JPWO2018142778A1 - Mixed powder for powder metallurgy, sintered body, and method for producing sintered body - Google Patents
Mixed powder for powder metallurgy, sintered body, and method for producing sintered body Download PDFInfo
- Publication number
- JPWO2018142778A1 JPWO2018142778A1 JP2018508249A JP2018508249A JPWO2018142778A1 JP WO2018142778 A1 JPWO2018142778 A1 JP WO2018142778A1 JP 2018508249 A JP2018508249 A JP 2018508249A JP 2018508249 A JP2018508249 A JP 2018508249A JP WO2018142778 A1 JPWO2018142778 A1 JP WO2018142778A1
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy steel
- iron
- mass
- steel powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 43
- 239000011812 mixed powder Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000843 powder Substances 0.000 claims abstract description 265
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 171
- 229910000851 Alloy steel Inorganic materials 0.000 claims abstract description 108
- 229910052742 iron Inorganic materials 0.000 claims abstract description 73
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 239000000314 lubricant Substances 0.000 claims description 22
- 229910052748 manganese Inorganic materials 0.000 abstract description 16
- 229910045601 alloy Inorganic materials 0.000 description 32
- 239000000956 alloy Substances 0.000 description 32
- 229910000831 Steel Inorganic materials 0.000 description 28
- 239000010959 steel Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 26
- 238000000465 moulding Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 20
- 239000002245 particle Substances 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 238000005728 strengthening Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 238000005245 sintering Methods 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- 238000005275 alloying Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005255 carburizing Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000009692 water atomization Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
- C22C1/053—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
- C22C1/055—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
部分拡散合金鋼粉よりも高い圧縮性を有し、高成形密度を得ることができる粉末冶金用混合粉を提供する。粉末冶金用混合粉であって、(a)Si:0〜0.2質量%およびMn:0〜0.4質量%を含有し、残部がFeおよび不可避不純物である鉄基粉末、および(b)Mo:2.0〜21.0質量%、Si:0〜0.2質量%およびMn:0〜0.4質量%を含有し、残部がFeおよび不可避不純物である合金鋼粉、を含有し、前記(a)鉄基粉末および(b)合金鋼粉の合計に対する(b)合金鋼粉の比率が50〜90質量%であり、前記(a)鉄基粉末および(b)合金鋼粉の合計に対するMoの比率が2.2〜6.2質量%である、粉末冶金用混合粉。 Provided is a powder mixture for powder metallurgy that has higher compressibility than partially diffused alloy steel powder and can obtain a high forming density. A powder mixture for powder metallurgy, comprising (a) an iron-based powder containing Si: 0 to 0.2 mass% and Mn: 0 to 0.4 mass%, the balance being Fe and inevitable impurities; and (b ) Mo: 2.0-21.0% by mass, Si: 0-0.2% by mass and Mn: 0-0.4% by mass, with the balance containing Fe and alloy steel powders that are inevitable impurities The ratio of (b) alloy steel powder to the total of (a) iron base powder and (b) alloy steel powder is 50 to 90% by mass, and (a) iron base powder and (b) alloy steel powder. The mixed powder for powder metallurgy, wherein the ratio of Mo to the total of 2.2 to 6.2% by mass.
Description
本発明は、粉末冶金用混合粉(mixed powder for powder metallurgy)に関し、特に圧縮性(compressibility)に優れた粉末冶金用混合粉に関する。また、本発明は、前記粉末冶金用混合粉を用いた焼結体(sintered body)、および焼結体の製造方法に関する。 The present invention relates to a mixed powder for powder metallurgy, and more particularly to a mixed powder for powder metallurgy having excellent compressibility. Moreover, this invention relates to the manufacturing method of the sintered compact (sintered body) using the said mixed powder for powder metallurgy, and a sintered compact.
粉末冶金技術は、複雑な形状の部品を、製品形状に極めて近い形状に成形(いわゆるニアネットシェイプ成形)でき、しかも高い寸法精度で製造できる手法であり、粉末冶金技術によれば切削コストを大幅に低減することができる。そのため、粉末冶金製品は各種の機械や部品として、多方面に利用されている。 Powder metallurgy technology is a technique that can form parts with complex shapes into shapes that are very close to the product shape (so-called near net shape molding), and that can be manufactured with high dimensional accuracy. Powder metallurgy technology greatly increases cutting costs. Can be reduced. Therefore, powder metallurgy products are used in various fields as various machines and parts.
さらに、最近では、部品の小型化、軽量化のために、粉末冶金製品の強度の向上が強く要望されており、特に、鉄基粉末プレス成形製品や鉄基粉末焼結製品に対する高強度化の要求が強い。 Furthermore, recently, there has been a strong demand for improving the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, the strength of iron-based powder press-molded products and iron-based powder sintered products has been increased. Strong demand.
この高強度化の要求に応じるため、鉄基粉末に対して焼入れ性向上などの効果を有する合金元素を添加することが行われている。例えば、原料粉の段階で合金元素を加えた粉末として、(1)予合金鋼粉(pre-alloyed steel powder)や(2)部分拡散合金鋼粉(partially diffusion-alloyed steel powder)が知られている。 In order to meet the demand for higher strength, an alloy element having an effect of improving hardenability is added to the iron-based powder. For example, (1) pre-alloyed steel powder and (2) partially diffusion-alloyed steel powder are known as powders with alloy elements added at the raw material stage. Yes.
(1)予合金鋼粉は、予め合金元素を完全に合金化した粉末である。この予合金鋼粉を用いることにより、合金元素の偏析が完全に防止できるため、焼結体の組織が均一となる。そしてその結果、プレス成形製品や焼結製品としたときの機械的特性を安定化させることができる。しかしながら、完全合金化は粉末の粒全体にわたって固溶硬化を生じさせるため、粉末の圧縮性が低く、その結果、プレス成形の際に成形密度が上がりにくいという問題があった。 (1) Prealloyed steel powder is a powder obtained by fully alloying alloying elements in advance. By using this pre-alloyed steel powder, segregation of alloy elements can be completely prevented, so that the structure of the sintered body becomes uniform. As a result, it is possible to stabilize the mechanical properties of the press-molded product or the sintered product. However, complete alloying causes solid solution hardening over the entire grains of the powder, so that the compressibility of the powder is low, and as a result, there is a problem that the molding density is difficult to increase during press molding.
(2)部分拡散合金鋼粉は、純鉄粉や予合金鋼粉の表面に各合金元素粉末を部分的に付着拡散させた粉末である。部分拡散合金鋼粉は、合金元素の金属粉末またはその酸化物等を、純鉄粉や予合金鋼粉と混合し、非酸化性または還元性の雰囲気の下で加熱して、前記純鉄粉や予合金鋼粉の表面に合金元素粉末を拡散接合することにより製造される。部分拡散合金鋼粉によれば、組織を比較的均一とすることができるため、上記予合金鋼粉を用いた場合と同様に製品の機械的特性を安定化させることができる。さらに、部分拡散合金鋼粉は、その内部には合金元素を含まないかまたは合金元素の量が少ない部分を有しているため、予合金鋼粉に比べてプレス成形の際の圧縮性に優れている。 (2) Partially diffused alloy steel powder is a powder obtained by partially adhering and diffusing each alloy element powder on the surface of pure iron powder or prealloyed steel powder. Partially diffused alloy steel powder is obtained by mixing a metal powder of an alloy element or its oxide with pure iron powder or prealloyed steel powder and heating it in a non-oxidizing or reducing atmosphere. It is manufactured by diffusion bonding of alloying element powder to the surface of prealloyed steel powder. According to the partially diffused alloy steel powder, since the structure can be made relatively uniform, the mechanical properties of the product can be stabilized as in the case of using the prealloyed steel powder. Furthermore, partially diffused alloy steel powder has a portion that does not contain alloying elements or has a small amount of alloying elements inside, so it has superior compressibility during press forming compared to prealloyed steel powder. ing.
上記予合金鋼粉や部分拡散合金鋼粉で使われる基本的な合金成分としては、焼入れ性を向上させる効果を有するMoが広く用いられている。焼入れ性向上効果を有する合金元素としては、Mo以外にも、Mn、Cr、Si等が知られているが、これらの元素の中ではMoが比較的酸化しにくいため、合金鋼粉の製造が容易であるからである。例えば、Moを合金元素として添加した溶鋼を水アトマイズ法で粉末とし、通常の水素雰囲気での仕上げ還元を施せば、容易に予合金鋼粉を製造できる。また、Mo酸化物を純鉄粉や合金鋼粉と混合して、通常の水素雰囲気での仕上げ還元を施せば、容易に部分拡散合金鋼粉を製造できる。 As a basic alloy component used in the prealloyed steel powder and the partially diffused alloy steel powder, Mo having an effect of improving hardenability is widely used. In addition to Mo, Mn, Cr, Si, and the like are known as alloy elements having an effect of improving hardenability, but since Mo is relatively difficult to oxidize among these elements, it is possible to produce alloy steel powder. This is because it is easy. For example, pre-alloyed steel powder can be easily manufactured by making molten steel added with Mo as an alloy element into powder by a water atomizing method and subjecting it to final reduction in a normal hydrogen atmosphere. Moreover, a partial diffusion alloy steel powder can be easily produced by mixing Mo oxide with pure iron powder or alloy steel powder and subjecting it to finish reduction in a normal hydrogen atmosphere.
