JPH08209202A - Alloy steel powder for high strength sintered material excellent in machinability - Google Patents
Alloy steel powder for high strength sintered material excellent in machinabilityInfo
- Publication number
- JPH08209202A JPH08209202A JP7282074A JP28207495A JPH08209202A JP H08209202 A JPH08209202 A JP H08209202A JP 7282074 A JP7282074 A JP 7282074A JP 28207495 A JP28207495 A JP 28207495A JP H08209202 A JPH08209202 A JP H08209202A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- machinability
- alloy steel
- sintered
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 44
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 title claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052802 copper Inorganic materials 0.000 claims abstract description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 21
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 19
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 238000004663 powder metallurgy Methods 0.000 abstract description 17
- 229910052759 nickel Inorganic materials 0.000 abstract description 14
- 229910052714 tellurium Inorganic materials 0.000 abstract description 14
- 229910052796 boron Inorganic materials 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 34
- 229910002804 graphite Inorganic materials 0.000 description 30
- 239000010439 graphite Substances 0.000 description 30
- 238000005245 sintering Methods 0.000 description 23
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229910001868 water Inorganic materials 0.000 description 11
- 238000010791 quenching Methods 0.000 description 10
- 230000000171 quenching effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000005255 carburizing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、粉末冶金用鉄粉に
係わり、とくに焼結後の矯正(サイジング)が可能で焼
結体の切削性に優れ、かつ焼入れ後に高強度が得られる
焼結材料用合金鋼粉に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to iron powder for powder metallurgy, and in particular, it is capable of straightening (sizing) after sintering, has excellent machinability of a sintered body, and has high strength after quenching. The present invention relates to alloy steel powder for materials.
【0002】[0002]
【従来の技術】粉末冶金用鉄粉は、鉄粉にCu粉、黒鉛粉
などを添加混合し、金型中で圧粉成形して焼結し、通常
5.0 〜7.2g/cm3の密度を有する焼結機械部品などの製造
に用いられる。粉末冶金法は寸法精度が良く複雑な形状
の焼結体を製造できるが、寸法精度の厳しい部品を製造
する場合には、焼結後の切削加工、あるいはドリル孔明
け加工が必要となることがある。2. Description of the Related Art Iron powder for powder metallurgy is usually manufactured by adding Cu powder, graphite powder, etc. to iron powder, compacting it in a mold and sintering it.
It is used for producing sintered machine parts and the like having a density of 5.0 to 7.2 g / cm 3 . The powder metallurgy method can produce a sintered body with a good dimensional accuracy and a complicated shape, but when manufacturing a component with a strict dimensional accuracy, cutting or drilling after sintering may be necessary. is there.
【0003】粉末冶金製品は一般に切削性が劣り、溶製
材に比べると工具寿命が短い問題点を有しているため機
械加工時のコストが高価になる欠点を有している。粉末
冶金製品における切削性の劣化は、粉末冶金製品に含ま
れる気孔による断続切削あるいは熱伝導率の低下による
切削温度の上昇に起因すると言われている。切削性の改
善を行うために、S、MnS などの快削成分を鉄粉に混合
することが多い。これらのS、MnS は切り屑の破断を容
易にする効果、あるいは工具にS、MnS の薄い構成刃先
を形成し、工具すくい面での潤滑作用により切削性の向
上をもたらすといわれている。Generally, powder metallurgy products have inferior machinability and short tool life as compared with ingots, and therefore have a drawback that the cost during machining is high. It is said that the deterioration of the machinability of the powder metallurgy product is caused by the intermittent cutting due to the pores contained in the powder metallurgy product or the increase of the cutting temperature due to the decrease of the thermal conductivity. In order to improve machinability, free-cutting components such as S and MnS are often mixed with iron powder. These S and MnS are said to bring about the effect of facilitating the breakage of chips, or to form a thin cutting edge of S and MnS on the tool to improve the cutting performance by the lubricating action on the rake face of the tool.
【0004】特公平3-25481 号公報においては若干のMn
(0.1 〜0.5 %)とSi、Cなどを含む純鉄粉にさらにS
を0.03〜0.07%添加した溶湯を、水または気体で噴霧し
て製造した粉末冶金用鉄粉が提案されている。この方法
においては切削性は従来材の2倍弱しか向上しておら
ず、一層の向上が必要であった。また、成形性を改善す
る目的で粉末冶金用鉄粉にBを含有させる技術が特開昭
61-253301 号公報に述べられている。同発明において
は、C:0.10%以下、Mn:2.0 %以下、酸素量が0.30%
以下であり、更にCr:0.10〜5.0 %、Ni:0.10〜5.0
%、Si:2.0 %以下、Cu:0.10〜10.0%、Mo:0.01〜3.
0 %、W:0.01〜3.0%、V:0.01〜2.0 %、Ti:0.005
〜0.50%、Zr:0.005 〜0.50%、Nb:0.005〜0.50%、
P:0.03〜1.0 %及びB:0.0005〜1.0 %からなる群の
うち1種又は2種以上を含有し、更に必要に応じてS:
1.0 %以下を含み、残部が実質的にFeからなる合金鋼粉
が提案されている。In Japanese Patent Publication No. 3-25481, some Mn
(0.1-0.5%) and pure iron powder containing Si, C, etc.
Iron powder for powder metallurgy has been proposed, which is produced by spraying a molten metal added with 0.03 to 0.07% with water or gas. In this method, the machinability was improved only slightly less than twice that of the conventional material, and further improvement was required. Further, a technique of incorporating B into iron powder for powder metallurgy for the purpose of improving moldability is disclosed in Japanese Patent Application Laid-Open
61-253301. In the present invention, C: 0.10% or less, Mn: 2.0% or less, oxygen amount is 0.30%
Below: Cr: 0.10 to 5.0%, Ni: 0.10 to 5.0
%, Si: 2.0% or less, Cu: 0.10 to 10.0%, Mo: 0.01 to 3.
0%, W: 0.01 to 3.0%, V: 0.01 to 2.0%, Ti: 0.005
~ 0.50%, Zr: 0.005-0.50%, Nb: 0.005-0.50%,
P: 0.03 to 1.0% and B: 0.0005 to 1.0%, containing 1 or 2 or more of the group consisting of S:
Alloy steel powders containing 1.0% or less and the balance being substantially Fe have been proposed.
【0005】しかしながら、この組成の合金鋼粉は、Cr
が0.10%以上と高い上に、この組成を得るには鉄鉱石、
ミルスケールなどの酸化鉄を粉コークスなどの還元剤で
粗還元した粉末に、予め合金化した水噴霧母合金粉末、
すなわちC:0.50%以下、Mn:5.0 %以下、酸素量が1.
5 %以下であり、さらにCr:0.10〜20.0%、Ni:0.15〜
20.0%、Si:5.0 %以下、Cu:0.15〜20.0%、Mo:0.01
5 〜15.0%、W:0.015 〜15.0%、V:0.015 〜5.0
%、Ti:0.01〜2.0 %、Zr:0.01〜2.0 %、Nb:0.01〜
2.0 %、P:0.04〜2.0 %、およびB:0.0010〜2.0 %
からなる群のうちの1種または2種以上を含有し、さら
に必要に応じてS:4%以下を含み、残部が実質的にFe
からなる水噴霧母合金粉末を、仕上げ還元後の合金元素
量が上記所望量になるように混合・調整し、しかる後に
該混合粉末を還元雰囲気中で仕上げ還元することが必要
とされ、非常に複雑でコストの高い製造方法をとらねば
ならない。However, the alloy steel powder of this composition contains Cr
Is higher than 0.10%, iron ore to obtain this composition,
Powder of iron oxide such as mill scale roughly reduced with a reducing agent such as powder coke, pre-alloyed water spray mother alloy powder,
That is, C: 0.50% or less, Mn: 5.0% or less, oxygen content is 1.
5% or less, Cr: 0.10 to 20.0%, Ni: 0.15 to
20.0%, Si: 5.0% or less, Cu: 0.15 to 20.0%, Mo: 0.01
5 to 15.0%, W: 0.015 to 15.0%, V: 0.015 to 5.0
%, Ti: 0.01 to 2.0%, Zr: 0.01 to 2.0%, Nb: 0.01 to
2.0%, P: 0.04 to 2.0%, and B: 0.0010 to 2.0%
1 or 2 or more of the group consisting of, and optionally S: 4% or less, with the balance being substantially Fe.
It is necessary to mix and adjust the water-sprayed mother alloy powder consisting of so that the amount of alloying elements after finish reduction becomes the above-mentioned desired amount, and then finish-reduce the mixed powder in a reducing atmosphere. A complicated and costly manufacturing method must be taken.
【0006】ところで、特に自動車部品としてのギヤな
どには高強度や高疲労特性が要求される。これらの部品
を粉末冶金法で製造する場合には、強度および疲労特性
を向上させるために合金成分を添加する方法が一般的で
ある。例えば、特公昭45−9649号公報では、純鉄粉にN
i、Cu、Moなどの粉末を拡散付着することによって合金
化成分として添加している。しかしながら、この製法に
よる鋼粉は圧縮性および焼結体強度に優れているが、そ
の焼結体の硬度が高いため、焼結後の矯正がほとんど不
可能でかつ切削性が悪いという問題点があった。By the way, in particular, gears as automobile parts are required to have high strength and high fatigue characteristics. When these parts are manufactured by the powder metallurgy method, a method of adding an alloy component in order to improve strength and fatigue properties is common. For example, in Japanese Patent Publication No. 45-9649, pure iron powder has N
It is added as an alloying component by diffusing and adhering powders of i, Cu, Mo and the like. However, the steel powder produced by this method is excellent in compressibility and sintered body strength, but since the hardness of the sintered body is high, there is a problem that straightening after sintering is almost impossible and machinability is poor. there were.
【0007】また、前述の特公平3−25481 号公報にお
いて開示された方法において製造した鉄粉を用い、Ni、
Cu、Moなどの合金化成分粉末を拡散付着させても、焼結
体生地が硬いためSの効果だけでは切削性は改善しな
い。Further, using the iron powder produced by the method disclosed in the above Japanese Patent Publication No. 3-25481, Ni,
Even if the alloying component powders such as Cu and Mo are diffused and adhered, the machinability is not improved only by the effect of S because the sintered material is hard.
【0008】[0008]
【発明が解決しようとする課題】本発明は、このような
従来技術の欠点に鑑み、焼結後の矯正が可能で切削性に
優れかつ光輝焼入れあるいは浸炭処理後に高強度を有す
る焼結体を得ることができる粉末冶金用合金鋼粉を提供
することを目的とするものである。In view of such drawbacks of the prior art, the present invention provides a sintered body which can be straightened after sintering, has excellent machinability, and has high strength after bright quenching or carburizing. It is intended to provide an alloy steel powder for powder metallurgy that can be obtained.
【0009】[0009]
【課題を解決するための手段】本発明者らは、特願平6-
208949号、特願平6-235025号において、水を用いた噴霧
法により製造されたS、Cr、Mnを所定量含む粉末冶金用
鉄粉を焼結すると、焼結鋼の気孔に残留黒鉛が、鉄粒子
内および粒界に5μm 以内のMnSが存在し、切削性に優
れる焼結鋼が容易に得られることを提案した。[Means for Solving the Problems]
In 208949 and Japanese Patent Application No. 6-235025, when iron powder for powder metallurgy containing a predetermined amount of S, Cr, and Mn produced by a spraying method using water is sintered, residual graphite is left in the pores of the sintered steel. It has been proposed that MnS of 5 μm or less exists in iron particles and in grain boundaries, and a sintered steel having excellent machinability can be easily obtained.
【0010】特願平6-208949号による粉末冶金用鉄粉を
純窒素雰囲気中での焼結途中で急冷し、残留黒鉛の分析
を行った結果、残留黒鉛は焼結中の浸炭が阻害された結
果生成することがわかった。さらに黒鉛の浸炭を阻害す
る効果は鉄粉表層部に存在するFeSが有効であり、また
さらにCrを併用して添加することにより、残留黒鉛量が
一層増加することを発見した。Iron powder for powder metallurgy according to Japanese Patent Application No. 6-208949 was rapidly cooled during sintering in a pure nitrogen atmosphere, and residual graphite was analyzed. As a result, residual graphite was found to inhibit carburization during sintering. It turns out that it produces as a result. Further, it was discovered that FeS existing in the surface layer of iron powder is effective for inhibiting the carburization of graphite, and that the addition of Cr in combination further increases the amount of residual graphite.
【0011】また、S以外に焼結中の浸炭を阻害し、残
留黒鉛量を増加させる合金元素の調査を行った結果、溶
製材料において鉄中への溶解度が少なく、結晶粒界に偏
析し易いSeおよびTeはSと同様に残留黒鉛を生成させる
効果があった。また、これとは別に、Bを含有する溶鋼
を水でアトマイズ噴霧すると、Bの一部が水により容易
に酸化されて鉄粉表面にB系酸化物が析出し、このB系
酸化物が焼結中に鉄粉中への黒鉛の浸炭を抑制するた
め、焼結体中の残留黒鉛量を増加させ、切削性を向上さ
せる作用があることを知見した。また、焼結体中のフェ
ライトの含有量が増加するので矯正も可能となった。ま
た、光輝焼入れ、浸炭熱処理後は残留黒鉛が鉄粒子内に
再固溶しベーナイトやマルテンサイトを主体とする組織
となり、高強度が得られる。Further, as a result of investigating alloy elements other than S, which inhibit carburization during sintering and increase the amount of residual graphite, the melted material has a low solubility in iron and segregates at grain boundaries. Like Se, easy Se and Te had the effect of forming residual graphite. Separately from this, when molten steel containing B is atomized and sprayed with water, part of B is easily oxidized by water to deposit B-based oxide on the iron powder surface, and this B-based oxide is burned. It has been found that there is an effect of increasing the amount of residual graphite in the sintered body and improving the machinability in order to suppress the carburization of graphite in the iron powder during binding. Further, since the content of ferrite in the sintered body is increased, it is possible to correct it. Further, after the bright quenching and the carburizing heat treatment, the residual graphite is re-dissolved in the iron particles to form a structure mainly composed of bainite and martensite, and high strength is obtained.
【0012】これらの知見を基に鋭意実験を行い、検討
を加えた結果、重量%でCr:0.02〜0.07%、Mn:0.1 %
未満で、残部がFeと不可避的不純物であるアトマイズ鉄
粉に、さらにBを0.001 〜0.3 %含有させた鉄粉に、重
量比でNi:0.5 〜7%、Cu:0.5 〜3%およびMo:0.05
〜3.5 %から選ばれる1種以上を拡散付着させた部分合
金化鋼粉を用いて得られた焼結材料は、浸炭処理、光輝
焼入れ後にはベーナイトやマルテンサイトを主体とする
組織となり高強度材料が得られるばかりでなく、焼結ま
までは矯正が可能で優れた切削性を示すことを見い出し
た。[0012] Based on these findings, a diligent experiment was conducted, and as a result, a study was made. As a result, Cr: 0.02 to 0.07% and Mn: 0.1% by weight.
If the content is less than Fe, the balance is Fe and atomized iron powder which is an unavoidable impurity, and iron powder containing 0.001 to 0.3% of B is added to Ni: 0.5 to 7%, Cu: 0.5 to 3% and Mo: by weight. 0.05
Sintered materials obtained by using partially alloyed steel powder with one or more kinds selected from ~ 3.5% diffused and adhered have a structure mainly composed of bainite and martensite after carburizing and bright quenching, and are high strength materials. It has been found that not only is it obtained, but also it can be straightened as it is and exhibits excellent machinability.
【0013】さらには、上記Bを含むアトマイズ鉄粉
に、さらにS、SeおよびTeから選ばれる1種以上を合計
で0.03〜0.15%含ませることで、Ni:0.5 〜7%、Cu:
0.5 〜3%およびMo:0.05〜3.5 %から選ばれる1種以
上を拡散付着させた部分合金化鋼粉を用いて得られた焼
結材料は、一層優れた切削性を示すことを見い出した。
すなわち本発明は、重量比でB:0.001 〜0.3 %、Cr:
0.02〜0.07%、Mn:0.1 %未満を含み、必要に応じてさ
らにS、SeおよびTeから選ばれる1種以上を合計で0.03
〜0.15%含み、残部がFeと不可避的不純物である鉄粉
に、重量比でNi:0.5 〜7%、Cu:0.5 〜3%およびM
o:0.05〜3.5 %から選ばれる1種以上が部分合金化さ
れていることを特徴とする切削性に優れた高強度焼結材
料用合金鋼粉である。Further, by adding 0.03 to 0.15% in total of one or more kinds selected from S, Se and Te to the atomized iron powder containing B, Ni: 0.5 to 7%, Cu:
It has been found that the sintered material obtained by using the partially alloyed steel powder in which one or more kinds selected from 0.5 to 3% and Mo: 0.05 to 3.5% are diffusion-adhered and exhibits further excellent machinability.
That is, in the present invention, the weight ratio of B: 0.001 to 0.3% and Cr:
0.02 to 0.07%, Mn: less than 0.1%, and if necessary, one or more selected from S, Se and Te in total of 0.03
~ 0.15%, with the balance being Fe and inevitable impurities in iron powder, Ni: 0.5 to 7%, Cu: 0.5 to 3% and M by weight ratio.
o: One or more selected from 0.05 to 3.5% is partially alloyed, which is an alloy steel powder for a high-strength sintered material having excellent machinability.
【0014】なお、部分合金化する元素源としては、Ni
およびCuの場合はそれらの金属粉末が、Moの場合は金属
粉末だけでなくMoO3粉末が、それぞれ好適に使用でき
る。The element source for partial alloying is Ni
In the case of Cu and Cu, those metal powders can be suitably used, and in the case of Mo, not only the metal powder but also MoO 3 powder can be suitably used.
【0015】[0015]
【発明の実施の形態】本発明は、B系酸化物ならびに
S、Se、Teによる浸炭防止作用により、焼結合金鋼の気
孔に生成する残留黒鉛の作用によって焼結合金鋼の切削
性を向上させるものである。また、Ni、Cu、Moのいずれ
か1種以上を拡散付着により部分合金化させているの
で、通常のFe−Cu−C系、Fe−C系の配合で成形、焼結
することにより、残留黒鉛を有する切削性の優れた高強
度焼結合金鋼を容易に得ることができる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention improves the machinability of a sintered alloy steel by the action of residual graphite generated in the pores of the sintered alloy steel by the carburization-preventing action of the B-based oxide and S, Se and Te. It is what makes me. In addition, since at least one of Ni, Cu, and Mo is partially alloyed by diffusion adhesion, it can be retained by molding and sintering with a usual Fe-Cu-C-based or Fe-C-based composition. It is possible to easily obtain a high-strength sintered alloy steel having graphite and having excellent machinability.
【0016】以下に本発明において重要な働きをする各
元素の作用および限定範囲について詳細に説明する。 B:0.001 〜0.3 % 前述したように、Bを含有する溶鋼を水でアトマイズ噴
霧すると、Bの一部が水により容易に酸化されて鉄粉表
面にB系酸化物が析出し、このB系酸化物が焼結中に鉄
粉中への黒鉛の浸炭を抑制するため、焼結体中の残留黒
鉛量を増加させ、結果として焼結合金鋼の切削性を向上
させるとともに焼結後の矯正を可能ならしめる。B系酸
化物は非常に安定でH2 と反応することがほとんどない
ので、H 2 を含む雰囲気で熱処理したとしても切削性が
低下することはない。Each of the following has an important function in the present invention.
The action and limiting range of the element will be described in detail. B: 0.001 to 0.3% As described above, molten steel containing B is atomized with water.
When atomized, part of B is easily oxidized by water and iron powder surface
B-type oxides are deposited on the surface, and these B-type oxides become
In order to suppress the carburization of graphite into the powder, the black residue remaining in the sintered body
Increased lead content, resulting in improved machinability of sintered alloy steel
In addition to making it possible to correct after sintering. B-type acid
Compound is very stable and H2Rarely reacts with
So H 2Even if heat-treated in an atmosphere containing
It never drops.
【0017】Bが0.001 %未満では添加したことによる
切削性の向上は認められない。Bが0.3 %を超えた場合
には、固溶硬化のため焼結合金鋼の硬度が高くなり、切
削性を低下させる。なお、切削性と製造コストとの兼ね
合いで、好ましい範囲は0.005 〜0.03%である。また、
理由は明確でないが、焼結後の光輝焼入れや浸炭熱処理
後は残留した黒鉛が固溶し、マルテンサイトやベーナイ
トを生成せしめ、Ni、Moと相まって高強度が得られる。If B is less than 0.001%, no improvement in machinability due to addition is observed. When B exceeds 0.3%, the hardness of the sintered alloy steel is increased due to solid solution hardening, and the machinability is deteriorated. In view of the balance between machinability and manufacturing cost, the preferable range is 0.005 to 0.03%. Also,
Although the reason is not clear, after the bright quenching after sintering and the carburizing heat treatment, the residual graphite forms a solid solution to form martensite and bainite, and in combination with Ni and Mo, high strength is obtained.
【0018】なお、切削性の向上は残留黒鉛によるもの
であるから、Bを含有しない鉄粉にFe−B合金粉を混合
添加しても切削性は改善されない。 Cr:0.02〜0.07% 鉄粉中のCrは焼結時に生成する残留黒鉛を増加させる効
果を有する。Crが0.02%未満ではCrを添加したことによ
る切削性の向上が認められない。Crが0.07%を超えた場
合には、炭化物のため焼結合金鋼の硬度が高くなり、切
削性を低下させる。切削性と製造コストの兼ね合いで、
好ましい範囲は0.04〜0.06%である。Since the improvement of the machinability is due to the residual graphite, the machinability is not improved even if the Fe-B alloy powder is mixed and added to the iron powder not containing B. Cr: 0.02 to 0.07% Cr in iron powder has the effect of increasing the amount of residual graphite generated during sintering. If Cr is less than 0.02%, no improvement in machinability due to the addition of Cr is observed. If the Cr content exceeds 0.07%, the hardness of the sintered alloy steel becomes high due to the carbide, and the machinability deteriorates. With the balance of machinability and manufacturing cost,
A preferred range is 0.04 to 0.06%.
【0019】Mn:0.1 %未満 Mnは0.1 %未満とする。Mnが0.1 %以上では、焼結鋼中
の残留黒鉛が少なく切削性が悪い。この理由はMn自体が
残留黒鉛を減少させる合金元素であることと、鉄粉が
S、SeないしTeを含む場合には粉末中のMnがS、Se、Te
と結合しやすく、焼結鋼中の残留黒鉛を増加させるのに
有効なS、Se、Teが減少するからである。なお、転炉に
おけるMn低減のための精錬コストと切削性の観点から、
好ましいMnの範囲は0.04〜0.08%である。Mn: less than 0.1% Mn is less than 0.1%. When Mn is 0.1% or more, the residual graphite in the sintered steel is small and the machinability is poor. The reason for this is that Mn itself is an alloying element that reduces residual graphite, and when the iron powder contains S, Se or Te, Mn in the powder is S, Se, Te.
This is because S, Se, and Te, which are effective in increasing the amount of residual graphite in the sintered steel, are easily bonded to S, Se, and Te. From the viewpoint of refining cost and machinability for reducing Mn in the converter,
The preferable range of Mn is 0.04 to 0.08%.
【0020】Ni:0.5 〜7%、Cu:0.5 〜3%、Mo:0.
05〜3.5 %のいずれか1種以上 Ni、Cu、Moは、強度を高めるために添加する。添加量は
それぞれNi:0.5 〜7%、Cu:0.5 〜3%、Mo:0.05〜
3.5 %に限定される。各元素が下限未満では添加したこ
とによる強度の向上が認められない。また、各元素が上
限を超えた場合、切削性が急激に低下する。Ni: 0.5 to 7%, Cu: 0.5 to 3%, Mo: 0.
Any one or more of 05 to 3.5% Ni, Cu and Mo are added to enhance the strength. The addition amounts are Ni: 0.5-7%, Cu: 0.5-3%, Mo: 0.05-, respectively.
Limited to 3.5%. If each element is less than the lower limit, no improvement in strength due to addition is observed. Further, when the content of each element exceeds the upper limit, the machinability sharply decreases.
【0021】S、Se、Teのうちの1種以上の合計:0.03
〜0.15% 水を用いた噴霧法により製造される粉末冶金用鉄粉の
S、Se、Teは焼結鋼中の残留黒鉛を生成させるために添
加する。その添加量の合計量は0.03〜0.15%に限定す
る。0.03%未満では、残留黒鉛生成による切削性向上の
効果がない。0.15%を超えると焼結中すすを発生しやす
く、焼結炉を傷めることが懸念される。なお、切削性お
よび合金コストの理由で、好ましい範囲は0.08〜0.13%
とする 以上述べたように、BおよびS、Se、Teはそれぞれ単独
で焼結時に残留黒鉛を生成させる効果を有する。そし
て、BとS、Se、Teの1種以上を併用すると、各々を単
独添加した時の効果の和以上の複合効果を発揮する。Sum of at least one of S, Se and Te: 0.03
Iron powders for powder metallurgy produced by a spraying method using 0.15% water, S, Se and Te are added to form residual graphite in the sintered steel. The total amount of addition is limited to 0.03 to 0.15%. If it is less than 0.03%, there is no effect of improving the machinability due to the generation of residual graphite. If it exceeds 0.15%, soot is likely to be generated during sintering, which may damage the sintering furnace. For reasons of machinability and alloy cost, the preferred range is 0.08-0.13%.
As described above, B, S, Se, and Te each independently have the effect of producing residual graphite during sintering. When one or more of B, S, Se, and Te are used in combination, a combined effect equal to or more than the sum of the effects when each is added alone is exhibited.
【0022】[0022]
(実施例1)表1に元粉となる鉄粉の化学組成および拡
散付着させた合金鋼粉中の拡散付着成分の含有量を示
す。これらの合金鋼粉は、酸素量150ppm以下の溶鋼を水
噴霧して得た生粉を窒素雰囲気中で 140℃で60分乾燥し
た後、純水素雰囲気中 930℃で20分還元したのち、粉砕
分級した鉄粉に、カーボニルNi粉、三酸化Mo粉、Cu粉を
所定の割合で混合し、H2 ガス中 875℃で60分焼鈍して
拡散付着させた。(Example 1) Table 1 shows the chemical composition of the iron powder that is the base powder and the content of the diffusion adhesion component in the alloy steel powder that is diffusion adhered. These alloyed steel powders are produced by spraying molten steel with an oxygen content of 150 ppm or less with water, drying the powder in a nitrogen atmosphere at 140 ° C for 60 minutes, and then reducing it in a pure hydrogen atmosphere at 930 ° C for 20 minutes, and then pulverizing it. Carbonyl Ni powder, Mo trioxide powder, and Cu powder were mixed with the classified iron powder at a predetermined ratio, and annealed in H 2 gas at 875 ° C. for 60 minutes to diffuse and adhere.
【0023】[0023]
【表1】 [Table 1]
【0024】黒鉛粉末 0.6%を混合した合金鋼粉 100重
量部に対して、ステアリン酸亜鉛1重量部を混合後、圧
粉密度7.0g/cm3になるように成形し、窒素気流中で1250
℃60分焼結後、焼結まま材の切削性の評価および矯正の
可能性を評価した。切削性の評価は外径60φ、高さ10mm
の円板形状とし、上記の条件で焼結後、直径1mmφのハ
イス製ドリルを用いて10000rpm、0.012mm/rev の条件で
加工が不可能になるまでに加工した穴の平均個数(ドリ
ル3本の平均値)を工具寿命として評価した。矯正の可
否は、焼結まま材を5t/cm2 でプレスし、変形したも
のを可、変形の小さなものを不可とした。After mixing 1 part by weight of zinc stearate with 100 parts by weight of alloy steel powder mixed with 0.6% of graphite powder, the mixture was molded to have a compacted density of 7.0 g / cm 3, and the temperature was 1250 in a nitrogen stream.
After sintering at 60 ° C for 60 minutes, the machinability of the as-sintered material and the possibility of straightening were evaluated. The machinability is evaluated with an outer diameter of 60φ and a height of 10 mm.
Disc shape, and after sintering under the above conditions, using a HSS drill with a diameter of 1 mmφ, the average number of holes (3 drills) machined under the conditions of 10,000 rpm and 0.012 mm / rev Was evaluated as the tool life. Whether or not straightening was possible was determined by pressing the material as it was sintered at 5 t / cm 2 and allowing it to be deformed, and not allowing it to be slightly deformed.
【0025】焼結鋼の残留黒鉛量は、硝酸溶解残渣をガ
ラスフィルタでろ過し、赤外線吸収法で定量化した。ま
た、焼結体をカーホンポテンシャル 0.8%、 850℃×30
分加熱後 160℃の油中で光輝焼入れし、引張り強度を測
定した。表1に焼結体の残留黒鉛量、工具寿命、光輝焼
入れ後の引張強さをまとめて示した。表1の各実施例か
らわかるように、B:0.001 〜0.3 %、Cr:0.02〜0.07
%、Mn:0.1 %未満、さらに、Feの一部に代えてNi:0.
5 〜7%、Cu:0.5 〜3%およびMo:0.05〜3.5 %のい
ずれか1種以上を鉄粉の表面に拡散付着させた粉末冶金
用鉄粉から得られた焼結鋼の残留黒鉛は0.2 %以上、工
具寿命は60個以上であった。一方、Ni、Cu、Mo添加量の
増加とともに引張強さが 960〜1030MPa に上昇した。ま
た、すべての実施例において矯正が可能であった。The residual graphite content of the sintered steel was quantified by infrared absorption method after filtering the nitric acid-dissolved residue through a glass filter. Also, the sintered body is made into a carphone potential of 0.8%, 850 ° C x 30
After minute heating, bright quenching was performed in oil at 160 ° C., and tensile strength was measured. Table 1 collectively shows the residual graphite amount of the sintered body, the tool life, and the tensile strength after bright quenching. As can be seen from the examples of Table 1, B: 0.001 to 0.3%, Cr: 0.02 to 0.07
%, Mn: less than 0.1%, and Ni: 0 in place of part of Fe.
The residual graphite of the sintered steel obtained from the iron powder for powder metallurgy in which at least one of 5 to 7%, Cu: 0.5 to 3% and Mo: 0.05 to 3.5% is diffused and adhered to the surface of the iron powder is The tool life was over 0.2% and the tool life was over 60. On the other hand, the tensile strength increased to 960 to 1030 MPa with increasing amounts of Ni, Cu and Mo added. Moreover, the correction was possible in all the examples.
【0026】比較例1はBを含まず、焼結体の残留黒鉛
は0.02%、工具寿命は1個であり矯正不可能であった。
実施例との比較からBの添加により切削性が向上したこ
とがわかる。比較例2、5に示すようにBの含有量が
0.3%を、またはNiの含有量が7%を超えると切削性が
劣化する。また、比較例3、4に示すようにCrの含有量
が0.07%を超えあるいはMnの含有量が 0.1%以上になる
と切削性が劣化している。また、比較例5、6、7に示
すようにNi、Cu、Moの付着量が多いと切削性の向上が望
めない。また、すべての比較例で焼結後の矯正が不可能
であった。 (実施例2)表2に元粉となる鉄粉の化学組成および拡
散付着させた合金鋼粉中の拡散付着成分の含有量を示
す。これらの合金鋼粉は、溶鋼を水噴霧して得た生粉を
窒素雰囲気中で 140℃で60分乾燥した後、純水素雰囲気
中 930℃で20分還元したのち、粉砕分級した鉄粉に、カ
ーボニルNi粉、三酸化Mo粉、Cu粉を所定の割合で混合
し、H2 ガス中 875℃で60分焼鈍して拡散付着させた。In Comparative Example 1, B was not contained, the residual graphite of the sintered body was 0.02%, and the tool life was one piece, and it was impossible to correct.
Comparison with the examples shows that the addition of B improved the machinability. As shown in Comparative Examples 2 and 5, the content of B was
If it exceeds 0.3% or the Ni content exceeds 7%, the machinability deteriorates. Further, as shown in Comparative Examples 3 and 4, when the Cr content exceeds 0.07% or the Mn content exceeds 0.1%, the machinability deteriorates. Further, as shown in Comparative Examples 5, 6, and 7, if the amount of Ni, Cu, and Mo deposited is large, improvement in machinability cannot be expected. In addition, straightening after sintering was impossible in all comparative examples. (Example 2) Table 2 shows the chemical composition of the iron powder that is the base powder and the content of the diffusion adhesion component in the alloy steel powder that is diffusion adhered. These alloy steel powders are raw powders obtained by spraying molten steel with water, dried in a nitrogen atmosphere at 140 ° C for 60 minutes, then reduced in a pure hydrogen atmosphere at 930 ° C for 20 minutes, and then crushed and classified into iron powders. Carbonyl Ni powder, Mo trioxide powder, and Cu powder were mixed at a predetermined ratio and annealed in H 2 gas at 875 ° C. for 60 minutes to diffuse and adhere.
【0027】[0027]
【表2】 [Table 2]
【0028】黒鉛粉末 0.6%を混合した合金鋼粉 100重
量部に対して、ステアリン酸亜鉛1重量部を混合後、圧
粉密度7.0g/cm3になるように成形し、窒素気流中で1250
℃60分焼結し、残留黒鉛量、切削性、矯正の可否を評価
した。切削性の評価は外径60φ、高さ10mmの円板形状と
し、上記の条件で焼結後、直径1mmφのハイス製ドリル
を用いて10000rpm、0.012mm/rev の条件で加工が不可能
になるまでに加工した穴の平均個数(ドリル3本の平均
値)を工具寿命として評価した。After mixing 1 part by weight of zinc stearate with 100 parts by weight of alloy steel powder mixed with 0.6% of graphite powder, the mixture was molded to have a green compact density of 7.0 g / cm 3, and the temperature was 1250 in a nitrogen stream.
After sintering at 60 ° C for 60 minutes, the amount of residual graphite, machinability, and correctability were evaluated. For the evaluation of machinability, a disk shape with an outer diameter of 60φ and a height of 10mm was used. After sintering under the above conditions, using a HSS drill with a diameter of 1mmφ, processing becomes impossible under the conditions of 10000rpm and 0.012mm / rev. The average number of holes machined up to (the average value of three drills) was evaluated as the tool life.
【0029】焼結鋼の残留黒鉛量は、硝酸溶解残渣をガ
ラスフィルタでろ過し、赤外線吸収法で定量化した。表
2に焼結後残留黒鉛量、工具寿命、光輝焼入れ後引張強
さをまとめて示した。また、焼結体は実施例1と同じ条
件で光輝焼入れし、引張り強さを測定した。表2の各実
施例からわかるように、B:0.001 〜0.3 %、Cr:0.02
〜0.07%、Mn:0.1 %未満、S、Se、Teの1種以上の合
計が0.03〜0.15%、さらに、Feの一部に代えてNi:0.5
〜7%、Cu:0.5 〜3%およびMo:0.05〜3.5 %のいず
れか1種以上を鉄粉の表面に拡散付着させた粉末冶金用
鉄粉から得られた焼結鋼の残留黒鉛は0.2 %以上、工具
寿命は60個以上であった。一方、Ni、Cu、Mo添加量の増
加とともに光輝焼入れ後の引張強さが 950〜1050MPa に
上昇した。また、すべての実施例において焼結体の矯正
が可能であった。The residual graphite content of the sintered steel was quantified by infrared absorption method after filtering the nitric acid-dissolved residue through a glass filter. Table 2 collectively shows the amount of residual graphite after sintering, tool life, and tensile strength after bright quenching. The sintered body was bright-quenched under the same conditions as in Example 1 and the tensile strength was measured. As can be seen from the examples of Table 2, B: 0.001 to 0.3%, Cr: 0.02
~ 0.07%, Mn: less than 0.1%, the total of one or more of S, Se and Te is 0.03 to 0.15%, and Ni: 0.5 instead of part of Fe.
-7%, Cu: 0.5-3%, and Mo: 0.05-3.5%, at least one of which is diffused and adhered to the surface of the iron powder, the residual graphite of the sintered steel obtained from the iron powder for powder metallurgy is 0.2. %, The tool life was 60 or more. On the other hand, the tensile strength after bright quenching increased to 950 to 1050 MPa with the addition of Ni, Cu and Mo. Further, in all the examples, it was possible to correct the sintered body.
【0030】比較例8はBを含まず、残留黒鉛は0.02
%、工具寿命は10個であり、実施例との比較からBの添
加により切削性が向上したことが分かる。比較例9、19
に示すようにBの含有量が 0.3%を、またはNiの含有量
が7%を超えると切削性が劣化する。また、比較例10〜
13に示すようにS、Se、Teの1種以上の合計が0.03%未
満では切削性が悪く、比較例14〜17に示すようにS、S
e、Teの1種以上の合計が0.15%を超えると引張強さが
低下し、焼結中すすを発生した。また、比較例18に示す
ようにMnの含有量が0.1 %以上では切削性が劣化してい
る。また、比較例19、20、21に示すようにNi、Cu、Moの
付着量が多いと切削性の向上が望めない。Comparative Example 8 does not contain B and the residual graphite is 0.02.
%, The tool life was 10, and it was found from the comparison with the examples that the addition of B improved the machinability. Comparative Examples 9 and 19
As shown in (3), if the B content exceeds 0.3% or the Ni content exceeds 7%, the machinability deteriorates. In addition, Comparative Example 10 ~
As shown in 13, when the sum of one or more of S, Se and Te is less than 0.03%, the machinability is poor, and as shown in Comparative Examples 14 to 17, S, S
When the sum of one or more of e and Te exceeds 0.15%, the tensile strength is lowered and soot is generated during sintering. Further, as shown in Comparative Example 18, the machinability deteriorates when the Mn content is 0.1% or more. Further, as shown in Comparative Examples 19, 20, and 21, if the adhered amounts of Ni, Cu, and Mo are large, improvement in machinability cannot be expected.
【0031】[0031]
【発明の効果】本発明によれば、水を用いた噴霧法によ
り製造される粉末冶金用鉄粉にNi、Cu、Moを拡散付着し
た合金鋼粉を焼結した場合、焼結後の矯正が可能で切削
性に優れた焼結体が得られ、焼入れ処理後に高強度およ
び靭性を有する焼結鋼を、すすの発生を伴わずに容易に
製造することができる。According to the present invention, when the alloy steel powder having Ni, Cu, Mo diffused and adhered to the iron powder for powder metallurgy produced by the spraying method using water is sintered, the straightening after the sintering is performed. It is possible to obtain a sintered body having excellent machinability and capable of easily producing a sintered steel having high strength and toughness after quenching without causing soot.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上ノ薗 聡 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 小倉 邦明 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 楊 積彬 新潟県新潟市小金町3−10 三菱マテリア ル株式会社新潟製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Kaminozono 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Institute, Kawasaki Steel Co., Ltd. (72) Kuniaki Ogura 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Address: Kawasaki Iron and Steel Co., Ltd., Technical Research Institute (72) Inventor, Yang Sakaki, 3-10 Koganecho, Niigata City, Niigata Prefecture Mitsubishi Material Co., Ltd., Niigata Works
Claims (2)
〜0.07%、Mn:0.1%未満を含み、残部がFeと不可避的
不純物である鉄粉に、重量比でNi:0.5 〜7%、Cu:0.
5 〜3%およびMo:0.05〜3.5 %から選ばれる1種以上
が部分合金化されていることを特徴とする切削性に優れ
た高強度焼結材料用合金鋼粉。1. A weight ratio of B: 0.001 to 0.3% and Cr: 0.02.
~ 0.07%, Mn: less than 0.1%, the balance is iron and iron powder which is an unavoidable impurity, Ni: 0.5 to 7% by weight, Cu: 0.
Alloy steel powder for high-strength sintered materials with excellent machinability, characterized in that at least one selected from 5 to 3% and Mo: 0.05 to 3.5% is partially alloyed.
〜0.07%、Mn:0.1%未満を含み、さらにS、SeおよびT
eから選ばれる1種以上を合計で0.03〜0.15%含み、残
部がFeと不可避的不純物である鉄粉に、重量比でNi:0.
5 〜7%、Cu:0.5 〜3%およびMo:0.05〜3.5 %から
選ばれる1種以上が部分合金化されていることを特徴と
する切削性に優れた高強度焼結材料用合金鋼粉。2. A weight ratio of B: 0.001 to 0.3% and Cr: 0.02.
~ 0.07%, Mn: less than 0.1%, S, Se and T
Iron powder containing 0.03 to 0.15% in total of at least one selected from e, and the balance being Fe and inevitable impurities, Ni: 0.
Alloy steel powder for high-strength sintered materials with excellent machinability, characterized in that at least one selected from 5 to 7%, Cu: 0.5 to 3% and Mo: 0.05 to 3.5% is partially alloyed. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28207495A JP3294980B2 (en) | 1994-11-28 | 1995-10-30 | Alloy steel powder for high-strength sintered materials with excellent machinability |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-293348 | 1994-11-28 | ||
JP29334894 | 1994-11-28 | ||
JP28207495A JP3294980B2 (en) | 1994-11-28 | 1995-10-30 | Alloy steel powder for high-strength sintered materials with excellent machinability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209202A true JPH08209202A (en) | 1996-08-13 |
JP3294980B2 JP3294980B2 (en) | 2002-06-24 |
Family
ID=26554460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28207495A Expired - Fee Related JP3294980B2 (en) | 1994-11-28 | 1995-10-30 | Alloy steel powder for high-strength sintered materials with excellent machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3294980B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296682B1 (en) | 1998-12-25 | 2001-10-02 | Kawasaki Steel Corporation | Iron-based powder blend for use in powder metallurgy |
WO2003042422A1 (en) * | 2001-05-18 | 2003-05-22 | Höganäs Ab | Metal powder for thermal coating of substrates |
US6756083B2 (en) | 2001-05-18 | 2004-06-29 | Höganäs Ab | Method of coating substrate with thermal sprayed metal powder |
WO2010134886A1 (en) * | 2009-05-22 | 2010-11-25 | Höganäs Aktiebolag (Publ) | High strength low alloyed sintered steel |
JP2011094187A (en) * | 2009-10-29 | 2011-05-12 | Jfe Steel Corp | Method for producing high strength iron based sintered compact |
WO2015045273A1 (en) * | 2013-09-26 | 2015-04-02 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object |
US10265766B2 (en) | 2013-06-07 | 2019-04-23 | Jfe Steel Corporation | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body |
-
1995
- 1995-10-30 JP JP28207495A patent/JP3294980B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296682B1 (en) | 1998-12-25 | 2001-10-02 | Kawasaki Steel Corporation | Iron-based powder blend for use in powder metallurgy |
WO2003042422A1 (en) * | 2001-05-18 | 2003-05-22 | Höganäs Ab | Metal powder for thermal coating of substrates |
US6756083B2 (en) | 2001-05-18 | 2004-06-29 | Höganäs Ab | Method of coating substrate with thermal sprayed metal powder |
WO2010134886A1 (en) * | 2009-05-22 | 2010-11-25 | Höganäs Aktiebolag (Publ) | High strength low alloyed sintered steel |
CN102439189A (en) * | 2009-05-22 | 2012-05-02 | 霍加纳斯公司(Publ) | High strength low alloyed sintered steel |
US8702835B2 (en) | 2009-05-22 | 2014-04-22 | Hoganas Ab (Publ) | High strength low alloyed sintered steel |
JP2011094187A (en) * | 2009-10-29 | 2011-05-12 | Jfe Steel Corp | Method for producing high strength iron based sintered compact |
US10265766B2 (en) | 2013-06-07 | 2019-04-23 | Jfe Steel Corporation | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body |
WO2015045273A1 (en) * | 2013-09-26 | 2015-04-02 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object |
CN105555440A (en) * | 2013-09-26 | 2016-05-04 | 杰富意钢铁株式会社 | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body |
Also Published As
Publication number | Publication date |
---|---|
JP3294980B2 (en) | 2002-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1985393B1 (en) | Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts | |
TW201107495A (en) | High strength low alloyed sintered steel | |
JP3862392B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP3957331B2 (en) | Method for producing water atomized iron powder for powder metallurgy | |
JPH08209202A (en) | Alloy steel powder for high strength sintered material excellent in machinability | |
JP3446322B2 (en) | Alloy steel powder for powder metallurgy | |
JPS6075501A (en) | Alloy steel powder for high strength sintered parts | |
JPH07233401A (en) | Atomized steel powder excellent in machinability and dimensional precision and sintered steel | |
JP3475545B2 (en) | Mixed steel powder for powder metallurgy and sintering material containing it | |
JP3351844B2 (en) | Alloy steel powder for iron-based sintered material and method for producing the same | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
JPH1180803A (en) | Ferrous mixed powder for powder metallurgy | |
US5599377A (en) | Mixed iron powder for powder metallurgy | |
JP2000192102A (en) | Ferrous powdery mixture for powder metallurgy | |
EP1323840B1 (en) | Iron base mixed powder for high strength sintered parts | |
JPH0143017B2 (en) | ||
JPH07233402A (en) | Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom | |
JPH0717923B2 (en) | Low alloy iron powder for sintering and method for producing the same | |
JPH10280083A (en) | Iron-base powder mixture for powder metallurgy use | |
JPH09111303A (en) | Iron powder and iron-base powdery mixture giving sintered compact excellent in machinability and wear resistance | |
JP3303026B2 (en) | High strength iron-based sintered alloy and method for producing the same | |
JP2007100115A (en) | Alloy steel powder for powder metallurgy | |
JP2606928B2 (en) | High-strength, high-toughness, high-precision alloy steel powder for parts and method for producing sintered alloy steel using the same | |
JPH08176604A (en) | Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same | |
JPH07278725A (en) | Production of sintered steel having excellent machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020326 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |