JPH07278725A - Production of sintered steel having excellent machinability - Google Patents

Production of sintered steel having excellent machinability

Info

Publication number
JPH07278725A
JPH07278725A JP7753794A JP7753794A JPH07278725A JP H07278725 A JPH07278725 A JP H07278725A JP 7753794 A JP7753794 A JP 7753794A JP 7753794 A JP7753794 A JP 7753794A JP H07278725 A JPH07278725 A JP H07278725A
Authority
JP
Japan
Prior art keywords
powder
graphite
machinability
sintered
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7753794A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
聡 上ノ薗
Kuniaki Ogura
邦明 小倉
Satoru Narutani
哲 成谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7753794A priority Critical patent/JPH07278725A/en
Publication of JPH07278725A publication Critical patent/JPH07278725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the machinability of a sintered steel obtd. by specifying the contents of Mn and S of raw material iron and steel powder and adding powders of the sulfides of specific metals and graphite to the raw material powder at the time of producing the sintered steel by a powder metallurgical process using pure iron powder or alloy steel power as the raw material. CONSTITUTION:The Mn content in the iron and steel powder of the raw material is specified to 0.1% and the S content to 0.08 to 0.30% at the time of producing the sintered steel member by the powder metallurgical process using the pure iron powder or alloy steel powder produced by a water atomization as the raw material. In addition, >=1 kinds of the powders of the metal sulfides, such as MOS2, WS2 and SnS, having an average grain size 3 to 5mum and the powder of the graphite are added and mixed at 0.4 to 5% and lead stearate as a lubricant is added and mixed at about 1% to and with the powder. Such powder mixture is compression molded to a desired shape and is then sintered in a nitrogen atmosphere contg. hydrogen. Even though the FeS in the raw material is made to remain without reducing by the presence of the metal sulfide of the MOS2 system in spite of sintering in hydrogen, the carburization by the graphite is prohibited and, therefore, the sintered steel which is not degraded in the machinability by the presence of the graphite is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金用水アトマイ
ズ鋼粉を用いた焼結鋼に係わり、とくに焼結後の切削性
に優れた焼結鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered steel using water atomized steel powder for powder metallurgy, and more particularly to a method for producing a sintered steel having excellent machinability after sintering.

【0002】[0002]

【従来の技術】粉末冶金用鉄粉は、鉄粉にCu粉、黒鉛粉
などを添加混合し、金型中で圧粉成形して焼結し、通常
5.0 〜7.2g/cm3の密度を有する焼結機械部品等の製造に
用いられる。粉末冶金法は寸法精度良く複雑形状の焼結
体を製造できるが、寸法精度の厳しい部品を製造する場
合、焼結後の切削加工、あるいはドリル穴あけ加工が必
要となることがある。
2. Description of the Related Art Iron powder for powder metallurgy is usually manufactured by adding Cu powder, graphite powder, etc. to iron powder, compacting it in a mold and sintering it.
It is used for producing sintered machine parts and the like having a density of 5.0 to 7.2 g / cm 3 . The powder metallurgy method can manufacture a sintered body having a complicated shape with high dimensional accuracy, but when manufacturing a component with strict dimensional accuracy, cutting or drilling after sintering may be necessary.

【0003】粉末冶金製品は一般に切削性が劣り、溶製
材製品に比べると工具寿命が短い問題点を有しているた
め機械加工時のコストが高価になる欠点を有している。
粉末冶金製品における切削性の劣化は、粉末冶金製品に
含まれる気孔による断続切削あるいは熱伝導率の低下に
よる切削温度の上昇に起因すると言われている。切削性
の改善を行うためには、S 、MnS などの快削成分を鉄粉
に混合することが多い。これらS 、MnS は切りくずの破
断を容易にする効果、あるいは工具にS、MnS の薄い構
成刃先を形成し、工具すくい面での潤滑作用により切削
性の向上をもたらすと言われている。しかし、通常のMn
S の添加により切削性を向上させるためには、多量のMn
S を添加する必要があるほか、焼結中にすすがでるなど
そのための悪影響がでる恐れがある。
[0003] Powder metallurgy products generally have inferior machinability and have a problem that tool life is shorter than ingot products, so that the cost during machining is high.
It is said that the deterioration of the machinability of the powder metallurgy product is caused by the intermittent cutting due to the pores contained in the powder metallurgy product or the increase of the cutting temperature due to the decrease of the thermal conductivity. In order to improve the machinability, free-cutting components such as S and MnS are often mixed with iron powder. It is said that these S and MnS have the effect of facilitating the fracture of chips, or that they form a thin cutting edge of S and MnS on the tool and improve the machinability by the lubricating action on the rake face of the tool. But the normal Mn
In order to improve machinability by adding S, a large amount of Mn
In addition to the need to add S, there is a risk of adverse effects such as sooting during sintering.

【0004】例えば、特公平3-25481 号公報においては
0.1 〜0.5 重量%(以下%と略す)のMnとSi、C などを
含む純鉄粉にさらにSを0.03〜0.07%添加した配合物を
溶湯中に添加し水または気体で噴霧された粉末冶金用鉄
粉が開示されている。これに対してさきに本発明者ら
は、特願平5-337325号、特願平5-336076号において、
S、Cr、Mnを添加した粉末冶金用アトマイズ鉄粉を焼結
すると、焼結鋼の気孔には残留黒鉛、焼結鋼粒内および
粒界には5μm 以内のMnS が存在し、残留黒鉛が効果的
に作用して切削性に優れた焼結鋼が容易に得られるとい
う従来とは異なる技術を提案した。
For example, in Japanese Patent Publication No. 3-25481,
Powder metallurgy in which 0.1 to 0.5% by weight (hereinafter abbreviated as%) of pure iron powder containing 0.03 to 0.07% of S is added to pure iron powder containing Mn, Si, C, etc. Iron powder for use is disclosed. On the other hand, the present inventors, in Japanese Patent Application No. 5-337325, Japanese Patent Application No. 5-336076,
When the atomized iron powder for powder metallurgy containing S, Cr, and Mn is sintered, residual graphite is present in the pores of the sintered steel, and MnS within 5 μm exists in the sintered steel grains and grain boundaries. We have proposed a technology different from the conventional one in which a sintered steel that works effectively and has excellent machinability can be easily obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
を含めてS を含有する粉末冶金用鉄粉においては、水素
を含有する雰囲気で焼結した場合、S が還元・除去さ
れ、著しく切削性が低下するという問題があった。本発
明は、このような従来技術の欠点に鑑み、粉末冶金用ア
トマイズ鉄粉を水素を含有する雰囲気で焼結した場合に
も切削性に優れた焼結鋼の製造方法を提供することを目
的とする。
However, in the iron powder for powder metallurgy containing S including these, when sintered in an atmosphere containing hydrogen, S is reduced / removed and the machinability is remarkably deteriorated. There was a problem of doing. In view of such drawbacks of the prior art, the present invention aims to provide a method for producing a sintered steel having excellent machinability even when the atomized iron powder for powder metallurgy is sintered in an atmosphere containing hydrogen. And

【0006】[0006]

【課題を解決するための手段】本発明者らはMnを0.1%未
満に低減しかつSを含有する粉末冶金用アトマイズ鉄粉
について、水素を含有する雰囲気で焼結した場合の切削
性低下の原因について鋭意検討を加えた。Sを0.08〜0.
3 %を含有する粉末冶金用アトマイズ鉄粉を水素を含む
窒素雰囲気で焼結した場合、純窒素中で焼結した焼結鋼
に比べ、S含有量と、残留黒鉛量が減少していた。また
FeS が水素で還元されると仮定し、焼結中のSの減少量
を計算すると、分析値とよく一致した。これらの事実か
ら、アトマイズ鉄粉中あるいは表面のFeS が残留黒鉛の
生成に直接かかわることがわかった。
Means for Solving the Problems The present inventors have found that with respect to atomized iron powder for powder metallurgy containing Mn of less than 0.1% and containing S, reduction in machinability when sintered in an atmosphere containing hydrogen. The cause was examined thoroughly. S is 0.08 to 0.
When the atomized iron powder for powder metallurgy containing 3% was sintered in a nitrogen atmosphere containing hydrogen, the S content and the amount of residual graphite were reduced as compared with the sintered steel sintered in pure nitrogen. Also
Assuming that FeS was reduced with hydrogen, the reduction amount of S during sintering was calculated, and it was in good agreement with the analytical value. From these facts, it was found that FeS in atomized iron powder or on the surface is directly involved in the formation of residual graphite.

【0007】またSを0.08〜0.3 %含有する粉末冶金用
アトマイズ鉄粉を水素を含む窒素雰囲気中で焼結途中、
急冷し、残留黒鉛の分析を行った結果、残留黒鉛は焼結
中の浸炭が阻止されて生成することがわかった。このよ
うに水素を含む窒素雰囲気で焼結した場合、粉末に含ま
れるFeS が水素で還元・除去され、焼結中の浸炭を阻止
する作用を失った結果、黒鉛が浸炭量が増加し、焼結鋼
中の残留黒鉛量が減少して切削性が低下することが判明
した。
During sintering of atomized iron powder for powder metallurgy containing 0.08 to 0.3% of S in a nitrogen atmosphere containing hydrogen,
As a result of quenching and analysis of residual graphite, it was found that residual graphite was formed by preventing carburization during sintering. When sintered in a nitrogen atmosphere containing hydrogen in this way, FeS contained in the powder is reduced and removed by hydrogen, and as a result of losing the effect of blocking carburization during sintering, the amount of carburization of graphite increases and It was found that the amount of residual graphite in the steel is reduced and the machinability is reduced.

【0008】また溶鋼のMnを通常の0.10〜0.7 %のレベ
ルにした場合、S を添加しても黒鉛の残留が無くなり、
切削性の向上効果が得られないことが判明した。そし
て、Mnを0.1%未満に低下させることが、切削性を向上さ
せる残留黒鉛を得るための必要条件であることが分かっ
た。Mnを0.1%未満としS を0.08〜0.3%含有させた粉末冶
金用アトマイズ鉄粉を用いて、水素を含有する雰囲気で
焼結した場合にも切削性に優れた焼結鋼の製造のために
は、焼結中に粉末に含まれるFeS が水素で還元されない
ようにすればよい。
Further, when Mn of the molten steel is set to a usual level of 0.10 to 0.7%, no graphite remains even if S is added,
It was found that the effect of improving the machinability could not be obtained. It was also found that reducing Mn to less than 0.1% is a necessary condition for obtaining residual graphite that improves machinability. For the production of sintered steel with excellent machinability even when sintered in an atmosphere containing hydrogen using atomized iron powder for powder metallurgy containing Mn less than 0.1% and S containing 0.08 to 0.3%. For, it is necessary to prevent FeS contained in the powder from being reduced by hydrogen during sintering.

【0009】硫化物の水素による還元反応は、 2MS+2H2=2H2S +2M ・・・(1) である。MoS2、WS2 、SnS など、(1) 式においてH2S の
平衡分圧がFeS より大きな硫化物を混粉添加することに
より、焼結中にこの硫化物がFeS より優先的に還元され
るため、粉末に含有するFeS が還元されにくくなる。Fe
S が残留すれば、黒鉛粉末による浸炭が阻止され、残留
黒鉛は減少せず切削性が低下しないことが発見された。
The reduction reaction of sulfide with hydrogen is 2MS + 2H 2 = 2H 2 S + 2M (1). By adding sulfides such as MoS 2 , WS 2 and SnS whose equilibrium partial pressure of H 2 S is larger than that of FeS in Eq. (1), this sulfide is preferentially reduced over FeS during sintering. Therefore, FeS contained in the powder is less likely to be reduced. Fe
It was discovered that if S remains, carburization by graphite powder is prevented, residual graphite does not decrease, and machinability does not decrease.

【0010】なお、MoS2、WS2 を鉄粉に混合添加し、成
形・焼結し、切削性に優れた焼結鋼を製造する方法につ
いては以下の技術が公告・公開されている。特公昭58-5
7505号公報においては、1.5 〜5%C、10〜30%Cr、15
〜40%Mo、10%以下のCo、残部は実質的に鉄からなる合
金粉末にNi粉末0.5 〜5%、黒鉛粉末0.6 〜1.5 %、Mo
S2粉末およびWS2 粉末の1種または2種を0.5 〜2%、
フェロマンガン粉末または金属マンガン粉末をMn量で0.
5 〜3%を混合し、成形焼結することにより、耐磨耗性
と被切削性に優れる材料の製造方法が開示されている。
このMoS2、WS2 が焼結時に分解し、分解SがMn、Fe、Ni
と反応して硫化物を形成し、切削性を向上させるとして
いる。
The following techniques have been publicly announced / published as a method of mixing and adding MoS 2 and WS 2 to iron powder, molding and sintering the mixture to produce a sintered steel having excellent machinability. Japanese Patent Publication Sho 58-5
In Japanese Patent No. 7505, 1.5-5% C, 10-30% Cr, 15
-40% Mo, 10% or less Co, the balance being essentially iron alloy powder with Ni powder 0.5-5%, graphite powder 0.6-1.5%, Mo
0.5 to 2% of one or two of S 2 powder and WS 2 powder,
Ferromanganese powder or metallic manganese powder in Mn amount of 0.
A method for producing a material having excellent wear resistance and machinability by mixing 5 to 3% and molding and sintering is disclosed.
These MoS 2 and WS 2 are decomposed during sintering, and the decomposed S is Mn, Fe and Ni.
It is said that it reacts with to form sulfides and improves machinability.

【0011】上述した各技術においても、添加したMo
S2、WS2 そのもの、あるいはMoS2、WS 2 の分解により生
成した分解SがMn、Fe、Niと反応して形成した硫化物に
より切削性能の向上を図っている。これに対し本発明に
おいては、焼結鋼の気孔に残留した黒鉛の切削性向上作
用に着目したものであり、本発明のMoS2、WS2 粉末は、
浸炭を阻止して黒鉛を残留させるために必要なFeS を、
焼結中に水素還元から保護するために、Sを含むアトマ
イズ鉄粉に混合添加されたものであり、上述した各技術
とは全く異なる技術である。
Also in each of the above-mentioned techniques, the added Mo is added.
S2, WS2Itself or MoS2, WS 2Raw by decomposition of
The decomposed S formed into sulfides formed by reacting with Mn, Fe and Ni
We are aiming to improve cutting performance. On the other hand, the present invention
In order to improve the machinability of graphite remaining in the pores of sintered steel.
The present invention focuses on the MoS of the present invention.2, WS2The powder is
FeS necessary to prevent carburization and leave graphite
Atoma containing S to protect against hydrogen reduction during sintering
Each of the above-mentioned technologies is mixed and added to Izu iron powder.
Is a completely different technology.

【0012】特開昭62-167864 号公報、特開昭63-20431
号公報においては、鉄粉または鉄基合金粉末に、焼結促
進用粉末および黒鉛粉末とMnS 、S、Se、MoS2から選ば
れた1種類以上の粉末を混合後、成形焼結することによ
り快削性の焼結鋼とその製造方法が開示されている。Mo
S2は、切削性の改善を目的に添加されている。特開昭48
-80409号公報のなかにはWS2 粉末を混粉添加した快削性
焼結鋼が開示されている。WS2 粉末は切削中に潤滑剤と
して作用させ、切削性を向上させるとしている。
JP-A-62-167864, JP-A-63-20431
In Japanese Patent Laid-Open Publication No. 2003-242242, an iron powder or an iron-based alloy powder is mixed with a sintering-accelerating powder, a graphite powder, and one or more kinds of powders selected from MnS, S, Se, and MoS 2 and then molded and sintered. A free-cutting sintered steel and its manufacturing method are disclosed. Mo
S 2 is added for the purpose of improving machinability. JP 48
No. -80409 discloses a free-cutting sintered steel to which WS 2 powder is added as a mixed powder. The WS 2 powder is said to act as a lubricant during cutting to improve machinability.

【0013】特開昭64-79301号公報においては、Fe-Mn
合金粉に30μm 以下のMoS2を完全に固溶させずに表面部
に部分合金化する方法が開示されている。MoS2のS は焼
結時に、Fe-Mn 合金粉のMnと化合してMnS を形成して切
削性を向上させている。本発明においては、上述のよう
に特定範囲のMn、S を含有する鉄粉と特定の硫化物は混
合の組合わせによって、水素を含む雰囲気の焼結におい
ても焼結鋼中の残留黒鉛を形成させて切削性を格段に向
上させるものであり、特開昭64-79301号公報に開示され
た技術とは異なる。
In Japanese Patent Laid-Open No. 64-79301, Fe-Mn is used.
A method of partially alloying MoS 2 having a particle size of 30 μm or less in the alloy powder without completely forming a solid solution is disclosed. During sintering, S in MoS 2 combines with Mn of Fe-Mn alloy powder to form MnS and improves machinability. In the present invention, as described above, iron powder containing a specific range of Mn and S and a specific sulfide form a residual graphite in the sintered steel even in sintering in an atmosphere containing hydrogen by a combination of mixing. This significantly improves the machinability and is different from the technique disclosed in Japanese Patent Laid-Open No. 64-79301.

【0014】すなわち本発明は、純鉄粉あるいは合金鋼
粉を用いて成形・焼結により焼結鋼を得る粉末冶金法に
おいて、0.1%未満のMnと0.08〜0.3 %のSを含有する粉
末冶金用鉄粉に、それぞれ平均粒径0.3 〜5 μm のMoS2
0.05 〜0.5 %、WS2 0.05〜0.5 %、SnS 0.05〜0.5 %
から選ばれた1種以上および黒鉛粉末0.4 〜5%を混合
し、該混合粉末を圧縮成形し、水素を含む雰囲気中で焼
結することを特徴とする切削性に優れた焼結鋼の製造方
法である。
That is, the present invention is a powder metallurgy method for obtaining a sintered steel by molding and sintering using pure iron powder or alloy steel powder, and powder metallurgy containing less than 0.1% Mn and 0.08 to 0.3% S. For iron powder for use, MoS 2 with an average particle size of 0.3 to 5 μm
0.05 to 0.5%, WS 2 0.05 to 0.5%, SnS 0.05 to 0.5%
One or more selected from the above and 0.4 to 5% of graphite powder are mixed, the mixed powder is compression-molded, and sintered in an atmosphere containing hydrogen. Is the way.

【0015】[0015]

【作 用】本発明によれば、Mn量を0.1%未満に制限し、
かつS を0.08〜0.3%添加した粉末冶金用アトマイズ鉄粉
を、含水素雰囲気中の平衡分圧がFeS より大きい硫化物
の粉末と、黒鉛粉末および必要に応じてCu粉末0.5 〜4
%と組み合わせて成形・焼結することにより、焼結鋼の
気孔に残留黒鉛を生成させ、切削性の優れた焼結鋼を製
造することができる。
[Operation] According to the present invention, the amount of Mn is limited to less than 0.1%,
Atomized iron powder for powder metallurgy containing 0.08 to 0.3% of S was added to sulfide powder with an equilibrium partial pressure larger than FeS in a hydrogen-containing atmosphere, graphite powder and, if necessary, Cu powder 0.5 to 4
%, Residual graphite is produced in the pores of the sintered steel, and sintered steel having excellent machinability can be manufactured.

【0016】つぎに、本発明の構成要素について規定理
由を説明する。まず、本発明の効果を発揮するためには
粉末冶金用アトマイズ鉄粉の組成、特にMnとS 含有量は
非常に重要であり、以下のように規定する。粉末冶金用
アトマイズ鉄粉のMnは、0.1%未満に限定される。Mnを0.
1%未満に低減するのは通常の電気炉では難しく、特別な
精錬法が必要である。Mn0.1%以上では、粉末中のMnがS
と結合しMnS を生成するので、鉄粉中のFeS が少なくな
り、したがって焼結鋼中の残留黒鉛が少なくなる。な
お、快削成分のMnS が増えても残留黒鉛の切削性向上効
果には及ばないため切削性は期待ほど向上しない。
Next, the reasons for defining the components of the present invention will be described. First, in order to exert the effect of the present invention, the composition of atomized iron powder for powder metallurgy, especially the Mn and S 2 contents, is very important and is defined as follows. The Mn of atomized iron powder for powder metallurgy is limited to less than 0.1%. Mn to 0.
It is difficult to reduce it to less than 1% with ordinary electric furnaces, and special refining methods are required. When Mn is 0.1% or more, Mn in the powder is S
FeS in iron powder is reduced, and therefore residual graphite in the sintered steel is reduced, since it combines with MnS to form MnS. Even if MnS, which is a free-cutting component, increases, it does not reach the effect of improving the machinability of residual graphite, so the machinability does not improve as expected.

【0017】粉末冶金用アトマイズ鉄粉のSは、鉄粉中
のFeS 源である。このFeS が焼結中の浸炭を抑制し、焼
結鋼中に黒鉛を残留させて焼結鋼の切削性を向上させる
ことができる。S含有量を0.08重量%から0.3 %の範囲
に規定した理由は以下のとおりである。Sが0.08%未満
では、残留黒鉛が少なく切削性が向上しない。Sが0.3
%を超えると焼結中すすを発生しやすく、焼結炉をいた
めることが懸念される。好ましい範囲は0.1 〜0.2%とす
る。
S in atomized iron powder for powder metallurgy is the FeS source in the iron powder. This FeS suppresses carburization during sintering and allows graphite to remain in the sintered steel, improving the machinability of the sintered steel. The reason for defining the S content in the range of 0.08% by weight to 0.3% is as follows. If S is less than 0.08%, there is little residual graphite and the machinability is not improved. S is 0.3
If it exceeds%, soot is likely to be generated during the sintering, and there is a concern that the sintering furnace will be damaged. The preferable range is 0.1 to 0.2%.

【0018】粉末冶金用アトマイズ鉄粉は以上のような
規定を満足していればいわゆる純鉄粉でもよいし、合金
鋼粉でも良い。成形・焼結前に粉末冶金用アトマイズ鉄
粉に添加混合される粉末については、それぞれの役割を
発揮するために以下の規定を満足する必要がある。Mo
S2、WS2 、SnS の粉末は、水素を含有する雰囲気で焼結
した場合、平衡分圧が大きいため鉄粉中のFeS より優先
的に水素により還元され、鉄粉に含有されるFeS を還元
されにくくするために添加される。これらの粉末の添加
により残留黒鉛を減少させず切削性を低下させない。Mo
S2、WS2 、SnS をそれぞれ0.05〜0.5%に規定した理由
は以下のとおりである。その下限値は切削性の理由か
ら、その上限値はコスト上の観点から決定した。
The atomized iron powder for powder metallurgy may be so-called pure iron powder or alloy steel powder as long as it satisfies the above requirements. The powders to be added to and mixed with the atomized iron powder for powder metallurgy before forming / sintering must satisfy the following requirements in order to fulfill their respective roles. Mo
Powder S 2, WS 2, SnS, when sintered in an atmosphere containing hydrogen, is reduced preferentially by hydrogen than FeS equilibrium partial pressure is greater because the iron powder in the FeS contained in iron powder It is added to make it difficult to reduce. Addition of these powders does not reduce residual graphite and machinability. Mo
The reason for defining S 2, WS 2, SnS to 0.05% to 0.5% respectively is as follows. The lower limit was determined from the viewpoint of machinability, and the upper limit was determined from the viewpoint of cost.

【0019】すなわち、0.05%未満の配合では鉄粉中の
FeS が還元され、結果として焼結鋼中の残留黒鉛が少な
くなり、切削性が低下する。0.5 %を超えて配合すると
焼結炉を汚染することが懸念される。好ましい範囲は0.
1 〜0.3 % とする。MoS2、WS2 、SnS の粉末の平均粒径
を0.3 〜5 μm とする。0.3 μm 未満では焼結中での水
素による還元速度が速すぎるため、最高温度保持に達す
る前に還元分解してしまい、粉末中のFeS を保護する効
果が無くなってしまう。そのため、焼結鋼の残留黒鉛が
減少し、切削性が劣化する。5 μm を超えると鉄粉表面
に均一に分布しにくく、焼結中に部分的に残留黒鉛の少
ない部分が形成され切削性が低下する。好ましい範囲は
0.5 〜3 μm とする。
That is, when the content is less than 0.05%,
FeS is reduced, and as a result, the residual graphite in the sintered steel is reduced and the machinability is reduced. If it exceeds 0.5%, the sintering furnace may be contaminated. The preferred range is 0.
1 to 0.3% The average particle size of the powder of MoS 2 , WS 2 and SnS is 0.3 to 5 μm. If it is less than 0.3 μm, the rate of reduction by hydrogen during sintering is too fast, so that it undergoes reductive decomposition before reaching the maximum temperature retention, and the effect of protecting FeS in the powder is lost. Therefore, the residual graphite of the sintered steel decreases and the machinability deteriorates. If it exceeds 5 μm, it is difficult to distribute it evenly on the surface of the iron powder, and during cutting, a portion with little residual graphite is formed and the machinability deteriorates. The preferred range is
0.5 to 3 μm.

【0020】黒鉛粉末は切削性向上のための焼結鋼中の
残留黒鉛源として、さらに鉄中に固溶させて強度を高め
るために必要である。黒鉛粉末を0.4 〜5%に規定した
理由は以下のとおりである。0.4 %未満では強度が低下
し、5%を超えた場合、初析セメンタイトが析出し切削
性が低下するためである。好ましい範囲は0.8 〜2 %と
する。切削性の面からは0.8%以上が好ましく、黒鉛粉末
コストの面からは2 %以下が好ましい。
The graphite powder is necessary as a residual graphite source in the sintered steel for improving the machinability, and is further dissolved in iron to enhance the strength. The reason for defining the graphite powder to 0.4 to 5% is as follows. This is because if it is less than 0.4%, the strength decreases, and if it exceeds 5%, pro-eutectoid cementite precipitates and the machinability deteriorates. The preferable range is 0.8 to 2%. From the viewpoint of machinability, 0.8% or more is preferable, and from the viewpoint of graphite powder cost, 2% or less is preferable.

【0021】焼結鋼の強度を上げるためには、通常行わ
れるようにさらにCu粉末を0.5 〜4% 混合した混粉を用
いて、成形・焼結するのが望ましい。
In order to increase the strength of the sintered steel, it is desirable to form and sinter by using a mixed powder obtained by further mixing Cu powder in an amount of 0.5 to 4% as is usually done.

【0022】[0022]

【実施例】【Example】

実施例1 表1に用いた6種類の鉄粉の化学組成を示す。これらの
鉄粉は、溶鋼を水噴霧して得た生粉を窒素雰囲気中で 1
40℃で60分乾燥した後、純水素雰囲気 930℃で20分還元
したのち、粉砕紛級して製造した。
Example 1 Table 1 shows the chemical compositions of the six types of iron powder used. These iron powders are raw powders obtained by spraying molten steel with water in a nitrogen atmosphere.
It was dried at 40 ° C. for 60 minutes, reduced in a pure hydrogen atmosphere at 930 ° C. for 20 minutes, and then pulverized and classified to produce.

【0023】[0023]

【表1】 [Table 1]

【0024】鉄粉No. 1、2、3に、ステアリン酸亜鉛
1%と、さらにMoS2粉末、WS2 粉末、SnS 粉末のうちの
1種以上、銅粉、黒鉛粉を表2、3、4に示した配合で
混合後、圧粉密度6.85g/cm3 になるように成形し、水素
を10%含む窒素気流中で1130℃20分焼結した。ガス流量
は成形体1kgあたり5Nl/minであった。得られた焼結体
について引張強度、シャルピー衝撃値の測定を行った。
Iron powders Nos. 1, 2 and 3 were provided with zinc stearate 1%, and at least one of MoS 2 powder, WS 2 powder and SnS powder, copper powder and graphite powder. After being mixed in the composition shown in Fig. 4, the mixture was molded to have a green compact density of 6.85 g / cm 3 and sintered in a nitrogen stream containing 10% of hydrogen at 1130 ° C for 20 minutes. The gas flow rate was 5 Nl / min per 1 kg of compact. The tensile strength and the Charpy impact value of the obtained sintered body were measured.

【0025】切削性の評価は、外径60φ、高さ10mmの円
板形状、圧粉密度6.85g/cm3 とし上記の条件で焼結後、
直径1mmφのハイス製ドリルを用いて10000rpm、0.012m
m/rev の条件で加工が不可能になるまでに加工できた穴
の平均数(ドリル3本の平均値)を工具寿命として評価
した。焼結体の残留黒鉛量は、硝酸溶解残さをガラスフ
ィルタでろ過し、赤外線吸収法で定量化した。
The machinability was evaluated by using a disc shape having an outer diameter of 60φ, a height of 10 mm, a green compact density of 6.85 g / cm 3, and sintering under the above conditions.
Using a HSS drill with a diameter of 1 mmφ, 10,000 rpm, 0.012 m
The tool life was evaluated as the average number of holes that could be machined under the m / rev condition (the average value of three drills). The residual graphite amount of the sintered body was quantified by infrared absorption method after filtering the nitric acid-dissolved residue with a glass filter.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表2、3、4の本発明例1から45に示すよ
うに、鉄粉No. 1、2、3にMoS2 0.05 〜0.5 %、WS2
0.05〜0.5 %、SnS 0.05〜0.5 %から選ばれた1 種以
上、Cu粉末0.5 〜4%、黒鉛粉末 0.4〜5 %を含有し、
残余が鉄粉からなる混合粉末を成形・焼結することによ
り、水素を含有する雰囲気で焼結しても、優れた切削性
が得られることがわかる。鉄粉No. 1をFe-2.0% Cu-1.
0 % Gr-1%ZnStの配合で混合成形後、水素を10%含む窒
素気流中で1130℃20分焼結した場合、ドリル穿孔数は15
個であり、残留黒鉛量は0.03%だった。比較例 1、 3、
5、13、15、17、25、27、29に示すように、MoS2粉末、
WS2 粉末、SnS 粉末の添加量が0.05%未満では残留黒鉛
が少なく切削性が劣る。比較例 2、 4、 6、14、16、1
8、26、28、30に示すように、MoS2粉末、WS2 粉末、SnS
粉末のうちの1 種以上の添加量が0.5 %を超えると焼
結体にすすが発生し焼結炉の汚染が懸念された。比較例
11、23、35に示すように、硫化物の粒径が0.3 μm 未満
の場合や、比較例12、24、36のように硫化物の粒径が5
μm を超えた場合、切削性が劣化する。比較例7、19、
31に示すように添加黒鉛量が0.4 %未満では強度が低
く、また残留黒鉛が少なく切削性が劣る。比較例8、2
0、32に示すように添加黒鉛量が 5%を超えると、初析
セメンタイトのため切削性が劣化する。
As shown in Examples 1 to 45 of the present invention in Tables 2, 3, and 4, iron powder Nos. 1, 2, and 3 contained MoS 2 0.05 to 0.5% and WS 2
One or more selected from 0.05 to 0.5%, SnS 0.05 to 0.5%, Cu powder 0.5 to 4%, graphite powder 0.4 to 5%,
It can be seen that by molding and sintering the mixed powder with the balance being iron powder, excellent machinability can be obtained even if sintering is performed in an atmosphere containing hydrogen. Iron powder No. 1 with Fe-2.0% Cu-1.
When mixed and molded with 0% Gr-1% ZnSt and sintered at 1130 ° C for 20 minutes in a nitrogen stream containing 10% hydrogen, the number of drill holes is 15
The amount of residual graphite was 0.03%. Comparative Examples 1, 3,
5, 13, 15, 17, 25, 27, 29, MoS 2 powder,
If the amount of WS 2 powder or SnS powder added is less than 0.05%, the residual graphite is small and the machinability is poor. Comparative Examples 2, 4, 6, 14, 16, 1
As shown in 8, 26, 28 and 30, MoS 2 powder, WS 2 powder, SnS
When the amount of one or more of the powders added exceeded 0.5%, soot was generated in the sintered body, and there was a concern that the sintering furnace would be contaminated. Comparative example
As shown in 11, 23, and 35, when the particle diameter of sulfide is less than 0.3 μm, or when the particle diameter of sulfide is 5 as in Comparative Examples 12, 24, and 36.
If it exceeds μm, the machinability deteriorates. Comparative Examples 7 and 19,
As shown in 31, when the amount of added graphite is less than 0.4%, the strength is low, and there is little residual graphite, resulting in poor machinability. Comparative Examples 8 and 2
As shown in 0 and 32, if the amount of added graphite exceeds 5%, the machinability deteriorates due to proeutectoid cementite.

【0030】表5に示すように比較例37、38に示すよう
に粉末冶金用アトマイズ鉄粉に含有するMnが0.1%以上、
あるいはS が0.03% 未満では、焼結後の残留黒鉛が少な
く切削性が悪い。比較例39に示すように鉄粉に含有する
S 量が0.3%を超えると焼結鋼にすすが発生し、焼結炉の
汚染が懸念された。さらに比較例 9、21、33に示すよう
に添加Cu量が0.5 %未満では強度が低く、比較例10、2
2、34に示すように添加Cu量が4%を超えると、衝撃値
が劣化する
As shown in Table 5, as shown in Comparative Examples 37 and 38, Mn contained in the atomized iron powder for powder metallurgy is 0.1% or more,
Alternatively, when S is less than 0.03%, the residual graphite after sintering is small and the machinability is poor. Contained in iron powder as shown in Comparative Example 39
If the S content exceeds 0.3%, soot is generated in the sintered steel, and there was a concern that the sintering furnace would be contaminated. Furthermore, as shown in Comparative Examples 9, 21, and 33, when the amount of added Cu is less than 0.5%, the strength is low.
As shown in 2, 34, when the added Cu amount exceeds 4%, the impact value deteriorates.

【0031】[0031]

【表5】 [Table 5]

【0032】実施例2 表6に本発明例および比較例に用いた1 % Cr-0.3% Mo合
金鋼粉の化学組成を示す。これらの合金鋼粉は、溶鋼を
水噴霧して得た生粉を窒素雰囲気中で140 ℃で60分乾燥
した後、純水素雰囲気中930 ℃で20分還元した後、粉砕
分級して製造した。
Example 2 Table 6 shows the chemical composition of 1% Cr-0.3% Mo alloy steel powder used in the examples of the present invention and the comparative examples. These alloy steel powders were produced by drying raw powder obtained by spraying molten steel with water in a nitrogen atmosphere at 140 ° C for 60 minutes, reducing it in a pure hydrogen atmosphere at 930 ° C for 20 minutes, and then pulverizing and classifying. .

【0033】実施例1 と同様の方法で、表 7に示す配合
で、成形、混合後水素を10% 含む窒素気流中で1150℃20
分焼結した。焼結後実施例1 と同様の方法で引張強さ、
シャルピー衝撃値、切削性、残留黒鉛量の測定を行っ
た。
In the same manner as in Example 1, the composition shown in Table 7 was used.
Minute sintering. After sintering, tensile strength was measured in the same manner as in Example 1,
The Charpy impact value, the machinability, and the amount of residual graphite were measured.

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【表7】 [Table 7]

【0036】表 7から本発明例46〜58に示すように、鉄
粉No. 7 にMoS2 0.05 〜0.5 %、WS 2 0.05〜0.5 %、Sn
S 0.05〜0.5 %から選ばれた1 種以上、黒鉛粉末 0.4〜
5 %を含有し、残余が鉄粉からなる混合粉末を成形・焼
結することにより、水素を含有する雰囲気で焼結して
も、優れた切削性が得られることがわかる。鉄粉No. 7
をFe-1.0%Gr-1.0%Znstの配合で混合成形後、水素を10%
含む窒素気流中で1150℃20分焼結した場合、ドリル穿孔
数は1 個であり、残留黒鉛量は0.01% であった。
As shown in Table 7 and Examples 46 to 58 of the present invention, iron
MoS to powder No. 72 0.05 to 0.5%, WS 20.05 to 0.5%, Sn
S One or more selected from 0.05 to 0.5%, graphite powder 0.4 to
Molded and baked mixed powder containing 5% and the balance iron powder
By binding, sintering in an atmosphere containing hydrogen
Also, it can be seen that excellent machinability is obtained. Iron powder No. 7
Was mixed with Fe-1.0% Gr-1.0% Znst and mixed, and then hydrogen was added to 10%.
Drilled when sintered at 1150 ° C for 20 minutes in a nitrogen stream containing nitrogen
The number was 1, and the amount of residual graphite was 0.01%.

【0037】比較例40、42、44に示すようにMoS2粉末、
WS2 粉末、SnS 粉末が0.05% 未満では残留黒鉛が少なく
切削性が劣る。比較例41、43、45に示すようにMoS2
末、WS 2 粉末、SnS 粉末1 種以上の合計が0.5 % を超え
ると焼結鋼にすすが発生して焼結炉の汚染が懸念され
た。比較例51、52に示すように硫化物の粒径が0.3 μm
未満、または5 μm を超えると切削性が劣化する。比較
例46に示すように添加黒鉛量0.4 % 未満では強度が低
く、また残留黒鉛が少なく切削性も劣る。比較例47に示
すように添加黒鉛量が5 % を超えると切削性が劣化す
る。
As shown in Comparative Examples 40, 42 and 44, MoS2Powder,
WS2Less than 0.05% of powder and SnS powder has less residual graphite
Machinability is poor. MoS as shown in Comparative Examples 41, 43, 452powder
End, WS 2Powder, SnS powder 1 or more total exceeds 0.5%
Then, soot is generated in the sintered steel and there is a concern that the sintering furnace may be contaminated.
It was As shown in Comparative Examples 51 and 52, the particle size of sulfide is 0.3 μm.
If it is less than 5 μm or exceeds 5 μm, the machinability will deteriorate. Comparison
As shown in Example 46, when the amount of added graphite is less than 0.4%, the strength is low.
In addition, the residual graphite is small and the machinability is poor. Shown in Comparative Example 47
If the amount of added graphite exceeds 5%, the machinability deteriorates.
It

【0038】比較例48、49に示すように粉末に含有する
Mn0.1 % 以上、あるいはS 0.3 % 未満では、焼結後の残
留黒鉛が少なく切削性が悪い。比較例50に示すように粉
末に含有するS 量が0.3 % を超えると焼結鋼にすすが発
生し、焼結炉の汚染が懸念された。
In powder as shown in Comparative Examples 48 and 49
When Mn is 0.1% or more or S is less than 0.3%, the residual graphite after sintering is small and the machinability is poor. As shown in Comparative Example 50, when the amount of S contained in the powder exceeded 0.3%, soot was generated in the sintered steel, and there was a concern that the sintering furnace would be contaminated.

【0039】[0039]

【発明の効果】本発明方法によると、Sを含有する粉末
冶金用アトマイズ鉄粉を水素を含有する雰囲気で焼結し
た場合にも切削性に優れた焼結鋼を容易に製造できる。
According to the method of the present invention, even when the atomized iron powder for powder metallurgy containing S is sintered in an atmosphere containing hydrogen, it is possible to easily produce a sintered steel having excellent machinability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 純鉄粉あるいは合金鋼粉を用いて成形・
焼結により焼結鋼を得る粉末冶金法において、重量% 表
示で0.1%未満のMnと0.08〜0.3 %のSを含有する粉末冶
金用鉄粉に、それぞれ平均粒径0.3 〜5 μm のMoS2 0.0
5 〜0.5 %、WS2 0.05〜0.5 %、SnS 0.05〜0.5 %から
選ばれた1種以上および黒鉛粉末0.4〜5%を混合し、
該混合粉末を圧縮成形し、水素を含む雰囲気中で焼結す
ることを特徴とする切削性に優れた焼結鋼の製造方法。
1. Molding using pure iron powder or alloy steel powder
In the powder metallurgy method of obtaining a sintered steel by sintering, iron powder for powder metallurgy containing less than 0.1% Mn and 0.08 to 0.3% S in weight% is added to MoS 2 having an average particle size of 0.3 to 5 μm, respectively. 0.0
5 to 0.5%, WS 2 0.05 to 0.5%, one or more selected from SnS 0.05 to 0.5% and graphite powder 0.4 to 5% are mixed,
A method for producing a sintered steel having excellent machinability, which comprises compression-molding the mixed powder and sintering the mixture in an atmosphere containing hydrogen.
JP7753794A 1994-04-15 1994-04-15 Production of sintered steel having excellent machinability Pending JPH07278725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7753794A JPH07278725A (en) 1994-04-15 1994-04-15 Production of sintered steel having excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7753794A JPH07278725A (en) 1994-04-15 1994-04-15 Production of sintered steel having excellent machinability

Publications (1)

Publication Number Publication Date
JPH07278725A true JPH07278725A (en) 1995-10-24

Family

ID=13636749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7753794A Pending JPH07278725A (en) 1994-04-15 1994-04-15 Production of sintered steel having excellent machinability

Country Status (1)

Country Link
JP (1) JPH07278725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166759B2 (en) * 2000-11-15 2007-01-23 Jfe Steel Corporation Remediation method of media and iron powder for dehalogenation of hydrogenated hydrocarbons
CN100441719C (en) * 2005-03-29 2008-12-10 日立粉末冶金株式会社 Abrasion resistance sintered body and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166759B2 (en) * 2000-11-15 2007-01-23 Jfe Steel Corporation Remediation method of media and iron powder for dehalogenation of hydrogenated hydrocarbons
CN100441719C (en) * 2005-03-29 2008-12-10 日立粉末冶金株式会社 Abrasion resistance sintered body and method for producing same
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member

Similar Documents

Publication Publication Date Title
US4266974A (en) Alloy steel powder having excellent compressibility, moldability and heat-treatment property
US7341689B2 (en) Pre-alloyed iron based powder
US5571305A (en) Atomized steel powder excellent machinability and sintered steel manufactured therefrom
JP3862392B2 (en) Iron-based mixed powder for powder metallurgy
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
EP0136169B1 (en) An alloy steel powder for high strength sintered parts
JP3294980B2 (en) Alloy steel powder for high-strength sintered materials with excellent machinability
JPH07278725A (en) Production of sintered steel having excellent machinability
JPH07233401A (en) Atomized steel powder excellent in machinability and dimensional precision and sintered steel
CN112639150A (en) Modified high speed steel particles, powder metallurgy process using same, and sintered parts therefrom
WO2000039353A1 (en) Iron-based powder blend for use in powder metallurgy
US5599377A (en) Mixed iron powder for powder metallurgy
JPH1180803A (en) Ferrous mixed powder for powder metallurgy
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
EP3950174A1 (en) Iron-based mixed powder for powder metallurgy, and iron-base sintered body
JP3353836B2 (en) Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy
JP3491094B2 (en) Manufacturing method of sintered steel with excellent machinability
JPH07233402A (en) Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
JPH0459362B2 (en)
JPH09111303A (en) Iron powder and iron-base powdery mixture giving sintered compact excellent in machinability and wear resistance
JPH08176604A (en) Iron powder for sintered steel excellent in cuttability and manufacture of sintered steel using the same
JPS6136041B2 (en)