JP5929320B2 - Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy - Google Patents

Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy Download PDF

Info

Publication number
JP5929320B2
JP5929320B2 JP2012045338A JP2012045338A JP5929320B2 JP 5929320 B2 JP5929320 B2 JP 5929320B2 JP 2012045338 A JP2012045338 A JP 2012045338A JP 2012045338 A JP2012045338 A JP 2012045338A JP 5929320 B2 JP5929320 B2 JP 5929320B2
Authority
JP
Japan
Prior art keywords
powder
alloy steel
sintering
steel powder
metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012045338A
Other languages
Japanese (ja)
Other versions
JP2013181198A (en
Inventor
宇波 繁
繁 宇波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012045338A priority Critical patent/JP5929320B2/en
Publication of JP2013181198A publication Critical patent/JP2013181198A/en
Application granted granted Critical
Publication of JP5929320B2 publication Critical patent/JP5929320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、粉末冶金用合金鋼粉に係り、特に自動車用焼結部品の製造に好適なCu含有の粉末冶金用合金鋼粉に関する。   The present invention relates to an alloy steel powder for powder metallurgy, and more particularly to a Cu-containing alloy steel powder for powder metallurgy suitable for manufacturing sintered parts for automobiles.

粉末冶金技術では、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)で、しかも高い寸法精度で製造できることから、大幅な切削コストの低減が可能となる。このため、粉末冶金技術を用いた部品は、自動車用焼結部品をはじめ各種機械部品として多方面に利用されている。最近では、部品の小型化、軽量化のために、部品の高強度化、特に自動車用焼結部品では600MPa以上の引張強度が強く要望されている。   In powder metallurgy technology, a complicatedly shaped part can be manufactured with a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy, so that the cutting cost can be greatly reduced. For this reason, parts using powder metallurgy technology are used in various fields as various machine parts including sintered parts for automobiles. Recently, in order to reduce the size and weight of parts, there is a strong demand for higher strength of parts, particularly for automotive sintered parts, with a tensile strength of 600 MPa or more.

粉末冶金用の鉄基粉末を用いた成形体は、一般に、原料の純鉄粉、あるいは高強度化のために純鉄粉に各種合金元素を予合金した合金鋼粉等を鉄基粉末とし、この鉄基粉末に、銅(Cu)粉、黒鉛粉等の合金粉末とステアリン酸亜鉛、ステアリン酸リチウム等の潤滑剤を混合した混合粉を、金型に充填し、密度が6.6〜7.1Mg/m3程度になるように加圧成形することにより製造される。純鉄粉や合金鋼粉からなる鉄基粉末は、製法に応じて、アトマイズ鉄粉、還元鉄粉等に分類される。こうした鉄基粉末を用いた成形体は、その後、焼結処理が施されて焼結体とされ、さらに必要に応じてサイジングや切削加工が施されて製品となる。また、さらなる高い強度が必要な場合は、焼結後に浸炭焼入れや光輝焼入れ等の処理が施されることもある。 A compact using an iron-based powder for powder metallurgy is generally made of pure iron powder as a raw material, or alloy steel powder prealloyed with various alloy elements in pure iron powder to increase the strength, and iron-based powder. This iron-based powder is filled with a mixed powder obtained by mixing a copper (Cu) powder, an alloy powder such as graphite powder, and a lubricant such as zinc stearate and lithium stearate, and has a density of 6.6 to 7.1 Mg / Manufactured by pressure molding to m 3 or so. Iron-based powders composed of pure iron powder or alloy steel powder are classified into atomized iron powder, reduced iron powder and the like according to the production method. A molded body using such iron-based powder is then subjected to a sintering process to obtain a sintered body, and further subjected to sizing and cutting as necessary to obtain a product. Moreover, when further high intensity | strength is required, processes, such as carburizing quenching and bright quenching, may be given after sintering.

上述した鉄基粉末に混合されるCu粉は、焼結時に液相を生成して焼結を促進する作用があり、また、焼結体の寸法変化率を調整することも可能であり、焼結部品には広く用いられているが、焼結部品の高強度化のためにCuを予合金した合金鋼粉に関する技術も種々提案されている。   The Cu powder mixed with the iron-based powder described above has the effect of promoting the sintering by generating a liquid phase during sintering, and the dimensional change rate of the sintered body can be adjusted. Although widely used for bonded parts, various techniques related to alloy steel powders pre-alloyed with Cu have been proposed to increase the strength of sintered parts.

例えば、特許文献1には、合金元素を予合金した水アトマイズ鋼粉であって、予合金元素として、Cu:1.0〜10.0wt%、さらにMo:10wt%以下および/またはNb:0.08wt%以下を含み、残部Feおよび不可避的不純物からなることを特徴とする高強度焼結部品用合金鋼粉が開示されている。   For example, Patent Document 1 discloses a water atomized steel powder prealloyed with an alloy element, and as a prealloy element, Cu: 1.0 to 10.0 wt%, Mo: 10 wt% or less and / or Nb: 0.08 wt% or less An alloy steel powder for high-strength sintered parts is disclosed, which is characterized by comprising the remainder Fe and inevitable impurities.

特許文献2には、炭素ソースと本質的に鉄と1から5重量パーセントの銅で構成されたプレアロイ合金粉末とからなる粉末金属を圧粉成形体へ成形する成形工程と、圧粉成形体を一定の時間焼結して、焼結体を形成する焼結工程と、塑性流動を含む鍛造を前記焼結体に行うことで、連結棒を形成する鍛造工程とを備えたことを特徴とする連結棒の製造方法が開示されている。   Patent Document 2 discloses a molding process for molding a powder metal comprising a carbon source and a prealloy alloy powder composed essentially of iron and 1 to 5 weight percent copper into a green compact, and a green compact. A sintering process for forming a sintered body by sintering for a certain period of time and a forging process for forming a connecting rod by performing forging including plastic flow on the sintered body are provided. A method of manufacturing a connecting rod is disclosed.

特許文献3には、水アトマイズ法でアトマイズ粉を製造する際に、溶鋼をArシールして溶製した後、該溶鋼をN2シール雰囲気下で水アトマイズして生成した水アトマイズ鋼粉を回収、乾燥後、5×10-2mmHg以下の真空中で還元して得た、組成が、重量%で、C:0.01%以下、O:0.07%以下、Cr:0.5〜3%、Mo:0.1〜2%、さらにMn:0.08〜1.0%、Ni:0.2〜2.5%、Cu:0.5〜2.5%の1種または2種以上を含む鋼粉にC粉を添加して1100〜1300℃の条件で焼結することを特徴とする高強度、高靱性Cr合金鋼粉焼結体の製造方法が開示されている。 In Patent Document 3, when atomized powder is produced by the water atomizing method, the molten steel is melted by Ar sealing, and then the water atomized steel powder generated by water atomizing the molten steel in an N 2 sealed atmosphere is recovered. After drying, obtained by reducing in a vacuum of 5 × 10 −2 mmHg or less, the composition is wt%, C: 0.01% or less, O: 0.07% or less, Cr: 0.5 to 3%, Mo: 0.1 ~ 2%, Mn: 0.08 ~ 1.0%, Ni: 0.2 ~ 2.5%, Cu: 0.5 ~ 2.5% A method for producing a high strength, high toughness Cr alloy steel powder sintered body characterized by sintering is disclosed.

特開平11-302787号公報Japanese Patent Laid-Open No. 11-302787 特表2011-509348号公報Special table 2011-509348 特開平6-306403号公報JP-A-6-306403

しかしながら、特許文献1に記載のCu含有の合金鋼粉では、600MPa以上の高い引張強度を有する焼結部品を得るには、高価なMoを2質量%以上添加する必要があり、著しいコスト増を招く。特許文献2に記載のCu含有の合金鋼粉を用いた連結棒では、引張強度を600MPa以上にするには、焼結後さらに鍛造する必要があり、やはりコスト増を招く。特許文献3では、Cr量が多いため、600MPa以上の引張強度を有する焼結部品を得るには、その実施例にあるように、1250〜1350℃の高温で焼結する必要があり、安価で量産が可能であるが、使用上限温度が1160℃であるメッシュベルト炉を用いることができない。   However, in the Cu-containing alloy steel powder described in Patent Document 1, it is necessary to add 2% by mass or more of expensive Mo in order to obtain a sintered part having a high tensile strength of 600 MPa or more, which significantly increases the cost. Invite. In the connecting rod using Cu-containing alloy steel powder described in Patent Document 2, in order to make the tensile strength 600 MPa or more, it is necessary to forge further after sintering, which also causes an increase in cost. In Patent Document 3, since there is a large amount of Cr, in order to obtain a sintered part having a tensile strength of 600 MPa or more, it is necessary to sinter at a high temperature of 1250 to 1350 ° C., as shown in the examples. Mass production is possible, but a mesh belt furnace with a maximum use temperature of 1160 ° C cannot be used.

本発明は、600MPa以上の引張強度を有する焼結部品を安価に製造可能なCu含有の粉末冶金用合金鋼粉を提供することを目的とする。   An object of the present invention is to provide a Cu-containing alloy steel powder for powder metallurgy capable of inexpensively producing a sintered part having a tensile strength of 600 MPa or more.

本発明者等は、上記の目的を達成すべく鋭意検討を行った結果、高価なMoの量や焼結温度の上昇を招くCrの量を極力低減するとともに、それによる強度低下をMn添加により補強することが効果的であることを見出した。   As a result of diligent studies to achieve the above object, the present inventors reduced the amount of expensive Mo and the amount of Cr that causes an increase in the sintering temperature as much as possible, and reduced the strength by adding Mn. It has been found that reinforcement is effective.

本発明は、このような知見に基づきなされたもので、合金元素を予合金した水アトマイズ合金鋼粉であって、質量%にて、Cr:0.3〜0.5%、Mn:0.1〜0.3%、Mo:0.1〜0.5%、かつCu:1〜4%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする粉末冶金用合金鋼粉を提供する。   The present invention has been made on the basis of such knowledge, and is a water atomized alloy steel powder prealloyed with an alloy element, in mass%, Cr: 0.3-0.5%, Mn: 0.1-0.3%, Mo There is provided an alloy steel powder for powder metallurgy characterized by containing 0.1 to 0.5% and Cu: 1 to 4%, the balance being Fe and inevitable impurities.

本発明の粉末冶金用合金鋼粉を用いることにより、600MPa以上の引張強度を有する焼結部品を安価に製造できるようになった。この粉末冶金用合金鋼粉は、自動車用焼結部品の小型化、軽量化のために好適である。   By using the alloy steel powder for powder metallurgy according to the present invention, a sintered part having a tensile strength of 600 MPa or more can be manufactured at low cost. This alloy steel powder for powder metallurgy is suitable for reducing the size and weight of sintered parts for automobiles.

本発明の粉末冶金用合金鋼粉の成分限定理由を以下に説明する。ここで、成分の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   The reasons for limiting the components of the alloy steel powder for powder metallurgy according to the present invention will be described below. Here, “%” representing the content of a component means “% by mass” unless otherwise specified.

Cr:0.3〜0.5%
Crは、焼結後にパーライトを微細化して引張強度を向上させる効果がある。また、焼入性を向上させる元素なので、焼結後に焼入れ処理を施す場合も引張強度の向上に効果的である。焼結後の引張強度を600MPa以上にするには、Cr量を0.3%以上にする必要がある。一方、Cr量が0.5%を超えると、メッシュベルト炉を用いて1160℃以下の焼結温度で600MPa以上の引張強度を得ることが困難になる。したがって、Cr量は0.3〜0.5%とする。
Cr: 0.3-0.5%
Cr has the effect of increasing the tensile strength by refining pearlite after sintering. Moreover, since it is an element that improves hardenability, it is effective in improving tensile strength even when quenching is performed after sintering. In order to increase the tensile strength after sintering to 600 MPa or more, the Cr content needs to be 0.3% or more. On the other hand, if the Cr content exceeds 0.5%, it becomes difficult to obtain a tensile strength of 600 MPa or more at a sintering temperature of 1160 ° C. or less using a mesh belt furnace. Therefore, the Cr content is 0.3 to 0.5%.

Mn:0.1〜0.3%
Mnは、Crと同様、焼結後にパーライトを微細化して引張強度を向上させる効果があり、また、焼入性を向上させる元素なので、焼結後に焼入れ処理を施す場合も引張強度の向上に効果的である。焼結後の引張強度を600MPa以上にするには、Mn量を0.1%以上にする必要がある。一方、Mn量が0.3%を超えると、圧縮性が低下し、かつ酸化物の生成が多くなり、焼結後に600MPa以上の引張強度を得ることが困難になる。したがって、Mn量は0.1〜0.3%とする。
Mn: 0.1-0.3%
Like Cr, Mn has the effect of improving the tensile strength by refining pearlite after sintering, and is an element that improves the hardenability, so it is also effective in improving the tensile strength when subjected to quenching after sintering. Is. In order to increase the tensile strength after sintering to 600 MPa or more, the Mn content needs to be 0.1% or more. On the other hand, if the amount of Mn exceeds 0.3%, the compressibility decreases and the generation of oxide increases, making it difficult to obtain a tensile strength of 600 MPa or more after sintering. Therefore, the amount of Mn is 0.1 to 0.3%.

Mo:0.1〜0.5%
Moは、固溶強化、析出強化等によって焼結後の引張強度を向上させる効果があり、また、焼入性を向上させる元素なので、焼結後に焼入れ処理を施す場合も引張強度の向上に効果的である。焼結後の引張強度を600MPa以上にするには、Mo量を0.1%以上にする必要がある。一方、Mo量が0.5%を超えると、著しいコスト増を招く。したがって、Mo量は0.1〜0.5%とする。
Mo: 0.1-0.5%
Mo has the effect of improving the tensile strength after sintering by solid solution strengthening, precipitation strengthening, etc. Also, since it is an element that improves hardenability, it is also effective in improving tensile strength even when quenching treatment is performed after sintering Is. In order to increase the tensile strength after sintering to 600 MPa or more, the Mo amount needs to be 0.1% or more. On the other hand, if the amount of Mo exceeds 0.5%, a significant cost increase is caused. Therefore, the Mo amount is 0.1 to 0.5%.

Cu:1〜4%
Cuは、固溶強化、析出強化等によって焼結後の引張強度を向上させる元素である。焼結後の引張強度を600MPa以上にするには、Cu量を1%以上にする必要がある。一方、Cu量が4%を超えると、圧縮性が著しく低下し、焼結後に600MPa以上の引張強度を得ることが困難になる。したがって、Cu量は1〜4%、好ましくは2〜4%とする。
Cu: 1 to 4%
Cu is an element that improves the tensile strength after sintering by solid solution strengthening, precipitation strengthening, and the like. In order to increase the tensile strength after sintering to 600 MPa or more, the Cu content needs to be 1% or more. On the other hand, if the Cu content exceeds 4%, the compressibility is remarkably lowered, and it becomes difficult to obtain a tensile strength of 600 MPa or more after sintering. Therefore, the Cu content is 1 to 4%, preferably 2 to 4%.

残部はFeおよび不可避的不純物とする。ここで、不可避的不純物としては、C:0.02%以下、O:0.4%以下、N:0.01%以下、S:0.03%以下、Si:0.2%以下、P:0.02%以下、Ni:0.1%以下を挙げられる。特に、Niは高価なので、その量を不純物レベルに留めるべきである。   The balance is Fe and inevitable impurities. Here, as unavoidable impurities, C: 0.02% or less, O: 0.4% or less, N: 0.01% or less, S: 0.03% or less, Si: 0.2% or less, P: 0.02% or less, Ni: 0.1% or less Can be mentioned. In particular, since Ni is expensive, its amount should remain at the impurity level.

本発明の粉末冶金用合金鋼粉は、所定量の合金元素を予合金した鋼を溶製し、公知の装置を用いて水アトマイズ法により作製する。水アトマイズ後の鋼粉には、公知の水素ガスによる還元処理や真空での還元処理が施される。   The alloy steel powder for powder metallurgy according to the present invention is produced by melting a steel pre-alloyed with a predetermined amount of alloying elements and using a known apparatus by a water atomization method. The steel powder after water atomization is subjected to a reduction treatment with a known hydrogen gas or a reduction treatment in a vacuum.

本発明の粉末冶金用合金鋼粉には、高強度化のために黒鉛粉を添加することが好ましい。黒鉛粉は0.2〜1.0%の添加により、高強度化の効果が得られる。また、切削性を改善するためにMnS粉を添加できる。また、潤滑剤として、ステアリン酸亜鉛、ステアリン酸リチウム、オレイン酸、ステアリン酸アミド、エチレンビスステアロアミドを、合金鋼粉と黒鉛粉の合計100質量部に対して0.2〜1質量部添加することが好ましい。   It is preferable to add graphite powder to the alloy steel powder for powder metallurgy of the present invention in order to increase the strength. The effect of increasing the strength can be obtained by adding 0.2 to 1.0% of graphite powder. In addition, MnS powder can be added to improve machinability. In addition, as a lubricant, zinc stearate, lithium stearate, oleic acid, stearic acid amide, ethylene bisstearamide should be added in an amount of 0.2 to 1 part by mass with respect to a total of 100 parts by mass of alloy steel powder and graphite powder. Is preferred.

本発明の粉末冶金用合金鋼粉を加圧成形するには、400〜2000MPa程度の圧力で、常温(20℃)〜160℃の温度範囲で行うことが好ましい。成形方法については、公知の方法を適用できる。例えば、合金鋼粉を50〜70℃に加熱した金型で成形する方法は、粉末の取扱いが容易であり、かつ、成形体の密度をより高くできるため、好適である。また、合金鋼粉、金型ともに120〜130℃に加熱して成形する、いわゆる温間成形も適用可能である。   In order to press-mold the alloy steel powder for powder metallurgy of the present invention, it is preferable to carry out at a pressure of about 400 to 2000 MPa in a temperature range of room temperature (20 ° C.) to 160 ° C. A known method can be applied as the molding method. For example, a method of forming alloy steel powder with a mold heated to 50 to 70 ° C. is preferable because the powder can be easily handled and the density of the formed body can be increased. In addition, so-called warm forming, in which both the alloy steel powder and the mold are heated to 120 to 130 ° C., is also applicable.

成形体の焼結は、安価で量産可能なメッシュベルト炉で1160℃以下で行う。   The compact is sintered at 1160 ° C. or less in a mesh belt furnace that can be mass-produced at low cost.

焼結後は、さらなる高強度化のために、浸炭焼入れ、光輝焼入れ、高周波焼入れ、浸炭窒化熱処理、焼入れ後の焼戻し処理を行うことができる。   After sintering, carburizing quenching, bright quenching, induction quenching, carbonitriding heat treatment, and tempering after quenching can be performed for further strengthening.

表1に示す成分を有し、残部がFeおよび不可避的不純物からなる組成の合金鋼粉を、水アトマイズ法で作製後、水素ガスで還元処理を施した。還元処理後の合金鋼粉に、表1に示す添加量のCu粉および黒鉛粉と、合金鋼粉、黒鉛粉およびCu粉の合計100質量部に対して0.5質量部のエチレンビスステアロアミド粉を添加・混合後、加圧成形を施して密度7.0Mg/m3の成形体とした。この成形体を、メッシュベルト炉を用い、窒素雰囲気中、1130℃で20分間の条件で焼結して焼結部品とした。そして、焼結部品の引張強度を、引張速度5mm/min、室温で測定した。 An alloy steel powder having the components shown in Table 1 and the balance consisting of Fe and inevitable impurities was produced by a water atomization method and then reduced with hydrogen gas. 0.5 parts by mass of ethylene bisstearamide powder with respect to a total of 100 parts by mass of the addition amount of Cu powder and graphite powder and alloy steel powder, graphite powder and Cu powder shown in Table 1 to the alloy steel powder after reduction treatment After adding and mixing, pressure molding was performed to obtain a molded body having a density of 7.0 Mg / m 3 . This molded body was sintered in a nitrogen atmosphere at 1130 ° C. for 20 minutes using a mesh belt furnace to obtain a sintered part. Then, the tensile strength of the sintered part was measured at a tensile speed of 5 mm / min at room temperature.

結果を表1に示す。   The results are shown in Table 1.

本発明例では、高価なMoの量が少なく、また、安価なメッシュベルト炉を用いて焼結しても、600MPa以上の引張強度が得られていることがわかる。   In the example of the present invention, it can be seen that the tensile strength of 600 MPa or more is obtained even if the amount of expensive Mo is small and sintering is performed using an inexpensive mesh belt furnace.

Figure 0005929320
Figure 0005929320

Claims (2)

合金元素を含む粉末冶金用合金鋼粉であって、質量%にて、Cr:0.3〜0.5%、Mn:0.1〜0.3%、Mo:0.1〜0.5%、かつCu:1〜4%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする粉末冶金用合金鋼粉。 Alloy steel powder for powder metallurgy containing alloy elements, which contains Cr: 0.3 to 0.5%, Mn: 0.1 to 0.3%, Mo: 0.1 to 0.5%, and Cu: 1 to 4% in mass%. An alloy steel powder for powder metallurgy, characterized in that the balance consists of Fe and inevitable impurities. 質量%にて、Cr:0.3〜0.5%、Mn:0.1〜0.3%、Mo:0.1〜0.5%、かつCu:1〜4%を含有し、残部がFeおよび不可避的不純物からなるように、合金元素を予合金した鋼を溶製し、水アトマイズ法により作製することを特徴とする粉末冶金用合金鋼粉の製造方法。Alloys that contain Cr: 0.3 to 0.5%, Mn: 0.1 to 0.3%, Mo: 0.1 to 0.5%, and Cu: 1 to 4%, with the balance being Fe and inevitable impurities A method for producing alloy steel powder for powder metallurgy, characterized in that steel pre-alloyed with an element is melted and produced by a water atomization method.
JP2012045338A 2012-03-01 2012-03-01 Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy Active JP5929320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045338A JP5929320B2 (en) 2012-03-01 2012-03-01 Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045338A JP5929320B2 (en) 2012-03-01 2012-03-01 Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2013181198A JP2013181198A (en) 2013-09-12
JP5929320B2 true JP5929320B2 (en) 2016-06-01

Family

ID=49272075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045338A Active JP5929320B2 (en) 2012-03-01 2012-03-01 Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP5929320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009838A (en) * 2016-07-19 2018-01-30 한국생산기술연구원 Method for manufacturing Fe-Cr based alloy using mixed reduction gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210029582A (en) * 2019-09-06 2021-03-16 현대자동차주식회사 Iron-based prealloy powder, iron-based diffusion-bonded powder, and iron-based alloy powder for powder metallurgy using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235403A (en) * 1987-03-23 1988-09-30 Sumitomo Metal Ind Ltd Alloy powder for powder metallurgy
JP3224417B2 (en) * 1992-02-14 2001-10-29 川崎製鉄株式会社 Alloy steel powder and sintered body for sintered body having high strength, high fatigue strength and high toughness
JPH06306403A (en) * 1993-04-23 1994-11-01 Kawasaki Steel Corp High-strength and high-toughness cr alloy steel powder sintered compact and its production
US7384445B2 (en) * 2004-04-21 2008-06-10 Höganäs Ab Sintered metal parts and method for the manufacturing thereof
SE0401041D0 (en) * 2004-04-21 2004-04-21 Hoeganaes Ab Sintered metal parts and method of manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009838A (en) * 2016-07-19 2018-01-30 한국생산기술연구원 Method for manufacturing Fe-Cr based alloy using mixed reduction gas
KR101869152B1 (en) 2016-07-19 2018-06-20 한국생산기술연구원 Method for manufacturing Fe-Cr based alloy using mixed reduction gas

Also Published As

Publication number Publication date
JP2013181198A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
JP5671526B2 (en) High strength low alloy sintered steel
JP5958144B2 (en) Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body
JP5661096B2 (en) Iron vanadium powder alloy
JP6227903B2 (en) Alloy steel powder for powder metallurgy and method for producing iron-based sintered body
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
JP5949952B2 (en) Method for producing iron-based sintered body
WO2017043094A1 (en) Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact
JP5929967B2 (en) Alloy steel powder for powder metallurgy
JP2017534754A (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method for producing press-molded and sintered parts from iron-based powder mixture
JP2015108195A (en) Low alloy steel powder
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP5125158B2 (en) Alloy steel powder for powder metallurgy
JP5929320B2 (en) Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
CN111902556B (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JPWO2018142778A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JP2006241533A (en) Iron based mixed powder for high strength sintered component
CN113677459A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP2012126972A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JP2010255082A (en) Iron-based sintered alloy and method for producing the same
JP2005126827A (en) Powdery mixture for high strength sintered component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250