JPS61130401A - Alloy steel powder for powder metallurgy and its production - Google Patents

Alloy steel powder for powder metallurgy and its production

Info

Publication number
JPS61130401A
JPS61130401A JP59251333A JP25133384A JPS61130401A JP S61130401 A JPS61130401 A JP S61130401A JP 59251333 A JP59251333 A JP 59251333A JP 25133384 A JP25133384 A JP 25133384A JP S61130401 A JPS61130401 A JP S61130401A
Authority
JP
Japan
Prior art keywords
powder
steel powder
alloy
steel
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59251333A
Other languages
Japanese (ja)
Other versions
JPH0237401B2 (en
Inventor
Kuniaki Ogura
邦明 小倉
Yukio Makiishi
槙石 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59251333A priority Critical patent/JPS61130401A/en
Publication of JPS61130401A publication Critical patent/JPS61130401A/en
Publication of JPH0237401B2 publication Critical patent/JPH0237401B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain alloy steel powder for powder metallurgy having excellent compressibility by diffusing and sticking a powder alloy consisting of plural components to the surface of iron or steel powder and specifying the concn. of the respective alloys diffused and stuck to the iron or steel powder having a prescribed grain size. CONSTITUTION:Ni and Mo which are the alloy components to suppress and control the reaction of steel powder and C are dispersed in the form of fine metallic powder or the compd. thereof into a liquid (methyl alcohol, etc.) which does not dissolve such components. The liquid and the iron or steel powder are thoroughly mixed to stick the alloy components to the surface of the iron or steel powder than the powder is dried. The iron or steel powder is then treated in a reducing atmosphere to diffuse the Ni and Mo to the surface thereof. The concn. of the Ni and Mo diffused and stuck to the iron or steel powder having <=44mu grain size is maintained within the concn. range of 0.8-1.9 times the concn. of the Ni and Mo diffused and stuck to the entire iron or steel powder. The upper limit of the Ni is specified to 10.0wt% and the upper limit of the Mo to 0.1-0.4wt%. High toughness is obtd. if the sintered body for which such iron powder is used is subjected to a carburization treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は各種焼結部分の製造に使用される粉末冶金用
合金鋼粉およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy steel powder for powder metallurgy used in the production of various sintered parts and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来から純鉄粉を主原料とした焼結部品が知られている
が、この種の焼結部分は強度レベルが低く、その用途が
限られる欠点があった。そこで最近では上記欠点を補う
ために、純鉄粉に代えて合金鋼粉を使用する技術が開発
されている。
Sintered parts using pure iron powder as the main raw material have been known for some time, but this type of sintered part has a low strength level, which limits its uses. Therefore, recently, in order to compensate for the above-mentioned drawbacks, a technique has been developed in which alloy steel powder is used instead of pure iron powder.

しかしながら、純鉄粉中に合金成分を過度に固溶させた
場合、鋼粉の圧縮性を損なうことが多く、その場合高い
焼結密度が得られなくなり、結果的に強度向上が望めな
くなる問題がある。
However, when an excessive amount of alloy components are dissolved in pure iron powder, the compressibility of the steel powder is often impaired, and in that case, it becomes impossible to obtain high sintered density, resulting in the problem that no improvement in strength can be expected. be.

一方、純鉄粉に合金成分を混合して、焼結時に合金成分
を反応固溶させる方法も従来から広く採用されている。
On the other hand, a method of mixing alloy components with pure iron powder and causing the alloy components to react and form a solid solution during sintering has also been widely adopted.

しかしながらこの方法では圧縮性はある程度確保される
ものの、成形性が低下したり、成形時の粉末偏析により
組織の不均一が生じたり、さらには焼結時の固溶拡散不
良により組織の不均一が生じたりする問題がある。
However, although this method secures compressibility to a certain extent, formability may deteriorate, the structure may become non-uniform due to powder segregation during compaction, and furthermore, the structure may become non-uniform due to poor solid solution diffusion during sintering. There are some problems that may occur.

そこで例えば特公昭45−9649号において提案され
ているように純鉄粉に合金成分粉末を拡散付着すること
によって上述の問題を克服することが考えられる。上記
提案において純鉄粉に合金成分粉末を拡散させるための
具体的方法としては、鉄粉中への拡散性の低い合金成分
、例えばMoについてMo酸化物を純鉄粉と混合して還
元雰囲気中で加熱することによりMo酸化物を蒸発、還
元し純鉄粉表面に微細なMoとして析出付着させる方法
が開示されている。この方法ではMo添加の工程が複雑
となり、またMoの添加歩留りが低下する可能性があり
、さらにMoとは異なり、その酸化物が比較的低温で蒸
発しない合金成分については適用することが困難である
等の問題がある。
Therefore, it is conceivable to overcome the above-mentioned problem by diffusing and adhering alloy component powder to pure iron powder, as proposed in, for example, Japanese Patent Publication No. 45-9649. In the above proposal, a specific method for diffusing alloy component powder into pure iron powder is to mix Mo oxide with pure iron powder for an alloy component with low diffusibility into iron powder, such as Mo, in a reducing atmosphere. A method is disclosed in which the Mo oxide is evaporated and reduced by heating at a temperature of 100 nm to deposit and deposit fine Mo on the surface of the pure iron powder. This method complicates the Mo addition process and may reduce the Mo addition yield. Furthermore, unlike Mo, it is difficult to apply this method to alloy components whose oxides do not evaporate at relatively low temperatures. There are some problems.

また上記提案にはMo等の合金成分の可溶性塩類の溶液
に純鉄粉を浸し、乾燥および加熱して純鉄粉表面に微細
にMo等の合金成分を析出させるとともにその合金成分
を鉄粉中へ拡散させる方法も開示されているが、この場
合乾燥工程や廃液の処理を要するため工程が複雑となり
、製造コストが高くなる等の問題がある。
In addition, in the above proposal, pure iron powder is soaked in a solution of soluble salts of alloy components such as Mo, dried and heated to precipitate fine alloy components such as Mo on the surface of the pure iron powder, and the alloy components are dissolved in the iron powder. A method of diffusing the liquid into a liquid is also disclosed, but in this case, a drying process and treatment of waste liquid are required, which complicates the process and increases manufacturing costs.

また特願昭58−088498号には、このような事情
に鑑みて、銅粉焼結時に銅粉中への拡散性が劣る合金成
分、例えばMoを圧縮性に悪影響を与えない組成範囲内
で予合金化してなるアトマイズ合金鋼粉表面に残りの合
金成分を粉末の形で拡散付着してなる合金鋼粉およびそ
の製造方法が開示された。その方法によればCとの親和
力の比較的大きいMoが予合金化されているため、従来
の混粉方法に比べて銅粉自体Cとの反応性に優れ、焼結
体組織の均一性が優れるため、焼結体の引張り強さで従
来の混粉方式に比べて約5kg/mm″も高い値が得ら
れている。
In addition, in view of this situation, Japanese Patent Application No. 58-088498 states that during copper powder sintering, alloy components that have poor diffusivity into copper powder, such as Mo, are contained within a composition range that does not adversely affect compressibility. An alloy steel powder is disclosed in which the remaining alloy components are diffused and adhered in the form of powder to the surface of an atomized alloy steel powder that has been prealloyed, and a method for producing the same. According to this method, since Mo, which has a relatively high affinity with C, is prealloyed, the copper powder itself has excellent reactivity with C compared to the conventional mixed powder method, and the uniformity of the sintered body structure is improved. As a result, the tensile strength of the sintered body is approximately 5 kg/mm'' higher than that of the conventional mixed powder method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記鋼粉は上述のようにすぐれた特性を有しているが、
一方、その銅粉を用い高強度焼結材を得る目的でその焼
結体に浸炭処理を施した場合には、その鋼粉が前述の様
にCとの反応性に優れるため、焼結体を構成する鋼粉粒
子自体および鋼粉の粒子と粒子との焼結ネック部におい
て過剰浸炭となり衝撃じん性が劣る問題点を有していた
The above steel powder has excellent properties as mentioned above, but
On the other hand, when the sintered body is carburized using the copper powder for the purpose of obtaining a high-strength sintered material, the sintered body is The steel powder particles themselves and the sintered neck portions of the steel powder particles are excessively carburized, resulting in poor impact toughness.

本発明は以上の事情に鑑みてなされたもので、高強度焼
結材が得られるように高い圧縮性を有し、かつその焼結
体に浸炭処理を施した時にも、高強度と高い衝撃じん性
が得られる粉末冶金用合金鋼粉およびその製造方法を提
供することを目的とするものである。
The present invention was made in view of the above circumstances, and it has high compressibility so as to obtain a high strength sintered material, and even when the sintered body is carburized, it has high strength and high impact. The object of the present invention is to provide an alloy steel powder for powder metallurgy that has good toughness and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明の粉末冶金用合金鋼粉は、焼結体の浸炭
処理時にCと銅粉との反応を抑制制御する合金成分、例
えばNi、MoやC「を微細な形で、予合金量が少なく
圧縮性に潰れる鉄鋼粉表面に拡散付着させたことを特徴
とするものである。
In other words, the alloy steel powder for powder metallurgy of the present invention contains alloy components such as Ni, Mo, and C in a fine form in a pre-alloyed amount in a small amount to suppress and control the reaction between C and copper powder during carburizing treatment of a sintered body. It is characterized by being diffused and adhered to the surface of the steel powder, which is less compressible and crushed.

また本発明の粉末冶金用合金鋼粉は、上記合金鋼粉に例
えばCuやPなどの第2の合金成分粉末を鉄鋼粉表面に
任意の付着状態で拡散付着するかまたは粉末状で混合添
加したことを特徴としている。
Further, the alloyed steel powder for powder metallurgy of the present invention is obtained by diffusing and adhering a second alloying component powder such as Cu or P to the surface of the steel powder in an arbitrary adhesion state or mixing and adding it in powder form to the above-mentioned alloyed steel powder. It is characterized by

本発明において、拡散付着させるとは、合金成分を鉄鋼
粉に完全には固溶させず、合金成分粉末中からその合金
成分の一部が鉄鋼粉中に拡散して、他部の合金成分粉末
が鉄鋼粉に結合付着した状態にすることを意味する。
In the present invention, "diffusion adhesion" means that the alloy components are not completely dissolved in the steel powder, but some of the alloy components from the alloy component powder are diffused into the steel powder, and other parts of the alloy component powder are dispersed. This means that the steel powder is bonded and adhered to the steel powder.

また本発明の粉末冶金用合金鋼粉は、微細な粉末の形で
鉄鋼粉表面に拡散付着させる合金成分として上限を10
.0重量%とするNiおよび0.1〜0.4重量%のM
oを用いたものである。
In addition, the alloy steel powder for powder metallurgy of the present invention has an upper limit of 10
.. 0% by weight of Ni and 0.1-0.4% by weight of M
This uses o.

また粉末の形で鉄鋼粉表面に付着状態を制限されること
なく拡散付着もしくは混粉させる第2の合金成分には上
限を3.5重量%とするCuを用いたものである。
Further, as the second alloy component, which is diffused or mixed onto the surface of the steel powder in the form of a powder without being restricted in its adhesion state, Cu is used with an upper limit of 3.5% by weight.

本発明の粉末冶金用合金鋼粉の製造方法は、先ず、本合
金鋼粉焼結体を浸炭する時に鋼粉とCとの反応を抑制制
御する合金成分のNiおよびMo、 を微細な金属粉末
またはそれらの化合物の形で、それらに対し非可溶な液
中に分散させる。
The method for producing alloyed steel powder for powder metallurgy of the present invention involves first adding Ni and Mo, which are alloying ingredients that suppress and control the reaction between the steel powder and C, to fine metal powder when carburizing the present alloyed steel powder sintered body. or disperse them in the form of their compounds in a liquid in which they are insoluble.

この液体と鉄鋼粉とを十分に混合して鉄鋼粉表面に合金
成分を付着させた後、必要に応じて乾燥工程を経て、水
素ガス雰囲気等の還元性雰囲気にて鉄鋼粉表面にNi、
Moを拡散付着させる。さらに必要に応じて、浸炭時に
Cとの反応抑制制御する働きがNiやMoに比べて少な
いCuを、金属粉末や化合物の形で、鉄鋼粉表面に拡散
分前もしくは混粉して加える。
After sufficiently mixing this liquid and the steel powder to deposit alloy components on the surface of the steel powder, a drying process is performed as necessary, and Ni, Ni,
Mo is diffused and attached. Furthermore, if necessary, Cu is added to the surface of the steel powder in the form of a metal powder or compound, either before being diffused or as a mixed powder, in the form of a metal powder or a compound, which has a lower function of suppressing and controlling the reaction with C during carburizing than Ni or Mo.

〔作用〕[Effect]

本発明鋼粉を用いた焼結体は浸炭する時に銅粉とCとの
反応性が抑制制御される。これはCと負の親和力を有し
かつCuに比べて焼結時にも鉄鋼粉中への拡散合金化の
遅いNiを鉄鋼粉表面に微細に付着させることにより、
浸炭時に鋼粉粒子間の焼結ネック部および鉄鋼粉粒子内
へのCの拡散を抑制する。またCと正の親和力を有し、
焼結時に鉄鋼粉中への拡散合金化がCuに比べて遅いM
oを鉄鋼粉表面に微細に拡散付着させることにより、浸
炭時に鉄鋼粉粒子内へのCの拡r&を抑制する。この作
用により焼結ネック部や鋼粉粒子内部のC濃度上昇によ
る脆化を防止し、浸炭処理材のしん性を向上する。
When the sintered body using the steel powder of the present invention is carburized, the reactivity between the copper powder and C is suppressed and controlled. This is achieved by finely adhering Ni to the surface of the steel powder, which has a negative affinity with C and which diffuses into the steel powder at a slower rate than Cu during sintering.
Suppresses the diffusion of C into the sintering neck between steel powder particles and into the steel powder particles during carburizing. It also has a positive affinity with C,
Diffusion alloying into steel powder during sintering is slower than Cu.
By finely diffusing and adhering C to the surface of the steel powder, the spread of C into the steel powder particles during carburizing is suppressed. This action prevents embrittlement due to increased C concentration in the sintered neck portion and inside the steel powder particles, and improves the toughness of the carburized material.

〔発明の具体的構成〕[Specific structure of the invention]

NiおよびMoにこの作用を充分に行なわせるためには
、NiおよびMoが鉄鋼粉粒子表面に付着され、焼結ネ
ックや鉄鋼粉粒子内へのCの拡散を抑制制御する必要が
あることは先に述べた通りである。#にその均一付着性
は鉄鋼粉粒子径44gm以下の微粒粉に対する拡散付着
濃度が鉄鋼粉全体に対する各合金成分の拡散付着濃度の
各々0.9倍から1.9倍の範囲の濃度で鉄鋼粉表面に
拡散付着する必要がある。付着が不充分で微細なNiや
Moが鉄鋼粉粒子表面から脱落して、44g、m以下の
鉄鋼粉に対するNiやMoの濃度が合金鋼粉全体の各合
金成分の濃度の1.9倍を越える場合にはNiやMoの
脱落した鉄鋼粉表面よりCが鉄鋼粉粒子内へ拡散して、
浸炭処理材のしん性を儂下させるため好ましくない。
In order for Ni and Mo to fully perform this action, it is first necessary to attach Ni and Mo to the surface of the steel powder particles and to suppress and control the diffusion of C into the sintering neck and into the steel powder particles. As stated above. The uniform adhesion to steel powder is such that the concentration of diffusion and adhesion to fine powder with a particle size of 44 gm or less is within the range of 0.9 to 1.9 times the concentration of diffusion and adhesion of each alloy component to the entire steel powder. It is necessary to diffusely adhere to the surface. Due to insufficient adhesion, fine Ni and Mo fall off from the surface of the steel powder particles, and the concentration of Ni and Mo for steel powder of 44 g, m or less is 1.9 times the concentration of each alloy component in the entire alloy steel powder. If it exceeds the carbon content, C diffuses into the steel powder particles from the surface of the steel powder where Ni and Mo have fallen off.
This is not preferable because it lowers the tenacity of the carburized material.

一方444m以下の鉄鋼粉に対する合金成分の拡散付着
濃度が0.9倍以下では表面がNtやM。
On the other hand, if the concentration of diffusion and adhesion of alloy components is 0.9 times or less than the steel powder of 444 m or less, the surface becomes Nt or M.

で充分に被覆されていない微粒鉄鋼粉が多くなり、この
微粒鉄鋼粉中にCが拡散し、やはり浸炭処理材のじん性
を低下させるため好ましくない。
This is not preferable because the amount of fine iron and steel powder that is not sufficiently covered with carbon increases, and carbon diffuses into the fine iron and steel powder, which also reduces the toughness of the carburized material.

またMoは先に述べたように鉄鋼粉表面に存在した場合
それ自体で鋼粉のCとの反応を抑制制御する働きを有す
るが、さらに銅粉製造および焼結体製造時に鉄鋼粉表面
でNtとの親和力によりNiの鉄鋼粉中への拡散を抑制
し、Niの有する鋼粉とCとの反応抑制制御効果を高め
るためNiとMoは同時に鉄鋼粉表面に付着させる必要
がある。
In addition, as mentioned earlier, when Mo exists on the surface of steel powder, it has the function of suppressing and controlling the reaction of steel powder with C, but in addition, Mo has the function of suppressing and controlling the reaction with C of steel powder when it exists on the surface of steel powder. Ni and Mo need to be attached to the surface of the steel powder at the same time in order to suppress the diffusion of Ni into the steel powder due to their affinity with the iron and steel powder, and to enhance the effect of Ni on suppressing the reaction between the steel powder and C.

次いでNiやMoの微細金属粉末やそれらの化合物を分
散させる非可溶性液とは、これらの微粒子と反応せずか
つ粒子や鉄鋼粉との濡れ性がよく1通常の乾燥方法で蒸
発除去が可能なものであれば特には限定されず1例えば
メチルアルコール、エチルアルコール等のアルコール類
やそれらの水溶液等が挙げられる。
Next, the insoluble liquid in which fine metal powders such as Ni and Mo and their compounds are dispersed is a liquid that does not react with these fine particles and has good wettability with the particles and steel powder (1) and can be removed by evaporation using normal drying methods. It is not particularly limited as long as it can be used, and examples thereof include alcohols such as methyl alcohol and ethyl alcohol, and aqueous solutions thereof.

合金成分を粉末の形で鉄鋼粉表面に微細に拡散付着させ
るためには、微細な合金成分粉末、例えばNiI#化物
、Mo酸化物を前述の非可溶性液に分散させたものと鉄
鋼粉とを混合し、必要に応じて乾燥後、水素ガス雰囲気
等の還元性雰囲気にて700〜1000℃に加熱すれば
よい、そうすれば還元されたNiやMoが鉄鋼粉との接
触面において鉄鋼粉中に一部拡散し、NiやMoが鉄鋼
粉と拡散付着した状態となる。このようにして拡散付着
処理を行った状態では、通常は粉末全体が固まった状態
となっているから、所要の粒度に解砕し、必要に応じて
さらに焼鈍を施す。
In order to finely diffuse and adhere the alloy components in the form of powder to the surface of the steel powder, a fine alloy component powder, such as NiI# compound or Mo oxide, dispersed in the above-mentioned insoluble liquid and the steel powder are mixed. After mixing and drying if necessary, it may be heated to 700 to 1000°C in a reducing atmosphere such as a hydrogen gas atmosphere. Then, the reduced Ni and Mo will be absorbed into the steel powder at the contact surface with the steel powder. Ni and Mo are diffused and adhered to the steel powder. When the diffusion adhesion treatment is performed in this manner, the entire powder is usually in a solidified state, so it is crushed to the required particle size and further annealed as necessary.

また鋼粉の特性をより高めるためにはCu粉を拡散付着
させるか混粉にて加える。
Further, in order to further enhance the characteristics of the steel powder, Cu powder is added by diffusion or as a mixed powder.

本発明の合金鋼粉は粒度別の合金成分濃度を全体の合金
成分濃度と比較することにより、従来の鋼粉と明確に区
別することができる。
The alloy steel powder of the present invention can be clearly distinguished from conventional steel powder by comparing the alloy component concentration for each grain size with the overall alloy component concentration.

浸炭時に鋼粉とCとの反応を抑制制御する働きのあるN
iやMoを鋼粉粒子表面に拡散付着させることにより、
本発明の合金鋼粉を用いた焼結体の浸炭処理材のしん性
が向上することは先に述べた通りである。また合金成分
の付着が強固で均一であることにより合金成分の巨視的
な偏析が少なくなり焼結体組織の一様性が向上し、焼結
体特性のバラツキが減少する。さらに付着が強固なため
鋼粉製造過程における合金成分の脱落が少なく。
N acts to suppress and control the reaction between steel powder and C during carburizing.
By diffusing and adhering i and Mo to the surface of steel powder particles,
As mentioned above, the toughness of the carburized sintered material using the alloy steel powder of the present invention is improved. Furthermore, since the adhesion of the alloy components is strong and uniform, macroscopic segregation of the alloy components is reduced, the uniformity of the sintered body structure is improved, and variations in the properties of the sintered body are reduced. Furthermore, because the adhesion is strong, there is less chance of alloy components falling off during the steel powder manufacturing process.

合金成分の歩留りが向上する。加えて、湿式混合の分散
媒に非可溶性液を用いることにより通常の水アトマイズ
生粉乾燥設備を使用することができ、かつ廃液を生じな
いため廃液処理工程が不要であり、可溶性溶液を用いた
場合に比べて合金成分添加工程が簡略になり、合金成分
添加コストが低廉となる。さらに本発明によれば、非可
溶性液に分散可能な微粒の金属粉末もしくは化合物粉末
の得られる元素は、すべて合金成分として用いることが
可能である。
The yield of alloy components is improved. In addition, by using an insoluble liquid as the dispersion medium for wet mixing, it is possible to use ordinary water atomized raw powder drying equipment, and since no waste liquid is generated, there is no need for a waste liquid treatment process. Compared to the case, the process of adding alloying components becomes simpler and the cost of adding alloying components becomes cheaper. Furthermore, according to the present invention, all elements from which fine particles of metal powder or compound powder that can be dispersed in an insoluble liquid can be used as alloy components.

合金成分にNi、MoおよびCuを選んだのは以下の理
由による。
The reason why Ni, Mo, and Cu were selected as alloy components is as follows.

Niは鉄鋼粉のCとの反応を抑制制御する。Ni suppresses and controls the reaction of steel powder with C.

Niは鉄鋼粉中への拡散性が劣るため先に述べた様に鉄
鋼粉とCとの反応を抑制し、またMo と同時に用いる
ことによりその拡散性が一層おそくきCの反応抑制効果
を高める。鉄鋼粉中へ拡散したNiはじん性、焼入れ性
を改善し、特に焼結ネック部では上述の浸炭抑制効果と
あわせてじん性を改善する。
Since Ni has poor diffusibility into steel powder, it suppresses the reaction between steel powder and C, as mentioned above, and when used simultaneously with Mo, its diffusivity becomes even slower, increasing the reaction suppression effect of C. . Ni diffused into the steel powder improves toughness and hardenability, and particularly in the sintered neck, it improves toughness along with the above-mentioned carburization suppressing effect.

Moは鉄鋼粉中への拡散性が低くまたCとの親和力が強
いため鉄鋼粉表面にあって鉄鋼粉中へのCの拡散を防ぐ
とともにNiとも親和力が強いためNiの鉄鋼粉中への
拡散を防ぎ、浸炭材のしん性を改善する。また鋼粉中へ
固溶したMoは銅粉の焼入れ性を高めまた硬さを向上さ
せることは通常の鋼材の場合と同様である。
Mo has a low diffusivity into steel powder and has a strong affinity with C, so it is present on the surface of the steel powder and prevents C from diffusing into the steel powder.Mo also has a strong affinity with Ni, so it prevents Ni from diffusing into the steel powder. and improves the toughness of carburized materials. Further, Mo dissolved in steel powder improves the hardenability and hardness of copper powder, as in the case of ordinary steel materials.

Cuは焼結時に一時的に液相を出すことにより焼結体の
強度、じん性を高め、固溶することにより硬さを向上さ
せる。
Cu increases the strength and toughness of the sintered body by temporarily producing a liquid phase during sintering, and improves the hardness by forming a solid solution.

次にNiおよびMoを鉄鋼粉表面に均一付着させ、Cu
を均一付着を要しない合金成分としたのは以下の理由に
よる。すなわち、先に述べたようにCとの反応を抑制制
御する合金成分であるNiおよびMoはその目的を達成
するために鉄鋼粉表面に拡散付着させる必要があるa 
N lおよびM。
Next, Ni and Mo are uniformly adhered to the surface of the steel powder, and Cu
The reason why is selected as an alloy component that does not require uniform adhesion is as follows. That is, as mentioned earlier, Ni and Mo, which are alloy components that suppress and control the reaction with C, need to be diffused and attached to the surface of the steel powder in order to achieve that purpose.
Nl and M.

は鉄鋼粉中への拡散が遅く、特にNiとMoが同時に用
いられた場合は一層遅くなるため、銅粉製造時の鉄鋼粉
中への固溶が少なく合金鋼粉の圧縮性を低下させにくい
Diffusion into steel powder is slow, especially when Ni and Mo are used at the same time, which makes it even slower, so it is less likely to be solid dissolved in steel powder during the production of copper powder, making it difficult to reduce the compressibility of alloyed steel powder. .

またCuもCと鉄鋼粉との反応を抑制する働きを持つ、
しかしCuは焼結時に鉄鋼粉中への拡散がNiやMoに
比べて大、g<、(との反応を抑制する力はNiやMo
より劣る。従って均一付着するよりもむしろ銅粉製造時
に鉄鋼粉中への拡散による鋼粉の圧縮性低下を防ぐため
に鉄鋼粉との接触面積を減らす粗粒粉の拡散付着や、混
粉の方が有利であることによる。
Cu also has the function of suppressing the reaction between C and steel powder.
However, Cu diffuses into the steel powder during sintering to a greater extent than Ni and Mo, and the ability to suppress the reaction with g
Inferior. Therefore, rather than uniform adhesion, it is more advantageous to use coarse powder to reduce the contact area with the steel powder, or to use mixed powder to prevent the compressibility of the steel powder from decreasing due to diffusion into the steel powder during production of copper powder. Depends on something.

次にNiは上限を10.0重量%、Moは0.1〜0.
4重量%、Cuは上限を3.5重量%とするが、これら
の成分範囲の限定理由は以下の通りである。
Next, the upper limit of Ni is 10.0% by weight, and the upper limit of Mo is 0.1-0.
4% by weight, and the upper limit for Cu is 3.5% by weight, but the reason for limiting the range of these components is as follows.

Ni:Niはその添加量を増大させる程前述の効果が増
大するが、添加量が10.0重量%を越えると鉄鋼粉表
面に部分的に拡散合金化したNiによる銅粉表面の硬化
のため圧縮性の低下が大きくなるので上限を10.0重
量%とした。10.0重量%以下ではMoと同時に用い
られることにより鉄鋼粉中へのNiの拡散が抑制される
ため圧縮性の低下が少ない、またN1の効果を発揮させ
るためには0.5重量%以上添加するのが望ましい。
Ni: The aforementioned effect increases as the amount of Ni added increases, but if the amount added exceeds 10.0% by weight, the surface of the copper powder will harden due to the Ni partially diffused and alloyed on the surface of the steel powder. Since the decrease in compressibility becomes large, the upper limit was set at 10.0% by weight. If it is 10.0% by weight or less, when it is used simultaneously with Mo, the diffusion of Ni into the steel powder is suppressed, so there is little decrease in compressibility, and in order to exhibit the effect of N1, it is necessary to use 0.5% by weight or more. It is desirable to add

Mo:Moは0.1重量%以上の添加で前述の添加効果
があり、添加量が0.4%を越えればMoは拡散性が劣
るため鉄鋼粉表面のMo濃度が高くなり、鋼粉表面の硬
化による圧縮性の低下が大きくなるので、下限を0.1
重量%、上限を0.4重量%とした。
Mo: Mo has the above-mentioned effect when added in an amount of 0.1% by weight or more, and if the amount added exceeds 0.4%, Mo concentration on the steel powder surface increases because Mo has poor diffusivity. The lower limit is set to 0.1 because the decrease in compressibility due to hardening of
The upper limit was set to 0.4% by weight.

Cu : Cuは添加量を増大させる程前述の効果が大
きくなるが、鉄鋼粉中への拡散、特に結晶粒界への拡散
性が優れるため、鉄鋼粉表面に前述のNiやMoを付着
させてCuの鉄鋼粉中への拡散を抑制しても、3.5重
量%を越えると部分的に拡散したCuにより銅粉の圧縮
性が低下するので上限を3.5重量%とした。またCu
の効果を発揮させるためにはO,l l量%以上添加す
るのが望ましい。
Cu: The above-mentioned effect of Cu increases as the amount added increases, but since Cu has excellent diffusion into steel powder, especially to grain boundaries, it is better to attach the aforementioned Ni and Mo to the surface of steel powder. Even if the diffusion of Cu into the steel powder is suppressed, if the content exceeds 3.5% by weight, the compressibility of the copper powder will decrease due to partially diffused Cu, so the upper limit was set at 3.5% by weight. Also, Cu
In order to exhibit this effect, it is desirable to add O, 11% or more.

〔実施例〕〔Example〕

次にこの発明について実施例に従ってさらに具体的に説
明する。
Next, this invention will be explained in more detail according to examples.

実施例I Ni酸化物とMo酸化物をメチルアルコールに分散させ
た後鉄粉と混合した後、乾燥を経て水素ガス雰囲気中に
て1ooo°Cで1時間還元焼鈍後解砕した鋼粉Aと、
Ni酸化物とMo酸化物を乾式で鉄粉と混合後水素ガス
雰囲気中にて鋼粉Aと同一の条件で還元焼鈍の後解砕し
た鋼粉Bの粒度別による合金成分濃度を第1表に示した
Example I Ni oxide and Mo oxide were dispersed in methyl alcohol, mixed with iron powder, dried, reductively annealed in a hydrogen gas atmosphere at 100°C for 1 hour, and then crushed into steel powder A. ,
Table 1 shows the alloy component concentration by particle size of steel powder B, which was dry mixed with iron powder and subjected to reduction annealing in a hydrogen gas atmosphere under the same conditions as steel powder A, and then crushed. It was shown to.

鋼粉Aでは鋼粉粒径44川m以下の微粒粉のNi、Mo
5度は合金鋼粉全体の値に比へて各々1.40倍、1.
47倍といずれも0.9倍から1.9倍の範囲内である
が、鋼粉Bでは2.45倍、2.66倍といずれも2倍
以上であり、合金成分の均一付着性において本発明によ
る鋼粉Aの方が従来方法による鋼粉Bより優れているこ
とが明らかである。
In steel powder A, fine powder Ni and Mo with a steel powder particle size of 44 meters or less are used.
5 degrees is 1.40 times the value of the entire alloy steel powder, and 1.
47 times, which is within the range of 0.9 times to 1.9 times, but for steel powder B, it is 2.45 times and 2.66 times, both more than twice, and the uniform adhesion of alloy components is It is clear that the steel powder A according to the invention is superior to the steel powder B produced by the conventional method.

実施例2 実施例1の鋼粉Aと同一の方法で、ただし3水準のNi
と一定量のMoを鉄鋼粉表面に微細に拡散付着させた後
、一定量のCuを混粉し800℃水素雰囲気中で1時間
焼鈍してCuを拡散付着させ、得られた合金鋼粉に1.
0%のステアリング酸亜鉛を添加混合して、7t/cr
n’の成形圧力で成形した。この実施例における銅粉化
学組成および圧粉密度を5112表に示す。
Example 2 Same method as steel powder A of Example 1, but with 3 levels of Ni
After finely diffusing and adhering a certain amount of Mo to the surface of the steel powder, a certain amount of Cu was mixed into the powder and annealed in a hydrogen atmosphere at 800°C for one hour to diffuse and adhere Cu to the obtained alloy steel powder. 1.
7t/cr by adding and mixing 0% zinc steering acid
Molding was performed at a molding pressure of n'. The copper powder chemical composition and green powder density in this example are shown in Table 5112.

第2表よりNi量が4重量%では7L/crn’の成形
圧力で7.15 g / c rn’の高い圧粉密度が
得られたが、Nilが10.0重量%を越えれば鋼粉表
面へのNiの拡散量が増加するため圧粉密度が急激に低
下することが明らかである。
From Table 2, when the Ni content is 4% by weight, a high green density of 7.15 g/crn' was obtained at a compacting pressure of 7L/crn', but if the Ni content exceeds 10.0% by weight, the steel powder It is clear that the density of green powder decreases rapidly because the amount of Ni diffused into the surface increases.

第2表 実施例3 実施例2と同一・の方法で、ただし3水準のM。Table 2 Example 3 Same method as in Example 2, but with 3 levels of M.

と一定量のNiとCuを合金化させて得られた合金鋼粉
に1.0%のステアリン酸亜鉛を添加混合して、7t/
Cm″の成形圧力で成形した。この実施例における鋼粉
化学組成および圧粉密度を第3表に示す。
1.0% zinc stearate was added to alloyed steel powder obtained by alloying a certain amount of Ni and Cu, and 7t/
The steel powder chemical composition and green powder density in this example are shown in Table 3.

第3表 第3表よりMo量0.3fE最%では7t/crn’c
7)成形圧力で7.15g/cmjの高い圧粉密度が得
られたが、Moflが0.4 fi量%を越えれば圧粉
密度が急激に低下することが明らかである。
Table 3 From Table 3, Mo amount 0.3fE maximum% is 7t/crn'c
7) Although a high green density of 7.15 g/cmj was obtained under the molding pressure, it is clear that the green density sharply decreases if Mofl exceeds 0.4 fi%.

実施例4 実施例2と同一の方法で、ただし3水準のCuと一定量
のNiとMoを合金化させて得られた合金鋼粉に1.0
%のステアリン酸亜鉛を添加混合して、7t/cm″の
成形圧力で成形した。この実施例における鋼粉化学組成
および圧粉密度を第4表に示す。
Example 4 An alloyed steel powder obtained by alloying three levels of Cu with a certain amount of Ni and Mo in the same manner as in Example 2, except that 1.0
% of zinc stearate was added and mixed and molded at a molding pressure of 7 t/cm''. Table 4 shows the chemical composition of the steel powder and the density of the green powder in this example.

第4表 馳イ騨鉱(2)■   圧粉密度 鋼   粉 Ni  Mo  Cu (g/crrOC3,940,
341,457,15 H3,940,342,517,16 第4表よりCu量2.5重量%では7t/cm”の成形
圧力で7.15g/crn’の高い圧粉密度が得られた
が、Cu量が3.5重量%を越えると圧粉密度が急激に
低下することが明らかである。
4th surface (2) ■ Powder density steel Powder Ni Mo Cu (g/crrOC3,940,
341,457,15 H3,940,342,517,16 From Table 4, with a Cu content of 2.5% by weight, a high green density of 7.15g/crn' was obtained at a molding pressure of 7t/cm''. It is clear that when the amount of Cu exceeds 3.5% by weight, the green density decreases rapidly.

実施例5 実施例1の鋼粉Aおよび鋼粉AにCuを混粉により加え
た鋼粉Jに0.1%の黒鉛と1.0%のステアリン酸亜
鉛を添加混合して、7 t / c rn’の成形圧力
で衝撃試験片と引張り試験片を成形した。この圧粉体を
アンモニア分解ガス雰囲気中で1200℃×1時間焼結
後、カーボンポテンシャル0.9%のプロパン変成ガス
雰囲気中で2.5時間浸炭後油中に焼入れし、170℃
で焼もどしを行なった。この実施例の銅粉化学組成と圧
粉密度を第5表に、衝撃値と引張り強さを第6表に示す
Example 5 0.1% graphite and 1.0% zinc stearate were added and mixed to the steel powder A of Example 1 and the steel powder J obtained by adding Cu to the steel powder A as a mixed powder. Impact test pieces and tensile test pieces were molded at a molding pressure of cr rn'. This compact was sintered in an ammonia decomposition gas atmosphere at 1200°C for 1 hour, then carburized for 2.5 hours in a propane converted gas atmosphere with a carbon potential of 0.9%, then quenched in oil and heated to 170°C.
Tempering was performed. Table 5 shows the copper powder chemical composition and green density of this example, and Table 6 shows the impact value and tensile strength.

第5表および第6表によれば本発明による銅粉は浸炭処
理により高い衝撃値と引張り強さが得られるが、特にC
uを加えることによりその特性が一層向上されることが
明らかである。
According to Tables 5 and 6, the copper powder according to the present invention can obtain high impact value and tensile strength by carburizing, but especially C
It is clear that the properties are further improved by adding u.

第5表 第6表 1)10mm角X55mmL  切欠無し衝撃試験片2
)JSPM標準引張り試験片 実施例6 実施例2と同一の方法で、ただしNi、Mo。
Table 5 Table 6 1) 10mm square x 55mmL impact test piece 2 without notch
) JSPM standard tensile test piece Example 6 Same method as Example 2, except for Ni and Mo.

Cu添加量は一定であるがNiとMoにおいて混合時間
を変化させた本発明による鋼粉K 、 Lt−調整した
。この鋼粉Kに表面がNiとMoで被覆されていない粒
径447zm以下の微粒の鉄粉を加えて鋼粉Mとした。
Steel powders K and Lt according to the present invention were adjusted in which the amount of Cu added was constant but the mixing time was varied for Ni and Mo. To this steel powder K, fine iron powder whose surface was not coated with Ni and Mo and whose particle size was 447 zm or less was added to obtain steel powder M.

また従来の乾式混合による銅粉をNとした。これらに0
.1%の黒鉛と1.0%のステアリン酸亜鉛を添加混合
して、7t/cm″の成形圧力で衝撃試験片と引張り試
験片に成形し、この圧粉体を実施5と同一の条件で焼結
、浸炭焼入れ後焼きもどした。これらの鋼粉粒度別化学
組成と圧粉密度を第7表に、衝撃値と引優り強さを第8
表に示す。
In addition, N was used as the copper powder obtained by conventional dry mixing. 0 for these
.. 1% graphite and 1.0% zinc stearate were added and mixed and molded into impact test pieces and tensile test pieces at a molding pressure of 7 t/cm'', and this green compact was subjected to the same conditions as in Example 5. After sintering and carburizing and quenching, it was tempered.The chemical composition and green density of these steel powders by particle size are shown in Table 7, and the impact value and tensile strength are shown in Table 8.
Shown in the table.

第8表 1)10mm角X55mmL切欠無し衝撃試験片2)J
SPM標準引張り試験片 第7表および第8表より合金鋼粉粒径44Bm以下の微
粒粉において、NiおよびMoが合金鋼粉全体の各々の
濃度の0.9倍から1.9倍のaiIi囲内で均一に付
着された場合は2.18〜2.21kg・m/cm”、
98kgf/mrn’ 〜105kgf/mrn’と高
い衝撃値および引張り強さが得られたが1合金酸分付着
の比率が0.9倍以下もしくは1.9倍を越えると衝撃
値が急激に低下することが明らかである。
Table 8 1) 10mm square x 55mmL impact test piece without notch 2) J
From Tables 7 and 8 of SPM standard tensile test specimens, it is found that in fine-grained alloy steel powder with a grain size of 44 Bm or less, Ni and Mo are within the aiIi range of 0.9 to 1.9 times the concentration of each of the whole alloy steel powder. 2.18 to 2.21 kg・m/cm" if it is evenly deposited,
A high impact value and tensile strength of 98 kgf/mrn' to 105 kgf/mrn' were obtained, but when the ratio of 1-alloy acid adhesion is less than 0.9 times or exceeds 1.9 times, the impact value decreases rapidly. That is clear.

〔発明の効果〕〔Effect of the invention〕

以上の説明より明らかなように、この発明の粉末冶金用
合金鋼粉は、焼結体の浸炭時におけるCとの反応を抑制
制御する合金成分を、予合金量を減らした鉄鋼粉表面に
微細かつ拡散付着させてなるものであるから、この発明
の合金鋼粉は圧縮性に優れており、特に本銅粉を用いた
焼結体に浸炭処理を施した場合高いしん性が得られる等
の利点を有する。
As is clear from the above explanation, the alloyed steel powder for powder metallurgy of the present invention contains an alloy component that suppresses and controls the reaction with C during carburizing of a sintered body on the surface of the steel powder with a reduced amount of pre-alloy. In addition, since the alloy steel powder of the present invention is made by diffusion and adhesion, it has excellent compressibility, and in particular, when a sintered body using this copper powder is carburized, high toughness can be obtained. has advantages.

Claims (1)

【特許請求の範囲】 1 鉄鋼粉表面に粉末状の2種以上の合金成分が拡散付
着され、かつ粒径44μm以下の鉄鋼粉に対する各合金
成分の拡散付着濃度が鉄鋼粉全体に対する前記各合金成
分の拡散付着濃度の0.9〜1.9倍の濃度範囲にある
ことを特徴とする粉末冶金用合金鋼粉。 2 合金成分としてNiおよびMoを用いた特許請求の
範囲第1項に記載の粉末冶金用合金鋼粉。 3 Niは上限を10.0重量%、Moは0.1〜0.
4重量%とした特許請求範囲第2項記載の粉末冶金用合
金鋼粉。 4 鉄鋼粉表面に粉末状の2種以上からなる第1の合金
成分が、拡散付着され、粒径44μm以下の鉄鋼粉に対
する前記各合金成分の拡散付着濃度が鉄鋼粉全体に対す
る前記各合金成分の拡散付着濃度の0.9〜1.9倍の
濃度範囲にあり、かつ1種以上からなる第2の合金成分
粉末を鉄鋼粉表面に任意の付着状態で拡散付着するかま
たは粉末状で混合添加したことを特徴とする粉末冶金用
合金鋼粉。 5 第1の合金成分としてNiおよびMoを用い、第2
の合金成分としてCuを用いた特許請求の範囲第4項に
記載の粉末冶金用合金鋼粉。 6 合金量がNiは上限10.0重量%、Moは0.1
〜0.4重量%、Cuは上限を3.5重量%とした特許
請求の範囲第5項に記載の粉末冶金用合金鋼粉。 7 金属粉末もしくは金属化合物の微細な粉末からなる
合金成分を、それらに対して非可溶性の液体中に分散し
、これを鉄鋼粉と混合した後、還元焼鈍し、鉄鋼粉表面
に前記合金成分を拡散付着させることを特徴とする粉末
冶金用合金鋼粉の製造方法。
[Scope of Claims] 1. Two or more powdered alloy components are diffused and adhered to the surface of the steel powder, and the concentration of each alloy component diffused and adhered to the steel powder with a particle size of 44 μm or less is the same as the concentration of each of the alloy components relative to the entire steel powder. An alloy steel powder for powder metallurgy, characterized in that the concentration range is 0.9 to 1.9 times the diffusion and adhesion concentration of. 2. The alloy steel powder for powder metallurgy according to claim 1, which uses Ni and Mo as alloy components. 3 The upper limit of Ni is 10.0% by weight, and the upper limit of Mo is 0.1-0.
The alloy steel powder for powder metallurgy according to claim 2, wherein the content is 4% by weight. 4. A first alloy component consisting of two or more types of powder is diffused and adhered to the surface of the steel powder, and the concentration of each of the alloy components diffused and adhered to the steel powder with a particle size of 44 μm or less is the same as the concentration of each of the alloy components to the entire steel powder. The second alloy component powder, which has a concentration range of 0.9 to 1.9 times the concentration of diffused deposit and is composed of one or more types, is diffused and deposited on the surface of the steel powder in any desired state, or mixed and added in powder form. An alloy steel powder for powder metallurgy characterized by the following. 5 Using Ni and Mo as the first alloy components, the second
The alloy steel powder for powder metallurgy according to claim 4, wherein Cu is used as the alloy component. 6 The upper limit of alloy content is 10.0% by weight for Ni and 0.1% for Mo.
The alloy steel powder for powder metallurgy according to claim 5, wherein the upper limit of Cu is 3.5% by weight. 7 An alloy component consisting of a fine powder of metal powder or a metal compound is dispersed in a liquid that is insoluble therein, mixed with steel powder, and then reduced annealed to coat the surface of the steel powder with the alloy component. A method for producing alloy steel powder for powder metallurgy, characterized by diffusion adhesion.
JP59251333A 1984-11-28 1984-11-28 Alloy steel powder for powder metallurgy and its production Granted JPS61130401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251333A JPS61130401A (en) 1984-11-28 1984-11-28 Alloy steel powder for powder metallurgy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251333A JPS61130401A (en) 1984-11-28 1984-11-28 Alloy steel powder for powder metallurgy and its production

Publications (2)

Publication Number Publication Date
JPS61130401A true JPS61130401A (en) 1986-06-18
JPH0237401B2 JPH0237401B2 (en) 1990-08-24

Family

ID=17221257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251333A Granted JPS61130401A (en) 1984-11-28 1984-11-28 Alloy steel powder for powder metallurgy and its production

Country Status (1)

Country Link
JP (1) JPS61130401A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386802A (en) * 1986-09-29 1988-04-18 Kawasaki Steel Corp Composite steel powder
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPS6439301A (en) * 1987-08-03 1989-02-09 Fukuda Metal Foil Powder Production of metal powder having excellent compactibility
WO1989002802A1 (en) 1987-09-30 1989-04-06 Kawasaki Steel Corporation Composite alloy steel powder and sintered alloy steel
JPH0247202A (en) * 1988-08-10 1990-02-16 Hitachi Powdered Metals Co Ltd Steel powder for heat and wear resistant sintered alloy
US4975333A (en) * 1989-03-15 1990-12-04 Hoeganaes Corporation Metal coatings on metal powders
US5240742A (en) * 1991-03-25 1993-08-31 Hoeganaes Corporation Method of producing metal coatings on metal powders
EP1184107A1 (en) * 2000-08-31 2002-03-06 Kawasaki Steel Corporation Alloyed steel powder for powder metallurgy
WO2007102417A1 (en) * 2006-03-06 2007-09-13 Mitsuba Corporation Carbon commutator and process for producing the same
US7347884B2 (en) 2003-08-18 2008-03-25 Jfe Steel Corporation Alloy steel powder for powder metallurgy
JP2008528811A (en) * 2005-02-04 2008-07-31 ホガナス アクチボラゲット Iron-based composite powder
KR20160006769A (en) 2013-06-07 2016-01-19 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
KR20160045825A (en) 2013-09-26 2016-04-27 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386802A (en) * 1986-09-29 1988-04-18 Kawasaki Steel Corp Composite steel powder
JPH0686603B2 (en) * 1986-09-29 1994-11-02 川崎製鉄株式会社 Evaluation method of the degree of compounding of Fe-Ni compound steel powder
JPS63297502A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd High-strength alloy steel powder for powder metallurgy and its production
JPH044362B2 (en) * 1987-05-29 1992-01-28
JPS6439301A (en) * 1987-08-03 1989-02-09 Fukuda Metal Foil Powder Production of metal powder having excellent compactibility
WO1989002802A1 (en) 1987-09-30 1989-04-06 Kawasaki Steel Corporation Composite alloy steel powder and sintered alloy steel
US4954171A (en) * 1987-09-30 1990-09-04 Kawasaki Steel Corp. Composite alloy steel powder and sintered alloy steel
JPH0247202A (en) * 1988-08-10 1990-02-16 Hitachi Powdered Metals Co Ltd Steel powder for heat and wear resistant sintered alloy
US4975333A (en) * 1989-03-15 1990-12-04 Hoeganaes Corporation Metal coatings on metal powders
US5240742A (en) * 1991-03-25 1993-08-31 Hoeganaes Corporation Method of producing metal coatings on metal powders
EP1184107A1 (en) * 2000-08-31 2002-03-06 Kawasaki Steel Corporation Alloyed steel powder for powder metallurgy
US6610120B2 (en) 2000-08-31 2003-08-26 Kawasaki Steel Coporation Alloyed steel powder for powder metallurgy
US6758882B2 (en) 2000-08-31 2004-07-06 Jfe Steel Corporation Alloyed steel powder for powder metallurgy
US7347884B2 (en) 2003-08-18 2008-03-25 Jfe Steel Corporation Alloy steel powder for powder metallurgy
JP2008528811A (en) * 2005-02-04 2008-07-31 ホガナス アクチボラゲット Iron-based composite powder
WO2007102417A1 (en) * 2006-03-06 2007-09-13 Mitsuba Corporation Carbon commutator and process for producing the same
US7799430B2 (en) 2006-03-06 2010-09-21 Mitsuba Corporation Carbon commutator and process for producing the same
JP5014326B2 (en) * 2006-03-06 2012-08-29 株式会社ミツバ Carbon commutator and manufacturing method thereof
KR20160006769A (en) 2013-06-07 2016-01-19 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
US10265766B2 (en) 2013-06-07 2019-04-23 Jfe Steel Corporation Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
KR20160045825A (en) 2013-09-26 2016-04-27 제이에프이 스틸 가부시키가이샤 Alloy steel powder for powder metallurgy and method of producing iron-based sintered body

Also Published As

Publication number Publication date
JPH0237401B2 (en) 1990-08-24

Similar Documents

Publication Publication Date Title
KR100249006B1 (en) Water spray iron powder for powder plating and its manufacturing method
CA2528698C (en) Mixed powder for powder metallurgy
JPS61130401A (en) Alloy steel powder for powder metallurgy and its production
CA1337468C (en) Alloyed steel powder for powder metallurgy
JPH01159301A (en) Conjugate steel powder having excellent compressibility and homogeneity
JP2013519792A (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
US6358298B1 (en) Iron-graphite composite powders and sintered articles produced therefrom
JPS6366362B2 (en)
EP0960953A2 (en) Alloy steel powders, sintered bodies and method
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JPS591764B2 (en) Iron-copper composite powder and its manufacturing method
JPH02153046A (en) High strength sintered alloy steel
JP4093070B2 (en) Alloy steel powder
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH0459362B2 (en)
JP4158015B2 (en) Method for producing sintered body and sintered body
JP2007100115A (en) Alloy steel powder for powder metallurgy
JPH01215904A (en) Alloy steel powder having little dispersion of dimensional variation in heat treatment and its manufacture
JPH09310159A (en) High strength sintered steel and its production