい。
The present invention also relates to an iron powder for powder metallurgy obtained by mixing iron powder, a compound powder containing B, a compound powder containing S, copper powder, or graphite powder, or graphite powder and a lubricant. A base mixed powder, wherein the compound powder containing B is made of one or more compound powders containing B, and the compound powder containing S is made of one or more compound powders containing S, and contains the B The compound powder is 0.001 to 0.3% in terms of B in weight% with respect to the total amount of the iron powder, the compound powder containing B, the compound powder containing S, the copper powder, and the graphite powder. The compound powder containing the iron powder, the compound powder containing B and the compound powder containing S, or 0.03 to 0.3% in terms of S in terms of S in terms of the total amount of the graphite powder, and the copper powder. Of iron-based mixed powder for powder metallurgy, wherein 4% or less of The, in weight%, Mn: 0.05~0.
It is preferable to use atomized iron powder containing 40%, the balance being Fe and unavoidable impurities.

【0013】また、本発明では、前記鉄粉が、該表面に
前記Bを含む化合物粉および前記Sを含む化合物粉を付
着させた鉄粉としてもよい。また、本発明は、鉄粉に、
Bを含む化合物粉と、Sを含む化合物粉と、あるいはさ
らに黒鉛粉、または黒鉛粉および潤滑剤または必要に応
じ銅粉を混合し、混合粉とする工程と、該混合粉を加圧
成形し圧粉体とする工程と、該圧粉体を焼結する工程と
を順次施してなる焼結体の製造方法であって、前記Bを
含む化合物粉が1種以上のBを含む化合物粉からなり、
前記Bを含む化合物粉を、前記鉄粉と前記Bを含む化合
物粉と前記Sを含む化合物と前記黒鉛粉と前記銅粉の合
計量に対し重量%で、B換算で0.001 〜0.3 %、さらに
前記Sを含む化合物粉を、前記鉄粉と前記Bを含む化合
物粉と前記Sを含む化合物粉と前記黒鉛粉と前記銅粉と
の合計量に対し重量%で、S換算で0.03〜0.3 %混合し
たことを特徴とする焼結体の製造方法である。
In the present invention, the iron powder may be an iron powder having the compound powder containing B and the compound powder containing S adhered to the surface. Also, the present invention relates to iron powder,
A step of mixing a compound powder containing B, a compound powder containing S, or further a graphite powder, or a graphite powder and a lubricant or, if necessary, a copper powder to form a mixed powder, and press-forming the mixed powder; A method for producing a sintered body, comprising sequentially performing a step of forming a green compact and a step of sintering the green compact, wherein the compound powder containing B is formed from a compound powder containing one or more types of B. Become
The compound powder containing B is 0.001 to 0.3% in terms of B in weight% with respect to the total amount of the iron powder, the compound powder containing B, the compound containing S, the graphite powder, and the copper powder. The compound powder containing S is 0.03 to 0.3% in terms of S in weight% with respect to the total amount of the iron powder, the compound powder containing B, the compound powder containing S, the graphite powder, and the copper powder. A method for producing a sintered body characterized by mixing.

【0014】また、本発明は、鉄粉に、Bを含む化合物
粉と、あるいはさらに黒鉛粉および必要に応じ銅粉を混
合し、混合粉とする工程と、該混合粉に潤滑剤を添加
し、さらに混合する工程と、ついで、加工成形し圧粉体
とする工程と、該圧粉体を焼結する工程とを順次施して
なる焼結体の製造方法であって、前記鉄粉は、前記Bを
含む化合物粉が1種以上のBを含む化合物粉からなり、
前記Bを含む化合物粉を、前記鉄粉と前記Bを含む化合
物粉と前記黒鉛粉と前記銅粉の合計量に対し重量%で、
B換算で0.001 〜0.3 %、さらにさらに前記Sを含む化
合物粉を、前記鉄粉と前記Bを含む化合物粉と前記Sを
含む化合物粉と前記黒鉛粉と前記銅粉の合計量に対し重
量%で、S換算で0.03〜0.3 %混合し、前記混合粉とす
る工程が、前記鉄粉に常温で液体の脂肪酸を加えて混合
する一次混合工程と、ついで前記一次混合粉に、Bを含
む化合物粉とSを含む化合物粉と黒鉛粉と必要に応じ添
加する銅粉と金属石鹸とを加え混合する二次混合工程
と、二次混合中あるいは二次混合後昇温して、脂肪酸と
金属石鹸との共溶融物を生成させ混合する三次混合工程
と、該三次混合工程後の冷却時に金属石鹸またはワック
スを加え混合する四次混合工程とを順次施して混合粉と
してもよい。
The present invention also provides a process of mixing a compound powder containing B, or further a graphite powder and, if necessary, a copper powder with iron powder to form a mixed powder, and adding a lubricant to the mixed powder. Further, a step of mixing, a process of forming a green compact by processing, and a step of sintering the green compact, a method of manufacturing a sintered body sequentially performed, wherein the iron powder, The compound powder containing B comprises one or more compound powders containing B,
The compound powder containing B is, by weight% with respect to the total amount of the iron powder, the compound powder containing B, the graphite powder, and the copper powder,
0.001 to 0.3% in terms of B, and furthermore, the compound powder containing S is further added to the iron powder, the compound powder containing B, the compound powder containing S, the graphite powder, and the copper powder by weight%. The step of mixing 0.03 to 0.3% in terms of S to form the mixed powder is a primary mixing step in which a liquid fatty acid is added to the iron powder at room temperature and mixed, and then a compound containing B is added to the primary mixed powder. Secondary mixing step of adding and mixing powder and compound powder containing S, graphite powder, and copper powder and metal soap, which are added as necessary, and increasing the temperature during or after the secondary mixing to obtain fatty acid and metal soap. A tertiary mixing step of forming and mixing a co-melt with the above, and a quaternary mixing step of adding and mixing metal soap or wax at the time of cooling after the tertiary mixing step may be sequentially performed to obtain a mixed powder.

【0015】また、本発明では、前記二次混合工程に代
わり、前記一次混合粉に、Bを含む化合物粉とSを含む
化合物粉と金属石鹸とを加え混合する工程とし、前記四
次混合工程に代わり、前記三次混合工程後の冷却時に黒
鉛粉と必要に応じ添加する銅粉と、金属石鹸またはワッ
クスを加え混合する工程としてもよい。また、本発明で
は、前記混合粉とする工程が、鉄粉に、Bを含む化合物
粉、Sを含む化合物粉、黒鉛粉と、必要に応じ添加する
銅粉と融点の異なる2種以上のワックスを加え混合する
一次混合工程と、一次混合中あるいは一次混合後に昇温
してワックスの部分溶融物を生成させ、ついで混合する
二次混合工程と、ついで、冷却し、部分溶融物を冷却固
着させ、鉄粉粒子の表面に、少なくともBを含む化合物
粉を固着させ、さらに冷却時に金属石鹸またはワックス
を加え混合する三次混合工程とからなる工程としてもよ
い。また、本発明では、前記一次混合工程に代わり、鉄
粉に、Bを含む化合物粉とSを含む化合物粉と融点の異
なる2種以上のワックスを加え混合する工程とし、前記
三次混合工程に代わり、冷却時に黒鉛粉と必要に応じ添
加する銅粉と、金属石鹸またはワックスを加え混合する
工程としてもよい。
Further, in the present invention, instead of the secondary mixing step, a compound powder containing B, a compound powder containing S, and a metal soap are added to the primary mixed powder and mixed, and the fourth mixing step is performed. Alternatively, a graphite powder, a copper powder to be added as needed, and a metal soap or wax may be added and mixed at the time of cooling after the tertiary mixing step. Further, in the present invention, the step of forming the mixed powder includes, in the iron powder, a compound powder containing B, a compound powder containing S, a graphite powder, and two or more kinds of waxes having melting points different from those of copper powder added as necessary. A primary mixing step of adding and mixing, and a secondary mixing step of raising the temperature during or after the primary mixing to generate a partial melt of the wax and then mixing, and then cooling and fixing the partial melt by cooling. And a tertiary mixing step in which a compound powder containing at least B is fixed on the surface of the iron powder particles, and a metal soap or wax is added and mixed during cooling. Further, in the present invention, instead of the primary mixing step, a compound powder containing B and a compound powder containing S and two or more kinds of waxes having different melting points are added to and mixed with iron powder, and instead of the tertiary mixing step, Alternatively, a step of adding a graphite powder, a copper powder to be added as required, and a metal soap or wax at the time of cooling and mixing may be used.

【0016】[0016]

【発明の実施の形態】本発明の鉄基混合粉は、鉄粉と、
Bを含む化合物粉と、Sを含む化合物粉と、あるいはさ
らに黒鉛粉、または黒鉛粉および潤滑剤と、さらに必要
に応じ銅粉とを、混合したものである。本発明の混合粉
を用いた焼結体では、正確なメカニズムは不明である
が、S、FeS 、MnS 等のSを含む化合物中のSと、Bを
含む化合物中に含まれるBとの相互作用により遊離黒鉛
が生成しやすくなると考えられる。これは、S含有量の
低い純鉄粉(S=0.02wt%程度)と、Bを含む化合物と
混合して焼結体を作製しても焼結体中に遊離黒鉛の生成
は認められないことからも推察できる。Sを含む化合物
粉とBを含む化合物粉の混合量を本発明の範囲に限定す
れば、鉄粉にNi、Cu、Mo等を部分合金化により、あるい
はNi、Moを予合金化により添加しても、遊離黒鉛が生成
しやすくなる効果は変わらない。この遊離黒鉛が、焼結
体の切削性を向上させ、さらに、遊離黒鉛の自己潤滑作
用で焼結体の摺動特性をも向上させる。
BEST MODE FOR CARRYING OUT THE INVENTION The iron-based mixed powder of the present invention comprises:
Compound powder containing B, compound powder containing S, or further graphite powder, or graphite powder and a lubricant, and further, if necessary, copper powder. In the sintered body using the mixed powder of the present invention, although the exact mechanism is unknown, mutual interaction between S in a compound containing S such as S, FeS, and MnS and B contained in a compound containing B is considered. It is considered that free graphite is easily generated by the action. This is because even if a sintered body is produced by mixing a pure iron powder having a low S content (S = 0.02 wt%) and a compound containing B, no free graphite is generated in the sintered body. It can be inferred from this. If the mixing amount of the compound powder containing S and the compound powder containing B is limited to the range of the present invention, Ni, Cu, Mo, etc. are added to iron powder by partial alloying, or Ni, Mo is added by pre-alloying. However, the effect that free graphite is easily generated does not change. This free graphite improves the machinability of the sintered body, and also improves the sliding characteristics of the sintered body due to the self-lubricating action of the free graphite.

【0017】すなわち、本発明では、切削性、摺動特性
の更なる向上のために、鉄粉と、Bを含む化合物粉と、
Sを含む化合物粉と、あるいはさらに黒鉛粉、または黒
鉛粉および潤滑剤とさらに必要に応じ銅粉とを混合し
て、焼結体を作製することが肝要なのである。つぎに、
本発明の限定理由を説明する。
That is, in the present invention, in order to further improve the machinability and the sliding characteristics, an iron powder, a compound powder containing B,
It is important to produce a sintered body by mixing a compound powder containing S, or further, a graphite powder, or a graphite powder, a lubricant and, if necessary, a copper powder. Next,
The reason for limiting the present invention will be described.

【0018】鉄粉は、重量%で、好ましくはMn:0.05〜
0.40%を含有し残部Feおよび不可避的不純物からなるア
トマイズ鉄粉とするのが好ましい。 鉄粉中のMn含有量:0.05〜0.40% Mnは、焼結体内の遊離黒鉛量を減少させる元素である。
このため、Mnを0.40%以上含有させると、焼結体内の遊
離黒鉛量が少なくなり、焼結体の切削性、摺動特性が低
下する。また、Mnはできるだけ低減するのが望ましい
が、溶鋼成分の調整段階でMn量の低減のために要する精
錬コストと焼結体の切削性の兼ね合いからMnの下限は0.
05%とする。なお、好ましい範囲は0.07〜0.15%であ
る。
[0018] The iron powder is preferably expressed in terms of% by weight, preferably Mn: 0.05 to
It is preferable to use atomized iron powder containing 0.40% with the balance being Fe and unavoidable impurities. Mn content in iron powder: 0.05 to 0.40% Mn is an element that reduces the amount of free graphite in the sintered body.
For this reason, when Mn is contained in an amount of 0.40% or more, the amount of free graphite in the sintered body decreases, and the machinability and sliding characteristics of the sintered body decrease. Further, it is desirable to reduce Mn as much as possible, but the lower limit of Mn is set at 0.
05%. The preferred range is 0.07 to 0.15%.

【0019】さらに、必要に応じ、アトマイズ鉄粉中に
は、Ni:0.5 〜7.0 %、およびMo:0.05〜6.0 %の中か
ら選ばれた1種または2種を添加してもよい。Ni、Mo
は、焼結体の強度を高めるために予合金化して添加して
もよい。Niが0.5 %未満、Moが0.05%未満では、焼結体
の強度の向上が認められない。また、Niが7.0 %、Moが
6.0 %を超えると焼結体の切削性が急激に低下するとと
もに、矯正が困難となるため、予合金添加する場合に
は、Niは0.5 〜7.0 %、Moは0.05〜6.0 %の範囲に限定
した。
If necessary, one or two selected from Ni: 0.5 to 7.0% and Mo: 0.05 to 6.0% may be added to the atomized iron powder. Ni, Mo
May be pre-alloyed and added to increase the strength of the sintered body. If Ni is less than 0.5% and Mo is less than 0.05%, no improvement in the strength of the sintered body is observed. Ni is 7.0%, Mo is
If the content exceeds 6.0%, the machinability of the sintered body rapidly decreases and it becomes difficult to correct. Therefore, when adding a pre-alloy, Ni is limited to the range of 0.5 to 7.0% and Mo is limited to the range of 0.05 to 6.0%. did.

【0020】アトマイズ鉄粉は、上記した範囲の所定の
組成に調整した溶鋼を高圧水で噴霧した生粉を乾燥し、
さらに還元処理を施し、粉砕分級して製造される。乾
燥、還元処理は通常の条件でよく、とくに限定しない。
さらに、必要に応じ、Mn:0.05〜0.40%を含有し残部Fe
および不可避的不純物からなるアトマイズ鉄粉に、重量
%で、Ni:0.5 〜7.0 %、Cu:0.5 〜7.0 %およびMo:
0.05〜3.5 %の中から選ばれた1種または2種以上を部
分合金化させて添加してもよい。
The atomized iron powder is obtained by drying raw powder obtained by spraying molten steel adjusted to a predetermined composition in the above range with high-pressure water,
Further, it is subjected to a reduction treatment and pulverized and classified to be manufactured. Drying and reduction treatments may be performed under ordinary conditions, and are not particularly limited.
Further, if necessary, Mn: 0.05 to 0.40% is contained and the balance Fe
And atomized iron powder consisting of unavoidable impurities, by weight, Ni: 0.5 to 7.0%, Cu: 0.5 to 7.0%, and Mo:
One or more selected from 0.05 to 3.5% may be partially alloyed and added.

【0021】また、Ni、Cu、Moは、アトマイズ鉄粉に、
Ni、Cu、Mo粉あるいはMoO3粉を混合し、熱処理により拡
散付着させて部分合金化させて添加するのが好ましい。
Ni、Cu、Moは、焼結体の強度を高めるために添加する
が、部分合金化させて添加する場合には、Ni:0.5 〜7.
0 %、Cu:0.5 〜7.0 %およびMo:0.05〜3.5 %の中か
ら選ばれた1種または2種以上を添加する。各元素が下
限未満では、焼結体の強度向上が認められず、上限を超
えると焼結体の切削性が急激に低下するとともに、焼結
体の矯正が困難となる。
Ni, Cu and Mo are added to atomized iron powder,
It is preferable to add Ni, Cu, Mo powder or MoO 3 powder by mixing and diffusing and adhering them by heat treatment to form a partial alloy.
Ni, Cu and Mo are added in order to increase the strength of the sintered body, but when they are added after being partially alloyed, Ni: 0.5 to 7.
One or more selected from 0%, 0.5 to 7.0% Cu and 0.05 to 3.5% Mo are added. If the content of each element is less than the lower limit, no improvement in the strength of the sintered body is observed. If the content exceeds the upper limit, the machinability of the sintered body is sharply reduced, and it is difficult to correct the sintered body.

【0022】光輝焼入れ、浸炭熱処理後は遊離黒鉛が一
部鉄粒子内に再固溶しベイナイト、マルテンサイトを主
体とする組織となり高強度が得られる。 Bを含む化合物粉の配合量:B換算で0.001 〜0.3 % Bを含む化合物粉の配合量は、鉄粉とBを含む化合物粉
とSを含む化合物粉とあるいはさらに、黒鉛粉および必
要に応じ添加される銅粉との合計量に対する重量%で、
B換算で0.001 〜0.3 %とする。
After bright quenching and carburizing heat treatment, free graphite partially re-dissolves in the iron particles to form a structure mainly composed of bainite and martensite, and high strength is obtained. Compounding amount of compound powder containing B: 0.001 to 0.3% in terms of B Compounding amount of compound powder containing B is iron powder, compound powder containing B and compound powder containing S, or further, graphite powder and if necessary. By weight% based on the total amount with the added copper powder,
0.001 to 0.3% in B conversion.

【0023】Bを含む化合物粉としては、Bの酸化物、
Bの窒化物、ほう酸塩等が好適である。なかでも、B
2O3、H3BO3 、ほう酸アンモニウム、六方晶BNが好まし
い。これらBを含む化合物粉を1種以上混合して配合す
るのが好ましい。Bを含む化合物粉を1種以上B換算で
0.001 %以上配合すると、焼結体中の遊離黒鉛量の増加
が著しくなり、焼結体の切削性、摺動特性が一段と向上
する。一方、Bを含む化合物粉の配合量が、B換算で、
0.3 %を超えると圧縮性が低下する。このため、配合す
るBを含む化合物粉量はB換算で0.001 〜0.3 %の範囲
に限定した。
As the compound powder containing B, oxides of B,
B nitrides, borates and the like are preferred. Above all, B
2 O 3 , H 3 BO 3 , ammonium borate and hexagonal BN are preferred. It is preferable that one or more compound powders containing B are mixed and blended. One or more compound powders containing B in B conversion
When the content is 0.001% or more, the amount of free graphite in the sintered body increases remarkably, so that the machinability and sliding characteristics of the sintered body are further improved. On the other hand, the compounding amount of the compound powder containing B is
If it exceeds 0.3%, the compressibility decreases. Therefore, the amount of the compound powder containing B to be added is limited to the range of 0.001 to 0.3% in terms of B.

【0024】Sを含む化合物粉の配合量:S換算で0.03
〜0.3 % Sを含む化合物粉の配合量は、鉄粉とBを含む化合物粉
とSを含む化合物粉とあるいはさらに黒鉛粉および必要
に応じ添加される銅粉との合計量に対する重量%で、S
換算で0.03〜0.3 %とする。Sを含む化合物は、焼結体
内の遊離黒鉛量を増加させる効果を有している。Sを含
む化合物粉の配合量がS換算で0.03%未満では残留黒鉛
量の増加効果が認められない。一方、0.3 %を超える
と、焼結時に「すす」を発生し、製品である機械部品が
錆やすくなる。このため、Sを含む化合物粉の配合量は
S換算で0.03〜0.3 %に限定した。
Compounding amount of compound powder containing S: 0.03 in S conversion
The compounding amount of the compound powder containing 0.3 to 0.3% S is a weight% with respect to the total amount of the iron powder, the compound powder containing B, the compound powder containing S, and further the graphite powder and the copper powder added as needed. S
0.03 to 0.3% in conversion. The compound containing S has an effect of increasing the amount of free graphite in the sintered body. If the compounding amount of the compound powder containing S is less than 0.03% in terms of S, the effect of increasing the amount of residual graphite is not recognized. On the other hand, if it exceeds 0.3%, "soot" is generated at the time of sintering, and the mechanical parts as products tend to rust. For this reason, the compounding amount of the compound powder containing S is limited to 0.03 to 0.3% in terms of S.

【0025】黒鉛粉の配合量:0.5 〜3.0 % 黒鉛粉の配合量は、鉄粉、Bを含む化合物粉、Sを含む
化合物粉、黒鉛粉および必要に応じ添加される銅粉との
合計量に対する重量%で、0.5 〜3.0 %が好ましい。黒
鉛粉末は摺動特性と切削性向上のために焼結後気孔に黒
鉛を残留させる黒鉛源として、また鉄中に固溶せしめさ
らに強度を高めるために添加する。0.5 %未満では、摺
動特性と強度が低下し、一方、3.0 %を超えるとパーラ
イト比率が増加し切削性が低下する。
Compounding amount of graphite powder: 0.5 to 3.0% The compounding amount of graphite powder is the total amount of iron powder, compound powder containing B, compound powder containing S, graphite powder, and copper powder added as necessary. It is preferably from 0.5 to 3.0% by weight based on the weight. Graphite powder is added as a graphite source for leaving graphite in pores after sintering to improve sliding characteristics and machinability, and also for dissolving in iron to further enhance strength. If it is less than 0.5%, the sliding properties and strength are reduced, while if it exceeds 3.0%, the pearlite ratio increases and the machinability decreases.

【0026】銅粉の配合量:4%以下 銅粉(Cu粉)の配合量は、鉄粉、Bを含む化合物粉、S
を含む化合物粉、黒鉛粉および銅粉との合計量に対する
重量%で、4%以下とするのが好ましい。Cu粉は、切削
性を低下させないで強度を高めるために必要に応じ添加
する。4%を超えると切削性が低下する。なお、好まし
くは1%以上配合する。
The amount of copper powder: 4% or less The amount of copper powder (Cu powder) is iron powder, compound powder containing B, S
Is preferably 4% by weight or less based on the total amount of the compound powder, graphite powder and copper powder containing Cu powder is added as necessary to increase the strength without lowering the machinability. If it exceeds 4%, the machinability decreases. Preferably, 1% or more is added.

【0027】ついで、上記した鉄粉、Bを含む化合物
粉、黒鉛粉と、Sを含む化合物粉と、必要に応じ添加す
る銅粉との合計量100 重量部に対し、好ましくは潤滑剤
2.0 重量部以下を加え、Vブレンダ等の通常の方法で1
度に混合するのが好ましい。潤滑剤としてはステアリン
酸亜鉛、オレイン酸、ステアリン酸アミドとエチレンビ
スマスステアリン酸アミドの混合物、ステアリン酸リチ
ウム等が好適である。
Next, a lubricant is preferably added to 100 parts by weight of the above-mentioned iron powder, compound powder containing B, graphite powder, compound powder containing S, and copper powder added as required.
Add 2.0 parts by weight or less and add 1 part by the usual method such as V blender.
It is preferable to mix each time. As the lubricant, zinc stearate, oleic acid, a mixture of stearic acid amide and ethylene bismuth stearic acid amide, lithium stearate and the like are preferable.

【0028】また、上記した鉄粉、Bを含む化合物粉、
Sを含む化合物粉をVブレンダ等の通常の方法で混合し
た混合粉末に、黒鉛粉、潤滑剤と必要に応じ添加する銅
粉とをVブレンダ等の通常の方法で混合する、2回以上
に分けて混合する方法でもよい。また、偏析防止処理を
行い、Bを含む化合物粉、Sを含む化合物粉を鉄粉表面
に付着させるように混合してもよい。この混合方法は、
以下に示すように行うのがよい。
The above-mentioned iron powder, compound powder containing B,
A graphite powder, a lubricant and optionally added copper powder are mixed by a normal method such as a V blender with a mixed powder obtained by mixing a compound powder containing S by a normal method such as a V blender, and twice or more. A method of mixing separately may be used. Further, a segregation preventing treatment may be performed, and the compound powder containing B and the compound powder containing S may be mixed so as to adhere to the surface of the iron powder. This mixing method
It is better to do as follows.

【0029】上記した鉄粉に、常温で液体の脂肪酸を加
えて1次混合し、ついでBを含む化合物粉、Sを含む化
合物粉、黒鉛粉と、必要に応じ添加する銅粉と金属石鹸
とを加え2次混合し、2次混合中あるいは2次混合後に
昇温して脂肪酸と金属石鹸との共溶融物を生成させ、つ
いで3次混合させながら冷却し、共溶融物を冷却固着さ
せ、共溶融物の結合力により鉄粉粒子の表面に、少なく
ともBを含む化合物粉とSを含む化合物粉を固着させ、
さらに冷却時に金属石鹸またはワックスを加え4次混合
を行うのがよい。この偏析防止処理により、Bを含む化
合物粉とSを含む化合物粉をを鉄粉表面に固着させた鉄
粉とすることができる。これにより、焼結体の遊離黒鉛
生成量がVブレンダを用いた単純混合法に比べ増加す
る。
To the above-mentioned iron powder, a fatty acid which is liquid at normal temperature is added and primary mixed, and then a compound powder containing B, a compound powder containing S, a graphite powder, and a copper powder and a metal soap added as necessary. Is added, and the temperature is raised during the secondary mixing or after the secondary mixing to produce a co-melt of the fatty acid and the metal soap, and then the mixture is cooled with the tertiary mixing, and the co-melt is cooled and fixed. The compound powder containing at least B and the compound powder containing S are adhered to the surface of the iron powder particles by the bonding force of the co-melt,
Further, at the time of cooling, it is preferable to add a metal soap or wax and to perform fourth mixing. By this segregation prevention treatment, it is possible to obtain an iron powder in which the compound powder containing B and the compound powder containing S are fixed to the surface of the iron powder. As a result, the amount of free graphite produced in the sintered body increases as compared with the simple mixing method using a V blender.

【0030】また、上記工程のうち、2次混合時にBを
含む化合物粉とSを含む化合物粉と金属石鹸とを加え、
4次混合時に黒鉛粉と、必要に応じ添加する銅粉と金属
石鹸またはワックスを加えるように、上記工程を一部変
更してもよい。また、上記した鉄粉に、Bを含む化合物
粉、Sを含む化合物粉、黒鉛粉と、必要に応じ添加する
銅粉と融点の異なる2種以上のワックスを加え1次混合
し、1次混合中あるいは1次混合後に昇温してワックス
の部分溶融物を生成させ、ついで2次混合しながら冷却
し、部分溶融物を冷却固着させ、部分溶融物の結合力に
より鉄粉粒子の表面に、少なくともBを含む化合物粉と
Sを含む化合物粉を固着させ、さらに冷却時に金属石鹸
またはワックスを加え3次混合を行ってもよい。また、
上記工程のうち、1次混合時に鉄粉にBを含む化合物粉
とSを含む化合物粉と融点の異なる2種以上のワックス
を加え、冷却時に黒鉛粉と必要に応じ添加する銅粉と、
金属石鹸またはワックスを加える3次混合を行うよう
に、上記工程を一部変更してもよい。
In the above steps, the compound powder containing B, the compound powder containing S, and the metal soap are added at the time of secondary mixing,
At the time of the fourth mixing, the above process may be partially modified so that graphite powder, copper powder and metal soap or wax to be added as necessary are added. Further, to the above-mentioned iron powder, a compound powder containing B, a compound powder containing S, graphite powder, and two or more kinds of waxes having melting points different from those of copper powder to be added as necessary are added, and the mixture is primary mixed. The temperature is increased after middle or primary mixing to produce a partial melt of the wax, then cooled while secondary mixing, and the partial melt is cooled and fixed, and the bonding force of the partial melt causes the surface of the iron powder particles to adhere to the surface. The compound powder containing at least B and the compound powder containing S may be fixed, and a metal soap or wax may be added at the time of cooling to perform tertiary mixing. Also,
In the above steps, compound powder containing B and compound powder containing S are added to the iron powder at the time of primary mixing, and two or more kinds of waxes having different melting points are added.
The above steps may be partially modified so that tertiary mixing with the addition of metal soap or wax is performed.

【0031】混合後、所定の圧粉密度となるように加圧
成形し、焼結して焼結体を製造するのが好ましい。
After the mixing, it is preferable to form a sintered body by pressing and molding to a predetermined green density and sintering.

【0032】[0032]

【実施例】 (実施例1)表1に示すMnを含有し残部Feおよび不可避
的不純物からなる組成のアトマイズ鉄粉に、Bを含む化
合物粉、Sを含む化合物粉、黒鉛粉、Cu粉、潤滑剤を、
次に示す混合方法1〜5により混合粉とした。(なお、
Bを含む化合物粉、Sを含む化合物粉、黒鉛粉およびCu
粉の配合量は、鉄粉とBを含む化合物粉、Sを含む化合
物粉、黒鉛粉およびCu粉の合計量に対する重量%で示
す。) 混合方法1: これらアトマイズ鉄粉に、Bを含む化合物粉として、
表1に示す量のほう酸(H3BO3 )、酸化硼素(B2O3)、
ほう酸アンモウム粉末、六方晶窒化硼素(BN)の1種以
上と、Sを含む化合物粉として、表1に示す量のS粉、
FeS 粉、MnS 粉の1種以上と、黒鉛粉1.5 wt%およびCu
粉2.0wt %と、これらの合計量100 重量部に対しステア
リン酸亜鉛1重量部を加え、Vブレンダで15分間混合し
混合粉とした。
(Example 1) Atomized iron powder containing Mn shown in Table 1 and composed of a balance of Fe and unavoidable impurities was added to a compound powder containing B, a compound powder containing S, a graphite powder, a Cu powder, Lubricant,
A mixed powder was obtained by the following mixing methods 1 to 5. (Note that
Compound powder containing B, compound powder containing S, graphite powder and Cu
The compounding amount of the powder is shown by weight% with respect to the total amount of the compound powder containing iron powder and B, the compound powder containing S, the graphite powder and the Cu powder. ) Mixing method 1: These atomized iron powders were added as compound powders containing B,
Boric acid (H 3 BO 3 ), boron oxide (B 2 O 3 ),
One or more kinds of ammonium borate powder and hexagonal boron nitride (BN), and S powder in an amount shown in Table 1 as a compound powder containing S,
At least one of FeS powder and MnS powder, 1.5 wt% of graphite powder and Cu
One part by weight of zinc stearate was added to 2.0 parts by weight of the powder and 100 parts by weight of the total amount, and mixed with a V blender for 15 minutes to obtain a mixed powder.

【0033】混合方法2: これらアトマイズ鉄粉に、オレイン酸0.3wt %をスプ
レー噴霧し3min 間均一混合し、 その後、表1に示す量のBを含む化合物粉とSを含む
化合物粉と、黒鉛粉1.5 wt%およびCu粉2.0wt %と、こ
れらの合計量100 重量部に対しステアリン酸亜鉛0.4 重
量部とを添加して十分混合したのち110 ℃で加熱混合
し、 さらに混合しながら85℃以下に冷却して、鉄粉粒子に
黒鉛とBを含む化合物をオレイン酸とステアリン酸亜鉛
の共融体結合剤により固着した混合粉とした。
Mixing method 2: To these atomized iron powders, 0.3 wt% of oleic acid was sprayed and uniformly mixed for 3 minutes. Then, the compound powder containing B and S in the amounts shown in Table 1 were mixed with graphite. 1.5 wt% of powder and 2.0 wt% of Cu powder, and 0.4 parts by weight of zinc stearate with respect to 100 parts by weight of the total of these powders, mix well, heat and mix at 110 ° C, and further mix at 85 ° C or less To obtain a mixed powder in which a compound containing graphite and B was fixed to iron powder particles with a eutectic binder of oleic acid and zinc stearate.

【0034】さらに、この混合粉に、ステアリン酸亜
鉛を、鉄粉とオレイン酸とBを含む化合物粉と黒鉛粉と
銅粉の合計量100 重量部に対し、0.3 重量部添加し、均
一混合した。 混合方法3: アトマイズ鉄粉に、表1に示す量のBを含む化合物粉
とSを含む化合物粉と、黒鉛粉1.5 wt%と、Cu粉2.0wt
%と、ステアリン酸アミドとエチレンビスステアリン酸
アミドとの混合物0.4 wt%とを添加し十分混合したのち
110 ℃で加熱混合し、 さらに混合しながら85℃以下に冷却して、鉄粉粒子に
黒鉛とBを含む化合物をステアリン酸アミドとエチレン
ビスステアリン酸アミドとの部分共融体結合剤により固
着した混合粉とした。
Further, 0.3 part by weight of zinc stearate was added to this mixed powder, based on 100 parts by weight of the total amount of the compound powder containing iron powder, oleic acid and B, graphite powder and copper powder, and uniformly mixed. . Mixing method 3: Atomized iron powder, compound powder containing B and compound powder containing S in the amounts shown in Table 1, graphite powder 1.5 wt%, and Cu powder 2.0 wt
%, And 0.4 wt% of a mixture of stearic acid amide and ethylene bisstearic acid amide, and thoroughly mixed.
The mixture was heated and mixed at 110 ° C., cooled to 85 ° C. or less while further mixing, and the compound containing graphite and B was fixed to the iron powder particles with a partial eutectic binder of stearic acid amide and ethylenebisstearic acid amide. It was a mixed powder.

【0035】この混合粉に、ステアリン酸亜鉛を、鉄
粉とBを含む化合物粉とSを含む化合物粉と黒鉛粉とCu
粉とステアリン酸アミドとエチレンビスステアリン酸ア
ミドとの混合物との合計量100 重量部に対し、0.3 重量
部を添加して均一混合した。 混合方法4: アトマイズ鉄粉に、オレイン酸0.3wt %をスプレー噴
霧し3min 間均一混合し、 その後、表1に示す量のBを含む化合物粉とSを含む
化合物粉と、ステアリン酸亜鉛を、鉄粉とオレイン酸と
黒鉛粉とCu粉との合計量100 重量部に対し0.4重量部、
添加して十分混合したのち110 ℃で加熱混合し、 さらに混合しながら85℃以下に冷却して、鉄粉粒子に
Bを含む化合物をオレイン酸とステアリン酸亜鉛の共融
体結合剤により固着した混合粉とした。
Zinc stearate is added to the mixed powder, iron powder, a compound powder containing B, a compound powder containing S, a graphite powder, and a Cu powder.
0.3 parts by weight was added to the total amount of 100 parts by weight of the powder, the mixture of the stearic acid amide and the mixture of ethylene bisstearic acid amide, followed by uniform mixing. Mixing method 4: 0.3 wt% of oleic acid was spray-sprayed on the atomized iron powder and uniformly mixed for 3 minutes. Thereafter, the compound powder containing B, the compound powder containing S, and zinc stearate in the amounts shown in Table 1 were added to 0.4 parts by weight with respect to 100 parts by weight of the total amount of iron powder, oleic acid, graphite powder and Cu powder,
After adding and mixing well, the mixture was heated and mixed at 110 ° C., and cooled to 85 ° C. or less while further mixing, and the compound containing B was fixed to the iron powder particles with a eutectic binder of oleic acid and zinc stearate. It was a mixed powder.

【0036】この混合粉に黒鉛粉を1.5 wt%と、Cu粉
を2.0wt %と、ステアリン酸亜鉛を、鉄粉とBを含む化
合物粉とSを含む化合物粉と黒鉛粉とCu粉とオレイン酸
との合計量100 重量部に対し、0.3 重量部とを添加し均
一混合した。 混合方法5: アトマイズ鉄粉に、表1に示す量のBを含む化合物粉
とSを含む化合物粉と、ステアリン酸アミドとエチレン
ビスステアリン酸アミドとの混合物0.4 wt%とを添加し
十分混合したのち110 ℃で加熱混合し、 さらに混合しながら85℃以下に冷却して、Bを含む化
合物粉をステアリン酸アミドとエチレンビスステアリン
酸アミドとの部分共融体結合剤により固着した混合粉と
した。
In this mixed powder, 1.5 wt% of graphite powder, 2.0 wt% of Cu powder, zinc stearate, iron powder, compound powder containing B, compound powder containing S, graphite powder, Cu powder, olein 0.3 part by weight was added to the total amount of 100 parts by weight with the acid, and mixed uniformly. Mixing method 5: The amount of compound powder containing B and the amount of compound powder containing S and 0.4 wt% of a mixture of stearamide and ethylenebisstearic acid in the amounts shown in Table 1 were added to the atomized iron powder and mixed well. Thereafter, the mixture was heated and mixed at 110 ° C., and further cooled to 85 ° C. or less while further mixing to obtain a mixed powder in which the compound powder containing B was fixed with a partial eutectic binder of stearamide and ethylenebisstearic acid amide. .

【0037】この混合粉に、黒鉛粉を1.5 wt%と、Cu
粉を2.0wt %と、ステアリン酸亜鉛を、鉄粉とBを含む
化合物粉とSを含む化合物粉と、ステアリン酸アミドと
エチレンビスステアリン酸アミドとの混合物と、黒鉛粉
とCu粉との合計量100 重量部に対し0.3 重量部、添加し
て均一混合した。これらの混合粉を加圧成形し成形体と
した。
In this mixed powder, 1.5 wt% of graphite powder and Cu
2.0wt% of powder, zinc stearate, iron powder, compound powder containing B, compound powder containing S, mixture of stearic acid amide and ethylenebisstearic acid amide, graphite powder and Cu powder 0.3 part by weight was added to 100 parts by weight, and the mixture was uniformly mixed. These mixed powders were molded under pressure to form molded bodies.

【0038】圧縮性は、上記した混合粉を5ton/cm2
10φ×10mmの円柱状の成形体に成形し、その密度で評価
した。密度が大きいほど圧縮性はよい。遊離黒鉛量及び
切削性は、密度6.85g/cm3 になるように加圧して、円柱
状の成形体とし、その成形体を、水素10体積%を含む窒
素雰囲気中で1130℃×20min の焼結処理により得た焼結
体を用いて評価した。
The compressibility of the mixed powder is 5 ton / cm 2 .
It was molded into a cylindrical molded body of 10φ × 10 mm, and evaluated by its density. The higher the density, the better the compressibility. Free graphite amount and machinability pressurizes to a density 6.85 g / cm 3, a cylindrical molded body, the molded body was sintered in 1130 ° C. × 20min in a nitrogen atmosphere containing 10 vol% hydrogen The evaluation was performed using the sintered body obtained by the sintering process.

【0039】得られた焼結体内の遊離黒鉛量は、焼結体
の1部(試料)を硝酸で溶解し、残渣をガラスフィルタ
で濾過して得た濾液から、赤外線吸収法で求めた。ま
た、切削性は、外径60mmφ、高さ10mmの円柱状の焼結体
を用い、直径2mmφのハイス製ドリルを、10000rpm、0.
012mm/rev の条件で回転させ、試験片に多数の孔を開
け、ドリルが穿孔不能になるまでに開けた孔の平均個数
( ドリル3本の平均値)を求め、その数値で評価した。
その数値が大きいほど切削性がよいとした。
The amount of free graphite in the obtained sintered body was determined by an infrared absorption method from a filtrate obtained by dissolving a part (sample) of the sintered body with nitric acid and filtering the residue through a glass filter. In addition, the machinability, using a cylindrical sintered body with an outer diameter of 60 mmφ and a height of 10 mm, a high-speed steel drill with a diameter of 2 mmφ at 10000 rpm, 0.
Rotate under the condition of 012mm / rev, make many holes in the test piece, average number of holes made before drill becomes impossible
(Average value of three drills) was obtained and evaluated by the numerical value.
The larger the value, the better the machinability.

【0040】これらの結果を表1に示す。Table 1 shows the results.

【0041】[0041]

【表1】 [Table 1]

【0042】表1より、本発明の粉末冶金用鉄基混合粉
で製造した焼結体(No.1 〜No.5 、No.10 〜13 )は、切
削性が大幅に向上した。これに対し、Sを含む化合物粉
の配合がなく、Bを含む化合物粉の配合量が本発明範囲
を超える焼結体No.6では、切削性の劣化は少ないが圧縮
性が低下している。また、Sを含む化合物粉の配合がな
く、Bを含む化合物粉の配合量が低い焼結体No.8、Sを
含む化合物粉の配合量が低い焼結体No.9、Mn量が高い焼
結体No.7では、遊離黒鉛量が少なく切削性が低下してい
る。また、Bを含む化合物粉の配合量が同じで、混合方
法の異なる焼結体No.5、No.10 〜No.13 を比較すると、
偏析防止処理を行った焼結体No.10 〜No.13 のほうがN
o.5に比べ遊離黒鉛量が多く、切削性が優れている。 (実施例2)表2に示すS、Mnを含有する元粉となるア
トマイズ鉄粉を製造した。
As shown in Table 1, the sinters (Nos. 1 to 5 and Nos. 10 to 13) produced from the iron-based mixed powder for powder metallurgy of the present invention have greatly improved machinability. On the other hand, in the sintered body No. 6 in which the compound powder containing S is not compounded and the compounding amount of the compound powder containing B exceeds the range of the present invention, the machinability is small but the compressibility is low. . In addition, there is no compound powder containing S, and the sintered body No. 8 has a low compounding amount of the compound powder containing B, the sintered body No. 9 has a low compounding amount of the compound powder containing S, and the Mn content is high. In the sintered body No. 7, the amount of free graphite was small and the machinability was reduced. Also, comparing the sintered powders No. 5, No. 10 to No. 13 with the same compounding amount of the compound powder containing B and different mixing methods,
The sintered bodies No. 10 to No. 13 which have been subjected to the segregation prevention
Compared with o.5, the amount of free graphite is larger and the machinability is excellent. (Example 2) An atomized iron powder as a base powder containing S and Mn shown in Table 2 was produced.

【0043】まず、所定組成に調整した溶鋼(溶鋼温
度:1630℃)を、水でアトマイズし、粉末とした。この
粉末を窒素雰囲気中で140 ℃×60min の乾燥を行ってか
ら、純水素雰囲気中で930 ℃×20min の還元処理を施し
た。冷却後、還元炉から取り出し、粉砕、分級しアトマ
イズ鉄粉の元粉とした。これら元粉に、カーボニルNi
粉、三酸化Mo粉、Cu粉を表2に示す組成となる割合で混
合し、水素ガス中で875 ℃×60min の焼鈍を施し元粉表
面に拡散付着させた合金鋼粉とした。(なお、表2中の
Ni、Mo、Cu含有量は鉄粉中の重量%で示す。) これら合金鋼粉に、表2に示す量のBを含む化合物粉と
Sを含む化合物粉と、黒鉛粉および潤滑剤を、つぎに示
す混合方法1A〜5Aにより混合粉とした。前記1〜5
の混合方法ではCu粉を混合したが、1A〜5Aの混合方
法ではCu粉を混合していない。(なお、Bを含む化合物
粉、Sを含む化合物粉、黒鉛粉の配合量は、合金鋼粉と
Bを含む化合物粉とSを含む化合物粉と黒鉛粉の合計量
に対する重量%で示す。) 混合方法1A: これら合金鋼粉に、Bを含む化合物粉として、表2に
示す量のほう酸(H3BO 3 )、酸化硼素(B2O3) 、ほう酸
アンモニウム粉末、六方晶窒化硼素(BN)の1種以上
と、Sを含む化合物粉として、表2に示す量のS粉、Fe
S 粉、MnS 粉の1種以上と、黒鉛粉1.5wt %と、これら
の合計量100 重量部に対しステアリン酸亜鉛1重量部を
加えてVブレンダーで15min 間混合し混合粉とした。
First, molten steel adjusted to a predetermined composition (the molten steel temperature
(Degree: 1630 ° C.) was atomized with water to obtain a powder. this
Have the powder been dried at 140 ° C for 60 min in a nitrogen atmosphere?
930 ° C x 20 min in a pure hydrogen atmosphere.
Was. After cooling, remove from the reduction furnace, pulverize, classify and
It was the base powder of iron powder. Carbonyl Ni
Powder, Mo trioxide powder, and Cu powder in proportions as shown in Table 2.
And annealed in hydrogen gas at 875 ° C for 60 min.
The alloy steel powder was diffused and attached to the surface. (Note that in Table 2,
The contents of Ni, Mo, and Cu are indicated by% by weight in the iron powder. ) These alloy steel powders were mixed with a compound powder containing B in the amount shown in Table 2.
The compound powder containing S, graphite powder and lubricant are shown below.
A mixed powder was obtained by mixing methods 1A to 5A. 1-5
Cu powder was mixed in the mixing method of 1A to 5A.
The method does not mix Cu powder. (The compound containing B
Powder, compound powder containing S and graphite powder are mixed with alloy steel powder.
Total amount of compound powder containing B, compound powder containing S, and graphite powder
% By weight. ) Mixing method 1A: These alloy steel powders were used as compound powders containing B as shown in Table 2.
The indicated amount of boric acid (HThreeBO Three), Boron oxide (BTwoOThree), Boric acid
At least one of ammonium powder and hexagonal boron nitride (BN)
And the amount of S powder and Fe in the amount shown in Table 2 as compound powder containing S
At least one of S powder and MnS powder and 1.5 wt% of graphite powder
1 part by weight of zinc stearate per 100 parts by weight of
In addition, the mixture was mixed for 15 minutes with a V blender to obtain a mixed powder.

【0044】混合方法2A: これら合金鋼粉に、オレイン酸0.3wt %をスプレー噴
霧し3min 間均一混合し、 その後、表2に示す量のBを含む化合物粉と、表2に
示す量のSを含む化合物粉と、黒鉛粉1.5 wt%と、これ
らの合計量100 重量部に対しステアリン酸亜鉛0.4 重量
部とを添加して十分混合したのち110 ℃で加熱混合し、 さらに混合しながら85℃以下に冷却して、鉄粉粒子に
黒鉛とほう酸(H3BO3)をオレイン酸とステアリン酸亜
鉛の共融体結合剤により固着した混合粉とした。
Mixing method 2A: 0.3 wt% of oleic acid was spray-sprayed onto these alloy steel powders and uniformly mixed for 3 minutes. Thereafter, the compound powder containing B in the amount shown in Table 2 and the S powder in the amount shown in Table 2 were mixed. , A graphite powder, 1.5 wt% of graphite powder, and 0.4 parts by weight of zinc stearate with respect to 100 parts by weight of the total amount, add them well, heat and mix at 110 ° C, and further mix at 85 ° C. The mixture was cooled below to obtain a mixed powder in which graphite and boric acid (H 3 BO 3 ) were fixed to iron powder particles with a eutectic binder of oleic acid and zinc stearate.

【0045】さらに、この混合粉に、ステアリン酸亜
鉛を、鉄粉とオレイン酸とBを含む化合物粉とSを含む
化合物粉と黒鉛粉との合計量100 重量部に対し、0.3 重
量部添加し、均一混合した。 混合方法3A: 合金鋼粉に、表2に示す量のBを含む化合物粉と、表
2に示す量のSを含む化合物粉と、黒鉛粉1.5 wt%と、
ステアリン酸アミドとエチレンビスステアリン酸アミド
との混合物0.4 wt%とを添加し十分混合したのち110 ℃
で加熱混合し、 さらに混合しながら85℃以下に冷却して、鉄粉粒子に
黒鉛粉とBを含む化合物粉とSを含む化合物粉をステア
リン酸アミドとエチレンビスステアリン酸アミドとの部
分共融体結合剤により固着した混合粉とした。
Further, 0.3 parts by weight of zinc stearate was added to this mixed powder with respect to 100 parts by weight of the total amount of the compound powder containing iron powder, oleic acid, B, the compound powder containing S, and the graphite powder. And homogeneously mixed. Mixing method 3A: In alloy steel powder, compound powder containing B in the amount shown in Table 2, compound powder containing S in the amount shown in Table 2, 1.5 wt% of graphite powder,
Add 0.4 wt% of a mixture of stearic acid amide and ethylenebisstearic acid amide and mix well, then 110 ° C
Then, the mixture was cooled to 85 ° C or less while mixing, and the graphite powder, the compound powder containing B and the compound powder containing S were partially eutecticized with stearamide and ethylenebisstearic acid amide. The mixed powder was fixed with a body binder.

【0046】この混合粉に、ステアリン酸亜鉛を、鉄
粉とBを含む化合物粉とSを含む化合物粉と黒鉛粉とス
テアリン酸アミドとエチレンビスステアリン酸アミドと
の混合物との合計量100 重量部に対し、0.3 重量部を添
加して均一混合した。 混合方法4A: 合金鋼粉に、オレイン酸0.3wt %をスプレー噴霧し3
min 間均一混合し、 その後、表2に示す量のBを含む化合物粉と、表2に
示す量のSを含む化合物粉と、ステアリン酸亜鉛を、鉄
粉とオレイン酸と黒鉛粉との合計量100 重量部に対し0.
4 重量部添加して、十分混合したのち110 ℃で加熱混合
し、 さらに混合しながら85℃以下に冷却して、鉄粉粒子に
Bを含む化合物粉とSを含む化合物粉をオレイン酸とス
テアリン酸亜鉛の共融体結合剤により固着した混合粉と
した。
To this mixed powder, zinc stearate was added in a total amount of 100 parts by weight of a mixture of iron powder, a compound powder containing B, a compound powder containing S, graphite powder, stearic acid amide, and ethylenebisstearic acid amide. Was added and uniformly mixed. Mixing method 4A: 0.3 wt% of oleic acid was spray-sprayed on the alloy steel powder.
After mixing uniformly, the compound powder containing B in the amount shown in Table 2, the compound powder containing S in the amount shown in Table 2, and zinc stearate are combined with iron powder, oleic acid, and graphite powder. 0 for 100 parts by weight.
Add 4 parts by weight, mix well, heat and mix at 110 ° C, cool to 85 ° C or less while mixing, and mix compound powder containing B and compound powder containing S in iron powder particles with oleic acid and stearic acid. The mixed powder was fixed with a zinc eutectic binder.

【0047】この混合粉に黒鉛粉を1.5 wt%と、ステ
アリン酸亜鉛を、鉄粉とBを含む化合物粉とSを含む化
合物粉と黒鉛粉とオレイン酸との合計量100 重量部に対
し、0.3 重量部とを添加し均一混合した。 混合方法5A: 合金鋼粉に、表2に示す量のBを含む化合物粉と、表
2に示す量のSを含む化合物粉と、ステアリン酸アミド
とエチレンビスステアリン酸アミドとの混合物0.4 wt%
とを添加し十分混合したのち110 ℃で加熱混合し、 さらに混合しながら85℃以下に冷却して、Bを含む化
合物粉とSを含む化合物粉をステアリン酸アミドとエチ
レンビスステアリン酸アミドとの部分共融体結合剤によ
り固着した混合粉とした。
1.5 wt% of graphite powder, zinc stearate, and iron powder, a compound powder containing B, a compound powder containing S, a graphite powder, and oleic acid were added to the mixed powder in an amount of 100 parts by weight. And 0.3 part by weight and uniformly mixed. Mixing method 5A: 0.4 wt% of a mixture of alloy powder containing compound powder containing B in the amount shown in Table 2, compound powder containing S in the amount shown in Table 2, and stearamide and ethylenebisstearic acid amide
And mixed well by heating at 110 ° C., and further cooling to 85 ° C. or lower while further mixing. The compound powder containing B and the compound powder containing S are mixed with stearamide and ethylenebisstearic acid amide. The mixed powder was fixed with a partial eutectic binder.

【0048】この混合粉に、黒鉛粉を1.5 wt%と、ス
テアリン酸亜鉛を、鉄粉とステアリン酸アミドとエチレ
ンビスステアリン酸アミドとの混合物と黒鉛粉とBを含
む化合物粉とSを含む化合物粉との合計量100 重量部に
対し0.3 重量部とを、添加して均一混合した。これら混
合粉の混合状態を概念的に図1〜図5に示す。図1は混
合方法1A、図2は混合方法2A、図3は混合方法3
A、図4は混合方法4A、図5は混合方法5Aの方法で
混合した場合の混合状態を示す。
To this mixed powder, 1.5 wt% of graphite powder, zinc stearate, a mixture of iron powder, stearic acid amide and ethylene bisstearic acid, a graphite powder, a compound powder containing B, and a compound containing S 0.3 part by weight was added to the total amount of 100 parts by weight with the powder, and the mixture was uniformly mixed. The mixing state of these mixed powders is conceptually shown in FIGS. 1 is a mixing method 1A, FIG. 2 is a mixing method 2A, and FIG.
A, FIG. 4 shows the mixing state when mixing by the mixing method 4A, and FIG. 5 shows the mixing state when mixing by the mixing method 5A.

【0049】これらの混合粉を加圧成形し成形体とし
た。遊離黒鉛量及び切削性は、上記した混合粉を密度7.
0g/cm3になるように加圧して、円柱状の成形体とし、水
素10体積%を含む窒素雰囲気中で1250℃×60min の焼結
処理により得た焼結体を用いて実施例1と同様に評価し
た。さらに、焼結後の矯正の可否を調査した。また、焼
結体をカーボンポテンシャル0.8 %の雰囲気中で850 ℃
×30min 加熱したのち160 ℃の油中に光輝焼入れし、光
輝焼入れ後の引張強さを測定した。
These mixed powders were molded under pressure to obtain molded articles. For the amount of free graphite and machinability, the mixed powder described above has a density of 7.
0 g / cm 3 to form a columnar molded body, and a sintered body obtained by sintering at 1250 ° C. for 60 min in a nitrogen atmosphere containing 10% by volume of hydrogen was used. It was evaluated similarly. Furthermore, the possibility of straightening after sintering was investigated. The sintered body was heated at 850 ° C in an atmosphere with a carbon potential of 0.8%.
After heating for 30 minutes, bright quenching was performed in oil at 160 ° C., and the tensile strength after bright quenching was measured.

【0050】これらの結果を表2に示す。Table 2 shows the results.

【0051】[0051]

【表2】 [Table 2]

【0052】表2より、本発明の粉末冶金用鉄基混合粉
で製造した焼結体(No.2-1 〜No.2-7、No.2-14 〜No.2-1
7)は、遊離黒鉛量が0.5 %以上あり、切削性の指数であ
る工具寿命も130 個以上と、切削性が大幅に向上した。
また、Ni、Cu、Moの添加で光輝焼入れ後の引張強さも90
0MPa以上と高強度を示している。また、焼結のままでも
矯正が可能である。また、Sを含む化合物粉の配合がな
く、Bを含む化合物粉の配合量が少ない焼結体No.2-12
、Bを含む化合物粉の配合がなく、Sを含む化合物粉
の配合量が少ない焼結体No.2-13 、Mn量が高い焼結体N
o.2-8では、遊離黒鉛量が少なく切削性が低下し、矯正
が不可能であった。また、合金添加量が多い焼結体No.2
-9、No.2-10 、No.2-11 は切削性が低下し、矯正が不可
能となった。
From Table 2, it can be seen that the sintered bodies (No. 2-1 to No. 2-7, No. 2-14 to No. 2-1) produced from the iron-base mixed powder for powder metallurgy of the present invention.
In 7), the amount of free graphite was 0.5% or more, and the tool life, which is an index of machinability, was 130 pieces or more, and machinability was greatly improved.
In addition, the addition of Ni, Cu, and Mo increases the tensile strength after bright quenching to 90.
It shows a high strength of 0 MPa or more. In addition, straightening can be performed even with sintering. In addition, there was no compound powder containing S, and the compounded amount of compound powder containing B was small.
No.2-13, no compound powder containing B and no compound powder containing S
In o.2-8, the amount of free graphite was small and the machinability was reduced, and straightening was impossible. In addition, sintered body No. 2
No.-9, No.2-10 and No.2-11 had poor machinability and could not be corrected.

【0053】また、Bを含む化合物粉の配合量およびS
を含む化合物粉の配合量が同じで、混合方法の異なる焼
結体No.2-1、No.2-14 〜No.2-17 を比較すると、偏析防
止処理を行った焼結体No.2-14 〜No.2-17 のほうがNo.2
-1に比べ遊離黒鉛量が多く、切削性が優れている。 (実施例3)表3に示すMn、Ni、Moを含有し残部Feおよ
び不可避的不純物からなる組成のアトマイズ鉄粉を製造
した。
The amount of compound powder containing B and S
No. 2-1 and No. 2-14 to No. 2-17, which have the same compounding amount of the compound powder containing the same and different mixing methods, show that the sintered bodies No. 2-14 to No.2-17 is No.2
The amount of free graphite is larger than that of -1, and the machinability is excellent. (Example 3) An atomized iron powder containing Mn, Ni, and Mo shown in Table 3 and having a balance of Fe and unavoidable impurities was produced.

【0054】まず、所定組成に調整した溶鋼を、水でア
トマイズし、粉末とし、窒素雰囲気中で140 ℃×60min
の乾燥を行ってから、純水素雰囲気中で930 ℃×20min
の還元処理を施し、冷却後、還元炉から取り出し、粉
砕、分級してアトマイズ鉄粉(合金鋼粉 )とした。これ
ら合金鋼粉に、表3に示す量のBを含む化合物粉と、表
3に示す量のSを含む化合物粉と、黒鉛粉および潤滑剤
を、実施例2に示す混合方法1A〜5Aと同様の混合方
法により混合粉とした。 これらの混合粉を加圧成形し
成形体とした。(なお、Bを含む化合物粉、Sを含む化
合物粉、黒鉛粉の配合量は、鉄粉とBを含む化合物粉と
Sを含む化合物粉と黒鉛粉の合計量に対する重量%で示
す。) 遊離黒鉛量及び切削性は、上記した混合粉を密度7.0g/c
m3になるように加圧して、円柱状の成形体とし、水素10
体積%を含む窒素雰囲気中で1250℃×60min の焼結処理
により得た焼結体を用いて実施例1と同様に評価した。
First, molten steel adjusted to a predetermined composition was atomized with water to obtain a powder, which was heated at 140 ° C. × 60 min in a nitrogen atmosphere.
930 ° C × 20min in pure hydrogen atmosphere after drying
After cooling, it was taken out of the reduction furnace, pulverized and classified to obtain atomized iron powder (alloy steel powder). To these alloy steel powders, a compound powder containing B in an amount shown in Table 3, a compound powder containing S in an amount shown in Table 3, graphite powder and a lubricant were mixed with mixing methods 1A to 5A shown in Example 2. A mixed powder was obtained by the same mixing method. These mixed powders were molded under pressure to form molded bodies. (Note that the compounding amounts of the compound powder containing B, the compound powder containing S, and the graphite powder are shown in terms of% by weight based on the total amount of the iron powder, the compound powder containing B, the compound powder containing S, and the graphite powder.) For the graphite content and machinability, the above mixed powder was obtained with a density of 7.0 g / c.
m 3 to form a columnar molded body, hydrogen 10
Evaluation was performed in the same manner as in Example 1 using a sintered body obtained by sintering at 1250 ° C. for 60 minutes in a nitrogen atmosphere containing volume%.

【0055】さらに、実施例2と同様に、焼結後の矯正
の可否、および光輝焼入れ後の引張強さを測定した。こ
れらの結果を表3に示す。
Further, in the same manner as in Example 2, the possibility of straightening after sintering and the tensile strength after bright quenching were measured. Table 3 shows the results.

【0056】[0056]

【表3】 [Table 3]

【0057】表3より、本発明の粉末冶金用鉄基混合粉
で製造した焼結体(No.3-1〜No.3-6、No.3-12 〜No.3-1
5 )は、遊離黒鉛量が0.80%以上あり、切削性の指数で
ある工具寿命も120 個以上と、切削性が大幅に向上し
た。また、Ni、Moの添加で光輝焼入れ後の引張強さも89
0MPa以上と高強度を示している。また、焼結のままで矯
正が可能である。また、Bを含む化合物量の配合量が少
ない焼結体No.3-10 、Bを含む化合物粉の配合がなく、
Sを含む化合物粉の配合量が低い焼結体No.3-11、Mn量
が高い焼結体No.3-7では、遊離黒鉛量が少なく切削性が
著しく低下し、矯正が不可能となった。また、合金添加
量が多い焼結体No.3-8〜No.3-9は切削性が低下し、矯正
が不可能となった。
From Table 3, it can be seen that the sintered bodies (No. 3-1 to No. 3-6, No. 3-12 to No. 3-1) manufactured from the iron-base mixed powder for powder metallurgy of the present invention.
In 5), the amount of free graphite was 0.80% or more, and the tool life, which is an index of machinability, was 120 pieces or more, and machinability was greatly improved. The addition of Ni and Mo also increased the tensile strength after bright quenching to 89.
It shows a high strength of 0 MPa or more. In addition, straightening can be performed as it is. Also, the sintered body No. 3-10 in which the compounding amount of the compound containing B was small, and there was no compounding of the compound powder containing B,
In the sintered compact No. 3-11 with a low compounding amount of the compound powder containing S and the sintered compact No. 3-7 with a high Mn content, the amount of free graphite was small and the machinability was remarkably reduced, so that straightening was impossible. became. In addition, in the sintered bodies No. 3-8 to No. 3-9 with a large amount of alloy addition, the machinability was lowered and the straightening was impossible.

【0058】また、配合量が同じで、混合方法の異なる
焼結体No.3-2、No.3-12 〜No.3-15を比較すると、偏析
防止処理を行った焼結体No.3-12 〜No.3-15 のほうがN
o.3-2に比べ遊離黒鉛量が多く、切削性が優れている。 (実施例4)表4に示すMnを含有し元粉となるアトマイ
ズ鉄粉を製造した。
Further, a comparison of the sintered bodies No. 3-2, No. 3-12 to No. 3-15 having the same blending amount and different mixing methods shows that the sintered bodies No. 3-12 to No.3-15 are N
o Compared with o.3-2, the amount of free graphite is large and the machinability is excellent. (Example 4) An atomized iron powder containing Mn shown in Table 4 and serving as a base powder was produced.

【0059】まず、所定組成に調整した溶鋼を、水でア
トマイズし、粉末とし、窒素雰囲気中で140 ℃×60min
の乾燥を行ってから、純水素雰囲気中で930 ℃×20min
の還元処理を施し、冷却後、還元炉から取り出し、粉
砕、分級しアトマイズ鉄粉の元粉とした。これら元粉
に、カーボニルNi粉、三酸化Mo粉、Cu粉を表4に示す組
成となる割合で混合し、水素ガス中で875 ℃×60min の
焼鈍を施し元粉表面に拡散付着させた合金鋼粉とした。
(なお、表4中のNi、Cu、Mo含有量は鉄粉中の重量%で
示す。) これら合金鋼粉に、表4に示す量のBを含む化合物粉
と、表4に示す量のSを含む化合物粉と、黒鉛粉1.5wt
%および潤滑剤を、実施例2に示す混合方法1A〜5A
と同様の混合方法により混合粉とした。(なお、Bを含
む化合物粉、Sを含む化合物粉、黒鉛粉の配合量は、鉄
粉とBを含む化合物粉とSを含む化合物粉と黒鉛粉の合
計量に対する重量%で示す。) これらの混合粉を加圧成形し成形体とした。
First, molten steel adjusted to a predetermined composition was atomized with water to obtain a powder, which was then heated at 140 ° C. for 60 minutes in a nitrogen atmosphere.
930 ° C × 20min in pure hydrogen atmosphere after drying
After cooling, the mixture was cooled, taken out of the reduction furnace, pulverized and classified to obtain an atomized iron powder base powder. An alloy obtained by mixing carbonyl Ni powder, Mo trioxide powder, and Cu powder with these base powders in the proportions shown in Table 4 and annealing in hydrogen gas at 875 ° C. for 60 minutes to adhere to the base powder surface by diffusion. Steel powder.
(Note that the contents of Ni, Cu, and Mo in Table 4 are shown in terms of% by weight in the iron powder.) In these alloy steel powders, a compound powder containing B in the amount shown in Table 4 and a compound powder containing B in the amount shown in Table 4 Compound powder containing S and graphite powder 1.5wt
% And the lubricant are mixed in the mixing method 1A to 5A shown in Example 2.
A mixed powder was obtained by the same mixing method as described above. (Note that the compounding amounts of the compound powder containing B, the compound powder containing S, and the graphite powder are indicated by weight% based on the total amount of the iron powder, the compound powder containing B, the compound powder containing S, and the graphite powder.) Was mixed under pressure to obtain a molded body.

【0060】遊離黒鉛量及び摺動特性は、上記した混合
粉を密度6.85g/cm3 になるように加圧して、円柱状の成
形体とし、RXガス(endthermic gas)雰囲気中で1130
℃×20min の焼結処理により得た焼結体を用いて評価し
た。遊離黒鉛量は、この焼結体を用いて実施例1と同様
に評価した。さらに、摺動特性は、上記した方法で得た
焼結体から、内径10mmφ×外径20mmφ×高さ8mm の円筒
状試験体を製作し、その円筒内に直径10mmφのS45C製
シャフトを孔壁とのクリアラン20μm で挿入した。そし
て、乾燥条件下で、シャフトを周速100m/minで回転させ
て、接触荷重を低荷重から段階的に増加させる方法で耐
摩耗性試験を行い、シャフトと円筒内壁とが焼付いたと
きの接触荷重をその焼結体の摺動特性とした。焼付いた
ときの接触荷重が大きいほど摺動特性が良好とした。
The amount of free graphite and the sliding characteristics were determined by pressing the above mixed powder so as to have a density of 6.85 g / cm 3 to obtain a columnar molded body, which was heated to 1130 g in an RX gas (endthermic gas) atmosphere.
The evaluation was performed using a sintered body obtained by sintering at a temperature of 20 ° C. for 20 minutes. The amount of free graphite was evaluated in the same manner as in Example 1 using this sintered body. Further, for the sliding characteristics, a cylindrical test specimen having an inner diameter of 10 mmφ, an outer diameter of 20 mmφ, and a height of 8 mm was manufactured from the sintered body obtained by the above method, and an S45C shaft having a diameter of 10 mmφ was bored in the cylinder. With a clear run of 20 μm. Then, under dry conditions, the shaft is rotated at a peripheral speed of 100 m / min, and a wear resistance test is performed by gradually increasing the contact load from a low load, and the contact when the shaft and the inner wall of the cylinder are seized The load was defined as the sliding characteristics of the sintered body. The larger the contact load at the time of seizure, the better the sliding characteristics.

【0061】これらの結果を表4に示す。Table 4 shows the results.

【0062】[0062]

【表4】 [Table 4]

【0063】表4より、本発明の粉末冶金用鉄基混合粉
で製造した焼結体および本発明の方法で製造した焼結体
(No.4-1 〜No.4-6、No.4-10 〜No.4-13)は、遊離黒鉛量
が1.1 %以上あり、焼付くときの接触荷重は6kgf/mm2
以上と高い摺動特性を有している。このように、遊離黒
鉛量が1 %以上となると、摺動特性が格段に向上する。
これに対し、Sを含む化合物粉の配合がなく、Bを含む
化合物粉の配合量が少ない焼結体No.4-7、Bを含む化合
物粉の配合がなく、Sを含む化合物粉の配合量が少ない
焼結体No.4-8、Mn量が高い焼結体No.4-9では、遊離黒鉛
量が少なく摺動特性が低下している。なお、偏析防止処
理を施した焼結体No.4-10 〜No.4-13 は、遊離黒鉛量が
増加し摺動特性は向上している。
From Table 4, it can be seen that the sintered body produced from the iron-based mixed powder for powder metallurgy of the present invention and the sintered body produced by the method of the present invention
(No.4-1 to No.4-6, No.4-10 to No.4-13) have a free graphite content of 1.1% or more and a contact load of 6 kgf / mm 2
It has high sliding characteristics as described above. Thus, when the amount of free graphite is 1% or more, the sliding characteristics are remarkably improved.
On the other hand, there was no compound powder containing S, and the compounded amount of compound powder containing B was small. No sintered powder No. 4-7, no compound powder containing B, and no compound powder containing S In the sintered body No. 4-8 with a small amount and the sintered body No. 4-9 with a high Mn amount, the amount of free graphite was small and the sliding characteristics were reduced. In addition, in the sintered bodies No. 4-10 to No. 4-13 subjected to the segregation prevention treatment, the amount of free graphite is increased and the sliding characteristics are improved.

【0064】[0064]

【発明の効果】本発明によれば、焼結体の切削性、摺動
特性が従来の鉄粉、混合粉を用いた焼結体にくらべ良く
なる。また、本発明による焼結体から機械部品を製造す
れば、機械部品の寸法精度が高まり、その寿命も延び、
産業上、非常に有用である。
According to the present invention, the machinability and sliding characteristics of the sintered body are improved as compared with the conventional sintered body using iron powder and mixed powder. Further, if a mechanical part is manufactured from the sintered body according to the present invention, the dimensional accuracy of the mechanical part is increased, and the life of the mechanical part is extended,
Very useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】混合方法1Aによる混合粉の混合状態を示す概
念図である。
FIG. 1 is a conceptual diagram showing a mixed state of a mixed powder according to a mixing method 1A.

【図2】混合方法2Aによる混合粉の混合状態を示す概
念図である。
FIG. 2 is a conceptual diagram showing a mixed state of a mixed powder according to a mixing method 2A.

【図3】混合方法3Aによる混合粉の混合状態を示す概
念図である。
FIG. 3 is a conceptual diagram illustrating a mixed state of a mixed powder according to a mixing method 3A.

【図4】混合方法4Aによる混合粉の混合状態を示す概
念図である。
FIG. 4 is a conceptual diagram showing a mixed state of a mixed powder according to a mixing method 4A.

【図5】混合方法5Aによる混合粉の混合状態を示す概
念図である。
FIG. 5 is a conceptual diagram showing a mixed state of a mixed powder by a mixing method 5A.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小倉 邦明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 藤長 政志 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kuniaki Ogura, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Corporation (72) Inventor Masashi Fujinaga 1, Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Chiba Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鉄粉と、Bを含む化合物粉と、Sを含む
化合物粉と、あるいはさらに黒鉛粉、または黒鉛粉およ
び潤滑剤とを混合した粉末冶金用鉄基混合粉であって、
前記Bを含む化合物粉が1種以上のBを含む化合物粉か
らなり、また前記Sを含む化合物粉が1種以上のSを含
む化合物粉からなり、前記Bを含む化合物粉を、前記鉄
粉と前記Bを含む化合物粉と前記Sを含む化合物粉とあ
るいはさらに前記黒鉛粉との合計量に対し重量%で、B
換算で0.001 〜0.3 %、さらに前記Sを含む化合物粉
を、前記鉄粉と前記Bを含む化合物粉と前記Sを含む化
合物粉とあるいはさらに前記黒鉛粉との合計量に対し重
量%で、S換算で0.03〜0.3 %混合したことを特徴とす
る粉末冶金用鉄基混合粉。
An iron-based mixed powder for powder metallurgy, wherein iron powder, a compound powder containing B, a compound powder containing S, or graphite powder, or a mixture of graphite powder and a lubricant,
The compound powder containing B is made of one or more compound powders containing B, and the compound powder containing S is made of one or more compound powders containing S, and the compound powder containing B is mixed with the iron powder. And the compound powder containing B, the compound powder containing S, and further the graphite powder,
0.001 to 0.3% in terms of conversion, and the compound powder containing S is further added to the iron powder, the compound powder containing B, the compound powder containing S, and / or the graphite powder in terms of weight%. An iron-based mixed powder for powder metallurgy, characterized by being mixed at a conversion of 0.03 to 0.3%.
【請求項2】 鉄粉と、Bを含む化合物粉と、Sを含む
化合物粉と、銅粉と、あるいはさらに黒鉛粉、または黒
鉛粉および潤滑剤とを混合した粉末冶金用鉄基混合粉で
あって、前記Bを含む化合物粉が1種以上のBを含む化
合物粉からなり、また前記Sを含む化合物粉が1種以上
のSを含む化合物粉からなり、前記Bを含む化合物粉
を、前記鉄粉と前記Bを含む化合物粉と前記Sを含む化
合物粉と前記銅粉と前記黒鉛粉との合計量に対し重量%
で、B換算で0.001 〜0.3 %、前記Sを含む化合物粉
を、前記鉄粉と前記Bを含む化合物粉と前記Sを含む化
合物粉とあるいはさらに前記黒鉛粉との合計量に対し重
量%で、S換算で0.03〜0.3%、および前記銅粉を4%
以下混合したことを特徴とする粉末冶金用鉄基混合粉。
2. An iron base powder for powder metallurgy obtained by mixing iron powder, compound powder containing B, compound powder containing S, copper powder, or graphite powder, or graphite powder and a lubricant. The compound powder containing B is composed of one or more compound powders containing B, and the compound powder containing S is composed of one or more compound powders containing S. % By weight based on the total amount of the iron powder, the compound powder containing B, the compound powder containing S, the copper powder, and the graphite powder.
The compound powder containing S is 0.001 to 0.3% in terms of B, and the compound powder containing S is added in weight% with respect to the total amount of the iron powder, the compound powder containing B, the compound powder containing S, and further the graphite powder. , 0.03-0.3% in S conversion, and 4% of the copper powder
An iron-based mixed powder for powder metallurgy, which is mixed as follows.
【請求項3】 前記鉄粉が、重量%で、Mn:0.05〜0.40
%を含有し残部Feおよび不可避的不純物からなるアトマ
イズ鉄粉であることを特徴とする請求項1または2記載
の鉄基混合粉。
3. The iron powder, in terms of% by weight, Mn: 0.05 to 0.40.
%. The iron-based mixed powder according to claim 1, wherein the powder is atomized iron powder containing Fe and unavoidable impurities.
【請求項4】 前記鉄粉が、重量%で、Mn:0.05〜0.40
%を含み、さらにNi:0.5 〜7.0 %、Mo:0.05〜6.0 %
の中から選ばれた1種または2種を含有し残部Feおよび
不可避的不純物からなるアトマイズ鉄粉であることを特
徴とする請求項1記載の鉄基混合粉。
4. The iron powder, in terms of% by weight, Mn: 0.05 to 0.40.
%, Ni: 0.5-7.0%, Mo: 0.05-6.0%
2. The iron-based mixed powder according to claim 1, wherein the powder is an atomized iron powder containing one or two selected from the group consisting of Fe and the unavoidable impurities.
【請求項5】 前記鉄粉が、重量%で、Mn:0.05〜0.40
%を含有し残部Feおよび不可避的不純物からなるアトマ
イズ鉄粉に、重量%で、Ni:0.5 〜7.0 %、Cu:0.5 〜
7.0 %およびMo:0.05〜3.5 %の中から選ばれた1種ま
たは2種以上が部分合金化されてなる鉄粉であることを
特徴とする請求項1記載の鉄基混合粉。
5. The method according to claim 5, wherein the iron powder has a Mn content of 0.05 to 0.40% by weight.
% Of atomized iron powder consisting of the balance Fe and inevitable impurities. Ni: 0.5 to 7.0%, Cu: 0.5 to
2. The iron-based mixed powder according to claim 1, wherein one or more selected from 7.0% and Mo: 0.05 to 3.5% are partially alloyed iron powder.
【請求項6】 前記鉄粉が、該表面に前記Bを含む化合
物粉および前記Sを含む化合物粉を付着させた鉄粉であ
ることを特徴とする請求項1ないし5のいずれかに記載
の鉄基混合粉。
6. The iron powder according to claim 1, wherein the iron powder is an iron powder having the surface containing the compound powder containing B and the compound powder containing S. Iron-based mixed powder.
JP9089257A 1997-04-08 1997-04-08 Iron-base powder mixture for powder metallurgy use Withdrawn JPH10280083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9089257A JPH10280083A (en) 1997-04-08 1997-04-08 Iron-base powder mixture for powder metallurgy use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9089257A JPH10280083A (en) 1997-04-08 1997-04-08 Iron-base powder mixture for powder metallurgy use

Publications (1)

Publication Number Publication Date
JPH10280083A true JPH10280083A (en) 1998-10-20

Family

ID=13965718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9089257A Withdrawn JPH10280083A (en) 1997-04-08 1997-04-08 Iron-base powder mixture for powder metallurgy use

Country Status (1)

Country Link
JP (1) JPH10280083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861698A2 (en) * 1997-02-25 1998-09-02 Kawasaki Steel Corporation Iron based powder mixture for powder metallurgy
WO2000039353A1 (en) * 1998-12-25 2000-07-06 Kawasaki Steel Corporation Iron-based powder blend for use in powder metallurgy
CN103264158A (en) * 2013-05-27 2013-08-28 无锡市恒特力金属制品有限公司 Powder metallurgy material for rotor of oil pump of gearbox
CN103831432A (en) * 2012-11-27 2014-06-04 安徽省恒宇粉末冶金有限公司 Automobile power steering pump powder metallurgy inner and outer rotor formula and preparation technology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861698A2 (en) * 1997-02-25 1998-09-02 Kawasaki Steel Corporation Iron based powder mixture for powder metallurgy
EP0861698A3 (en) * 1997-02-25 2001-08-01 Kawasaki Steel Corporation Iron based powder mixture for powder metallurgy
WO2000039353A1 (en) * 1998-12-25 2000-07-06 Kawasaki Steel Corporation Iron-based powder blend for use in powder metallurgy
US6296682B1 (en) 1998-12-25 2001-10-02 Kawasaki Steel Corporation Iron-based powder blend for use in powder metallurgy
CN103831432A (en) * 2012-11-27 2014-06-04 安徽省恒宇粉末冶金有限公司 Automobile power steering pump powder metallurgy inner and outer rotor formula and preparation technology
CN103831432B (en) * 2012-11-27 2016-03-23 安徽省恒宇粉末冶金有限公司 Boosting pump for car steering powder metallurgy inner and outer rotors formula and manufacture craft
CN103264158A (en) * 2013-05-27 2013-08-28 无锡市恒特力金属制品有限公司 Powder metallurgy material for rotor of oil pump of gearbox

Similar Documents

Publication Publication Date Title
JPH10324944A (en) Iron-base powder mixture for powder metallurgy
KR102014620B1 (en) Alloy steel powder for powder metallurgy, and sintered body
US6696014B2 (en) Iron-based sintered powder metal body, manufacturing method thereof and manufacturing method of iron-based sintered component with high strength and high density
EP2285996B1 (en) Iron- based pre-alloyed powder
JP5671526B2 (en) High strength low alloy sintered steel
US7384446B2 (en) Mixed powder for powder metallurgy
US20080202651A1 (en) Method For Manufacturing High-Density Iron-Based Compacted Body and High-Density Iron-Based Sintered Body
JP3741654B2 (en) Manufacturing method of high density iron-based forged parts
JPS5856022B2 (en) High wear-resistant powder metallurgy tool steel article with high vanadium carbide content
JP4923801B2 (en) Method for producing high-density iron-based molded body and high-strength high-density iron-based sintered body
JPH0681001A (en) Alloy steel powder
JPH1150103A (en) Production of iron powder for powder metallurgy
JPH10280083A (en) Iron-base powder mixture for powder metallurgy use
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JPH1180803A (en) Ferrous mixed powder for powder metallurgy
JP2007138273A (en) Method for producing high density iron-based compacted body and high strength and high density iron-based sintered body
US6296682B1 (en) Iron-based powder blend for use in powder metallurgy
JP3294980B2 (en) Alloy steel powder for high-strength sintered materials with excellent machinability
JP4070069B2 (en) Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JPH07233401A (en) Atomized steel powder excellent in machinability and dimensional precision and sintered steel
JP4005189B2 (en) High strength sintered steel and method for producing the same
JP2002294388A (en) Iron based stock for powder molding, production method therefor and method for producing high strength and high density iron based sintered compact
JP4615191B2 (en) Method for producing iron-based sintered body
JPH0143017B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706