このように焼入れ性向上効果を有するMoを添加することにより、焼入れ処理の際にフェライトの生成が抑制され、ベイナイトまたはマルテンサイトが生成し、母相が変態強化される。さらに、Moは、母相に分配して母相を固溶強化するとともに、母相中で微細炭化物を形成して母相を析出強化する。また、Moは、ガス浸炭性が良く非粒界酸化元素であるため、浸炭強化する作用も有している。 By adding Mo having an effect of improving hardenability in this way, the formation of ferrite is suppressed during the quenching treatment, bainite or martensite is generated, and the matrix phase is strengthened by transformation. Furthermore, Mo distributes to the mother phase and strengthens the mother phase in solid solution, and forms fine carbides in the mother phase to strengthen the mother phase by precipitation. Further, Mo has a gas carburizing property and is a non-grain boundary oxidizing element, and therefore has an effect of strengthening carburizing.
Moを使用した合金鋼粉の例としては、例えば、特許文献1および2が挙げられる。 As an example of the alloy steel powder using Mo, patent document 1 and 2 are mentioned, for example.
特許文献1では、合金元素としてMoを含有する予合金鋼粉の表面に、さらにMoを拡散付着させた合金鋼粉が提案されている。 Patent Document 1 proposes an alloy steel powder in which Mo is further diffused and adhered to the surface of a pre-alloy steel powder containing Mo as an alloy element.
特許文献2では、Mo予合金鋼粉を用いる際に、焼結体強度をさらに向上させるために、2回成形−2回焼結法を適用することが提案されている。2回成形−2回焼結法では、合金鋼粉を一旦成形、予備焼結した後、再度、成形と本焼結が行われる。 In patent document 2, when using Mo pre-alloyed steel powder, in order to further improve a sintered compact strength, applying twice forming -2 times sintering method is proposed. In the two-time molding-two-time sintering method, the alloy steel powder is once molded and pre-sintered, and then molding and main sintering are performed again.
しかしながら、鉄基粉末プレス成形製品や鉄基粉末焼結製品に対する高強度化の要求はますます強くなっており、上記した特許文献1や特許文献2で提案されている方法では、この高強度化の要求に十分に応えることができない。その理由は次の通りである。 However, there is an increasing demand for higher strength for iron-based powder press-molded products and iron-based powder sintered products, and the methods proposed in Patent Document 1 and Patent Document 2 described above increase this strength. Cannot fully meet the demands of The reason is as follows.
鉄基粉末プレス成形製品や鉄基粉末焼結製品を高強度化するための一つの方策は高密度化である。高密度化することにより、鉄粉粒の再配列が進んで成形品内部の空孔体積率が減少し、鉄粉粒同士が接触して絡み合う面積が増加するため、鉄基粉末プレス成形品や鉄基粉末焼結品の引張強さ、衝撃値、疲れ強さなどの機械的特性が向上する。そして、鉄基粉末焼結品や鉄基粉末プレス成形品を高密度化するためには、プレス成形の原料となる合金鋼粉の圧縮性を上げて、成形密度が上がりやすくすればよい。 One measure for increasing the strength of iron-based powder press-molded products and iron-based powder sintered products is to increase the density. By increasing the density, the rearrangement of iron powder particles progresses, the void volume ratio inside the molded product decreases, and the area where iron powder particles come into contact with each other increases. Mechanical properties such as tensile strength, impact value, and fatigue strength of iron-based powder sintered products are improved. In order to increase the density of the iron-based powder sintered product or the iron-based powder press-molded product, it is only necessary to increase the compressibility of the alloy steel powder used as the raw material for press molding to easily increase the molding density.
そこで、特許文献1では、部分拡散合金鋼粉が用いられている。先に述べたように、部分拡散合金鋼粉は、その粒子の内部に、合金元素を含まないかまたは合金元素の量が少ない部分(以下、「低合金部分」という)を有しているため、予合金鋼粉に比べてプレス成形の際の圧縮性に優れている。前記低合金部分の割合を高めれば圧縮性をさらに向上させることができると考えられるが、焼入れ性などの特性を所望の範囲とするためにはある程度の量の合金元素を拡散付着させる必要があるため、低合金部分の割合を一定以上増やすことはできず、したがって、十分な圧縮性を確保することができない。 Therefore, in Patent Document 1, partially diffused alloy steel powder is used. As described above, partially diffused alloy steel powder has a part (hereinafter referred to as “low alloy part”) containing no alloying element or a small amount of alloying element inside the particle. Compared with pre-alloyed steel powder, it has excellent compressibility during press molding. Although it is considered that the compressibility can be further improved by increasing the proportion of the low alloy portion, it is necessary to diffuse and attach a certain amount of alloy elements in order to bring the characteristics such as hardenability into a desired range. Therefore, the proportion of the low alloy part cannot be increased beyond a certain level, and therefore sufficient compressibility cannot be ensured.
さらに、特許文献1の部分拡散合金鋼粉に対して特許文献2の2回成形−2回焼結法を適用したとしても、1回目の焼結で合金元素の拡散が進んでしまうため、2回目の成形での圧縮性が不十分となるため、やはり十分な圧縮性を得ることができない。 Furthermore, even if the two-time molding-two-time sintering method of Patent Document 2 is applied to the partially diffused alloy steel powder of Patent Document 1, diffusion of the alloy element proceeds in the first sintering, so that 2 Since the compressibility in the second molding becomes insufficient, it is still impossible to obtain sufficient compressibility.
本発明は、上記実状に鑑みてなされたものであり、従来の部分拡散合金鋼粉よりも高い圧縮性を有し、高成形密度を得ることができる粉末冶金用混合粉を提供することを目的とする。また、本発明は、前記粉末冶金用混合粉を用いた焼結体およびその製造方法を提供することを目的とする。 This invention is made | formed in view of the said actual condition, and has the compressibility higher than the conventional partial diffusion alloy steel powder, and it aims at providing the mixed powder for powder metallurgy which can obtain a high forming density. And Moreover, an object of this invention is to provide the sintered compact using the said mixed powder for powder metallurgy, and its manufacturing method.
本発明者等は、上記課題を解決するために検討を行った結果、以下の知見を得た。 As a result of studies to solve the above problems, the present inventors have obtained the following knowledge.
部分拡散合金鋼粉において高圧縮性が発現する根源は、該部分拡散合金鋼粉を構成する粒子の内部に存在する低合金部分、すなわち、合金元素を含まないまたは合金元素が少ない部分である。前記低合金部分では、合金元素による固溶強化が小さく、プレス成形の際に変形が容易である。逆に、粒子の表面には合金元素が拡散付着しているため、合金元素濃度が高く、変形しにくい。 The source of high compressibility in the partially diffused alloy steel powder is a low alloy part existing inside the particles constituting the partially diffused alloy steel powder, that is, a part that does not contain alloy elements or has few alloy elements. In the low alloy part, the solid solution strengthening by the alloy element is small, and deformation is easy during press forming. On the contrary, since the alloy element diffuses and adheres to the surface of the particle, the alloy element concentration is high and deformation is difficult.
上記のように、部分拡散合金鋼粉は、表面が変形しにくく内部が変形しやすい性質を有している。このような粒子の内部構造を有していることで、部分拡散合金鋼粉は予合金粉よりも粒子の再配列が起こりやすいので、成形密度が上がりやすい。しかし、実際に合金鋼粉を成形する際の状態を考えれば分かるように、粒子間の隙間を埋めて粒子を再配列させるためには、粒子の内部よりも表面が周囲に存在する粒子の形状に合わせて変形できることが望ましい。 As described above, the partially diffused alloy steel powder has a property that the surface is difficult to deform and the inside is easily deformed. By having such an internal structure of particles, the partial diffusion alloy steel powder is more likely to rearrange the particles than the pre-alloy powder, so that the molding density is likely to increase. However, as can be understood by considering the state when the alloy steel powder is actually formed, in order to re-arrange the particles by filling the gaps between the particles, the shape of the particles whose surface exists around the inside rather than the inside of the particles It is desirable that it can be deformed in accordance with.
しかしながら、予合金鋼粉および部分拡散合金鋼粉のいずれにおいても、粒子表面には合金成分が含まれるため、上記のような粒子表面が柔らかい状態を実現することはできない。 However, in any of the pre-alloy steel powder and the partially diffusion alloy steel powder, the particle surface contains an alloy component, and thus the above-described particle surface cannot be soft.
そこで、本発明者らは、粒子表面を柔らかくすることに代えて、Moを含有しない鉄基粉末と、Moを含有する合金鋼粉を混合して使用することに想到した。硬度の低い、Moを含有しない鉄基粉末を併用することにより、通常の1回成形においてもプレス成形の際の圧縮性が上がり、さらに2回成形−2回焼結法においても、1回目の焼結で合金元素が拡散してもMoを含まない部分が十分残るため、2回目の成形においても高圧縮性が維持される。しかし、Moを含有しない鉄基粉末の配合量が少なすぎるとこのような効果が不十分となり、逆に多すぎると機械的特性が低下する。 Therefore, the present inventors have conceived that instead of softening the particle surface, iron-based powder not containing Mo and alloy steel powder containing Mo are mixed and used. By using the iron-based powder having a low hardness and not containing Mo, the compressibility at the time of press molding is improved even in the normal one-time molding, and the first molding is also performed in the two-time molding-two-time sintering method. Even if the alloy element is diffused by sintering, a portion not containing Mo remains sufficiently, so that high compressibility is maintained even in the second molding. However, if the amount of the iron-based powder not containing Mo is too small, such an effect is insufficient, and conversely if too large, the mechanical properties are degraded.
以上の知見に基づき、圧縮性と機械的特性を両立できる条件について種々検討を重ねた結果、本発明に想到した。すなわち、本発明の要旨構成は、次のとおりである。 Based on the above findings, the present invention has been conceived as a result of various studies on conditions that can achieve both compressibility and mechanical properties. That is, the gist configuration of the present invention is as follows.
1.粉末冶金用混合粉であって、
(a)Si:0〜0.2質量%およびMn:0〜0.4質量%を含有し、残部がFeおよび不可避不純物である鉄基粉末、および
(b)Mo:2.0〜21.0質量%、Si:0〜0.2質量%およびMn:0〜0.4質量%を含有し、残部がFeおよび不可避不純物である合金鋼粉、
を含有し、
前記(a)鉄基粉末および(b)合金鋼粉の合計に対する(b)合金鋼粉の比率が50〜90質量%であり、
前記(a)鉄基粉末および(b)合金鋼粉の合計に対するMoの比率が2.2〜6.2質量%である、粉末冶金用混合粉。1. A powder mixture for powder metallurgy,
(A) Si: 0 to 0.2% by mass and Mn: 0 to 0.4% by mass, the balance being Fe-based powder with Fe and inevitable impurities, and (b) Mo: 2.0 to 21. Alloy steel powder containing 0% by mass, Si: 0-0.2% by mass and Mn: 0-0.4% by mass, the balance being Fe and inevitable impurities,
Containing
The ratio of (b) alloy steel powder to the total of (a) iron-based powder and (b) alloy steel powder is 50 to 90 mass%,
A mixed powder for powder metallurgy, wherein the ratio of Mo to the total of (a) iron-based powder and (b) alloy steel powder is 2.2 to 6.2 mass%.
2.さらに、
(c)Cu粉、および
(d)黒鉛粉、
を含有し、
前記(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計に対する(c)Cu粉の比率が0.5〜4.0質量%であり、
前記(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計に対する(d)黒鉛粉の比率が0.2〜1.0質量%である、
上記1に記載の粉末冶金用混合粉。2. further,
(C) Cu powder, and (d) Graphite powder,
Containing
The ratio of (c) Cu powder to the total of (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder is 0.5 to 4.0 mass%,
The ratio of (d) graphite powder to the total of (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder is 0.2 to 1.0 mass%.
2. Mixed powder for powder metallurgy according to 1 above.
3.さらに、
(e)潤滑剤
を含有し、
前記(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計に対する(e)潤滑剤の比率が0.2〜1.5質量%である、
上記2に記載の粉末冶金用混合粉。3. further,
(E) contains a lubricant,
The ratio of the (e) lubricant to the total of the (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder is 0.2 to 1.5 mass%.
3. Mixed powder for powder metallurgy according to 2 above.
4.上記1〜3のいずれか一項に記載の粉末冶金用混合粉を成形、焼結した焼結体。 4). The sintered compact which shape | molded and sintered the powder mixture for powder metallurgy as described in any one of said 1-3.
5.上記1〜3のいずれか一項に記載の粉末冶金用混合粉を成形し、焼結して焼結体とする、焼結体の製造方法。 5. The manufacturing method of the sintered compact which shape | molds and sinters the powder mixture for powder metallurgy as described in any one of said 1-3, and makes it a sintered compact.
本発明の粉末冶金用混合粉は、従来の部分拡散合金鋼粉よりも圧縮性に優れており、通常の1回成形−1回焼結法だけでなく2回成形−2回焼結法においても高い成形密度を有するプレス成形品を得ることができる。また、本発明によれば、高い強度を有する焼結体を得ることができる。 The mixed powder for powder metallurgy of the present invention is more compressible than conventional partially diffusion alloy steel powder, and not only in the usual one-time molding-one-time sintering method but also in the two-time molding-two-time sintering method. In addition, a press-molded product having a high molding density can be obtained. Moreover, according to this invention, the sintered compact which has high intensity | strength can be obtained.
本発明を実施する方法について具体的に説明する。なお、以下の説明における「%」表記は、特に断らない限り「質量%」を表す。 A method for carrying out the present invention will be specifically described. In the following description, “%” represents “% by mass” unless otherwise specified.
本発明の一実施形態における粉末冶金用混合粉(以下、単に「混合粉」と言う場合がある)は、(a)鉄基粉末および(b)合金鋼粉を必須成分として含有する。 The powder mixture for powder metallurgy according to an embodiment of the present invention (hereinafter sometimes simply referred to as “mixed powder”) contains (a) iron-based powder and (b) alloy steel powder as essential components.
(a)鉄基粉末
上記鉄基粉末としては、Si:0〜0.2%およびMn:0〜0.4%を含有し、残部がFeおよび不可避不純物である鉄基金属粉末を使用する。前記鉄基粉末は、(b)合金鋼粉と混合することによってプレス成形時の圧縮性を確保する作用を有している。そのため、前記鉄基粉末はできるかぎり柔らかいことが望ましい。鉄基粉末中にFe以外の元素が含まれていると圧縮性低下の原因となるため、前記鉄基粉末としては、Feおよび不可避不純物からなる鉄粉(「純鉄粉」ともいう)を用いることが好ましい。(A) Iron-based powder As the iron-based powder, an iron-based metal powder containing Si: 0 to 0.2% and Mn: 0 to 0.4%, the balance being Fe and inevitable impurities is used. The iron-based powder has an effect of ensuring compressibility during press forming by mixing with the (b) alloy steel powder. Therefore, it is desirable that the iron-based powder is as soft as possible. If an element other than Fe is contained in the iron-based powder, it causes a decrease in compressibility. Therefore, iron powder composed of Fe and inevitable impurities (also referred to as “pure iron powder”) is used as the iron-based powder. It is preferable.
なお、一般的な鉄基粉末には不純物としてSiおよびMnが含有される。SiおよびMnは固溶強化により強度を向上させる効果に加え、焼入れ性向上効果を有する元素である。そのため、SiおよびMnが含まれている場合、プレス成形品を焼結する際の冷却条件や焼入れ・焼き戻しなどの条件によっては、焼結体の強度が向上し、逆に有利に働く場合がある。以上の理由から、前記鉄基粉末は、SiおよびMnの一方または両方を、以下に述べる範囲で含有することが許容される。 A general iron-based powder contains Si and Mn as impurities. Si and Mn are elements having an effect of improving hardenability in addition to an effect of improving strength by solid solution strengthening. Therefore, when Si and Mn are included, the strength of the sintered body may be improved depending on the cooling conditions and quenching / tempering conditions when sintering the press-molded product, which may be advantageous. is there. For the above reasons, the iron-based powder is allowed to contain one or both of Si and Mn within the range described below.
Si:0〜0.2%
Siは、焼入性向上、固溶強化などによって、鋼の強度を向上させる効果を有する元素である。しかし、鉄基粉末におけるSi含有量が0.2%を超えると酸化物の生成が多くなり、圧縮性が低下するとともに、前記酸化物が焼結体での破壊の起点となって、疲労強度および靱性を低下させる。したがって、鉄基粉末のSi含有量は0.2%以下とする。一方、上述したように、圧縮性の観点からはSi含有量が低い方がよく、したがって、Si含有量は0%であってもよい。よって、鉄基粉末のSi含有量は0%以上とする。Si: 0 to 0.2%
Si is an element having an effect of improving the strength of steel by improving hardenability and solid solution strengthening. However, when the Si content in the iron-based powder exceeds 0.2%, the generation of oxide increases, the compressibility decreases, and the oxide becomes a starting point of fracture in the sintered body, resulting in fatigue strength. And reduce toughness. Therefore, the Si content of the iron-based powder is 0.2% or less. On the other hand, as described above, it is better that the Si content is low from the viewpoint of compressibility, and therefore the Si content may be 0%. Therefore, the Si content of the iron-based powder is 0% or more.
Mn:0〜0.4%
Mnも、Siと同様、焼入性向上、固溶強化などによって、鋼の強度を向上させる効果を有する元素である。しかし、鉄基粉末におけるMn含有量が0.4%を超えると酸化物の生成が多くなり、圧縮性が低下するとともに、前記酸化物が焼結体での破壊の起点となって、疲労強度および靱性を低下させる。したがって、鉄基粉末のMn含有量は0.4%以下とする。一方、上述したように、圧縮性の観点からはMn含有量が低い方がよく、したがって、Mn含有量は0%であってよい。よって、鉄基粉末のMn含有量は0%以上とする。Mn: 0 to 0.4%
Mn, like Si, is an element that has the effect of improving the strength of steel by improving hardenability and strengthening solid solution. However, when the Mn content in the iron-based powder exceeds 0.4%, the generation of oxides increases, the compressibility decreases, and the oxides become the starting point of fracture in the sintered body, resulting in fatigue strength. And reduce toughness. Therefore, the Mn content of the iron-based powder is 0.4% or less. On the other hand, as described above, from the viewpoint of compressibility, it is better that the Mn content is low, and therefore the Mn content may be 0%. Therefore, the Mn content of the iron-based powder is 0% or more.
上記鉄基粉末に含まれる不可避的不純物の量は特に限定されないが、合計で1.0質量%以下とすることが好ましく、0.5質量%以下とすることがより好ましく、0.3質量%以下とすることがさらに好ましい。不可避的不純物として含まれる元素のうち、Pの含有量は0.020%以下とすることが好ましい。S含有量は、0.010%以下とすることが好ましい。O含有量は、0.20%以下とすることが好ましい。N含有量は、0.0015%以下とすることが好ましい。Al含有量は0.001%以下とすることが好ましい。Mo含有量は、0.010%以下とすることが好ましい。 The amount of inevitable impurities contained in the iron-based powder is not particularly limited, but is preferably 1.0% by mass or less in total, more preferably 0.5% by mass or less, and 0.3% by mass More preferably, it is as follows. Of the elements contained as inevitable impurities, the P content is preferably 0.020% or less. The S content is preferably 0.010% or less. The O content is preferably 0.20% or less. The N content is preferably 0.0015% or less. The Al content is preferably 0.001% or less. The Mo content is preferably 0.010% or less.
(b)合金鋼粉
上記合金鋼粉としては、Mo:2.0〜21.0%、Si:0〜0.2%およびMn:0〜0.4%を含有し、残部がFeおよび不可避不純物である合金鋼粉を使用する。前記合金鋼粉は、合金元素であるMoを供給する役割を有している。このMoを含有する(b)合金鋼粉と、Moを含まない(a)鉄基粉末とを混合して用いることにより、粉末の優れた圧縮性と、焼結体の高い機械的強度とを高い水準で両立させることができる。(B) Alloy steel powder As the alloy steel powder, Mo: 2.0 to 21.0%, Si: 0 to 0.2% and Mn: 0 to 0.4% are contained, the balance being Fe and inevitable Use alloy steel powder which is an impurity. The alloy steel powder has a role of supplying Mo which is an alloy element. By using this (b) alloy steel powder containing Mo and (a) iron-based powder not containing Mo, the powder has excellent compressibility and high mechanical strength of the sintered body. Both can be achieved at a high level.
Mo:2.0〜21.0%
先に述べたように、Moは酸化しにくく、Feと同程度に還元しやすいため、比較的容易にMoを含有する合金鋼粉を製造できる。Moは、焼入れ性向上効果によって焼入れ処理の際に母相を変態強化する作用に加えて、母相に分配して母相を固溶強化する作用、および母相中で微細炭化物を形成して母相を析出強化する作用を有している。また、Moは浸炭性が良く非粒界酸化元素であるため、浸炭強化する作用も有している。そのため、Moは強化元素として非常に有用である。Mo: 2.0-21.0%
As described above, Mo is difficult to oxidize and can be reduced to the same extent as Fe. Therefore, alloy steel powder containing Mo can be manufactured relatively easily. Mo, in addition to the effect of strengthening the parent phase during the quenching process due to the effect of improving hardenability, the effect of partitioning into the mother phase to strengthen the solid phase, and forming fine carbides in the parent phase It has the effect of precipitation strengthening the matrix. Moreover, Mo has a carburizing property and is a non-grain boundary oxidizing element, and therefore has an effect of strengthening carburizing. Therefore, Mo is very useful as a strengthening element.
ただし、本発明では、鉄基粉末と合金鋼粉とが混合して用いられるため、粉末冶金用混合粉全体としてのMo含有量は元の合金鋼粉よりも低くなる。例えば、粉末冶金用混合粉が鉄基粉末および合金用粉末のみからなる場合、後述するように合金鋼粉の比率が50〜90%であるため、混合粉全体のMo含有量は合金鋼粉におけるMo含有量の1/2〜9/10となる。このことを考慮し、合金鋼粉のMo含有量は2.0%以上とする。Mo含有量が2.0%未満であると上記のようなMoの強化元素としての効果を十分に得ることができない。一方、合金鋼粉のMo含有量が21.0%を超えると靭性が低下する。そのため、合金鋼粉のMo含有量は21.0%以下とする。 However, in this invention, since iron-base powder and alloy steel powder are mixed and used, Mo content as the whole powder metallurgy mixed powder becomes lower than the original alloy steel powder. For example, when the powder mixture for powder metallurgy is composed only of iron-base powder and alloy powder, the ratio of the alloy steel powder is 50 to 90% as described later, so the Mo content of the entire mixed powder is in the alloy steel powder. The Mo content is 1/2 to 9/10. Considering this, the Mo content of the alloy steel powder is set to 2.0% or more. If the Mo content is less than 2.0%, the effect of Mo as a reinforcing element cannot be sufficiently obtained. On the other hand, if the Mo content of the alloy steel powder exceeds 21.0%, the toughness decreases. Therefore, the Mo content of the alloy steel powder is 21.0% or less.
Mo以外の合金元素は基本的には使用しないので、合金鋼粉のMo以外の残部はFeおよび不可避的不純物とすることができる。なお、一般的な合金鋼粉には不純物としてSiおよびMnが含有される。先にも述べたように、SiおよびMnは固溶強化により強度を向上させる効果に加え、焼入れ性向上効果を有する元素である。そのため、SiおよびMnが含まれている場合、プレス成形品を焼結する際の冷却条件や焼入れ・焼き戻しなどの条件によっては、焼結体の強度が向上し、逆に有利に働く場合がある。以上の理由から、前記合金鋼粉は、SiおよびMnの一方または両方を、以下に述べる範囲で含有することが許容される。 Since alloy elements other than Mo are basically not used, the remainder of the alloy steel powder other than Mo can be made into Fe and inevitable impurities. Note that general alloy steel powder contains Si and Mn as impurities. As described above, Si and Mn are elements having an effect of improving hardenability in addition to an effect of improving strength by solid solution strengthening. Therefore, when Si and Mn are included, the strength of the sintered body may be improved depending on the cooling conditions and quenching / tempering conditions when sintering the press-molded product, which may be advantageous. is there. For the above reasons, the alloy steel powder is allowed to contain one or both of Si and Mn within the range described below.
Si:0〜0.2%
Siは、焼入性向上、固溶強化などによって、鋼の強度を向上させる効果を有する元素である。しかし、合金鋼粉におけるSi含有量が0.2%を超えると酸化物の生成が多くなり、圧縮性が低下するとともに、前記酸化物が焼結体での破壊の起点となって、疲労強度および靱性を低下させる。そのため、合金鋼粉のSi含有量は0.2%以下とする。一方、上述したように、圧縮性の観点からはSi含有量が低い方がよく、したがって、Si含有量は0%であってもよい。よって、合金鋼粉のSi含有量は0%以上とする。Si: 0 to 0.2%
Si is an element having an effect of improving the strength of steel by improving hardenability and solid solution strengthening. However, when the Si content in the alloy steel powder exceeds 0.2%, the generation of oxides increases, the compressibility decreases, and the oxides become the starting point of fracture in the sintered body, resulting in fatigue strength. And reduce toughness. Therefore, the Si content of the alloy steel powder is 0.2% or less. On the other hand, as described above, it is better that the Si content is low from the viewpoint of compressibility, and therefore the Si content may be 0%. Therefore, the Si content of the alloy steel powder is set to 0% or more.
Mn:0〜0.4%
Mnも、Siと同様、焼入性向上、固溶強化などによって、鋼の強度を向上させる効果を有する元素である。しかし、合金鋼粉におけるMn含有量が0.4%を超えると酸化物の生成が多くなり、圧縮性が低下するとともに、前記酸化物が焼結体での破壊の起点となって、疲労強度および靱性を低下させる。そのため、合金鋼粉のMn含有量は0.4%以下とする。一方、上述したように、圧縮性の観点からはMn含有量が低い方がよく、したがって、Mn含有量は0%であってよい。よって、合金鋼粉のMn含有量は0%以上とする。Mn: 0 to 0.4%
Mn, like Si, is an element that has the effect of improving the strength of steel by improving hardenability and strengthening solid solution. However, when the Mn content in the alloy steel powder exceeds 0.4%, the generation of oxides increases, the compressibility decreases, and the oxides become the starting point of fracture in the sintered body, resulting in fatigue strength. And reduce toughness. Therefore, the Mn content of the alloy steel powder is set to 0.4% or less. On the other hand, as described above, from the viewpoint of compressibility, it is better that the Mn content is low, and therefore the Mn content may be 0%. Therefore, the Mn content of the alloy steel powder is 0% or more.
上記合金鋼粉に含まれる不可避的不純物の量は特に限定されないが、合計で1.0質量%以下とすることが好ましく、0.5質量%以下とすることがより好ましく、0.3質量%以下とすることがさらに好ましい。不可避的不純物として含まれる元素のうち、Pの含有量は0.020%以下とすることが好ましい。S含有量は、0.010%以下とすることが好ましい。O含有量は、0.20%以下とすることが好ましい。N含有量は、0.0015%以下とすることが好ましい。Al含有量は0.001%以下とすることが好ましい。 The amount of inevitable impurities contained in the alloy steel powder is not particularly limited, but is preferably 1.0% by mass or less in total, more preferably 0.5% by mass or less, and 0.3% by mass. More preferably, it is as follows. Of the elements contained as inevitable impurities, the P content is preferably 0.020% or less. The S content is preferably 0.010% or less. The O content is preferably 0.20% or less. The N content is preferably 0.0015% or less. The Al content is preferably 0.001% or less.
上記合金鋼粉としては、特に限定されることなく、上記成分組成を有するものであれば任意のものを用いることができる。例えば、前記合金鋼粉は、予合金鋼粉および部分拡散合金鋼粉の一方または両方とすることができる。また、前記部分拡散合金鋼粉としては、鉄粉(純鉄粉)の表面に合金元素を拡散付着させたもの、および予合金鋼粉の表面に合金元素を拡散付着させたものの一方または両方を用いることができる。 The alloy steel powder is not particularly limited, and any alloy powder having the above component composition can be used. For example, the alloy steel powder can be one or both of a pre-alloy steel powder and a partially diffusion alloy steel powder. In addition, as the partial diffusion alloy steel powder, one or both of those obtained by diffusing and adhering alloy elements on the surface of iron powder (pure iron powder) and those obtained by diffusing and adhering alloy elements on the surface of prealloyed steel powder are used. Can be used.
合金鋼粉の比率:50〜90%
(a)鉄基粉末および(b)合金鋼粉の合計質量に対する(b)合金鋼粉の質量の比率(以下、単に「合金鋼粉の比率」という)は、50〜90%とする。合金鋼粉の比率が50%未満、すなわち鉄基粉末の比率が50%を超えると、焼結体内部で強度の低い鉄基粉末部分がつながり、焼結体が応力を受けたときに強度の低い部分を亀裂が進展し、破断に至りやすくなる。そのため、合金鋼粉の比率を50%以上とする。一方、合金鋼粉の比率が90%を超える、すなわち鉄基粉末の比率が10%未満になると、圧縮性に寄与する軟らかい部分が少なくなってしまうことになり、混合粉全体の圧縮性が不足する。したがって、合金鋼粉の比率を90%以下とする。Alloy steel powder ratio: 50-90%
The ratio of the mass of (b) alloy steel powder to the total mass of (a) iron-based powder and (b) alloy steel powder (hereinafter simply referred to as “alloy steel powder ratio”) is 50 to 90%. When the ratio of alloy steel powder is less than 50%, that is, when the ratio of iron-based powder exceeds 50%, the iron-based powder portion having low strength is connected inside the sintered body, and the strength of the sintered body is increased when stressed. Cracks develop in the lower part and it tends to break. Therefore, the ratio of alloy steel powder is 50% or more. On the other hand, if the ratio of the alloy steel powder exceeds 90%, that is, the ratio of the iron-based powder is less than 10%, the soft part contributing to the compressibility will decrease, and the compressibility of the mixed powder as a whole will be insufficient. To do. Therefore, the ratio of alloy steel powder is 90% or less.
Moの比率:2.2〜6.2%
前記(a)鉄基粉末および(b)合金鋼粉の合計質量に対するMoの質量の比率(以下、単に「Moの比率」という)が2.2%未満であると、Moが有する強化元素としての効果が不十分となる。そのため、Moの比率は2.2%以上とする。一方、Moの過度の添加は合金コストの上昇を招くため、Moの比率は6.2%以下とする。Mo ratio: 2.2-6.2%
When the ratio of the mass of Mo to the total mass of (a) iron-based powder and (b) alloy steel powder (hereinafter simply referred to as “Mo ratio”) is less than 2.2%, The effect of becomes insufficient. Therefore, the Mo ratio is set to 2.2% or more. On the other hand, excessive addition of Mo causes an increase in alloy cost, so the Mo ratio is set to 6.2% or less.
本発明の一実施形態における粉末冶金用混合粉は、(a)鉄基粉末および(b)合金鋼粉のみからなるもの(鉄基粉末+合金鋼粉:100%)とすることができるが、任意に他の成分を含有することもできる。しかし、混合粉全体の質量に対する(a)鉄基粉末および(b)合金鋼粉の合計質量の比率が過度に低くなると、焼結体の機械的特性が低下する。そのため、混合粉全体の質量に対する(a)鉄基粉末および(b)合金鋼粉の合計質量の比率は90%以上とすることが好ましく、95%以上とすることが好ましい。 The mixed powder for powder metallurgy in one embodiment of the present invention may be composed of only (a) iron-based powder and (b) alloy steel powder (iron-based powder + alloy steel powder: 100%) Optionally, other components can be included. However, when the ratio of the total mass of (a) iron-based powder and (b) alloy steel powder to the total mass of the mixed powder becomes excessively low, the mechanical properties of the sintered body deteriorate. Therefore, the ratio of the total mass of (a) iron-based powder and (b) alloy steel powder to the total mass of the mixed powder is preferably 90% or more, and more preferably 95% or more.
本発明の一実施形態においては、上記粉末冶金用混合粉に、さらに(c)Cu粉および(d)黒鉛粉を添加することができる。Cu粉および黒鉛粉を添加することにより、焼結体の強度をさらに向上させることができる。 In one embodiment of the present invention, (c) Cu powder and (d) graphite powder can be further added to the mixed powder for powder metallurgy. By adding Cu powder and graphite powder, the strength of the sintered body can be further improved.
(c)Cu粉
Cuは、鉄基粉末の固溶強化および焼入れ性向上を促し、焼結体の強度を高める作用を有する元素である。Cu粉の添加量が0.5%未満では、前記作用を十分に得ることができないため、Cu粉の添加量は0.5%以上とする。Cu粉の添加量は1.0%以上とすることが好ましい。一方、Cu粉の添加量が4.0%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、かえって焼結密度の低下を招く。そのため、Cu粉の添加量は4.0%以下とする。Cu粉の添加量は3.0%以下とすることが好ましい。なお、ここで「Cu粉の添加量」とは、(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計質量に対する(c)Cu粉の質量の比率とする。(C) Cu powder Cu is an element having an action of promoting solid solution strengthening and hardenability improvement of the iron-based powder and increasing the strength of the sintered body. If the amount of Cu powder added is less than 0.5%, the above effect cannot be obtained sufficiently, so the amount of Cu powder added is 0.5% or more. The amount of Cu powder added is preferably 1.0% or more. On the other hand, if the added amount of Cu powder exceeds 4.0%, not only the strength improvement effect of the sintered part is saturated, but also the sintered density is lowered. Therefore, the amount of Cu powder added is 4.0% or less. The amount of Cu powder added is preferably 3.0% or less. In addition, "addition amount of Cu powder" here is (c) Cu powder with respect to the total mass of (a) iron base powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder. The mass ratio.
(d)黒鉛粉
黒鉛(グラファイト)は、強度を高めるために有効な成分である。黒鉛粉の添加量が0.2%未満では、前記効果を十分に得ることができない。そのため、黒鉛粉の添加量を0.2%以上とする。黒鉛粉の添加量は0.3%以上とすることが好ましい。一方、黒鉛粉の添加量が1.0%を超えると、過共析によるセメンタイトの析出が増加して強度の低下を招く。そのため、黒鉛粉の添加量を1.0%以下とする。黒鉛粉の添加量は0.8%以下とすることが好ましい。なお、ここで「黒鉛粉の添加量」とは、(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計質量に対する(d)黒鉛粉の質量の比率とする。(D) Graphite powder Graphite (graphite) is an effective component for increasing the strength. If the added amount of graphite powder is less than 0.2%, the above effect cannot be obtained sufficiently. Therefore, the amount of graphite powder added is 0.2% or more. The amount of graphite powder added is preferably 0.3% or more. On the other hand, when the amount of graphite powder added exceeds 1.0%, precipitation of cementite due to hypereutectoid increases, leading to a decrease in strength. Therefore, the amount of graphite powder added is 1.0% or less. The amount of graphite powder added is preferably 0.8% or less. Here, “addition amount of graphite powder” means (d) graphite powder with respect to the total mass of (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder. The mass ratio.
本発明の一実施形態においては、上記粉末冶金用混合粉に、さらに(e)潤滑剤を添加することができる。潤滑剤を添加することにより、粉末冶金用混合粉をプレス成形する際の摩擦を低減して金型の寿命を延ばすとともに、成形体の密度をさらに高めることができる。 In one embodiment of the present invention, (e) a lubricant can be further added to the powder mixture for powder metallurgy. By adding a lubricant, it is possible to reduce the friction when press-molding the mixed powder for powder metallurgy to extend the life of the mold and further increase the density of the molded body.
(e)潤滑剤
潤滑剤の添加量が0.2%未満では、上記効果が表れにくい。そのため、潤滑剤の添加量を0.2%以上とする。潤滑剤の添加量は0.3%以上とすることが好ましい。一方、潤滑剤の添加量が1.5%を超えると、混合粉の中の非金属部分が増えて成形密度が上がりにくくなり、強度が低下する。そのため、潤滑剤の添加量を1.5%以下とする。潤滑剤の添加量は1.2%以下とすることが好ましい。なお、ここで「潤滑剤の添加量」とは、(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計質量に対する(e)潤滑剤の質量の比率とする。(E) Lubricant When the addition amount of the lubricant is less than 0.2%, the above effect is hardly exhibited. Therefore, the addition amount of the lubricant is set to 0.2% or more. The addition amount of the lubricant is preferably 0.3% or more. On the other hand, when the addition amount of the lubricant exceeds 1.5%, the non-metallic portion in the mixed powder increases, the molding density is hardly increased, and the strength is lowered. Therefore, the addition amount of the lubricant is set to 1.5% or less. The addition amount of the lubricant is preferably 1.2% or less. Here, the “addition amount of lubricant” means (e) the total mass of (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder. The mass ratio.
前記潤滑剤としては、特に限定されることなく任意のものを用いることができる。前記潤滑剤としては、例えば、脂肪酸、脂肪酸アミド、脂肪酸ビスアミド、および金属石鹸からなる群より選択される1または2以上を用いることができる。中でも、ステアリン酸リチウム、ステアリン酸亜鉛などの金属石鹸、またはエチレンビスステアロアミドなどのアミド系潤滑剤を用いることが好ましい。 The lubricant is not particularly limited, and any lubricant can be used. As the lubricant, for example, one or more selected from the group consisting of fatty acids, fatty acid amides, fatty acid bisamides, and metal soaps can be used. Among them, it is preferable to use a metal soap such as lithium stearate or zinc stearate, or an amide-based lubricant such as ethylene bisstearamide.
なお、混合粉に潤滑剤を添加・混合する方法以外に、金型に直接潤滑剤を塗布する方法も用いることができ、また、両者を組み合わせる方法も用いることができる。 In addition to the method of adding and mixing the lubricant to the mixed powder, a method of directly applying the lubricant to the mold can be used, and a method of combining both can also be used.
本発明の一実施形態においては、上記粉末冶金用混合粉を用いて焼結体を製造することができる。前記焼結体の製造方法は特に限定されず、任意の方法で製造することができるが、通常は、粉末冶金における常法に従って、粉末冶金用混合粉をプレス成形して成形体とし、次いで、焼結すればよい。 In one Embodiment of this invention, a sintered compact can be manufactured using the said mixed powder for powder metallurgy. The method for producing the sintered body is not particularly limited and can be produced by an arbitrary method. Usually, according to a conventional method in powder metallurgy, a powder mixture for powder metallurgy is press-molded to form a compact, and then, What is necessary is just to sinter.
上記成形体の密度(「成形密度」と言う場合がある)は、特に限定されないが、十分な機械的特性(靭性など)を確保するという観点からは、6.85Mg/m3以上とすることが好ましい。また、焼結体に求められる引張強さはその用途などによっても異なるが、引張強さ:620MPa以上であることが好ましい。The density of the molded body (sometimes referred to as “molding density”) is not particularly limited, but is 6.85 Mg / m 3 or more from the viewpoint of ensuring sufficient mechanical properties (toughness and the like). Is preferred. Moreover, although the tensile strength calculated | required by a sintered compact changes with the uses etc., it is preferable that it is tensile strength: 620 MPa or more.
(実施例1)
SiおよびMnを、不可避不純物としてのみ含有する鉄基粉末および合金鋼粉を用いて粉末冶金用混合粉を製造し、その性能を評価した。具体的な手順は以下のとおりである。Example 1
A mixed powder for powder metallurgy was produced using iron-based powder and alloy steel powder containing Si and Mn only as inevitable impurities, and the performance was evaluated. The specific procedure is as follows.
(a)鉄基粉末は、水アトマイズ法で製造した鉄粉に対して、脱炭および脱酸のために、水素雰囲気にて900℃で60分間の仕上還元処理を施し、得られたケーキを解砕することにより製造した。得られた鉄基粉末の成分組成を表1に示す。なお、表1に示した各元素は、いずれも鉄基粉末中に不可避不純物として含有されているものである。 (A) The iron-based powder was subjected to a final reduction treatment at 900 ° C. for 60 minutes in a hydrogen atmosphere for decarburization and deoxidation on the iron powder produced by the water atomization method. It was manufactured by crushing. The component composition of the obtained iron-based powder is shown in Table 1. Each element shown in Table 1 is contained as an inevitable impurity in the iron-based powder.
(b)合金鋼粉としては、予合金鋼粉と複合型合金鋼粉の2種類を用いた。予合金鋼粉は、水アトマイズに供する溶湯としてMoを含有するものを用いた点以外は上記鉄基粉末と同様の方法で製造した。これにより、合金元素としてのMoがすべて予合金として添加された合金鋼粉を得た。得られた予合金鋼粉の成分組成を表1に示した。 (B) Two types of alloy steel powder were used: pre-alloy steel powder and composite alloy steel powder. The pre-alloyed steel powder was produced by the same method as the iron-based powder except that a metal containing Mo was used as the molten metal for water atomization. As a result, an alloy steel powder to which all Mo as an alloy element was added as a pre-alloy was obtained. The component composition of the obtained pre-alloyed steel powder is shown in Table 1.
複合型合金鋼粉は、上記予合金鋼粉と同様の方法により、5.0質量%のMoを含有する予合金鋼粉を製造し、得られた予合金鋼粉の表面にさらにMoを拡散付着させることによって製造した。前記拡散付着においては、前記予合金鋼粉を、1.0質量%、1.7質量%、3.6質量%、7.0質量%、15.0質量%のMo含有量に相当するMoO3粉と、それぞれ混合し、水素雰囲気にて900℃で60分間熱処理した。前記熱処理により、予合金鋼粉を脱炭・脱酸するとともに、MoO3の還元により生じるMoを予合金鋼粉に拡散付着させた。前記処理によって得たケーキを解砕することにより、予合金鋼粉の表面にMoが拡散付着した複合型合金鋼粉とした。得られた複合型合金鋼粉の成分組成を表1に合わせて示した。The composite type alloy steel powder is manufactured in the same manner as the above prealloyed steel powder by producing a prealloyed steel powder containing 5.0% by mass of Mo, and Mo is further diffused on the surface of the obtained prealloyed steel powder. Manufactured by attaching. In the diffusion adhesion, the prealloyed steel powder is MoO corresponding to a Mo content of 1.0 mass%, 1.7 mass%, 3.6 mass%, 7.0 mass%, and 15.0 mass%. Each of the three powders was mixed and heat-treated at 900 ° C. for 60 minutes in a hydrogen atmosphere. By the heat treatment, the prealloyed steel powder was decarburized and deoxidized, and Mo produced by the reduction of MoO 3 was diffused and adhered to the prealloyed steel powder. By crushing the cake obtained by the above treatment, a composite alloy steel powder in which Mo was diffused and adhered to the surface of the prealloyed steel powder was obtained. The component composition of the obtained composite type alloy steel powder is shown in Table 1 together.
次に、得られた(a)鉄基粉末および(b)合金鋼粉を、表2に示す組み合わせと割合で、V型ミキサーにより15分間混合し、鉄基粉末と合金鋼粉の混合粉を得た。なお、(a)鉄基粉末および(b)合金鋼粉の混合割合は、前記(a)鉄基粉末および(b)合金鋼粉の合計に対するMoの比率が2.3質量%または6.0質量%になることを狙ったものであり、Moの比率の計算値を表2に合わせて示している。 Next, the obtained (a) iron-based powder and (b) alloy steel powder are mixed for 15 minutes by a V-type mixer in the combinations and ratios shown in Table 2, and the mixed powder of iron-based powder and alloy steel powder is obtained. Obtained. The mixing ratio of (a) iron-based powder and (b) alloy steel powder is such that the ratio of Mo to the total of the above (a) iron-based powder and (b) alloy steel powder is 2.3% by mass or 6.0. The calculated value of the ratio of Mo is shown in Table 2 with the aim of becoming mass%.
次いで、上記鉄基粉末と合金鋼粉の混合粉に、さらに、Cu粉、黒鉛粉、Wax系潤滑剤粉末を、表2に示した割合で添加し、V型ミキサーにより15分間混合し粉末冶金用混合粉を得た。なお、No.1〜3においては、Cu粉および黒鉛粉を用いず、潤滑剤のみを添加した。 Next, Cu powder, graphite powder, and Wax lubricant powder are added to the mixed powder of the iron-based powder and alloy steel powder in the proportions shown in Table 2, and mixed for 15 minutes with a V-type mixer. A mixed powder was obtained. In addition, No. In 1-3, only the lubricant was added without using Cu powder and graphite powder.
得られた粉末冶金用混合粉の特性を、以下の手順で評価した。 The characteristics of the obtained powder mixture for powder metallurgy were evaluated by the following procedure.
・プレス成形体の密度
粉末冶金用混合粉のそれぞれを用いて、試験片としてのプレス成形体を作成し、その密度を評価した。前記プレス成形体は、外径38mmφ×内径25mmφ×高さ10mmのリング状とし、成形圧力は686MPaとした。得られた成形体の重量を測定し、寸法から算出される体積で除することによって密度を求めた。結果は表2に示したとおりであった。-Density of a press-molded body Using each of the powder mixture for powder metallurgy, a press-molded body as a test piece was prepared, and the density was evaluated. The press-molded body was in the form of a ring having an outer diameter of 38 mmφ, an inner diameter of 25 mmφ, and a height of 10 mm, and the molding pressure was 686 MPa. The weight of the obtained molded body was measured, and the density was determined by dividing by the volume calculated from the dimensions. The results were as shown in Table 2.
・焼結体の引張強さ
粉末冶金用混合粉のそれぞれから引張試験片としての焼結体を作成し、引張強さを測定した。前記引張試験片は、粉末冶金用混合粉を、幅5.8mm×高さ5mmの平行部を有する引張試験片に成形し、RXガス雰囲気で1130℃にて20分間の焼結処理を行って作製した。結果を表2に合わせて示した。-Tensile strength of sintered body A sintered body as a tensile test piece was prepared from each of the mixed powders for powder metallurgy, and the tensile strength was measured. The tensile test piece is obtained by forming the mixed powder for powder metallurgy into a tensile test piece having a parallel portion with a width of 5.8 mm and a height of 5 mm and performing a sintering process at 1130 ° C. for 20 minutes in an RX gas atmosphere. Produced. The results are shown in Table 2.
表2に示した結果から、鉄基粉末の混合割合が増えるとともに、成形密度は増加し、引張強さは一旦増加した後減少する傾向が認められる。そして、本発明の条件を満たす実施例では、6.85Mg/m3以上の成形密度および620MPa以上の引張強さが得られている。これに対して、鉄基粉末の混合割合が0質量%の場合、混合粉Mo含有量が2.3質量%のときでは引張強さが620MPaに到達しておらず、混合粉Mo含有量が6.0質量%のときでは成形密度と引張強さがともに6.85Mg/m3および620MPaに到達していない。また、純鉄粉の混合割合が70質量%以上の場合、混合粉Mo含有量が2.3質量%、6.0質量%いずれのときも引張強さが620MPaに到達していない。From the results shown in Table 2, it is recognized that as the mixing ratio of the iron-based powder increases, the molding density increases, and the tensile strength tends to decrease after increasing once. In the examples satisfying the conditions of the present invention, a molding density of 6.85 Mg / m 3 or more and a tensile strength of 620 MPa or more are obtained. On the other hand, when the mixing ratio of the iron-based powder is 0% by mass, when the mixed powder Mo content is 2.3% by mass, the tensile strength does not reach 620 MPa, and the mixed powder Mo content is When the content is 6.0% by mass, both the molding density and the tensile strength do not reach 6.85 Mg / m 3 and 620 MPa. When the mixing ratio of the pure iron powder is 70% by mass or more, the tensile strength does not reach 620 MPa when the mixed powder Mo content is 2.3% by mass or 6.0% by mass.
(実施例2)
Mnを含有する鉄基粉末および合金鋼粉を用いた点以外は実施例1と同様の方法で粉末冶金用混合粉を製造し、その性能を評価した。使用した鉄基粉末および合金鋼粉の組成を表3に、各成分の配合割合と評価結果を表4に示す。(Example 2)
A mixed powder for powder metallurgy was produced in the same manner as in Example 1 except that iron-based powder containing Mn and alloy steel powder were used, and the performance was evaluated. Table 3 shows the composition of the iron-base powder and alloy steel powder used, and Table 4 shows the blending ratio of each component and the evaluation results.
表4に示した結果から分かるように、実施例1の場合と同様、鉄基粉末の混合割合が増えるとともに、成形密度が増加し、引張強さは一旦増加した後減少する。そして、本発明の条件を満たす実施例では、6.85Mg/m3以上の成形密度および620MPa以上の引張強さが得られている。As can be seen from the results shown in Table 4, as in Example 1, the mixing ratio of the iron-based powder increases, the molding density increases, and the tensile strength decreases once after increasing. In the examples satisfying the conditions of the present invention, a molding density of 6.85 Mg / m 3 or more and a tensile strength of 620 MPa or more are obtained.
(実施例3)
SiおよびMnを含有する鉄基粉末および合金鋼粉を用いた点以外は実施例1と同様の方法で粉末冶金用混合粉を製造し、その性能を評価した。使用した鉄基粉末および合金鋼粉の組成を表5に、各成分の配合割合と評価結果を表6に示す。(Example 3)
A mixed powder for powder metallurgy was produced in the same manner as in Example 1 except that iron-based powder and alloy steel powder containing Si and Mn were used, and the performance was evaluated. Table 5 shows the composition of the iron-base powder and alloy steel powder used, and Table 6 shows the blending ratio of each component and the evaluation results.
表6に示した結果から分かるように、実施例1、2の場合と同様、鉄基粉末の混合割合が増えるとともに、成形密度が増加し、引張強さは一旦増加した後減少する。そして、本発明の条件を満たす実施例では、6.85Mg/m3以上の成形密度および620MPa以上の引張強さが得られている。また、SiおよびMnの一方または両方を含有する原料粉末を用いた実施例2、3では、高い成形体の密度を維持したまま、実施例1に比べて焼結体の引張強さが向上していることが分かる。このことから、強度を重視する場合には、SiおよびMnの一方または両方を添加することが好ましいといえる。As can be seen from the results shown in Table 6, as in the case of Examples 1 and 2, as the mixing ratio of the iron-based powder increases, the molding density increases, and the tensile strength increases and then decreases. In the examples satisfying the conditions of the present invention, a molding density of 6.85 Mg / m 3 or more and a tensile strength of 620 MPa or more are obtained. Further, in Examples 2 and 3 using the raw material powder containing one or both of Si and Mn, the tensile strength of the sintered body is improved as compared with Example 1 while maintaining a high density of the molded body. I understand that From this, it can be said that it is preferable to add one or both of Si and Mn when emphasizing strength.
Claims (5)
(a)Si:0〜0.2質量%およびMn:0〜0.4質量%を含有し、残部がFeおよび不可避不純物である鉄基粉末、および
(b)Mo:2.0〜21.0質量%、Si:0〜0.2質量%およびMn:0〜0.4質量%を含有し、残部がFeおよび不可避不純物である合金鋼粉、
を含有し、
前記(a)鉄基粉末および(b)合金鋼粉の合計に対する(b)合金鋼粉の比率が50〜90質量%であり、
前記(a)鉄基粉末および(b)合金鋼粉の合計に対するMoの比率が2.2〜6.2質量%である、粉末冶金用混合粉。A powder mixture for powder metallurgy,
(A) Si: 0 to 0.2% by mass and Mn: 0 to 0.4% by mass, the balance being Fe-based powder with Fe and inevitable impurities, and (b) Mo: 2.0 to 21. Alloy steel powder containing 0% by mass, Si: 0-0.2% by mass and Mn: 0-0.4% by mass, the balance being Fe and inevitable impurities,
Containing
The ratio of (b) alloy steel powder to the total of (a) iron-based powder and (b) alloy steel powder is 50 to 90 mass%,
A mixed powder for powder metallurgy, wherein the ratio of Mo to the total of (a) iron-based powder and (b) alloy steel powder is 2.2 to 6.2 mass%.
(c)Cu粉、および
(d)黒鉛粉、
を含有し、
前記(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計に対する(c)Cu粉の比率が0.5〜4.0質量%であり、
前記(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計に対する(d)黒鉛粉の比率が0.2〜1.0質量%である、
請求項1に記載の粉末冶金用混合粉。further,
(C) Cu powder, and (d) Graphite powder,
Containing
The ratio of (c) Cu powder to the total of (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder is 0.5 to 4.0 mass%,
The ratio of (d) graphite powder to the total of (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder is 0.2 to 1.0 mass%.
The mixed powder for powder metallurgy according to claim 1.
(e)潤滑剤
を含有し、
前記(a)鉄基粉末、(b)合金鋼粉、(c)Cu粉、および(d)黒鉛粉の合計に対する(e)潤滑剤の比率が0.2〜1.5質量%である、
請求項2に記載の粉末冶金用混合粉。further,
(E) contains a lubricant,
The ratio of the (e) lubricant to the total of the (a) iron-based powder, (b) alloy steel powder, (c) Cu powder, and (d) graphite powder is 0.2 to 1.5 mass%.
The mixed powder for powder metallurgy according to claim 2.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017017861 | 2017-02-02 | ||
JP2017017861 | 2017-02-02 | ||
PCT/JP2017/044702 WO2018142778A1 (en) | 2017-02-02 | 2017-12-13 | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018142778A1 true JPWO2018142778A1 (en) | 2019-02-07 |
JP6528899B2 JP6528899B2 (en) | 2019-06-12 |
Family
ID=63040395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018508249A Active JP6528899B2 (en) | 2017-02-02 | 2017-12-13 | Method of manufacturing mixed powder and sintered body for powder metallurgy |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190351483A1 (en) |
JP (1) | JP6528899B2 (en) |
KR (1) | KR102250914B1 (en) |
CN (1) | CN110267754B (en) |
SE (1) | SE543206C2 (en) |
WO (1) | WO2018142778A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6627856B2 (en) * | 2017-02-02 | 2020-01-08 | Jfeスチール株式会社 | Method for producing powder mixture for powder metallurgy and sintered body |
US11884996B2 (en) | 2019-05-24 | 2024-01-30 | Jfe Steel Corporation | Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104701A (en) * | 1987-10-15 | 1989-04-21 | Kawasaki Steel Corp | Steel powder having excellent compressibility |
JP2002146403A (en) * | 2000-08-31 | 2002-05-22 | Kawasaki Steel Corp | Alloy steel powder for powder metallurgy |
JP2003247003A (en) * | 2002-02-20 | 2003-09-05 | Jfe Steel Kk | Steel alloy powder for powder metallurgy |
JP2005330573A (en) * | 2003-08-18 | 2005-12-02 | Jfe Steel Kk | Alloy steel powder for powder metallurgy |
JP2012140699A (en) * | 2010-12-16 | 2012-07-26 | Jfe Steel Corp | Alloy steel powder for powder metallurgy, and iron-base sintered material and method for producing the same |
JP2014237878A (en) * | 2013-06-07 | 2014-12-18 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy and manufacturing method of iron-based sintered body |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5080712B1 (en) | 1990-05-16 | 1996-10-29 | Hoeganaes Corp | Optimized double press-double sinter powder metallurgy method |
JP3446322B2 (en) * | 1994-08-03 | 2003-09-16 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy |
JP2002020801A (en) * | 2000-07-07 | 2002-01-23 | Kawasaki Steel Corp | Iron-based powdery mixture for powder metallurgy |
CN100515613C (en) * | 2004-04-22 | 2009-07-22 | 杰富意钢铁株式会社 | Mixed powder for powder metallurgy |
CN102373359B (en) * | 2010-08-20 | 2015-02-18 | 鞍钢重型机械有限责任公司 | Method for producing alloy steel powder special for automobile engines |
CN102560234A (en) * | 2010-12-13 | 2012-07-11 | 巫洲 | Powdered alloy steel for powder metallurgy |
CN103008649B (en) * | 2013-01-07 | 2014-05-07 | 鞍钢重型机械有限责任公司 | Mixed powder for electric tool and preparation method thereof |
JP5929967B2 (en) * | 2013-06-07 | 2016-06-08 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy |
WO2015045273A1 (en) * | 2013-09-26 | 2015-04-02 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy, and process for producing iron-based sintered object |
CN103506618B (en) * | 2013-10-15 | 2016-02-24 | 中南大学 | Powder used in metallurgy is containing Mn mixing comminuted steel shot and preparation method |
-
2017
- 2017-12-13 JP JP2018508249A patent/JP6528899B2/en active Active
- 2017-12-13 KR KR1020197022895A patent/KR102250914B1/en active IP Right Grant
- 2017-12-13 US US16/482,416 patent/US20190351483A1/en not_active Abandoned
- 2017-12-13 WO PCT/JP2017/044702 patent/WO2018142778A1/en active Application Filing
- 2017-12-13 SE SE1950950A patent/SE543206C2/en unknown
- 2017-12-13 CN CN201780085068.6A patent/CN110267754B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104701A (en) * | 1987-10-15 | 1989-04-21 | Kawasaki Steel Corp | Steel powder having excellent compressibility |
JP2002146403A (en) * | 2000-08-31 | 2002-05-22 | Kawasaki Steel Corp | Alloy steel powder for powder metallurgy |
JP2003247003A (en) * | 2002-02-20 | 2003-09-05 | Jfe Steel Kk | Steel alloy powder for powder metallurgy |
JP2005330573A (en) * | 2003-08-18 | 2005-12-02 | Jfe Steel Kk | Alloy steel powder for powder metallurgy |
JP2012140699A (en) * | 2010-12-16 | 2012-07-26 | Jfe Steel Corp | Alloy steel powder for powder metallurgy, and iron-base sintered material and method for producing the same |
JP2014237878A (en) * | 2013-06-07 | 2014-12-18 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy and manufacturing method of iron-based sintered body |
Also Published As
Publication number | Publication date |
---|---|
KR102250914B1 (en) | 2021-05-11 |
WO2018142778A1 (en) | 2018-08-09 |
US20190351483A1 (en) | 2019-11-21 |
JP6528899B2 (en) | 2019-06-12 |
KR20190104570A (en) | 2019-09-10 |
SE1950950A1 (en) | 2019-08-21 |
SE543206C2 (en) | 2020-10-20 |
CN110267754B (en) | 2021-10-29 |
CN110267754A (en) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6394768B2 (en) | Alloy steel powder and sintered body for powder metallurgy | |
JP6146548B1 (en) | Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body | |
CA2911031C (en) | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body | |
JP2002146403A (en) | Alloy steel powder for powder metallurgy | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
JP2010090470A (en) | Iron-based sintered alloy and method for producing the same | |
JP2011094187A (en) | Method for producing high strength iron based sintered compact | |
JP6515955B2 (en) | Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JP2018123428A (en) | Iron-based powdery mixture for powder metallurgy and production method therefor, and sintered compact excellent in tensile strength and shock resistance | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
WO2018143088A1 (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
KR102533137B1 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JP6627856B2 (en) | Method for producing powder mixture for powder metallurgy and sintered body | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same | |
WO2023157386A1 (en) | Iron-based mixed powder for powder metallurgy, and iron-based sintered body | |
JP2021042463A (en) | Iron base pre-alloyed powder, iron based diffusion bonded powder, and powder metallurgical alloy powder using the same | |
JP2010255082A (en) | Iron-based sintered alloy and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190429 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6528899 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |