JP2010090470A - Iron-based sintered alloy and method for producing the same - Google Patents
Iron-based sintered alloy and method for producing the same Download PDFInfo
- Publication number
- JP2010090470A JP2010090470A JP2008264514A JP2008264514A JP2010090470A JP 2010090470 A JP2010090470 A JP 2010090470A JP 2008264514 A JP2008264514 A JP 2008264514A JP 2008264514 A JP2008264514 A JP 2008264514A JP 2010090470 A JP2010090470 A JP 2010090470A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- powder
- sintering
- alloy
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、粉末冶金による鉄系焼結合金、特に自動車用高強度焼結部品に好適な鉄系焼結合金とその製造方法に関する。 The present invention relates to an iron-based sintered alloy by powder metallurgy, particularly an iron-based sintered alloy suitable for high-strength sintered parts for automobiles and a method for producing the same.
機械部品などに使用される鉄系焼結合金は、鉄粉や合金鋼粉を主体とする原料粉末を金型で加圧成形した後、焼結することにより製造され、通常5.0〜7.2g/cm3程度の密度を有する。
機械部品のなかでも、特に自動車用ギヤなどには高強度、高靭性や高疲労強度が要求される。これらの部品を粉末冶金法で製造する場合には、強度、靭性および疲労特性を向上させるために、合金成分を添加する方法が一般的である。例えば、特許文献1では、純鉄粉にNi、Cu、Moなどの粉末を拡散付着させることによって合金化成分を添加している。
Iron-based sintered alloys used for machine parts and the like are manufactured by pressing a raw material powder mainly composed of iron powder or alloy steel powder with a mold and then sintering, and usually 5.0 to 7 It has a density of about 2 g / cm 3 .
Among mechanical parts, high strength, high toughness and high fatigue strength are required particularly for automobile gears. When these parts are produced by a powder metallurgy method, a method of adding an alloy component is generally used in order to improve strength, toughness, and fatigue characteristics. For example, in Patent Document 1, an alloying component is added by diffusing and attaching powders such as Ni, Cu, and Mo to pure iron powder.
また、特許文献2では、合金鋼粉末、鉄粉、炭素質粉末を混合調整してなる原料混合粉末において、C:0.10mass%以下、Si:5.0mass%以下、Mn:3.0mass%以下、Cr:3.0〜20mass%、O:1.0mass%以下の合金鋼粉末を用い、酸素量の低い高衝撃値の焼結体を得ている。
また、特許文献3では、焼結体の原料粉末として、粒度および組成の異なる2種類以上の鉄系粉末を用い、相対的に粒径の大きな粒子間に粒径の小さな粒子が充填され、ネック部(粒子間の結合部)の強度が高くなるようにするとともに、ネック部と粒子内部との硬さおよび延性のバランスを最適化させるようにしている。
In Patent Document 3, two or more types of iron-based powders having different particle sizes and compositions are used as the raw material powder of the sintered body, and particles having a small particle size are filled between particles having a relatively large particle size. The strength of the portion (bonding portion between particles) is increased, and the balance between hardness and ductility between the neck portion and the inside of the particle is optimized.
しかしながら、特許文献1の製法で用いる原料粉は圧縮性に優れているが、合金元素(とりわけNi)の拡散が遅いことから、合金元素を鉄基地中に十分拡散させるためには、長時間の焼結が必要となる問題点がある。
また、特許文献2では、合金鋼粉末のCr量が3.0mass%以上と多く、且つ酸素量も高いため、焼結体の酸素量を低減するためには真空中での高温焼結が必要であること、また、焼結後に焼入れしているため組織が全部マルテントサイトになり、高靭性が得られないこと、などの問題がある。
また、特許文献3の焼結体は、微細な鉄系粉末を用いる必要があるため製造コストが高くなる。また、粒度の異なる粉末の偏析が生じる可能性があり、強度にバラツキを生じる一因となる。
However, although the raw material powder used in the manufacturing method of Patent Document 1 is excellent in compressibility, since the diffusion of alloy elements (especially Ni) is slow, in order to sufficiently diffuse the alloy elements in the iron base, it takes a long time. There is a problem that requires sintering.
Moreover, in patent document 2, since the amount of Cr of alloy steel powder is as large as 3.0 mass% or more, and the amount of oxygen is also high, in order to reduce the amount of oxygen of a sintered compact, the high temperature sintering in a vacuum is required In addition, since the structure is quenched after sintering, the entire structure becomes martensite and high toughness cannot be obtained.
Moreover, since it is necessary to use the fine iron-type powder for the sintered compact of patent document 3, manufacturing cost becomes high. In addition, segregation of powders having different particle sizes may occur, which causes a variation in strength.
したがって本発明の目的は、上記従来技術の課題を解決し、高強度・高靭性であって、且つ長時間の焼結や特別な高温焼結を行うことなく安価に製造することができる鉄系焼結合金を提供することにある。
また、本発明の他の目的は、そのような鉄系焼結合金を安定的に製造することができる製造方法を提供することにある。
Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, have high strength and high toughness, and can be manufactured at low cost without performing long-time sintering or special high-temperature sintering. It is to provide a sintered alloy.
Moreover, the other object of this invention is to provide the manufacturing method which can manufacture such an iron type sintered alloy stably.
本発明者らは、上記した課題を解決するために鋭意検討した結果、鉄粉と所定の合金組成を有する鉄系合金鋼粉を含む原料粉末を加圧成形および焼結することで、鉄粉によりフェライト組織が、鉄系合金鋼粉によりマルテンサイト組織がそれぞれ形成されるようにすること、すなわち、フェライト−マルテンサイト二相組織となるようにすることにより、高強度かつ高靭性の鉄系焼結合金が得られることを見出した。 As a result of intensive studies to solve the above-described problems, the present inventors have made iron powder by pressing and sintering raw material powder containing iron powder and iron-based alloy steel powder having a predetermined alloy composition. By forming the ferrite structure into a martensite structure by the iron-based alloy steel powder, that is, to form a ferrite-martensite two-phase structure, the high-strength and high-toughness iron-based firing is achieved. We found that bond gold was obtained.
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]鉄粉と鉄系合金鋼粉を含む原料粉末を加圧成形した後、焼結することにより得られる鉄系焼結合金であって、前記鉄粉により形成されるフェライト組織と、前記鉄系合金鋼粉により形成されるマルテンサイト組織を有することを特徴とする鉄系焼結合金。
[2]上記[1]の鉄系焼結合金において、面積分率でフェライト組織が10〜60%、マルテンサイト組織が90〜40%であることを特徴とする鉄系焼結合金。
[3]上記[1]または[2]の鉄系焼結合金の製造方法であって、鉄粉と、焼結後の冷却でマルテンサイト組織になる合金組成を有する鉄系合金鋼粉を含む原料粉末を加圧成形した後、焼結することを特徴とする鉄系焼結合金の製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] An iron-based sintered alloy obtained by press-molding a raw material powder containing iron powder and an iron-based alloy steel powder and then sintering the powder, and the ferrite structure formed by the iron powder; An iron-based sintered alloy having a martensite structure formed of iron-based alloy steel powder.
[2] The iron-based sintered alloy according to [1], wherein the ferrite structure is 10 to 60% and the martensite structure is 90 to 40% by area fraction.
[3] A method for producing an iron-based sintered alloy according to [1] or [2] above, comprising iron powder and an iron-based alloy steel powder having an alloy composition that becomes a martensitic structure by cooling after sintering. A method for producing an iron-based sintered alloy, comprising pressing a raw material powder and then sintering the powder.
本発明の鉄系焼結合金は、鉄粉により形成されるフェライト組織と、鉄系合金鋼粉により形成されるマルテンサイト組織とからなる二相組織を有するので高強度かつ高靭性であり、しかも長時間の焼結や特別な高温焼結を行うことなく安価に製造することができる。また、本発明の製造方法によれば、そのような鉄系焼結合金を安定的に製造することができる。 The iron-based sintered alloy of the present invention has high strength and toughness because it has a two-phase structure consisting of a ferrite structure formed of iron powder and a martensite structure formed of iron-based alloy steel powder. It can be manufactured at low cost without performing long-time sintering or special high-temperature sintering. Moreover, according to the manufacturing method of this invention, such an iron-type sintered alloy can be manufactured stably.
本発明の鉄系焼結合金は、鉄粉と鉄系合金鋼粉を含む(さらに必要に応じて、黒鉛粉などを含む)原料粉末を加圧成形した後、焼結することにより得られる鉄系焼結合金であり、前記鉄粉により形成されるフェライト組織と、前記鉄系合金鋼粉により形成されるマルテンサイト組織を有するものである。このような金属組織を有することにより、高強度かつ高靭性の鉄系焼結合金とすることができる。
さきに挙げた特許文献3は、焼結体の原料粉末として、粒度および組成の異なる2種類以上の鉄系粉末を用いる技術であるが、この技術の狙いは、相対的に粒径の大きな粒子間に粒径の小さな粒子が充填され、ネック部(粒子間の結合部)の強度が高くなるようにするとともに、ネック部と粒子内部との硬さおよび延性のバランスを最適化させることにある。したがって、本発明のように、鉄粉により形成されるフェライト組織と、鉄系合金鋼粉により形成されるマルテンサイト組織とからなる二相組織の焼結合金を得るものではない。
The iron-based sintered alloy of the present invention is an iron obtained by sintering a raw material powder containing iron powder and iron-based alloy steel powder (and further containing graphite powder, if necessary) and then sintering. It is a system-sintered alloy and has a ferrite structure formed by the iron powder and a martensite structure formed by the iron-based alloy steel powder. By having such a metal structure, a high-strength and high-toughness iron-based sintered alloy can be obtained.
Patent Document 3 cited above is a technique that uses two or more types of iron-based powders having different particle sizes and compositions as raw material powders of a sintered body, and the aim of this technique is particles having a relatively large particle size. It is intended to optimize the balance of hardness and ductility between the neck portion and the inside of the particle while increasing the strength of the neck portion (bonding portion between the particles) by filling in between the small particles. . Therefore, unlike the present invention, a sintered alloy having a two-phase structure composed of a ferrite structure formed of iron powder and a martensite structure formed of iron-based alloy steel powder is not obtained.
本発明の鉄系焼結合金の原料粉末は、鉄系粉末として鉄粉と鉄系合金鋼粉を含む。このうち鉄粉は鉄および不可避的不純物からなるので、焼結後の冷却において、その全部または主たる部分がフェライト組織となる。また、鉄系合金鋼粉は、焼結後の冷却でマルテンサイト組織となるような成分組成を有するので、焼結後の冷却において、その全部または主たる部分がマルテンサイト組織となる。
なお、原料粉末を構成する鉄粉および鉄系合金鋼粉や、原料粉末中に必要に応じて添加される黒鉛粉などの詳細については、鉄系焼結合金の製造方法の説明において詳述する。
The raw material powder of the iron-based sintered alloy of the present invention includes iron powder and iron-based alloy steel powder as the iron-based powder. Of these, iron powder is composed of iron and inevitable impurities, and therefore, the whole or the main part of the cooling after sintering becomes a ferrite structure. Moreover, since the iron-based alloy steel powder has a component composition that becomes a martensite structure by cooling after sintering, all or a main part of the iron alloy steel powder becomes a martensite structure in cooling after sintering.
The details of the iron powder and the iron-based alloy steel powder constituting the raw material powder, and the graphite powder added to the raw material powder as necessary will be described in detail in the description of the method for producing the iron-based sintered alloy. .
本発明の鉄系焼結合金の金属組織は、面積分率でフェライト組織(フェライト相)が10〜60%、マルテンサイト組織(マルテンサイト相)が90〜40%であることが好ましい。面積分率でフェライト組織が10%未満またはマルテンサイト組織が90%超では靱性が低下し、一方、フェライト組織が60%超またはマルテンサイト組織が40%未満では強度が低下する。
また、他の金属組織として、主として鉄系粉末(鉄粉、鉄系合金鋼粉)どうしの界面においてベイナイト相、パーライト相などが不可避的に生じる場合があり、このようなフェライト相とマルテンサイト相以外の金属組織の存在も少量であれば許容されるが、面積分率の合計で5%を上限とすることが好ましい。
金属組織の面積分率は、焼結合金の研磨断面のエッチング(例えば、3%ナイタールによるエッチング)した組織を、画像解析することにより測定することができる。
The metal structure of the iron-based sintered alloy of the present invention is preferably 10-60% ferrite structure (ferrite phase) and 90-40% martensite structure (martensite phase) in area fraction. When the area fraction is less than 10% in the ferrite structure or more than 90% in the martensite structure, the toughness is reduced. On the other hand, in the case of more than 60% in the ferrite structure or less than 40% in the martensite structure, the strength is reduced.
In addition, as other metal structures, a bainite phase, a pearlite phase, etc. may inevitably occur mainly at the interface between iron-based powders (iron powder, iron-based alloy steel powder). Such ferrite phase and martensite phase The presence of a metal structure other than the above is acceptable as long as the amount is small, but it is preferable that the total area fraction is 5% as the upper limit.
The area fraction of the metal structure can be measured by image analysis of a structure obtained by etching (for example, etching with 3% nital) of the polished cross section of the sintered alloy.
次に、本発明の鉄系焼結合金の製造方法について説明する。
この製造方法では、鉄粉と、焼結後の冷却でマルテンサイト組織になる合金組成を有する鉄系合金鋼粉を含み、さらに必要に応じて黒鉛粉などを含む原料粉末を加圧成形した後、焼結する。
前記鉄粉は鉄および不可避的不純物からなり、例えば、水アトマイズ鉄粉、還元鉄粉、電解鉄粉などを用いることができるが、なかでも水アトマイズ鉄粉が圧縮性に優れるので好ましい。
前記鉄系合金鋼粉は、例えば、所定量の合金元素を含有する溶鋼を溶製し、これを水アトマイズして合金鋼粉(予合金化水アトマイズ合金鋼粉)としたものを用いることができる。水アトマイズの方法などに特別な制限はなく、公知の方法および装置を用いて行えばよい。水アトマイズして得られた合金鋼粉には、通常、水素中または真空中での還元処理、粉砕処理が施される。
Next, the manufacturing method of the iron system sintered alloy of this invention is demonstrated.
In this manufacturing method, after iron powder and iron-based alloy steel powder having an alloy composition that becomes a martensite structure by cooling after sintering, and further press-molding raw material powder including graphite powder as required Sinter.
The iron powder is composed of iron and inevitable impurities, and for example, water atomized iron powder, reduced iron powder, electrolytic iron powder, and the like can be used. Among these, water atomized iron powder is preferable because it is excellent in compressibility.
As the iron-based alloy steel powder, for example, molten steel containing a predetermined amount of alloy elements is melted and water-atomized to obtain alloy steel powder (pre-alloyed water atomized alloy steel powder). it can. There is no particular limitation on the water atomizing method and the like, and a known method and apparatus may be used. The alloy steel powder obtained by water atomization is usually subjected to reduction treatment or pulverization treatment in hydrogen or vacuum.
予合金化水アトマイズ合金鋼粉などの鉄系合金鋼粉は、焼結後の冷却速度でマルテンサイト組織となるような組成とする。一般的なベルト焼結炉は、焼結後の冷却速度が10〜60℃/分程度なので、鉄系合金鋼粉の成分組成としては、Cr:0.5〜3.5mass%、Mn:0.05〜0.25mass%、Mo:0.1〜0.5mass%、V:0.2〜0.4mass%、O:0.3mass%以下が好ましい。
以下、この組成の限定理由について説明する。
・Cr:0.5〜3.5mass%
Crは、焼入性を向上させる元素であり、焼結後の冷却によりマルテンサイト変態させやすくし、引張強度を向上させる効果がある。この効果を得るためには、含有量は0.5mass%以上とすることが好ましい。しかし、3.5mass%を超えて含有させると圧縮性が低下し、一方において、3.5mass%を超えて含有させても強度向上効果が飽和し、却ってコスト上昇を招く。
The ferrous alloy steel powder such as prealloyed water atomized alloy steel powder has a composition that forms a martensite structure at the cooling rate after sintering. Since a general belt sintering furnace has a cooling rate after sintering of about 10 to 60 ° C./min, the component composition of the iron-based alloy steel powder is Cr: 0.5 to 3.5 mass%, Mn: 0 0.05 to 0.25 mass%, Mo: 0.1 to 0.5 mass%, V: 0.2 to 0.4 mass%, and O: 0.3 mass% or less are preferable.
Hereinafter, the reasons for limiting the composition will be described.
・ Cr: 0.5-3.5mass%
Cr is an element that improves hardenability, and has the effect of facilitating martensitic transformation by cooling after sintering and improving tensile strength. In order to obtain this effect, the content is preferably 0.5 mass% or more. However, if the content exceeds 3.5 mass%, the compressibility is lowered. On the other hand, even if the content exceeds 3.5 mass%, the effect of improving the strength is saturated and the cost is increased.
・Mn:0.05〜0.25mass%
Mnは、焼入性を向上させる元素であり、焼結後の冷却によりマルテンサイト変態させやすくし、引張強度を向上させる効果がある。この効果を得るためには、含有量は0.05mass%以上とすることが好ましい。しかし、0.25mass%を超えて含有させると圧縮性が低下するとともに、酸化物の生成が多くなって焼結を阻害し、強度を低下させる。
・Mo:0.1〜0.5mass%
Moは、焼入性向上、固溶強化、析出強化などによって、鋼の強度を向上させる元素であるが、含有量が0.1mass%未満ではその効果は小さく、一方、0.5mass%を超えると圧縮性が低下するため高密度が得られず、焼結体強度が低下する。
・V:0.2〜0.4mass%
Vは、析出硬化によって強度を向上させる元素であるが、含有量が0.2mass%未満ではその効果は小さい。一方、0.4mass%を超えると析出物が粗大化するため強度が低下する。
・O:0.3mass%以下
Oが0.3mass%を超えると、原料粉末の粒子表面の酸化膜が焼結を阻害し、強度と靱性を低下させる。
上記した成分以外の残部は、Feおよび不可避的不純物である。
・ Mn: 0.05-0.25 mass%
Mn is an element that improves hardenability, and has the effect of facilitating martensitic transformation by cooling after sintering and improving tensile strength. In order to obtain this effect, the content is preferably 0.05 mass% or more. However, if the content exceeds 0.25 mass%, the compressibility is lowered and the generation of oxides is increased to inhibit the sintering, thereby lowering the strength.
・ Mo: 0.1-0.5mass%
Mo is an element that improves the strength of steel by improving hardenability, solid solution strengthening, precipitation strengthening, etc., but its effect is small when the content is less than 0.1 mass%, while it exceeds 0.5 mass%. And since compressibility falls, a high density cannot be obtained and the sintered compact strength falls.
・ V: 0.2-0.4mass%
V is an element that improves the strength by precipitation hardening, but the effect is small when the content is less than 0.2 mass%. On the other hand, if it exceeds 0.4 mass%, the precipitates are coarsened, so the strength is lowered.
-O: 0.3 mass% or less When O exceeds 0.3 mass%, the oxide film on the surface of the particles of the raw material powder inhibits the sintering and lowers the strength and toughness.
The balance other than the above components is Fe and inevitable impurities.
前記鉄粉と鉄系合金鋼粉の配合比は、フェライト相とマルテンサイト相の所望の面積分率比に応じて決定すればよい。
黒鉛粉は、Cを鉄中に固溶させて強度を高めるために添加する。その配合量は0.2〜1.0mass%とするのが好ましい。黒鉛粉の配合量が0.2mass%未満ではその添加効果が少なく、一方、配合量が多すぎると鉄粉によるフェライト組織が得られにくくなり、特に1.0mass%を超えると粗大なセメンタイトが析出しやすく、強度、靭性ともに低下する。
原料粉末には、さらに必要に応じて、他の合金用粉末、潤滑剤などを配合することができる。
他の合金用粉末としては、例えば、銅粉、燐化鉄粉、ニッケル粉などが挙げられる。
また、潤滑剤としては、ステアリン酸亜鉛、ステアリン酸リチウム、オレイン酸、ステアリン酸アミド、エチレンビスステアロアミド等のような公知の潤滑剤が好適である。潤滑剤の配合量は、0.2〜1mass%程度とするのが好ましい。
What is necessary is just to determine the compounding ratio of the said iron powder and iron-type alloy steel powder according to the desired area fraction ratio of a ferrite phase and a martensite phase.
Graphite powder is added to increase the strength by dissolving C in iron. The blending amount is preferably 0.2 to 1.0 mass%. If the blending amount of the graphite powder is less than 0.2 mass%, the effect of addition is small. On the other hand, if the blending amount is too large, it becomes difficult to obtain a ferrite structure by the iron powder, and if it exceeds 1.0 mass%, coarse cementite is precipitated. It is easy to do, and both strength and toughness decrease.
If necessary, the raw material powder may further contain other alloy powders, lubricants and the like.
Examples of other alloy powders include copper powder, iron phosphide powder, and nickel powder.
As the lubricant, known lubricants such as zinc stearate, lithium stearate, oleic acid, stearamide, ethylene bisstearamide and the like are suitable. The blending amount of the lubricant is preferably about 0.2 to 1 mass%.
原料粉末(原料の混合粉)は、金型で加圧成形した後、焼結する。
加圧成形は400〜1000MPa程度の圧力で、常温(約20℃)〜約160℃の温度で行うことが好ましい。成形方法に特別な制限はなく、公知の方法で行えばよい。例えば、原料粉末を室温とし、金型を50〜70℃に加熱する方法は、粉末の取扱いが容易で且つ成形体の密度(圧粉体密度)が向上するため好適である。また、原料粉末、金型ともに120〜130℃に加熱する、いわゆる温間成形も実施することができる。
成形体の焼結は、1100〜1300℃程度の焼結温度で行うことが好ましい。また、経済的な観点からは、安価で量産可能なメッシュベルト炉を用い、1160℃以下、より望ましくは1140℃以下の焼結温度で焼結を行うことが好ましい。焼結時間は10〜60分程度が特に好適である。メッシュベルト炉の他に、例えば、トレープッシャー式の焼結炉などを用いることも可能である。
本発明では、フェライト組織を維持できるような或いはフェライト組織が残存できるような条件であれば、焼結後に焼入れ等の熱処理を行ってもよい。
The raw material powder (mixed powder of raw materials) is sintered after being pressure-molded with a mold.
The pressure molding is preferably performed at a pressure of about 400 to 1000 MPa and a temperature of room temperature (about 20 ° C.) to about 160 ° C. There is no particular limitation on the molding method, and any known method may be used. For example, the method of heating the raw material powder to room temperature and heating the mold to 50 to 70 ° C. is preferable because the powder can be easily handled and the density of the compact (green compact density) is improved. Also, so-called warm molding in which both the raw material powder and the mold are heated to 120 to 130 ° C. can be performed.
The compact is preferably sintered at a sintering temperature of about 1100 to 1300 ° C. From an economical point of view, it is preferable to perform sintering at a sintering temperature of 1160 ° C. or lower, more preferably 1140 ° C. or lower, using a mesh belt furnace that is inexpensive and can be mass-produced. The sintering time is particularly preferably about 10 to 60 minutes. In addition to the mesh belt furnace, for example, a tray pusher type sintering furnace or the like can be used.
In the present invention, heat treatment such as quenching may be performed after sintering as long as the ferrite structure can be maintained or the ferrite structure can remain.
表1に示す配合比の鉄粉および鉄系合金鋼粉(Fe−3mass%Cr−0.3mass%Mo−0.3mass%V)に、黒鉛粉:0.6mass%、潤滑剤としてステアリン酸亜鉛粉:0.8mass%を添加し、Vブレンダーで混合して原料粉末(混合粉)とした。この原料粉末を成形圧力590MPaで成形し、この成形体に90%N2−10%H2雰囲気中において1130℃×20分の条件で焼結を施し、焼結体とした。得られた焼結体について、引張強さ、衝撃値、金属組織(フェライト相、マルテンサイト相の各面積分率)を調べた。それらの結果を表1に併せて示す。なお、金属組織の面積分率については、数%の気孔を除いて算出した。
表1によれば、比較例1はフェライト−パーライト組織であり、引張強度が400MPa未満と低い。比較例2はマルテンサイト組織であり、衝撃値が18J/cm2以下と低い。これに対して発明例1〜4はフェライト−マルテンサイト組織であり、引張強度、衝撃値ともに高い値が得られている。なかでも発明例1〜3は、高強度・高靭性がとくにバランス良く実現されている。
Iron powder and iron-based alloy steel powder (Fe-3 mass% Cr-0.3 mass% Mo-0.3 mass% V) shown in Table 1 were added to graphite powder: 0.6 mass% and zinc stearate as a lubricant. Powder: 0.8 mass% was added and mixed with a V blender to obtain a raw material powder (mixed powder). This raw material powder was molded at a molding pressure of 590 MPa, and this molded body was sintered in a 90% N 2 -10% H 2 atmosphere at 1130 ° C. for 20 minutes to obtain a sintered body. About the obtained sintered compact, the tensile strength, the impact value, and the metal structure (each area fraction of a ferrite phase and a martensite phase) were investigated. The results are also shown in Table 1. Note that the area fraction of the metal structure was calculated excluding several percent of pores.
According to Table 1, Comparative Example 1 has a ferrite-pearlite structure and has a low tensile strength of less than 400 MPa. Comparative Example 2 has a martensite structure, and the impact value is as low as 18 J / cm 2 or less. In contrast, Invention Examples 1 to 4 have a ferrite-martensite structure, and high values are obtained for both tensile strength and impact value. In particular, Invention Examples 1 to 3 have a particularly well-balanced high strength and high toughness.
Claims (3)
前記鉄粉により形成されるフェライト組織と、前記鉄系合金鋼粉により形成されるマルテンサイト組織を有することを特徴とする鉄系焼結合金。 An iron-based sintered alloy obtained by sintering a raw material powder containing iron powder and iron-based alloy steel powder, after sintering,
An iron-based sintered alloy having a ferrite structure formed by the iron powder and a martensite structure formed by the iron-based alloy steel powder.
鉄粉と、焼結後の冷却でマルテンサイト組織になる合金組成を有する鉄系合金鋼粉を含む原料粉末を加圧成形した後、焼結することを特徴とする鉄系焼結合金の製造方法。 A method for producing an iron-based sintered alloy according to claim 1 or 2,
Manufacture of an iron-based sintered alloy characterized by pressing a raw material powder containing iron powder and an iron-based alloy steel powder having an alloy composition that becomes a martensite structure by cooling after sintering and then sintering the powder. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008264514A JP2010090470A (en) | 2008-10-10 | 2008-10-10 | Iron-based sintered alloy and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008264514A JP2010090470A (en) | 2008-10-10 | 2008-10-10 | Iron-based sintered alloy and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010090470A true JP2010090470A (en) | 2010-04-22 |
Family
ID=42253455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008264514A Pending JP2010090470A (en) | 2008-10-10 | 2008-10-10 | Iron-based sintered alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010090470A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103394685A (en) * | 2013-07-17 | 2013-11-20 | 贵州大学 | Alloy powder for manufacturing high-entropy alloy coatings, and manufacturing method and application for alloy powder |
CN103567434A (en) * | 2013-10-10 | 2014-02-12 | 铜陵国方水暖科技有限责任公司 | Powder metallurgy flange and preparation method thereof |
CN103586457A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Powder metallurgy tool and manufacturing method thereof |
CN103586458A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Powder metallurgy tool with good toughness and high hardness and preparation method thereof |
CN103589930A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Stainless-steel-bonded powder metallurgy tool and preparation method thereof |
CN103586459A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | High-hardness and super abrasion-resistant powder metallurgy tool and manufacturing method thereof |
CN103586473A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Hard powder metallurgy tool and method for manufacturing hard powder metallurgy tool |
CN103691935A (en) * | 2013-12-27 | 2014-04-02 | 黄忠波 | Copper-based self-lubricating material and method for manufacturing same |
CN103691929A (en) * | 2013-11-29 | 2014-04-02 | 马鞍山市恒毅机械制造有限公司 | Industrial powder metallurgy tool and manufacturing method thereof |
CN103691930A (en) * | 2013-11-29 | 2014-04-02 | 马鞍山市恒毅机械制造有限公司 | Hard powder metallurgy alloy cutter and preparation method thereof |
CN103706796A (en) * | 2013-12-27 | 2014-04-09 | 黄忠波 | Method for preparing copper-based self-lubricating material |
CN103736988A (en) * | 2013-12-27 | 2014-04-23 | 黄忠波 | Copper-based self-lubrication material |
CN105081309A (en) * | 2015-08-24 | 2015-11-25 | 北京科技大学 | Method for preparing iron-based powder metallurgy material containing molybdenum |
JP2018044226A (en) * | 2016-09-16 | 2018-03-22 | トヨタ自動車株式会社 | Manufacturing method of abrasion resistant iron-based sintered alloy and abrasion resistant iron-based sintered alloy |
WO2020158788A1 (en) * | 2019-01-30 | 2020-08-06 | 住友電気工業株式会社 | Sintered material, gear, and method for producing sintered material |
-
2008
- 2008-10-10 JP JP2008264514A patent/JP2010090470A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103394685A (en) * | 2013-07-17 | 2013-11-20 | 贵州大学 | Alloy powder for manufacturing high-entropy alloy coatings, and manufacturing method and application for alloy powder |
CN103567434A (en) * | 2013-10-10 | 2014-02-12 | 铜陵国方水暖科技有限责任公司 | Powder metallurgy flange and preparation method thereof |
CN103586473B (en) * | 2013-11-09 | 2016-01-20 | 马鞍山成宏机械制造有限公司 | A kind of hard Powder metallurgy tool and preparation method thereof |
CN103586457A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Powder metallurgy tool and manufacturing method thereof |
CN103586458A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Powder metallurgy tool with good toughness and high hardness and preparation method thereof |
CN103589930A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Stainless-steel-bonded powder metallurgy tool and preparation method thereof |
CN103586459A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | High-hardness and super abrasion-resistant powder metallurgy tool and manufacturing method thereof |
CN103586473A (en) * | 2013-11-09 | 2014-02-19 | 马鞍山成宏机械制造有限公司 | Hard powder metallurgy tool and method for manufacturing hard powder metallurgy tool |
CN103586459B (en) * | 2013-11-09 | 2016-03-16 | 马鞍山成宏机械制造有限公司 | A kind of high rigidity super abrasive Powder metallurgy tool and preparation method thereof |
CN103691929A (en) * | 2013-11-29 | 2014-04-02 | 马鞍山市恒毅机械制造有限公司 | Industrial powder metallurgy tool and manufacturing method thereof |
CN103691930A (en) * | 2013-11-29 | 2014-04-02 | 马鞍山市恒毅机械制造有限公司 | Hard powder metallurgy alloy cutter and preparation method thereof |
CN103691930B (en) * | 2013-11-29 | 2016-07-20 | 安徽吉思特智能装备有限公司 | A kind of hard powder metallurgy alloy cutter and preparation method thereof |
CN103706796A (en) * | 2013-12-27 | 2014-04-09 | 黄忠波 | Method for preparing copper-based self-lubricating material |
CN103736988A (en) * | 2013-12-27 | 2014-04-23 | 黄忠波 | Copper-based self-lubrication material |
CN103691935A (en) * | 2013-12-27 | 2014-04-02 | 黄忠波 | Copper-based self-lubricating material and method for manufacturing same |
CN105081309A (en) * | 2015-08-24 | 2015-11-25 | 北京科技大学 | Method for preparing iron-based powder metallurgy material containing molybdenum |
JP2018044226A (en) * | 2016-09-16 | 2018-03-22 | トヨタ自動車株式会社 | Manufacturing method of abrasion resistant iron-based sintered alloy and abrasion resistant iron-based sintered alloy |
WO2020158788A1 (en) * | 2019-01-30 | 2020-08-06 | 住友電気工業株式会社 | Sintered material, gear, and method for producing sintered material |
JPWO2020158788A1 (en) * | 2019-01-30 | 2021-12-02 | 住友電気工業株式会社 | Sintered materials, gears, and methods for manufacturing sintered materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010090470A (en) | Iron-based sintered alloy and method for producing the same | |
JP6093405B2 (en) | Nitrogen-containing low nickel sintered stainless steel | |
JP5671526B2 (en) | High strength low alloy sintered steel | |
JP6146548B1 (en) | Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body | |
CN1662327B (en) | Prealloyed iron-based powder, a method of producing sintered components and a component | |
JP6227903B2 (en) | Alloy steel powder for powder metallurgy and method for producing iron-based sintered body | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
JP6227871B2 (en) | Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
JP2011094187A (en) | Method for producing high strength iron based sintered compact | |
CN104711485A (en) | Low alloyed steel powder | |
JP6690781B2 (en) | Alloy steel powder | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
JP6743720B2 (en) | Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance | |
JP2006241533A (en) | Iron based mixed powder for high strength sintered component | |
JP5929320B2 (en) | Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy | |
JP6645631B1 (en) | Alloy steel powder for powder metallurgy and iron-base mixed powder for powder metallurgy | |
JP4301657B2 (en) | Manufacturing method of high strength sintered alloy steel | |
JP4839271B2 (en) | Mixed powder for powder metallurgy and sintered iron powder | |
JP2010255082A (en) | Iron-based sintered alloy and method for producing the same | |
US6652618B1 (en) | Iron based mixed power high strength sintered parts | |
WO2018143088A1 (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same | |
JP5923023B2 (en) | Mixed powder for powder metallurgy and method for producing sintered material |