JP3353836B2 - Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy - Google Patents

Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy

Info

Publication number
JP3353836B2
JP3353836B2 JP51569097A JP51569097A JP3353836B2 JP 3353836 B2 JP3353836 B2 JP 3353836B2 JP 51569097 A JP51569097 A JP 51569097A JP 51569097 A JP51569097 A JP 51569097A JP 3353836 B2 JP3353836 B2 JP 3353836B2
Authority
JP
Japan
Prior art keywords
powder
weight
iron
iron powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51569097A
Other languages
Japanese (ja)
Inventor
聡 上ノ薗
邦明 小倉
楊  積彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Application granted granted Critical
Publication of JP3353836B2 publication Critical patent/JP3353836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、粉末冶金用鉄粉、その製造方法及び粉末冶
金用鉄基混合粉に関し、特に、焼結体とした際に、優れ
た切削性及び耐摩耗性を発揮する粉末に係わる。
Description: TECHNICAL FIELD The present invention relates to an iron powder for powder metallurgy, a method for producing the same, and an iron-based mixed powder for powder metallurgy. Related to powder that exhibits

背景技術 一般に、粉末冶金は、金属粉を金型内で加圧して成形
体とした後、該成型体を焼結して機械部品等を製造する
技術である。例えば、金属粉に鉄粉を用いる場合には、
該鉄粉にCu粉、黒鉛粉等を混合し、上記した成形、焼結
を行い、通常5.0〜7.2g/cm3程度の密度を有する焼結体
にする。かかる粉末冶金を利用すれば、かなり複雑な形
状の機械部品を寸法精度良く製造できる。しかし、寸法
精度の厳しい機械部品を製造する場合には、上記焼結体
に、さらに切削、あるいはドリル孔開け等の機械加工を
施すことがある。
BACKGROUND ART In general, powder metallurgy is a technique in which a metal powder is pressurized in a mold to form a molded body, and the molded body is sintered to produce a mechanical part or the like. For example, when using iron powder as the metal powder,
The iron powder is mixed with Cu powder, graphite powder and the like, and the above-described molding and sintering are performed to obtain a sintered body having a density of usually about 5.0 to 7.2 g / cm 3 . By using such powder metallurgy, mechanical parts having fairly complicated shapes can be manufactured with high dimensional accuracy. However, when manufacturing a mechanical part having strict dimensional accuracy, the sintered body may be further subjected to machining such as cutting or drilling.

また、粉末冶金製品、つまり焼結体は、一般に切削性
が劣るので、溶製材(例えば、連続鋳造で製造した鋳片
を圧延して得た材料)を切削する場合に比べると、切削
に使用する工具の寿命が短くなる。そのため、上記機械
加工時のコストが高くなるという問題が生じる。焼結体
の切削性が低い原因は、該焼結体に含まれる気孔にあ
る。該気孔によって、切削が断続的になったり、あるい
は、焼結体の熱伝導率が低下して、切削部の温度が上昇
するためである。
In addition, powder metallurgy products, that is, sintered products are generally inferior in machinability, so they are used for cutting compared to cutting ingots (for example, materials obtained by rolling slabs manufactured by continuous casting). Tool life is reduced. For this reason, there is a problem that the cost for the machining is increased. The cause of the low machinability of the sintered body is the pores contained in the sintered body. This is because the pores cause intermittent cutting, or the thermal conductivity of the sintered body decreases, and the temperature of the cut portion increases.

そこで、焼結体の切削性を改善するため、従来は、S
やMnSを鉄粉に混合することが多かった。これらSやMnS
は、切り屑の破断を容易にしたり、あるいは工具すくい
面にSやMnSの薄膜を形成し、該薄膜が切削時に潤滑作
用を発揮するからである。
Therefore, in order to improve the machinability of the sintered body, conventionally, S
And MnS were often mixed with iron powder. These S and MnS
This is because the chip is easily broken or a thin film of S or MnS is formed on the rake face of the tool, and the thin film exerts a lubricating action during cutting.

例えば、特公平3−25481号公報は、0.1〜0.5重量%M
nとSi、Cなどを含有する純鉄に、さらにSを0.03〜0.0
7重量%添加した溶鋼を、水または気体でアトマイズし
て製造する粉末冶金用鉄粉を提案している。しかしなが
ら、この鉄粉を用いて製造した焼結体の切削性は、従来
の鉄粉で製造した焼結体より2倍弱程度しか向上してお
らず、より一層の改良が要望されていた。
For example, Japanese Patent Publication No. 3-25481 discloses that 0.1 to 0.5% by weight M
In addition to pure iron containing n and Si, C, etc., S is further added to 0.03-0.0
We propose iron powder for powder metallurgy, which is produced by atomizing molten steel with 7% by weight of water or gas. However, the machinability of the sintered body manufactured using the iron powder is improved only about two times less than that of the sintered body manufactured using the conventional iron powder, and further improvement has been demanded.

また、特開昭61−253301号公報は、C:0.10重量%以
下、Mn:2.0重量%以下、酸素:0.30重量%以下で、更
に、Cr:0.10〜5.0重量%、Ni:0.10〜5.0重量%、Si:2.0
重量%以下、Cu:0.10〜10.0重量%、Mo:0.01〜3.0重量
%、W:0.01〜3.0重量%、V:0.01〜2.0重量%、Ti:0.005
〜0.50重量%、Zr:0.005〜0.50重量%、Nb:0.005〜0.50
重量%、P:0.03〜1.0重量%及びB:0.0005〜1.0重量%か
らなる成分群のうちの1種または2種以上を含有し、さ
らに必要に応じてS:1.0重量%以下を含み、残部が実質
的にFeからなる合金鋼粉を提案した。
JP-A 61-253301 discloses that C: 0.10% by weight or less, Mn: 2.0% by weight or less, oxygen: 0.30% by weight or less, Cr: 0.10 to 5.0% by weight, Ni: 0.10 to 5.0% by weight %, Si: 2.0
% By weight, Cu: 0.10 to 10.0% by weight, Mo: 0.01 to 3.0% by weight, W: 0.01 to 3.0% by weight, V: 0.01 to 2.0% by weight, Ti: 0.005
~ 0.50% by weight, Zr: 0.005 ~ 0.50% by weight, Nb: 0.005 ~ 0.50
%, P: 0.03 to 1.0% by weight and B: 0.0005 to 1.0% by weight, and contains one or more of the components, and further contains S: 1.0% by weight or less as necessary, and the balance Proposed an alloy steel powder consisting essentially of Fe.

しかしながら、この合金鋼粉は、鉄鉱石、ミルスケー
ル等の酸化鉄を粉コークスで粗還元して得た鉄粉と、別
途、多数の金属元素で予合金化した溶鋼を水アトマイズ
して得た母合金粉とを混合し、しかる後に、その混合粉
を仕上還元して製造される。従って、この合金鋼粉は、
非常に複雑な方法で製造されるばかりでなく、多数の合
金元素を多量に含有しているので、コストの高いもので
あった。なお、上記の水アトマイズして得た母合金粉
は、C:0.50重量%以下、Mn:5.0重量%以下、酸素量:1.5
重量%以下、さらにCr:0.10〜20.0重量%、Ni:0.15〜2
0.0重量%、Si:5.0重量%以下、Cu:0.15〜20.0重量%、
Mo:0.015〜15.0重量%、W:0.015〜15.0重量%、V:0.015
〜5.0重量%、Ti:0.01〜2.0重量%、Zr:0.01〜2.0重量
%、Nb:0.01〜2.0重量%、P:0.04〜2.0重量%、および
B:0.0010〜2.0重量%から成る成分群のうちの1種また
は2種以上を含有し、さらに必要に応じてS:4重量%以
下を含み、残部が実質的にFeからなっている。
However, this alloyed steel powder was obtained by water atomizing iron powder obtained by roughly reducing iron oxide such as iron ore and mill scale with fine coke and molten steel separately prealloyed with a number of metal elements. The mother alloy powder is mixed, and then the mixed powder is finish-reduced for production. Therefore, this alloy steel powder
Not only is it manufactured by a very complicated method, but also contains a large amount of a large number of alloying elements, so that it is expensive. The mother alloy powder obtained by the above-mentioned water atomization was C: 0.50% by weight or less, Mn: 5.0% by weight or less, and the oxygen content: 1.5% by weight.
% By weight, Cr: 0.10 to 20.0% by weight, Ni: 0.15 to 2%
0.0% by weight, Si: 5.0% by weight or less, Cu: 0.15 to 20.0% by weight,
Mo: 0.015 to 15.0% by weight, W: 0.015 to 15.0% by weight, V: 0.015
~ 5.0 wt%, Ti: 0.01 ~ 2.0 wt%, Zr: 0.01 ~ 2.0 wt%, Nb: 0.01 ~ 2.0 wt%, P: 0.04 ~ 2.0 wt%, and
B: Contains one or more of a component group consisting of 0.0010 to 2.0% by weight, further contains S: 4% by weight or less as needed, and the balance substantially consists of Fe.

そこで、本出願人は、特開平7−233401号公報や特開
平7−233402号公報に開示したように、S、Cr、Mnを含
む水アトマイズ鋼粉を提案し、焼結体の切削性や耐摩耗
性を従来より幾分改良した。その際、この鋼粉を焼結す
ると、焼結体の気孔内に黒鉛が残留し、同時にMnSが鉄
粒子内に析出するので、該焼結体の切削性が飛躍的に増
加することを明らかにした。なお、この黒鉛の残留は、
焼結中に、CrとSが、鉄粉粒子内への黒鉛の拡散を抑制
するためと考えた。
Accordingly, the present applicant has proposed water atomized steel powder containing S, Cr, and Mn as disclosed in Japanese Patent Application Laid-Open Nos. 7-233401 and 7-233402, and has improved machinability of a sintered body. The abrasion resistance has been improved somewhat. At this time, when this steel powder is sintered, graphite remains in the pores of the sintered body, and at the same time, MnS precipitates in the iron particles, so that the machinability of the sintered body is dramatically increased. I made it. The residual graphite is
It is considered that Cr and S suppress the diffusion of graphite into the iron powder particles during sintering.

しかしながら、かかる鋼粉であっても、焼結時の雰囲
気ガスにH2が含まれていると、その焼結体の切削性や耐
摩耗性が低下するという問題があり、さらなる改良が熱
望されていた。
However, even in such a steel powder and has the H 2 contained in the atmospheric gas during sintering, the cutting and wear resistance of the sintered body has lowered, further improvements are eager I was

さらに本出願人らは特願平7−15368号で、B:0.001〜
0.03重量%,Cr:0.02〜0.07重量%,Mn:0.1重量%未満、
S,Se,Teの一種以上を合計で0.03〜0.15重量%を含有す
る鉄粉を焼結することにより、一層残留黒鉛量が増加
し、切削性が向上することを提案した。
Further, the present applicants filed Japanese Patent Application No. 7-15368, B: 0.001 to
0.03% by weight, Cr: 0.02 to 0.07% by weight, Mn: less than 0.1% by weight,
It has been proposed that by sintering iron powder containing at least one of S, Se and Te in a total amount of 0.03 to 0.15% by weight, the amount of residual graphite is further increased and the machinability is improved.

しかしながら残留黒鉛量は最高0.42重量%程度であ
り、鉄粉の組成がB:0.03重量%超え、Mn:0.1重量%を超
えた鉄粉の組成では切削性の向上が認められなかった。
However, the maximum amount of residual graphite was about 0.42% by weight, and no improvement in machinability was observed with an iron powder composition in which the composition of the iron powder exceeded 0.03% by weight and the content of Mn exceeded 0.1% by weight.

そこでさらに焼結体中の黒鉛量を多量に含む焼結鋼が
得られる鉄粉が望まれていた。
Therefore, there has been a demand for iron powder capable of obtaining a sintered steel containing a large amount of graphite in the sintered body.

発明の開示 本発明は、かかる事情に鑑み、従来より一層優れた切
削性および耐摩耗性を発揮する焼結体の製造が可能な粉
末冶金用鉄粉、その製造方法、及び該鉄粉に他の粉末を
添加した混合粉を提供することを目的としている。
DISCLOSURE OF THE INVENTION In view of such circumstances, the present invention provides an iron powder for powder metallurgy capable of producing a sintered body exhibiting more excellent machinability and abrasion resistance, a method for producing the same, and other methods. It is an object of the present invention to provide a mixed powder to which the powder of (1) is added.

本発明者らは、上記特開平7−233401号公報や特開平
7−233402号公報に記載されたことを参考に、焼結体の
切削性及び耐摩耗性を一層向上させることを研究した。
つまり、残留黒鉛の量を上記公報記載の焼結体より増加
させる合金元素の発見に鋭意努力した。その結果、酸素
が100ppm以下でBを含有する溶鋼を水でアトマイズして
得られた鉄粉を用いて焼結すると、焼結体中の残留黒鉛
量が著しく増加するという新しい知見を得た。さらに本
発明のポイントは、一定量以上のBを該鉄粉表面に偏析
させる点にある。本発明は、この知見を具現化したもの
であり、すなわち、 B :0.03超え〜0.3重量%、 Cr:0.07重量%以下、 Mn:0.3重量%未満、 を含み、残部がFeと不可避的不純物からなり、かつ表面
をオージェ電子分光分析法で測定して得た発光スペクト
ルのFeに対するBの強度比が、0.05以上であることを特
徴とする粉末冶金用鉄粉である。
The present inventors have studied to further improve the machinability and wear resistance of a sintered body with reference to the descriptions in JP-A-7-233401 and JP-A-7-233402.
That is, diligent efforts have been made to find an alloy element that increases the amount of residual graphite compared to the sintered body described in the above publication. As a result, a new finding was obtained that when the molten steel containing B containing 100 ppm or less of oxygen was atomized with water and sintered using iron powder, the amount of residual graphite in the sintered body was significantly increased. Further, the point of the present invention lies in that a certain amount or more of B is segregated on the surface of the iron powder. The present invention embodies this finding, that is, contains B: more than 0.03 to 0.3% by weight, Cr: 0.07% by weight or less, and Mn: less than 0.3% by weight, with the balance being Fe and unavoidable impurities. An iron powder for powder metallurgy, wherein the intensity ratio of B to Fe in the emission spectrum obtained by measuring the surface by Auger electron spectroscopy is 0.05 or more.

また、本発明は、上記組成に、S、SeおよびTeから選
ばれた1種以上を、合計で0.001重量%〜0.20重量%未
満含有させたり、あるいは、Mo:0.05〜3.5重量%を含ま
せたことを特徴とする粉末冶金用鉄粉である。
Further, the present invention provides that the composition contains at least one selected from S, Se and Te in a total amount of 0.001% by weight to less than 0.20% by weight, or Mo: 0.05 to 3.5% by weight. This is an iron powder for powder metallurgy.

さらに、本発明は、上記鉄粉に、MoO3粉を0.05〜0.7
重量%及び/又はWO3粉を0.05〜0.7重量%混合したこと
を特徴とする粉末冶金用鉄基混合粉でもある。
Furthermore, the present invention is, in the iron powder, a MoO 3 powder 0.05 to 0.7
It is also an iron-based mixed powder for powder metallurgy, wherein 0.05 to 0.7% by weight of WO 3 powder and / or WO 3 powder is mixed.

加えて、本発明は、粉末冶金用鉄粉を製造する方法に
おいて、 B :0.03超え〜0.3重量%、 Cr :0.07重量%以下、 Mn :0.3重量%未満、 酸素:100ppm以下、 を含み、残部がFeおよび不可避的不純物とした溶鋼を用
い、該溶鋼を水アトマイズして粉体とし、その粉体に脱
水乾燥及び還元を順次施すことを特徴とする粉末冶金用
鉄粉の製造方法である。
In addition, the present invention provides a method for producing iron powder for powder metallurgy, comprising: B: more than 0.03 to 0.3% by weight, Cr: 0.07% by weight or less, Mn: less than 0.3% by weight, oxygen: 100 ppm or less, with the balance being Is a method for producing iron powder for powder metallurgy, comprising using molten steel containing Fe and unavoidable impurities, subjecting the molten steel to water atomization to obtain a powder, and sequentially subjecting the powder to dehydration drying and reduction.

さらに加えて、本発明は、上記溶鋼の組成に、 S、SeおよびTeから選ばれた1種以上を合計で0.001重
量%〜0.20重量%未満を含ませたり、Moを0.05〜3.5重
量%含有させることを特徴とする粉末冶金用鉄粉の製造
方法である。
In addition, the present invention further provides that the composition of the molten steel contains one or more selected from S, Se and Te in a total content of 0.001% by weight to less than 0.20% by weight, or a Mo content of 0.05 to 3.5% by weight. A method for producing iron powder for powder metallurgy.

本発明によれば、従来より優れた切削性、耐摩耗性を
有する焼結体を容易に製造できる粉末冶金用鉄粉が得ら
れる。
ADVANTAGE OF THE INVENTION According to this invention, the iron powder for powder metallurgy which can manufacture easily the sintered compact which has the outstanding machinability and wear resistance compared with the former is obtained.

図面の簡単な説明 図1は、本発明に係る鉄粉の表面をオージェ電子分光
分析法で測定して得た発光スペクトルの一例を示す図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of an emission spectrum obtained by measuring the surface of iron powder according to the present invention by Auger electron spectroscopy.

図2は、オージェ電子分光分析法で測定した鉄粉表面
から深さ方向各位置における各元素の濃度分布例を示す
線図である。なお、横軸のスパッタリング時間は、鉄粉
表面からの深さ方向の距離に対応するものである。
FIG. 2 is a diagram showing an example of the concentration distribution of each element at each position in the depth direction from the surface of the iron powder measured by Auger electron spectroscopy. The sputtering time on the horizontal axis corresponds to the distance in the depth direction from the surface of the iron powder.

発明を実施するための最良の形態 本発明では、鉄粉中のCr、Mn含有量を低めに抑え、そ
の代わりにBを積極的に含有させて、該鉄粉の表面にB
を偏析させるようにした。その結果、該鉄粉で製造した
焼結体中の残留黒鉛量が従来の焼結体の場合より増加
し、その切削性を一段と向上させた。また同時に、この
残留黒鉛の自己潤滑作用で、焼結体の耐摩耗性をも向上
させている。これは、Bを含有する溶鋼を水でアトマイ
ズすると、Bの一部が水により容易に酸化されて鉄粉の
表面にB系酸化物として析出し、このB系酸化物が焼結
中に鉄粉内へのCの拡散を抑制するため、残留黒鉛量が
増加すると考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the content of Cr and Mn in iron powder is suppressed to a low level, and instead, B is positively contained, and B is added to the surface of the iron powder.
Was segregated. As a result, the amount of residual graphite in the sintered body manufactured from the iron powder was increased as compared with the conventional sintered body, and the machinability was further improved. At the same time, the self-lubricating action of the residual graphite improves the wear resistance of the sintered body. This is because when atomizing molten steel containing B with water, a part of B is easily oxidized by water and precipitates as B-based oxide on the surface of iron powder, and this B-based oxide is It is considered that the amount of residual graphite increases in order to suppress the diffusion of C into the powder.

本発明の第1のポイントは酸素100ppm以下の溶鋼をア
トマイズすることであり、第2のポイントは請求項に示
されるように鉄粉の表面のBの偏析の程度を規定した点
にある。この2つのポイントにより特願平7−15368号
に比べ、高B組成、低S組成で残留黒鉛量が増加し、切
削性の一層の改善や耐磨耗性の向上を実現した。特に、
焼結体中の黒鉛量が1重量%以上となると、耐磨耗性が
格段に向上することが分かった。
The first point of the present invention is to atomize molten steel having an oxygen content of 100 ppm or less, and the second point is that the degree of segregation of B on the surface of iron powder is defined as described in the claims. Due to these two points, the amount of residual graphite was increased with a high B composition and a low S composition as compared with Japanese Patent Application No. 7-15368, thereby further improving the machinability and the abrasion resistance. In particular,
It was found that when the amount of graphite in the sintered body was 1% by weight or more, the abrasion resistance was significantly improved.

また、本発明では、上記BとS、Se、Teとを併用する
ことで、上記効果を促進させている。そして、さらにMo
を含有させた鉄粉も提案した。なお、このMoは、溶鋼の
段階で予合金化して含有させるよりも、上記した本発明
に係る鉄粉にMoO3粉を混合する方が、焼結体の切削性を
より一層向上させる。また、WO3粉も、MoO3粉と同様の
効果を示すので、本発明に加えた。
In the present invention, the above effects are promoted by using the above B in combination with S, Se, and Te. And then Mo
An iron powder containing iron was also proposed. It should be noted that mixing MoO 3 powder with the iron powder according to the present invention further improves the machinability of the sintered body, rather than including Mo by pre-alloying at the stage of molten steel. Also, WO 3 powder has the same effect as MoO 3 powder, and was therefore added to the present invention.

したがって、本発明に係る粉末冶金用鉄粉、あるいは
鉄基混合粉を、通常通り、銅粉や黒鉛粉と混合して加圧
成形体とし、該成形体を焼結すると、残留黒鉛を多量に
含有した切削性及び耐摩耗性の優れた焼結体が容易に得
られるようになる。以下に、各元素の含有量を限定した
理由を説明する。
Therefore, iron powder for powder metallurgy according to the present invention, or an iron-based mixed powder, as usual, mixed with copper powder or graphite powder to form a pressed compact, and when the compact is sintered, a large amount of residual graphite A sintered body containing excellent cutability and wear resistance can be easily obtained. The reason for limiting the content of each element will be described below.

B:0.03超え〜0.3重量% 溶鋼に加えたBの一部が、該溶鋼を水アトマイズした
際に、鉄粉の表面に酸化物として析出する。そして、こ
の鉄粉の成形体を焼結させると、該酸化物が、鉄粉粒子
内への炭素の拡散を抑制し、焼結体内の残留黒鉛量を増
加させる。その結果、焼結体の切削性及び耐摩耗性を向
上させる。また、B系酸化物は、非常に安定で、H2と反
応しないので、水素雰囲気中で焼結を行っても、特開平
7−233401号公報記載の鋼粉のように、焼結体の切削性
が低下することはない。注目すべきこととしては、Bを
含有しない鉄粉に、Fe−B合金粉を単に混合するような
方法を採用しても、焼結体内の残留黒鉛量は増加せず、
焼結体の切削性等の向上はなかった。
B: more than 0.03 to 0.3% by weight A part of B added to the molten steel precipitates as an oxide on the surface of the iron powder when the molten steel is atomized with water. When the iron powder compact is sintered, the oxide suppresses the diffusion of carbon into the iron powder particles, and increases the amount of residual graphite in the sintered compact. As a result, the machinability and wear resistance of the sintered body are improved. Furthermore, B-based oxide is very stable and does not react with H 2, even if the sintering in a hydrogen atmosphere, in JP-A 7-233401 JP described as steel powder, the sintered body The machinability does not decrease. It should be noted that even if a method in which Fe-B alloy powder is simply mixed with iron powder containing no B, the amount of residual graphite in the sintered body does not increase,
There was no improvement in the machinability of the sintered body.

このBは、0.03重量%超えて含有させると、残留黒鉛
量の増加が著しくなり、焼結体の切削性及び耐摩耗性を
一段と向上させるので、本発明では、0.03重量%超えを
下限とする。一方、Bの含有量が0.3重量%を超える
と、Bの一部が鉄粉粒子内に固溶して焼結体の硬さが増
し、その切削性が低下するので、この量を上限とする。
When B is contained in an amount exceeding 0.03% by weight, the amount of residual graphite increases remarkably and the machinability and wear resistance of the sintered body are further improved. Therefore, in the present invention, the lower limit is 0.03% by weight or more. . On the other hand, when the content of B exceeds 0.3% by weight, a part of B forms a solid solution in the iron powder particles and the hardness of the sintered body increases, and the machinability thereof decreases. I do.

鉄粉表面のB:オージェ電子分光分析法で測定して得た
発光スペクトルのFeに対するBの強度比が0.05以上 Bは、前記したように、鉄粉の表面に偏析して存在す
ることで、焼結体内の残留黒鉛量を増加させる効果を有
する。この鉄粉の表面に偏析するBは、オージェ電子分
光分析法により測定することで確認できる。図1に、そ
の測定で得た発光スペクトルの一例を示す。
B on the iron powder surface: the intensity ratio of B to Fe in the emission spectrum measured by Auger electron spectroscopy is 0.05 or more. B is, as described above, segregated on the surface of the iron powder. This has the effect of increasing the amount of residual graphite in the sintered body. B segregated on the surface of the iron powder can be confirmed by measurement by Auger electron spectroscopy. FIG. 1 shows an example of an emission spectrum obtained by the measurement.

発明者は、図1に示すようなスペクトルから、Feに対
するBの強度比を求めた。具体的には、図示しているよ
うに電子エネルギーが703eV(横軸)に相当するFeのPea
k−to−Peak値と、179eV位置のBのPeak−to−Peak値の
比である。そして、発明者の研究によればこの強度比が
0.05以上の場合に焼結体中の残留黒鉛量が増加したが、
0.05未満では、それが認められなかった。そこで、本発
明では、この0.05以上の強度比を有することを鉄粉の条
件としたのである。
The inventors obtained the intensity ratio of B to Fe from the spectrum as shown in FIG. Specifically, as shown in the figure, Fe Pea whose electron energy corresponds to 703 eV (horizontal axis)
This is the ratio between the k-to-peak value and the peak-to-peak value of B at the 179 eV position. And according to the inventors' research, this intensity ratio
In the case of 0.05 or more, the amount of residual graphite in the sintered body increased,
Below 0.05, it was not observed. Therefore, in the present invention, the condition of the iron powder is to have an intensity ratio of 0.05 or more.

確認事項であるが、オージェ電子分光分析法で測定し
た鉄粉表面から深さ方向での各元素の濃度分布の一例を
図2に示す。なお、横軸のスパッタリング時間は該鉄粉
表面からの深さ方向の距離を示す尺度である。図2で
は、鉄粉表面のB濃度は、17原子量%であった。また、
Bの表面での濃化とともに、酸素も一緒に濃化してお
り、Bは、B2O3の形態で存在すると思われる。
As an item to be confirmed, FIG. 2 shows an example of the concentration distribution of each element in the depth direction from the iron powder surface measured by Auger electron spectroscopy. In addition, the sputtering time on the horizontal axis is a scale indicating the distance in the depth direction from the surface of the iron powder. In FIG. 2, the B concentration on the surface of the iron powder was 17 atomic%. Also,
With the enrichment at the surface of B, oxygen is also enriched, and it is likely that B exists in the form of B 2 O 3 .

なお、本発明で採用したオージェ電子分光分析法によ
る鉄粉の定性分析では、一次電子ビームの加速電圧を10
kV、ビーム電流を1.1μAとした。また、測定したデー
タの読み込みは、1.00eV/step、50msec/stepとし、積算
は11回行い、さらに5点微分を施して微分スペクトルを
得た。
In the qualitative analysis of iron powder by Auger electron spectroscopy employed in the present invention, the acceleration voltage of the primary electron beam was set at 10
kV and a beam current of 1.1 μA. The reading of the measured data was 1.00 eV / step, 50 msec / step, the integration was performed 11 times, and a 5-point differentiation was performed to obtain a differential spectrum.

Cr:0.07重量%以下 Crは、酸化物を形成しやすく、鉄粉表面を覆ってBの
表面偏析を阻害するので、含有量はできるだけ少なく抑
える必要がある。また、Crは、炭化物を形成し、焼結体
の硬さを高めて切削性を低下させる。このため、本発明
では、Crを0.07重量%以下とした。焼結体の切削性及び
耐摩耗性と、製造コストとの兼ね合いで、好ましい範囲
は、0.02〜0.06重量%とする。
Cr: 0.07% by weight or less Cr easily forms an oxide and covers the surface of the iron powder to inhibit the surface segregation of B. Therefore, the content of Cr must be kept as low as possible. Further, Cr forms carbides, increases the hardness of the sintered body, and lowers the machinability. Therefore, in the present invention, Cr is set to 0.07% by weight or less. In consideration of the machinability and wear resistance of the sintered body and the manufacturing cost, a preferable range is 0.02 to 0.06% by weight.

Mn:0.3重量%未満 Mnは、残留黒鉛を減少させる元素である。また、鉄粉
粒子内のMnは、S、Se、Teと結合して化合物となり、焼
結体内の残留黒鉛を増加させるに有効なS、Se、Teを減
少する。さらに、Mnは、酸化物を形成して鉄粉の表面を
覆い、Bの表面での偏析を阻害する。このため、0.3重
量%以上含有させると、焼結体内の残留黒鉛量が少なく
なり、その切削性を低下させる。溶鋼成分の調整段階で
Mn量の低減のために要する精錬コスト、及び焼結体の切
削性の点から、好ましい範囲は、0.07〜0.15重量%とす
る。
Mn: less than 0.3% by weight Mn is an element that reduces residual graphite. Further, Mn in the iron powder particles combines with S, Se, and Te to form a compound, and reduces S, Se, and Te, which are effective for increasing the residual graphite in the sintered body. Further, Mn forms an oxide to cover the surface of the iron powder and inhibits segregation on the surface of B. Therefore, when the content is 0.3% by weight or more, the amount of residual graphite in the sintered body is reduced, and the machinability is reduced. At the stage of adjusting molten steel composition
In view of the refining cost required for reducing the amount of Mn and the machinability of the sintered body, a preferable range is 0.07 to 0.15% by weight.

S、Se、Teのうち1種以上の合計:0.001〜0.20重量%
未満 S、Se、Teは、焼結体内の残留黒鉛量を増加させるた
めに含有させる。その量の合計は、0.001〜0.20重量%
未満に限定する。0.20重量%以上になると、焼結時に
「すす」を発生し、製品たる機械部品が錆やすくなるた
め、この値を上限とした。一方、0.001重量%以下で
は、残留黒鉛量の増加効果がないので、上記範囲に限定
した。
Total of one or more of S, Se, and Te: 0.001 to 0.20% by weight
Less than S, Se and Te are contained to increase the amount of residual graphite in the sintered body. The total amount is 0.001-0.20% by weight
Limited to less than. When the content is 0.20% by weight or more, soot is generated at the time of sintering, and mechanical parts as products tend to be rusted. On the other hand, when the content is 0.001% by weight or less, there is no effect of increasing the amount of residual graphite.

Mo:0.05〜3.5重量% Moは、鉄粉の強度を増加させるために含有させる。し
かし、その量が0.05重量%未満では、強度の向上が認め
られず、3.5重量%を超えると、焼結体の切削性が急激
に低下するので、上記の範囲に定めた。なお、強度と切
削性の点から、好ましい範囲は、0.4〜0.7重量%であ
る。
Mo: 0.05 to 3.5% by weight Mo is contained to increase the strength of the iron powder. However, if the amount is less than 0.05% by weight, no improvement in strength is observed, and if it exceeds 3.5% by weight, the machinability of the sintered body is sharply reduced. From the viewpoint of strength and machinability, a preferable range is 0.4 to 0.7% by weight.

MoO3粉:0.05〜0.7重量%、WO3粉:0.05〜0.7重量%の
いずれか1種以上 MoO3及びWO3粉は、本発明に係る上記鉄粉と混合し、
新規な粉末冶金用混合粉を形成するのに利用される。そ
の混合目的は、焼結体の切削性向上と、固溶硬化による
強度増加である。MoO3粉及びWO3粉の混合量は、0.05未
満では、上記効果が認められず、0.7重量%を超える
と、鉄粒子内にベイナイトが生成して、焼結体の強度が
低下する。このため、混合量を、いずれも0.05〜0.7重
量%の範囲とした。
MoO 3 powder: 0.05 to 0.7% by weight, WO 3 powder: 0.05 to 0.7% by weight Any one or more of MoO 3 and WO 3 powder are mixed with the iron powder according to the present invention,
Used to form new powder metallurgy mixes. The purpose of mixing is to improve the machinability of the sintered body and to increase the strength by solution hardening. If the mixing amount of the MoO 3 powder and the WO 3 powder is less than 0.05, the above effect is not recognized. If the mixing amount exceeds 0.7% by weight, bainite is generated in the iron particles and the strength of the sintered body is reduced. For this reason, the mixing amounts were all in the range of 0.05 to 0.7% by weight.

また、鉄粉に、MoO3粉、WO3粉のいずれか1種以上と
黒鉛粉末および銅粉とを混合する時、それらに公知の偏
析防止処理(特開平1−165701号公報、特開平2−4720
1号公報参照)を施してから混合することが、一層好ま
しい。それは、MoO3粉、WO3粉が鉄粉に均質に混合され
るので、単純な混合方法に比べ、焼結体内でのMo、Wの
鉄粉への固溶が均質となるからである。その結果、焼結
後に、鉄粒子内のフェライト相が微細になり、単純な混
合方法で製造した場合に比べ、焼結体の強度が15重量%
程度増加する。
In addition, when one or more of MoO 3 powder and WO 3 powder, graphite powder and copper powder are mixed with iron powder, a known segregation prevention treatment (Japanese Patent Application Laid-Open No. 1-165701, Japanese Patent Application Laid-Open No. −4720
It is more preferable to mix them after the application. This is because MoO 3 powder and WO 3 powder are homogeneously mixed with iron powder, so that Mo and W are more uniformly dissolved in iron powder in the sintered body than in a simple mixing method. As a result, after sintering, the ferrite phase in the iron particles becomes finer, and the strength of the sintered body is 15% by weight compared to the case of manufacturing by a simple mixing method.
Increase to the extent.

溶鋼中の酸素:100ppm以下 本発明に係る鉄粉は、上記した組成範囲に調整した溶
鋼を水でアトマイズして形成する。その際、溶鋼中の酸
素(O)量は、100ppm以下に、好ましくは70ppm以下と
するのが良い。溶鋼中のO量が100ppmを超えると、アト
マイズ前に、BがB2O3となってスラグ化し、鉄粉に有効
なB量が低下する。そこで、溶鋼中のO量はできるだけ
低く抑え、Bを溶鋼中に溶解させてからアトマイズし、
水でBを酸化させて鉄粉表面にBやB2O3として偏析させ
ることが重要である。
Oxygen in molten steel: 100 ppm or less The iron powder according to the present invention is formed by atomizing molten steel adjusted to the above composition range with water. At that time, the amount of oxygen (O) in the molten steel is set to 100 ppm or less, preferably 70 ppm or less. If the amount of O in the molten steel exceeds 100 ppm, B becomes B 2 O 3 and becomes slag before atomizing, and the amount of B effective for iron powder decreases. Therefore, the amount of O in the molten steel is kept as low as possible, and B is dissolved in the molten steel and then atomized.
It is important to oxidize B with water and segregate it as B or B 2 O 3 on the iron powder surface.

水アトマイズで形成した鉄粉は、その後、通常通りに
乾燥脱水及び還元を施してから、粉砕、分級して鉄粉と
するのである。
The iron powder formed by the water atomization is then subjected to dry dehydration and reduction as usual, and then pulverized and classified into iron powder.

実施例1 鉄粉組成が、B:0.031〜0.10重量%、Cr:0.02〜0.04重
量%、Mn:0.06〜0.07重量%を含み、残部がFeと不可避
的不純物となるアトマイズ鉄粉を10種類製造した。それ
は、本発明に係る鉄粉が5種類と、実施成績を比較する
ための鉄粉(以下、比較例という)4種類である。これ
ら鉄粉の製造方法は、以下の通りである。
Example 1 Production of 10 kinds of atomized iron powder whose iron powder composition contains B: 0.031 to 0.10% by weight, Cr: 0.02 to 0.04% by weight, Mn: 0.06 to 0.07% by weight, with the balance being Fe and inevitable impurities. did. That is, there are five types of iron powders according to the present invention and four types of iron powders (hereinafter referred to as comparative examples) for comparing performance results. The method for producing these iron powders is as follows.

まず、所定組成にした温度1630℃の溶鋼を、水でアト
マイズし、粉末とした。この粉末を窒素雰囲気下、140
℃の温度で60分間乾燥してから、純水素雰囲気下、930
℃の温度で20分間の還元処理を施した。そして、冷却後
に還元炉から取り出した粉末を、粉砕、分級して、表1
に示すNo.1〜6とした。
First, molten steel having a predetermined composition at a temperature of 1630 ° C. was atomized with water to obtain powder. This powder is placed under nitrogen atmosphere at 140
After drying at a temperature of ℃ for 60 minutes, 930 under pure hydrogen atmosphere
A reduction treatment was performed at a temperature of ° C. for 20 minutes. Then, the powder taken out of the reduction furnace after cooling was pulverized and classified.
Nos. 1 to 6 shown in FIG.

また、同じ製造方法で、上記鉄粉の組成に加えて、さ
らに、S:0.02〜0.10重量%を含む鉄粉を製造した。それ
が、表1に示すNo.7〜10である。なお、アトマイズ前の
溶鋼は、炭化鉄を添加して、酸素含有量を40〜200ppmの
範囲に調整してある。
Further, in the same production method, an iron powder containing 0.02 to 0.10% by weight of S in addition to the composition of the iron powder was produced. These are Nos. 7 to 10 shown in Table 1. The oxygen content of the molten steel before atomization was adjusted to 40 to 200 ppm by adding iron carbide.

このようにして製造したNo.1〜10の表面を、オージェ
電子分光分析法で発光スペクトルを測定し、該スペクト
ルからFeのPeak−to−Peak値(703eV)に対するBのPea
k−to−Peak値(179eV)の強度比を計算した。測定方法
及び測定条件は、前述の通りである。
The emission spectra of the surfaces of Nos. 1 to 10 produced in this manner were measured by Auger electron spectroscopy, and from the spectra, the peak-to-peak value of Fe (703 eV) and the peak value of Pe
The intensity ratio of the k-to-Peak value (179 eV) was calculated. The measuring method and the measuring conditions are as described above.

次に、これら鉄粉に、黒鉛粉1.2重量%及び銅粉2.0重
量%を混合し、さらに、この混合粉100重量部に対し
て、ステアリン酸亜鉛1重量部を加えた後、密度6.85g/
cm3になるように加圧して、円柱状の成形体とした。そ
して、これらの成形体を、水素10体積%を含む窒素気流
下、1130℃の温度で20分間焼結した。
Next, 1.2% by weight of graphite powder and 2.0% by weight of copper powder were mixed with these iron powders, and 1 part by weight of zinc stearate was added to 100 parts by weight of the mixed powder.
It was pressurized to a cm 3 to obtain a cylindrical molded body. Then, these compacts were sintered at a temperature of 1130 ° C. for 20 minutes in a nitrogen stream containing 10% by volume of hydrogen.

得られた焼結体内の残留黒鉛量は、該焼結体の1部
(試料)を硝酸で溶解し、残渣をガラス・フィルタで濾
過して得た濾液から、赤外線吸収法で求めた。また、各
焼結体の切削性は、別途、これらの鉄粉を用いて、外径
60mmφ、高さ10mmの円柱状の焼結体を製造し、該焼結体
を試験片として評価した。具体的には、まず、直径2mm
φのハイス製ドリルを、10000rpm、0.012mm/revの条件
で回転させ、試験片に多数の孔を開ける。そして、該ド
リルが穿孔不能になるまでに開けた孔の平均個数(ドリ
ル3本と平均値)を求め、その数値が大きい(使用工具
の寿命が長かった)試験片ほど、切削性が良いとしたの
である。
The amount of residual graphite in the obtained sintered body was determined by an infrared absorption method from a filtrate obtained by dissolving a part (sample) of the sintered body with nitric acid and filtering the residue through a glass filter. In addition, the cutability of each sintered body is determined separately by using these iron powders.
A cylindrical sintered body having a diameter of 60 mm and a height of 10 mm was manufactured, and the sintered body was evaluated as a test piece. Specifically, first, the diameter is 2mm
Rotate a φ Heiss drill at 10,000 rpm and 0.012 mm / rev to make many holes in the test piece. Then, the average number of holes (three drills and the average value) of holes drilled before the drill cannot be drilled is determined, and the larger the value (the longer the life of the tool used) is, the better the machinability is. It was done.

以上説明した鉄粉及び焼結体の特性を、まとめて表1
に示す。
Table 1 summarizes the characteristics of the iron powder and the sintered body described above.
Shown in

表1より明らかなように、本発明に係る粉末冶金用鉄
粉で製造した焼結体は、溶鋼中の酸素を100ppm以下にし
てあるので、オージェ電子分光分析法で鉄粉表面で測定
して得たスペクトルのFeに対するBの強度比がすべて0.
05以上である。また、焼結体の残留黒鉛量も比較例に比
べて多く、切削性が大幅に向上していた。
As is clear from Table 1, the sintered body manufactured from the iron powder for powder metallurgy according to the present invention has oxygen in the molten steel set to 100 ppm or less, and is measured on the iron powder surface by Auger electron spectroscopy. All the intensity ratios of B to Fe in the obtained spectrum are 0.
It is 05 or more. Further, the amount of residual graphite in the sintered body was larger than that in the comparative example, and the machinability was greatly improved.

実施例2 別途、表2に示す組成のアトマイズ鉄粉を製造した。
それは、本発明に係る鉄粉6種類(No.11,12,16,18,23,
24)、鉄基混合粉3種類(No.13,14及び17)、比較例4
種類(No.19〜22)である。なお、表2には、水アトマ
イズ前の溶鋼中の酸素量を併記してある。
Example 2 Atomized iron powder having the composition shown in Table 2 was separately manufactured.
That is, the six types of iron powder according to the present invention (No. 11, 12, 16, 18, 23,
24), 3 types of iron-based mixed powder (Nos. 13, 14 and 17), Comparative Example 4
Type (No. 19 to 22). Table 2 also shows the amount of oxygen in the molten steel before water atomization.

これら鉄粉及び鉄基混合粉は、実施例1と同様に処理
した後、オージェ電子分光分析法で鉄粉表面のFeのPeak
−to−Peak値(703eV)に対するBのPeak−to−Peak値
(179eV)のスペクトル強度比を測定した。また、実施
例1と同じ条件で、成形体の焼結を行い、得られた焼結
体の残留黒鉛量測定、及び切削性を評価した。
After treating the iron powder and the iron-based mixed powder in the same manner as in Example 1, the peak of Fe on the iron powder surface was measured by Auger electron spectroscopy.
The spectrum intensity ratio of the Peak-to-Peak value of B (179 eV) to the -to-Peak value (703 eV) was measured. Further, under the same conditions as in Example 1, the compact was sintered, and the obtained graphite was measured for the residual graphite amount and the machinability was evaluated.

表2より、本発明に係るアトマイズ鉄粉や鉄基混合粉
で製造した焼結体は、その残留黒鉛量も多く、工具寿命
も長くて、切削性が優れていることがわかる。
Table 2 shows that the sintered body produced from the atomized iron powder or the iron-based mixed powder according to the present invention has a large amount of residual graphite, a long tool life, and excellent machinability.

実施例3 表3に示す組成の水アトマイズ鉄粉を上記と同様に製
造した。それは、本発明に係る鉄粉4種類(No.25〜2
8)及び比較例3種類(No.29〜31)である。これら鉄粉
に、黒鉛粉2重量%及び銅粉15重量%を加え、さらに潤
滑剤としてステアリン酸亜鉛1重量%を混合して、密度
6.85g/cm3になるように加圧し、成形体を作成した。次
に、該成形体をRXガス(endothermic gas)雰囲気下、
温度1130℃で20分間焼結した。
Example 3 Water atomized iron powder having the composition shown in Table 3 was produced in the same manner as described above. It is the four types of iron powder according to the present invention (No.
8) and three comparative examples (Nos. 29 to 31). To these iron powders, 2% by weight of graphite powder and 15% by weight of copper powder were added, and 1% by weight of zinc stearate was mixed as a lubricant to obtain a density.
Pressure was applied to 6.85 g / cm 3 to form a molded body. Next, the molded body is placed under an atmosphere of RX gas (endothermic gas).
It was sintered at a temperature of 1130 ° C. for 20 minutes.

焼結体の残留黒鉛量、前記したオージェ分光分析法に
よるFeとBとのスペクトル強度比も表3に示す。また、
各焼結体で内径10mmφ×外径20mmφ×高さ8mmの円筒状
試験体を製作し、その円筒内に直径10mmφのS45C製シャ
フトを、孔壁とのクリアランス20μmで挿入した。そし
て、乾燥条件下、該シャフトを周速100m/minで回転させ
て、低荷重から段階的に接触荷重を増加させる方法で耐
摩耗性試験を行った。つまり、該シャフトと円筒内壁と
が焼付いた時の接触荷重を、焼結耐の耐摩耗性指標とし
たのである。
Table 3 also shows the residual graphite content of the sintered body and the spectral intensity ratio between Fe and B by the Auger spectroscopy described above. Also,
A cylindrical test specimen having an inner diameter of 10 mmφ, an outer diameter of 20 mmφ, and a height of 8 mm was manufactured from each sintered body, and an S45C shaft having a diameter of 10 mmφ was inserted into the cylinder with a clearance of 20 μm from the hole wall. Then, the abrasion resistance test was carried out by rotating the shaft at a peripheral speed of 100 m / min under a drying condition and gradually increasing the contact load from a low load. That is, the contact load when the shaft and the inner wall of the cylinder are seized is used as an index of wear resistance of sintering resistance.

本発明に係る鉄粉No.25〜28は、荷重4kgf/cm2以上の
耐摩耗性を有していた。この様に焼結体中の黒鉛量が1
重量%以上となると、耐磨耗性が格段に向上する。一
方、比較例とした鉄粉のNo.29はBの偏析が少なく、ま
た、No.30はBを含有せず、No.31はBを過剰に含有して
いたので、それらを用いて製造した焼結体の耐摩耗性
は、本発明に係る鉄粉に比較して劣っていた。
The iron powder Nos. 25 to 28 according to the present invention had a wear resistance of 4 kgf / cm 2 or more. Thus, the amount of graphite in the sintered body is 1
When it is at least% by weight, the wear resistance is remarkably improved. On the other hand, No. 29 of the iron powder used as a comparative example had little segregation of B, and No. 30 did not contain B, and No. 31 contained excessive B, so it was manufactured using them. The wear resistance of the obtained sintered body was inferior to the iron powder according to the present invention.

産業上の利用可能性 本発明に係る粉末冶金用鉄粉及び鉄基混合粉は、圧密成
形体にして焼結すると、該焼結体の切削性及び耐摩耗性
が、従来の鉄粉や混合粉より良くなる。従って、これら
粉末を用い、粉末冶金法で機械部品を製造すれば、該機
械部品の寸法精度が高まり、その寿命も延びるので、本
発明は、産業上、非常に有用なものである。
INDUSTRIAL APPLICABILITY The iron powder for powder metallurgy and the iron-based mixed powder according to the present invention are sintered into a compact, and when sintered, the machinability and wear resistance of the sintered body are reduced by the conventional iron powder and mixed powder. Better than powder. Accordingly, if mechanical parts are manufactured by powder metallurgy using these powders, the dimensional accuracy of the mechanical parts is increased, and the life of the mechanical parts is prolonged. Therefore, the present invention is very useful industrially.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 楊 積彬 新潟県新潟市小金町3−10 三菱マテリ アル株式会社 新潟製作所内 (56)参考文献 特開 平8−176604(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00,9/08 C22C 33/02 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yang Sekiaki 3-10 Koganecho, Niigata City, Niigata Prefecture Mitsubishi Materials Corporation Niigata Works (56) References JP-A-8-176604 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) B22F 1 / 00,9 / 08 C22C 33/02 C22C 38/00-38/60

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】B:0.03超え〜0.3重量%、Cr:0.07重量%以
下、Mn:0.3重量%未満、を含み、残部がFeと不可避的不
純物からなり、かつ鉄粉表面をオージェ電子分光分析法
で測定して得た発光スペクトルのFeのPeak−to−Peak値
に対するBのPeak−to−Peak値の比が、0.05以上である
ことを特徴とする粉末冶金用鉄粉。
1. The composition contains B: more than 0.03 to 0.3% by weight, Cr: 0.07% by weight or less, Mn: less than 0.3% by weight, the balance being Fe and unavoidable impurities, and Auger electron spectroscopy of the iron powder surface. An iron powder for powder metallurgy, wherein a ratio of a Peak-to-Peak value of B to a Peak-to-Peak value of Fe in an emission spectrum obtained by a method is 0.05 or more.
【請求項2】さらに、S、SeおよびTeから選ばれた1種
以上を、合計で0.001重量%〜0.2重量%未満含有するこ
とを特徴とする請求項1記載の粉末冶金用鉄粉。
2. The iron powder for powder metallurgy according to claim 1, further comprising one or more selected from S, Se and Te in a total amount of 0.001% by weight to less than 0.2% by weight.
【請求項3】さらに、重量比で、Mo:0.05〜3.5重量%を
含むことを特徴とする請求項1または2記載の粉末冶金
用鉄粉。
3. The iron powder for powder metallurgy according to claim 1, further comprising Mo: 0.05 to 3.5% by weight in a weight ratio.
【請求項4】請求項1または2記載の鉄粉に、MoO3粉を
0.05〜0.7重量%及び/又はWO3粉を0.05〜0.7重量%混
合したことを特徴とする粉末冶金用鉄基混合粉。
4. The iron powder according to claim 1 or 2, wherein MoO 3 powder is added to the iron powder.
0.05 to 0.7 wt% and / or WO 3 powder for powder metallurgy iron-based mixed powder, characterized in that the mixing 0.05-0.7% by weight.
【請求項5】さらに、酸素(O)が100ppm以下の溶鋼を
水でアトマイズしてなることを特徴とする請求項1〜4
のいずれかに記載の粉末冶金用鉄基混合粉。
5. The method according to claim 1, wherein the molten steel having oxygen (O) of 100 ppm or less is atomized with water.
The iron-based mixed powder for powder metallurgy according to any one of the above.
【請求項6】粉末冶金用鉄粉を製造する方法において、
b:0.03超え〜0.3重量%、Cr:0.07重量%以下、Mn:0.3重
量%未満、酸素:100ppm以下、を含み、残部がFeおよび
不可避的不純物とした溶鋼を用い、該溶鋼を水アトマイ
ズして粉末とし、その粉末に脱水乾燥及び還元を順次施
すことを特徴とする粉末冶金用鉄粉の製造方法。
6. A method for producing iron powder for powder metallurgy,
b: Over 0.03% to 0.3% by weight, Cr: 0.07% by weight or less, Mn: less than 0.3% by weight, oxygen: 100 ppm or less, with the balance being Fe and unavoidable impurities using molten steel, and water atomizing the molten steel. A method for producing an iron powder for powder metallurgy, wherein the powder is subjected to dehydration drying and reduction sequentially.
【請求項7】さらに、上記溶鋼の組成に、S、Seおよび
Teから選ばれた1種以上を合計で0.001重量%〜0.20重
量%未満を含せることを特徴とする請求項6記載の粉末
冶金用鉄粉の製造方法。
7. The composition of the molten steel further comprises S, Se and
The method for producing iron powder for powder metallurgy according to claim 6, wherein one or more kinds selected from Te are contained in a total of 0.001% by weight to less than 0.20% by weight.
【請求項8】さらに、上記溶鋼の組成に、Moを0.05〜3.
5重量%含有させることを特徴とする請求項6又は7記
載の粉末冶金用鉄粉の製造方法。
8. The composition of the molten steel according to claim 8, further comprising 0.05 to 3.
The method for producing iron powder for powder metallurgy according to claim 6, wherein the iron powder is contained in an amount of 5% by weight.
JP51569097A 1995-10-18 1996-10-17 Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy Expired - Fee Related JP3353836B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-270275 1995-10-18
JP27027595 1995-10-18
PCT/JP1996/003007 WO1997014523A1 (en) 1995-10-18 1996-10-17 Iron powder for powder metallurgy, process for producing the same, and iron-base powder mixture for powder metallurgy

Publications (1)

Publication Number Publication Date
JP3353836B2 true JP3353836B2 (en) 2002-12-03

Family

ID=17483989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51569097A Expired - Fee Related JP3353836B2 (en) 1995-10-18 1996-10-17 Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy

Country Status (3)

Country Link
EP (1) EP0808681A4 (en)
JP (1) JP3353836B2 (en)
WO (1) WO1997014523A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011009786A (en) 2009-03-20 2012-02-22 Hoeganaes Aktiebolag Publ Iron vanadium powder alloy.
KR101026236B1 (en) * 2009-12-09 2011-03-31 한국원자력연구원 A reactor coolant leakage detection system and the method for the same by using the laser induced plasma spectra

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346089A1 (en) * 1983-12-21 1985-07-18 Dr. Weusthoff GmbH, 4000 Düsseldorf METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS
JPS61253301A (en) * 1985-04-30 1986-11-11 Daido Steel Co Ltd Alloy steel powder for powder metallurgy and it's production
US4849164A (en) * 1988-02-29 1989-07-18 General Motors Corporation Method of producing iron powder article
JPH03247743A (en) * 1990-02-26 1991-11-05 Kawasaki Steel Corp Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture
JPH07233402A (en) * 1993-12-28 1995-09-05 Kawasaki Steel Corp Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
JPH0892708A (en) * 1994-07-28 1996-04-09 Kawasaki Steel Corp Mixed iron powder for powder metallurgy and production of sintered steel excellent in cuttability

Also Published As

Publication number Publication date
WO1997014523A1 (en) 1997-04-24
EP0808681A4 (en) 1999-12-29
EP0808681A1 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JP3862392B2 (en) Iron-based mixed powder for powder metallurgy
SE513498C2 (en) Atomized steel powder and sintered steel with good machinability made thereof
WO2009040369A1 (en) Metallurgical powder composition and method of production
JP2013519792A (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
JP2003253372A (en) Method for manufacturing high density iron-based forged parts
JP4272706B2 (en) Material for powder metallurgical manufacture of valve seat rings or valve guide members with high wear resistance
JP3177482B2 (en) Low alloy steel powder for sinter hardening
US20100206129A1 (en) Metallurgical powder composition and method of production
JP3353836B2 (en) Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy
JP3294980B2 (en) Alloy steel powder for high-strength sintered materials with excellent machinability
JP3517505B2 (en) Raw material powder for sintered wear resistant material
US6296682B1 (en) Iron-based powder blend for use in powder metallurgy
JPH07233401A (en) Atomized steel powder excellent in machinability and dimensional precision and sintered steel
JPH1180803A (en) Ferrous mixed powder for powder metallurgy
US5599377A (en) Mixed iron powder for powder metallurgy
JPH1150103A (en) Production of iron powder for powder metallurgy
JP3443911B2 (en) Atomized iron powder for powder metallurgy
JPH09111303A (en) Iron powder and iron-base powdery mixture giving sintered compact excellent in machinability and wear resistance
JPH11279676A (en) Manufacture of iron-base powder mixture for powder metallurgy and high strength sintered compact
JPH10280083A (en) Iron-base powder mixture for powder metallurgy use
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
EP1742753B1 (en) Alloyed, non-oxidising metal powder
JPH07278725A (en) Production of sintered steel having excellent machinability
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
JP3491094B2 (en) Manufacturing method of sintered steel with excellent machinability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees