JP2007031841A - Iron-based powder mixture for warm die lubricating compaction - Google Patents

Iron-based powder mixture for warm die lubricating compaction Download PDF

Info

Publication number
JP2007031841A
JP2007031841A JP2006256560A JP2006256560A JP2007031841A JP 2007031841 A JP2007031841 A JP 2007031841A JP 2006256560 A JP2006256560 A JP 2006256560A JP 2006256560 A JP2006256560 A JP 2006256560A JP 2007031841 A JP2007031841 A JP 2007031841A
Authority
JP
Japan
Prior art keywords
lubricant
iron
powder
based powder
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006256560A
Other languages
Japanese (ja)
Other versions
JP4770667B2 (en
Inventor
Shigeru Unami
繁 宇波
Yukiko Ozaki
由紀子 尾▲崎▼
Satoshi Uenosono
聡 上ノ薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006256560A priority Critical patent/JP4770667B2/en
Publication of JP2007031841A publication Critical patent/JP2007031841A/en
Application granted granted Critical
Publication of JP4770667B2 publication Critical patent/JP4770667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-based powder mixture for warm die lubricating compaction used for manufacturing a green compact of iron-based powder. <P>SOLUTION: An iron-based powder mixture containing an iron-base powder and a compaction lubricant in which a lubricant having a low melting point not higher than a prescribed compaction temperature comprises 10 to 75 mass% of the total amount of lubricant and the balance is composed of a lubricant having a melting point higher than the prescribed compaction temperature by 0.05 to 0.40 mass% is heated. A lubricant, which consists of lubricant having a melting point higher than the compaction temperature and the balance lubricant having a melting point lower than the compaction temperature, is allowed to adhere to the surface of a die by electrification. After the die is filled with the heated iron-based powder mixture, the powder mixture is compacted at prescribed temperature into a green compact. In this way, the high density green compact can be obtained by a single compaction. Further, the green compact may be sintered into a high density sintered compact. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粉末冶金用鉄基粉末成形体および鉄基焼結体の製造に使用する鉄基粉末混合物に係り、とくに、温間成形により高密度の鉄基粉末成形体を製造する際に使用する潤滑剤の改善に関する。   The present invention relates to an iron-based powder mixture for powder metallurgy and an iron-based powder mixture used for the production of an iron-based sintered body, and in particular, used for producing a high-density iron-based powder molded body by warm forming. It relates to the improvement of lubricant.

粉末冶金用鉄基粉末成形体は、鉄基粉末に、銅粉、黒鉛粉などの合金粉末と、さらにステアリン酸亜鉛、ステアリン酸鉛等の潤滑剤を混合した鉄基粉末混合物を金型に充填したのち、加圧成形し製造されるのが一般的である。成形体の密度としては、6.6 〜7.1Mg/m3が一般的である。
これら鉄基粉末成形体は、さらに焼結処理を施され焼結体とされ、さらに必要に応じてサイジングや切削加工が施され、粉末冶金製品とされる。また、さらに高強度が必要な場合は焼結後に浸炭熱処理や光輝熱処理を施されることもある。
The iron-based powder compact for powder metallurgy is filled with iron-based powder mixture in which iron-based powder is mixed with alloy powder such as copper powder and graphite powder, and lubricant such as zinc stearate and lead stearate. After that, it is generally produced by pressure molding. The density of the molded body is generally 6.6 to 7.1 Mg / m 3 .
These iron-based powder compacts are further subjected to a sintering treatment to obtain sintered bodies, and further subjected to sizing and cutting as necessary to obtain powder metallurgy products. When higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.

この粉末冶金技術により、高寸法精度の複雑な形状の部品をニアネット形状に生産することが可能となり、従来の製造方法に比べ大幅に切削コストの低減が可能である。
さらに、最近では、切削加工の省略によるコスト削減のための一層の高寸法精度化や、部品の小型軽量化のための高強度化が鉄系の粉末冶金製品へ強く要求されている。
粉末冶金製品(焼結部品)の高強度化に対しては、成形体の高密度化による焼結部品の高密度化が有効である。焼結部品の密度が高いほど、部品中の空孔が減少し、引張強さ、衝撃値や疲労強度などの機械的特性が向上する。
By this powder metallurgy technology, it becomes possible to produce a part having a complicated shape with high dimensional accuracy in a near net shape, and the cutting cost can be greatly reduced as compared with the conventional manufacturing method.
Further, recently, there has been a strong demand for iron-based powder metallurgy products to further increase the dimensional accuracy for cost reduction by omitting cutting and to increase the strength for reducing the size and weight of parts.
For increasing the strength of powder metallurgy products (sintered parts), it is effective to increase the density of the sintered parts by increasing the density of the compact. The higher the density of the sintered part, the fewer the voids in the part, and the mechanical properties such as tensile strength, impact value and fatigue strength are improved.

鉄基粉末成形体の高密度化を可能とする成形方法として、鉄基粉末混合物を通常の成形と焼結を施したのち、さらに成形・焼結を繰り返して行う2回成形2回焼結法や、1回成形1回焼結後熱間で鍛造する焼結鍛造法などが提案されている。
また、例えば、特許文献1、特許文献2、特許文献3、特許文献4には、金属粉末を加熱しつつ成形する温間成形技術が開示されている。この温間成形技術は、温間成形時に潤滑剤の一部または全部を溶融させて粉末粒子間に潤滑剤を均一に分散させ、粒子間および成形体と金型の間の摩擦抵抗を下げ成形性を向上させようとするものであり、上記した高密度成形体の製造方法のなかではコスト的には最も有利であると考えられている。この温間成形技術によれば、Fe-4Ni-0.5Mo-1.5Cu系の部分合金化鉄粉に0.5 質量%の黒鉛、0.6 質量%の潤滑剤を配合した鉄基粉末混合物を150 ℃で7t/cm2(686 MPa )の圧力で成形した場合、7.30Mg/m3 程度の成形体が得られる。
As a molding method that enables the densification of iron-based powder compacts, the two-molding twice-sintering method in which the iron-based powder mixture is subjected to normal molding and sintering, followed by repeated molding and sintering. In addition, a sintering forging method in which hot forging is performed after one-time molding and single sintering has been proposed.
Further, for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 disclose warm forming techniques for forming metal powder while heating. This warm molding technology melts part or all of the lubricant during warm molding to uniformly disperse the lubricant between the powder particles, reducing the frictional resistance between the particles and between the compact and the mold. Among the above-described methods for producing a high-density molded body, it is considered that it is most advantageous in terms of cost. According to this warm forming technology, a Fe-4Ni-0.5Mo-1.5Cu-based partially alloyed iron powder was mixed with an iron-based powder mixture containing 0.5% by mass of graphite and 0.6% by mass of lubricant at 150 ° C for 7t. When molded at a pressure of / cm 2 (686 MPa), a molded body of about 7.30 Mg / m 3 is obtained.

しかしながら、特許文献1、特許文献2、特許文献3、特許文献4に記載された技術では、粉末混合物の流動性が不十分で、生産性が低下するうえ、成形体の密度にばらつきが生じ、焼結体の特性が変動するという問題があり、さらに、成形時の抜き出し力が高く、成形体表面に疵が発生するとともに金型の寿命が短いなどの問題があった。
さらに、これらの温間成形技術では、粒子間および成形体と金型の間の摩擦抵抗を下げ成形性を向上させる目的で、鉄基粉末混合物中に潤滑剤を含有させるが、潤滑剤は、温間成形時にその一部又は全部が溶融して成形体表面付近に押し出され、その後の焼結処理により、加熱分解あるいは蒸発して成形体から逸散し、焼結体表面付近に粗大な空孔を形成する。そのため、焼結体の機械的強度を低下させるという問題があった。
However, in the techniques described in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, the fluidity of the powder mixture is insufficient, the productivity is lowered, and the density of the molded body varies, There are problems that the characteristics of the sintered body fluctuate, and further, there are problems such as high extraction force during molding, generation of wrinkles on the surface of the molded body, and short life of the mold.
Further, in these warm molding techniques, a lubricant is contained in the iron-based powder mixture for the purpose of reducing the frictional resistance between the particles and between the molded body and the mold and improving the moldability. At the time of warm forming, a part or all of it is melted and extruded near the surface of the molded body, and then heated and decomposed or evaporated by the sintering process to dissipate from the molded body. Form holes. Therefore, there is a problem that the mechanical strength of the sintered body is lowered.

この問題を解決するために、特許文献5には常温または温間成形において、帯電させた潤滑剤粉末を金型表面に塗布して、鉄基粉末混合物中の潤滑剤量を低減し、高密度の成形体を成形する技術が開示されている。
特開平2-156002号公報 特公平7-103404号公報 USP 第5,256,185 号公報 USP 第5,368,630 号公報 特開平8-100203号公報
In order to solve this problem, Patent Document 5 discloses that, in normal temperature or warm molding, a charged lubricant powder is applied to the mold surface to reduce the amount of lubricant in the iron-based powder mixture, and the high density. A technique for forming a molded body is disclosed.
JP-A-2-156002 Japanese Patent Publication No.7-103404 USP No. 5,256,185 USP No. 5,368,630 JP-A-8-100203

しかしながら、特許文献5に記載された方法では、塗布する潤滑剤の種類が単体であるため、その融点前後で潤滑剤の形態が変わり、潤滑機能が著しく変化する。このため、成形温度範囲が潤滑剤の融点によって限定されるという問題があった。さらに金型潤滑剤を金型表面に塗布し鉄基粉末混合物中の潤滑剤量を低減したとしても、混合する潤滑剤の成分によっては量の低減によって潤滑効果を失い、圧粉密度の増大が実現できないという問題も生じている。   However, in the method described in Patent Document 5, since the type of lubricant to be applied is a simple substance, the form of the lubricant changes before and after its melting point, and the lubricating function changes significantly. For this reason, there has been a problem that the molding temperature range is limited by the melting point of the lubricant. Furthermore, even if a mold lubricant is applied to the mold surface and the amount of lubricant in the iron-based powder mixture is reduced, depending on the components of the lubricant to be mixed, the lubrication effect is lost due to the reduction in the amount, and the dust density increases. There is also a problem that it cannot be realized.

また、自動車用部品の高強度化という観点と、コストという観点からは、更なる高密度の成形体を、しかも1回の成形で得ることのできる、高密度鉄基粉末成形体の製造方法の開発が望まれていた。
本発明は、上記した従来技術の問題を有利に解決し、例えば、Fe-4Ni-0.5Mo-1.5Cu組成の部分合金化鉄粉に0.5 重量%の黒鉛粉を混合した鉄基粉末混合物を温間加圧成形した場合には7.4 Mg/m3 以上の、高密度の成形体を1回の成形で得ることができる、高密度鉄基粉末成形体の製造に使用できる鉄基粉末混合物を提案することを目的とする。
In addition, from the viewpoint of increasing the strength of automobile parts and from the viewpoint of cost, a method for producing a high-density iron-based powder molded body that can obtain a further high-density molded body by a single molding. Development was desired.
The present invention advantageously solves the above-mentioned problems of the prior art. For example, an iron-based powder mixture obtained by mixing 0.5% by weight of graphite powder with partially alloyed iron powder having a composition of Fe-4Ni-0.5Mo-1.5Cu is heated. Proposes an iron-based powder mixture that can be used for the production of high-density iron-based powder compacts that can be obtained by single molding of high-density compacts of 7.4 Mg / m 3 or more when subjected to hot pressing. The purpose is to do.

本発明者らは、温間成形技術および金型潤滑成形技術を利用して上記した課題を達成するために、金型潤滑用潤滑剤および鉄基粉末混合粉の潤滑剤配合について鋭意検討を行った。その結果、抜き出し力を低減させるため、予熱した金型表面に帯電付着により付着させることのできる金型潤滑用潤滑剤として、所定の加圧成形の温度以下の低い融点を有する潤滑剤とその温度より高い融点を有する潤滑剤を適正な配合で混合した潤滑剤がよいという知見を得た。   In order to achieve the above-mentioned problems by utilizing the warm molding technique and the mold lubrication molding technique, the present inventors have conducted intensive studies on the blending of the lubricant for the mold lubrication and the iron-based powder mixed powder. It was. As a result, in order to reduce the extraction force, as a lubricant for mold lubrication that can be adhered to the preheated mold surface by electrification, a lubricant having a low melting point below a predetermined pressure molding temperature and its temperature It was found that a lubricant obtained by mixing a lubricant having a higher melting point with an appropriate blend is good.

本発明は、上記した知見に基づき、さらに検討して完成されたものである。
すなわち、第1の本発明は、鉄基粉末と、粉末成形用潤滑剤とを含む鉄基粉末混合物であって、前記粉末成形用潤滑剤が、粉末成形用潤滑剤全量の10〜75質量%の、加圧成形の温度以下の低い融点を有する潤滑剤を含み、残部が、加圧成形の温度より高い融点を有する潤滑剤であり、前記粉末成形用潤滑剤の含有量が、0.05〜0.40質量%であることを特徴とする温間金型潤滑成形用鉄基粉末混合物である。
The present invention has been completed by further study based on the above findings.
That is, the first present invention is an iron-based powder mixture containing an iron-based powder and a powder molding lubricant, wherein the powder molding lubricant is 10 to 75% by mass of the total amount of the powder molding lubricant. A lubricant having a melting point lower than the pressure molding temperature, and the balance is a lubricant having a melting point higher than the pressure molding temperature, and the content of the powder molding lubricant is 0.05 to 0.40. It is an iron-based powder mixture for warm mold lubrication molding, characterized in that it is mass%.

本発明によれば、一回の加圧成形で高密度の成形体を容易に得ることができる。     According to the present invention, a high-density molded body can be easily obtained by one press molding.

本発明によれば、外観性状、断面性状いずれも良好である、高密度の成形体を1回の成形で容易に製造でき、しかも成形後の抜き出し力が低く、金型を長寿命化することができ、さらに高密度の焼結体が容易に得られるという産業上格段の効果を奏する。   According to the present invention, it is possible to easily produce a high-density molded body having good appearance properties and cross-sectional properties by one molding, and has a low extraction force after molding, thereby extending the life of the mold. In addition, there is a remarkable industrial effect that a sintered body with higher density can be easily obtained.

本発明では、金型に、加熱した鉄基粉末混合物を充填したのち、所定の温度で加圧成形し、鉄基粉末成形体とする。
本発明では、成形に用いる金型は、予め所定の温度に予熱される。金型の予熱温度は、鉄基粉末混合物が所定の加圧成形の温度に保持できる温度であればよく、とくに限定する必要はないが、所定の加圧成形の温度より20〜60℃高い温度とするのが望ましい。
In the present invention, the mold is filled with a heated iron-based powder mixture, and then pressure-molded at a predetermined temperature to obtain an iron-based powder molded body.
In the present invention, the mold used for molding is preheated to a predetermined temperature in advance. The preheating temperature of the mold is not particularly limited as long as the iron-based powder mixture can be maintained at a predetermined pressure molding temperature, but is 20 to 60 ° C. higher than the predetermined pressure molding temperature. Is desirable.

予熱された金型に、帯電された金型潤滑用潤滑剤を導入し、金型表面に帯電付着させる。金型潤滑用潤滑剤(固体粉末)は金型潤滑装置(例えば、Gasbarre社製Die Wall Lubricant System )に装入し、潤滑剤(固体)粉末と装置内壁の接触帯電により帯電されるのが好ましい。帯電された金型潤滑用潤滑剤は、噴射により金型内に導入され、金型表面に帯電付着される。金型表面に帯電付着させる金型潤滑用潤滑剤の付着量は、5〜100g/m2 とするのが好ましい。付着量が5g/m2未満では潤滑効果が不足し、成形後の抜き出し力が高くなり、100g/m2 を超えると、成形体表面に潤滑剤が残存し,成形体の外観不良となる。 A charged mold lubricant is introduced into a preheated mold and charged and adhered to the mold surface. It is preferable that the lubricant for mold lubrication (solid powder) is charged in a mold lubrication apparatus (for example, Die Wall Lubricant System manufactured by Gasbarre) and charged by contact charging between the lubricant (solid) powder and the inner wall of the apparatus. . The charged mold-lubricating lubricant is introduced into the mold by spraying, and is charged and adhered to the mold surface. The adhesion amount of the lubricant for mold lubrication to be charged and adhered to the mold surface is preferably 5 to 100 g / m 2 . When the adhesion amount is less than 5 g / m 2 , the lubrication effect is insufficient and the extraction force after molding becomes high, and when it exceeds 100 g / m 2 , the lubricant remains on the surface of the molded body, resulting in poor appearance of the molded body.

粉末を予熱した金型で加圧成形する際に金型表面に帯電付着させて使用する温間金型潤滑用潤滑剤は、所定の加圧成形の温度より高い融点を有する潤滑剤を 0.5〜80質量%含有し、残部が前記所定の加圧成形の温度以下の低い融点を有する潤滑剤からなる混合潤滑剤とする。なお、本発明でいう所定の加圧成形の温度は、加圧成形時の金型表面での温度をいうものとする。   The lubricant for warm mold lubrication used by charging and adhering to the mold surface when the powder is pressure-molded with a preheated mold is a lubricant having a melting point higher than a predetermined pressure molding temperature of 0.5 to A mixed lubricant comprising 80% by mass, the balance being a lubricant having a low melting point below the predetermined pressure molding temperature. The predetermined pressure molding temperature in the present invention refers to the temperature on the mold surface during pressure molding.

所定の加圧成形の温度より高い融点を有する潤滑剤は、成形時、金型内で未溶融であり金型内で「ころ」のような固体潤滑剤の働きをし、抜き出し力を低下させるとともに、さらに、溶融あるいは部分溶融した潤滑剤(所定の加圧成形の温度より低い融点を有する潤滑剤)の金型内での移動を防止し、成形体と金型表面との摩擦抵抗を低減して抜き出し力の増加を防止する役割を有している。   A lubricant having a melting point higher than a predetermined pressure molding temperature is unmelted in the mold at the time of molding, and acts as a solid lubricant like a “roller” in the mold to reduce the extraction force. In addition, the molten or partially melted lubricant (lubricant having a melting point lower than the predetermined pressure molding temperature) is prevented from moving in the mold, and the frictional resistance between the molded body and the mold surface is reduced. Thus, it has a role of preventing an increase in extraction force.

所定の加圧成形の温度より高い融点を有する潤滑剤の含有量が、 0.5質量%未満では、加圧成形の温度より低い融点の潤滑剤が多くなり、潤滑剤が溶融する量が多くなり、潤滑剤が移動し金型表面で均一な分布とならず、成形体と金型表面との摩擦抵抗が増大して抜き出し力の低減効果が少ない。一方、80質量%を超えると、金型内で溶融しない潤滑剤の量が多くなりすぎ、金型表面の潤滑剤の分布が不均一となり、金型潤滑が不十分で抜き出し力が増加する。このため、温間金型潤滑用潤滑剤における所定の加圧成形の温度より高い融点を有する潤滑剤の配合量は、 0.5〜80質量%の範囲に限定した。   When the content of the lubricant having a melting point higher than a predetermined pressure molding temperature is less than 0.5% by mass, the lubricant having a melting point lower than the pressure molding temperature is increased, and the amount of the lubricant to be melted is increased. The lubricant moves and does not have a uniform distribution on the mold surface, and the frictional resistance between the molded body and the mold surface increases, and the effect of reducing the extraction force is small. On the other hand, if it exceeds 80% by mass, the amount of the lubricant that does not melt in the mold becomes excessive, the distribution of the lubricant on the mold surface becomes uneven, the mold lubrication is insufficient, and the extraction force increases. For this reason, the blending amount of the lubricant having a melting point higher than the predetermined pressure molding temperature in the warm mold lubricant lubricant is limited to the range of 0.5 to 80% by mass.

金型潤滑用潤滑剤における残部は、所定の加圧成形の温度以下の低い融点を有する潤滑剤である。所定の加圧成形の温度以下の低い融点を有する潤滑剤は、加圧成形の温度で、溶融あるいは部分溶融し、金型表面でグリースのような状態になり、抜き出し力を下げる効果を有している。
温間金型潤滑用潤滑剤における所定の加圧成形の温度より高い融点を有する潤滑剤は、金属石鹸、熱可塑性樹脂、熱可塑性エラストマー、層状の結晶構造を有する無機潤滑剤または有機潤滑剤のうちから選ばれた1種または2種以上とするのが好ましい。所定の加圧成形の温度に応じ、下記した潤滑剤から適宜選択できる。
The balance in the lubricant for mold lubrication is a lubricant having a low melting point equal to or lower than a predetermined pressure molding temperature. A lubricant having a low melting point below a predetermined pressure molding temperature is melted or partially melted at the pressure molding temperature, becomes a grease-like state on the mold surface, and has the effect of reducing the extraction force. ing.
Lubricants having a melting point higher than a predetermined pressure molding temperature in the lubricant for warm mold lubrication are metal soaps, thermoplastic resins, thermoplastic elastomers, inorganic lubricants having a layered crystal structure, or organic lubricants. It is preferable to use one or more selected from among them. Depending on the predetermined pressure molding temperature, the lubricant can be appropriately selected from the following lubricants.

金属石鹸としては、ステアリン酸リチウム、ヒドロキシステアリン酸リチウム等が好ましい。また、熱可塑性樹脂としては、ポリスチレン、ポリアミド、フッ素樹脂等が好適である。熱可塑性エラストマーとしては、ポリスチレン系エラストマー、ポリアミド系エラストマー等が好適である。また、層状の結晶構造を有する無機潤滑剤としては、黒鉛、MoS2、フッ化炭素のいずれでも良く、粒度は細かいほど、抜き出し力の低減に有効である。層状の結晶構造を有する有機潤滑剤としては、メラミン−シアヌル酸付加物(MCA )、N −アルキルアスパラギン酸−β−アルキルエステルのいずれも使用することができる。 As the metal soap, lithium stearate, lithium hydroxystearate and the like are preferable. Further, as the thermoplastic resin, polystyrene, polyamide, fluororesin and the like are suitable. As the thermoplastic elastomer, polystyrene elastomer, polyamide elastomer and the like are suitable. The inorganic lubricant having a layered crystal structure may be any of graphite, MoS 2 , and fluorocarbon, and the finer the particle size, the more effective the reduction of the extraction force. As the organic lubricant having a layered crystal structure, any of melamine-cyanuric acid adduct (MCA) and N-alkylaspartic acid-β-alkyl ester can be used.

一方、温間金型潤滑用潤滑剤における所定の加圧成形の温度以下の低い融点を有する潤滑剤は、所定の加圧成形の温度で金型表面で溶融あるいは部分溶融する低融点で帯電しやすい潤滑剤とするのが望ましい。このような潤滑剤としては、金属石鹸、アミド系ワックス、ポリエチレンおよびこれらのうちの2種以上の共溶融物のうちから選ばれた1種または2種以上とするのが好ましい。所定の加圧成形の温度に応じ、下記した潤滑剤から選択できる。金属石鹸としては、ステアリン酸亜鉛、ステアリン酸カルシウムが好適であり、アミド系ワックスとしては、エチレンビスステアロアミド、ステアリン酸モノアミド等が好適であり、共溶融物としては、エチレンビスステアロアミドとポリエチレンの共溶融物、エチレンビスステアロアミドとステアリン酸亜鉛の共溶融物、エチレンビスステアロアミドとステアリン酸カルシウムの共溶融物が好適である。   On the other hand, a lubricant having a low melting point equal to or lower than a predetermined pressure molding temperature in the lubricant for warm mold lubrication is charged with a low melting point that melts or partially melts on the mold surface at the predetermined pressure molding temperature. It is desirable to use an easy lubricant. Such a lubricant is preferably one or more selected from metal soap, amide wax, polyethylene, and two or more co-melts thereof. Depending on the temperature of the predetermined pressure molding, it can be selected from the following lubricants. Zinc stearate and calcium stearate are suitable as the metal soap, ethylene bisstearamide, stearic acid monoamide and the like are suitable as the amide wax, and ethylene bisstearamide and polyethylene as the co-melt. Of these, a co-melt of ethylene bis-stearamide and zinc stearate, and a co-melt of ethylene bis-stearamide and calcium stearate are preferred.

ついで、金型潤滑用潤滑剤を帯電付着された金型に、加熱された鉄基粉末混合物を装入し、加圧成形し、成形体とする。
鉄基粉末混合物の加熱温度は、70〜200 ℃とするのが好ましい。加熱温度が70℃未満では、鉄粉の降伏応力が高く、成形体の密度が低下する。一方、加熱温度が200 ℃を超えても実質的に密度の増加はなく、鉄粉の酸化の懸念が生じるため、鉄基粉末混合物の加熱温度は、70〜200 ℃の範囲とするのが望ましい。
Next, a heated iron-based powder mixture is charged into a mold charged with a lubricant for mold lubrication and is pressure-molded to obtain a molded body.
The heating temperature of the iron-based powder mixture is preferably 70 to 200 ° C. If heating temperature is less than 70 degreeC, the yield stress of iron powder is high and the density of a molded object falls. On the other hand, even if the heating temperature exceeds 200 ° C, there is no substantial increase in density, and there is a concern about oxidation of iron powder. Therefore, the heating temperature of the iron-based powder mixture is preferably in the range of 70 to 200 ° C. .

鉄基粉末混合物は、鉄基粉末に潤滑剤(粉末成形用潤滑剤)あるいはさらに合金用粉末を混合したものである。鉄基粉末と粉末成形用潤滑剤あるいはさらに合金用粉末との混合は、とくに限定する必要はなく、通常公知の混合方法がいずれも好適に利用できる。なかでも、鉄基粉末に合金用粉末を混合する場合には、含有粉末の偏析を避けるため、鉄基粉末、合金用粉末に粉末成形用潤滑剤の1部を加えて1次混合したのち、さらに粉末成形用前記潤滑剤のうち少なくとも1種の潤滑剤の融点以上に加熱しつつ撹拌して、前記粉末成形用潤滑剤のうち少なくとも1種の潤滑剤を溶融し、溶融後の混合物を撹拌しながら冷却し、前記鉄基粉末表面に溶融した潤滑剤を固着させることによって前記合金用粉末を付着させた後、粉末成形用潤滑剤の残部を加えて2次混合する混合方法が好ましい。   The iron-based powder mixture is obtained by mixing a lubricant (powder-forming lubricant) or an alloy powder with iron-based powder. The mixing of the iron-based powder and the powder molding lubricant or the alloy powder is not particularly limited, and any known mixing method can be suitably used. In particular, when mixing the powder for alloying with the iron-based powder, in order to avoid segregation of the contained powder, after adding 1 part of the powder-forming lubricant to the iron-based powder and alloying powder, Further, the powder molding lubricant is stirred while being heated to the melting point of at least one of the lubricants, to melt at least one lubricant among the powder molding lubricants, and the melted mixture is stirred. A mixing method is preferred in which the alloy powder is adhered by cooling and fixing the molten lubricant to the surface of the iron-based powder, and then the remainder of the powder molding lubricant is added and secondarily mixed.

本発明における鉄基粉末は、アトマイズ鉄粉または還元鉄粉などの純鉄粉、または部分拡散合金化鋼粉、完全合金化鋼粉、またはこれらの混合粉が好ましい。
鉄基粉末混合物に含まれる粉末成形用潤滑剤の含有量は、鉄基粉末混合物全体に対し0.05〜0.40質量%とするのが好ましい。粉末成形用潤滑剤の含有量が0.05質量%未満では、鉄基混合粉末の流動性が悪く金型表面へ均一に充填されないため、成形体の密度が低下する。一方、粉末成形用潤滑剤含有量が0.40質量%を超えると、焼結後気孔率が高くなり成形体密度が低下する。
The iron-based powder in the present invention is preferably pure iron powder such as atomized iron powder or reduced iron powder, partially diffusion alloyed steel powder, fully alloyed steel powder, or a mixed powder thereof.
The content of the powder molding lubricant contained in the iron-based powder mixture is preferably 0.05 to 0.40 mass% with respect to the entire iron-based powder mixture. When the content of the powder molding lubricant is less than 0.05% by mass, the fluidity of the iron-based mixed powder is poor and the mold surface is not uniformly filled, so that the density of the compact is lowered. On the other hand, when the content of the powder molding lubricant exceeds 0.40% by mass, the porosity after sintering becomes high and the density of the compact is lowered.

鉄基粉末混合物に含まれる粉末成形用潤滑剤は、所定の加圧成形の温度以下の低い融点をもつ潤滑剤と所定の加圧成形の温度より高い融点をもつ潤滑剤とからなる混合潤滑剤とする。所定の加圧成形の温度以下の低い融点をもつ潤滑剤の含有量は、含まれる粉末成形用潤滑剤全量の10〜75質量%とし、残部の25〜90質量%を所定の加圧成形の温度より高い融点とからなる潤滑剤とする。所定の加圧成形の温度以下の低い融点をもつ潤滑剤は、加圧成形時に溶融し、粉末粒子間に毛細管力により浸透して、粉末粒子内部に均等に分散し、粒子相互の接触抵抗を低減し、粒子再配列を促進して成形体の高密度化を促進する効果を有する。所定の加圧成形の温度以下の低い融点をもつ潤滑剤の含有量が、10質量%未満では、粉末粒子内部に潤滑剤が均等に分散せず、成形体密度が低下する。また、75質量%を超えると、成形体の密度が増加するにしたがい、溶融した潤滑剤が成形体表面へ絞り出され、表面に、潤滑剤の逃げ道が形成され、成形体表面に多数の粗大な空孔が形成されて、焼結部材の強度低下を招く。   The powder molding lubricant contained in the iron-based powder mixture is a mixed lubricant comprising a lubricant having a low melting point lower than a predetermined pressure molding temperature and a lubricant having a melting point higher than a predetermined pressure molding temperature. And The content of the lubricant having a low melting point equal to or lower than the predetermined pressure molding temperature is 10 to 75 mass% of the total amount of the powder molding lubricant contained, and the remaining 25 to 90 mass% is the predetermined pressure molding. The lubricant has a melting point higher than the temperature. A lubricant having a low melting point below a predetermined pressure molding temperature melts during pressure molding, penetrates between the powder particles by capillary force, and is uniformly dispersed inside the powder particles, thereby improving the contact resistance between the particles. It has the effect of reducing and promoting particle rearrangement to promote densification of the compact. When the content of the lubricant having a low melting point below the predetermined pressure molding temperature is less than 10% by mass, the lubricant is not evenly dispersed inside the powder particles, and the density of the compact is lowered. On the other hand, if it exceeds 75% by mass, the molten lubricant is squeezed out to the surface of the molded body as the density of the molded body increases, and a relief passage for the lubricant is formed on the surface. New pores are formed, resulting in a decrease in strength of the sintered member.

鉄基粉末混合物に含まれる、所定の加圧成形の温度より高い融点をもつ潤滑剤は、成形時、固体として存在し、溶融した潤滑剤がはじかれる鉄基粉末粒子表面の凸部において「ころ」として作用して、粒子の再配列を促進し、成形体の密度を増加させる効果を有する。
鉄基粉末混合物に含まれる粉末成形用潤滑剤のうち、所定の加圧成形の温度より高い融点をもつ潤滑剤としては、金属石鹸、熱可塑性樹脂、熱可塑性エラストマー、層状の結晶構造を有する無機または有機潤滑剤のうちから選ばれた1種または2種以上とするのが好ましい。所定の加圧成形の温度に応じ、下記した潤滑剤から適宜選択できる。
A lubricant having a melting point higher than a predetermined pressure molding temperature contained in the iron-based powder mixture is present as a solid at the time of molding, and is formed at the convex portion on the surface of the iron-based powder particles where the molten lubricant is repelled. ”To promote particle rearrangement and increase the density of the compact.
Among the powder molding lubricants contained in the iron-based powder mixture, the lubricants having a melting point higher than the predetermined pressure molding temperature include metal soaps, thermoplastic resins, thermoplastic elastomers, and inorganic having a layered crystal structure. Or it is preferable to use 1 type, or 2 or more types chosen from organic lubricants. Depending on the predetermined pressure molding temperature, the lubricant can be appropriately selected from the following lubricants.

金属石鹸としては、ステアリン酸リチウム、ヒドロキシステアリン酸リチウム等が好ましい。また、熱可塑性樹脂としては、ポリスチレン、ポリアミド、フッ素樹脂等が好適である。熱可塑性エラストマーとしては、ポリスチレン系エラストマー、ポリアミド系エラストマー等が好適である。また、層状の結晶構造を有する無機潤滑剤としては、黒鉛、MoS2、フッ化炭素のいずれでも良く、粒度は細かいほど、抜き出し力の低減に有効である。層状の結晶構造を有する有機潤滑剤としては、メラミン−シアヌル酸付加物(MCA )、N-アルキルアスパラギン酸−β- アルキルエステルのいずれも使用することができる。 As the metal soap, lithium stearate, lithium hydroxystearate and the like are preferable. Further, as the thermoplastic resin, polystyrene, polyamide, fluororesin and the like are suitable. As the thermoplastic elastomer, polystyrene elastomer, polyamide elastomer and the like are suitable. The inorganic lubricant having a layered crystal structure may be any of graphite, MoS 2 , and fluorocarbon, and the finer the particle size, the more effective the reduction of the extraction force. As the organic lubricant having a layered crystal structure, any of melamine-cyanuric acid adduct (MCA) and N-alkylaspartic acid-β-alkyl ester can be used.

鉄基粉末混合物に含まれる粉末成形用潤滑剤のうち、所定の加圧成形の温度以下の低い融点をもつ潤滑剤としては、金属石鹸、アミド系ワックス、ポリエチレンおよびこれらのうちの少なくとも2種以上の共溶融物のうちから選ばれた1種または2種以上とするのが好ましい。所定の加圧成形の温度に応じ、下記した潤滑剤から適宜選択できる。
金属石鹸としては、ステアリン酸亜鉛、ステアリン酸カルシウム等が好ましい。また、アミド系ワックスとしては、エチレンビスステアロアミド、ステアリン酸モノアミド等が好適である。共溶融物としては、エチレンビスステアロアミドとポリエチレンの共溶融物、エチレンビスステアロアミドとステアリン酸亜鉛の共溶融物、エチレンビスステアロアミドとステアリン酸カルシウムの共溶融物等が好適である。また、成形温度によっては、これらの潤滑剤の一部を加圧成形温度より高い融点をもつ潤滑剤として使用することもできる。
Among the powder molding lubricants contained in the iron-based powder mixture, the lubricant having a low melting point below the predetermined pressure molding temperature includes metal soap, amide wax, polyethylene, and at least two of these It is preferable to use 1 type (s) or 2 or more types selected from these co-melts. Depending on the predetermined pressure molding temperature, the lubricant can be appropriately selected from the following lubricants.
As the metal soap, zinc stearate, calcium stearate and the like are preferable. As the amide wax, ethylene bisstearamide, stearic acid monoamide, or the like is suitable. As the co-melt, a co-melt of ethylene bis-stearamide and polyethylene, a co-melt of ethylene bis-stearamide and zinc stearate, a co-melt of ethylene bis-stearamide and calcium stearate, and the like are suitable. Depending on the molding temperature, a part of these lubricants can be used as a lubricant having a melting point higher than the pressure molding temperature.

鉄基粉末混合物に合金用粉末として含まれる黒鉛は、焼結体を強化する効果を有する。黒鉛の含有量が少ないと焼結体強化の効果が充分でなく、一方、多すぎると初析セメンタイトが析出して強度が低下する。このようなことから、鉄基粉末混合物中に含有される黒鉛は、鉄基粉末混合物全量に対し、0.5 〜1.2 質量%とするのが好ましい。
本発明では、上記した製造方法で得られた高密度鉄基粉末成形体に焼結処理を施し、高密度の鉄基焼結体を得る。本発明における焼結処理は、とくに限定する必要はなく、通常公知の焼結処理方法がいずれも好適に使用できる。また、焼結後急冷して強度を高める方法(シンターハードニング)も使用できる。
The graphite contained as the alloy powder in the iron-based powder mixture has an effect of strengthening the sintered body. If the content of graphite is small, the effect of strengthening the sintered body is not sufficient. On the other hand, if the content is too large, pro-eutectoid cementite precipitates and the strength decreases. Therefore, the graphite contained in the iron-based powder mixture is preferably 0.5 to 1.2% by mass with respect to the total amount of the iron-based powder mixture.
In the present invention, the high-density iron-based powder compact obtained by the above-described manufacturing method is subjected to a sintering treatment to obtain a high-density iron-based sintered body. The sintering treatment in the present invention is not particularly limited, and any known sintering treatment method can be suitably used. Moreover, the method (sinter hardening) which raises an intensity | strength rapidly by sintering after sintering can also be used.

(実施例1)
鉄基粉末として、アトマイズ純鉄粉にNi、Mo、Cuが拡散付着した、Fe-4Ni-0.5Mo-1.5Cu組成の部分合金化鋼粉を用いた。この部分合金化鋼粉に、0.5 質量%の黒鉛粉と、表1に示す各種潤滑剤を高速ミキサーによる加熱混合法で混合し、鉄基粉末混合物とした。
まず、加圧成形用の金型を表1に示す温度に予熱し、金型潤滑装置(Gasbarre 社製)を用いて帯電させた温間金型潤滑用潤滑剤を金型内に噴霧導入し、金型表面に帯電付着させた。なお、温間金型潤滑用潤滑剤は、表2に示す各種潤滑剤から選択し、加圧成形温度以下の低い融点をもつ潤滑剤と、加圧成形温度より高い融点をもつ潤滑剤とを表1に示すように混合したものを使用した。なお、金型表面の温度を測定し、加圧成形の温度とした。
Example 1
As the iron-based powder, a partially alloyed steel powder having a composition of Fe-4Ni-0.5Mo-1.5Cu in which Ni, Mo, and Cu were diffused and adhered to atomized pure iron powder was used. To this partially alloyed steel powder, 0.5% by mass of graphite powder and various lubricants shown in Table 1 were mixed by a heat mixing method using a high-speed mixer to obtain an iron-based powder mixture.
First, the mold for pressure molding is preheated to the temperature shown in Table 1, and a warm mold lubricant lubricant charged by using a mold lubricator (manufactured by Gasbarre) is sprayed into the mold. And charged on the mold surface. The warm mold lubricant is selected from the various lubricants shown in Table 2, and includes a lubricant having a melting point lower than the pressure molding temperature and a lubricant having a melting point higher than the pressure molding temperature. What was mixed as shown in Table 1 was used. The temperature of the mold surface was measured and used as the pressure molding temperature.

ついで、このように処理された金型に、加熱した鉄基粉末混合物を充填したのち、加圧成形し、10×10×55mmの直方体の成形体とした。なお、加圧力は、7t/cm2(686 MPa )とした。また、加圧成形条件を表1に示す。また、鉄基粉末混合物に含まれる粉末成形用潤滑剤は、表2に示す各種潤滑剤から選択し、加圧成形温度以下の低い融点をもつ潤滑剤と、加圧成形温度より高い融点をもつ潤滑剤とを表1に示すように混合したものである。 Next, the mold thus treated was filled with a heated iron-based powder mixture, and then subjected to pressure molding to obtain a 10 × 10 × 55 mm rectangular compact. The applied pressure was 7 t / cm 2 (686 MPa). The pressure molding conditions are shown in Table 1. The powder molding lubricant contained in the iron-based powder mixture is selected from the various lubricants shown in Table 2, and has a low melting point below the pressure molding temperature and a melting point higher than the pressure molding temperature. A lubricant is mixed as shown in Table 1.

なお、従来例として、金型潤滑用潤滑剤を塗布しない金型に、加熱した鉄基粉末混合物を充填し、加圧成形し、同様の直方体の成形体とした例を従来例とした(成形体No.38 )。
成形後、成形体を抜き出す時の抜き出し力を測定した。
また、これら成形体について、アルキメデス法で密度を測定した。なお、アルキメデス法とは、被測定物である成形体をエタノール中に浸漬して体積を測定することにより密度を測定する方法である。さらに、これら成形体の外観を目視で観察し、疵、割れ等の欠陥の有無を調査した。また、これら成形体を中央部で切断し、樹脂に埋め込んで研磨し、断面における空孔の有無を光学顕微鏡で観察した。
In addition, as a conventional example, an example in which a mold not coated with a lubricant for mold lubrication is filled with a heated iron-based powder mixture and subjected to pressure molding to form a similar rectangular parallelepiped (molding) Body No.38).
After molding, the extraction force when the molded body was extracted was measured.
Moreover, the density was measured by Archimedes method about these molded objects. The Archimedes method is a method for measuring the density by immersing a molded body, which is an object to be measured, in ethanol and measuring the volume. Furthermore, the external appearance of these compacts was visually observed to investigate the presence of defects such as wrinkles and cracks. Further, these molded bodies were cut at the center, embedded in a resin and polished, and the presence or absence of pores in the cross section was observed with an optical microscope.

抜き出し力、成形体密度、成形体の外観および成形体断面の性状についての結果を表1に示す。   Table 1 shows the results regarding the drawing force, the density of the molded body, the appearance of the molded body, and the properties of the cross section of the molded body.

Figure 2007031841
Figure 2007031841

Figure 2007031841
Figure 2007031841

Figure 2007031841
Figure 2007031841

Figure 2007031841
Figure 2007031841

Figure 2007031841
Figure 2007031841

本発明例は、いずれも成形後の抜き出し力が20MPa 以下と低く、さらに7.4 Mg/m3 以上の高密度を有する成形体となっている。さらに、成形体には加熱による表面酸化はもとより、疵、割れ等の欠陥は認められなかった。また、成形体の断面性状は、正常で、粗大な空孔は認められなかった。
本発明の範囲を外れる比較例、従来例は、抜き出し力が20MPa を超えて高いか、密度が7.35Mg/m3 未満と低いか、あるいは成形体断面の表面付近に粗大な空孔が観察された。
In all of the examples of the present invention, the extraction force after molding is as low as 20 MPa or less, and the molded product has a high density of 7.4 Mg / m 3 or more. Further, the molded body did not have defects such as wrinkles and cracks as well as surface oxidation by heating. Moreover, the cross-sectional property of the molded body was normal, and no coarse pores were observed.
In the comparative example and the conventional example that are out of the scope of the present invention, the extraction force is higher than 20 MPa, the density is low as less than 7.35 Mg / m 3 , or coarse pores are observed near the surface of the cross section of the molded body. It was.

本発明によれば、外観性状、断面性状いずれも良好である、高密度の成形体を抜き出し力が低く成形できるという効果がある。
(実施例2)
鉄基粉末として、(1)アトマイズ純鉄粉に、Ni、Mo、Cuが拡散付着した、Fe-4Ni-0.5Mo-1.5Cu組成の部分合金化鋼粉a、(2)アトマイズ純鉄粉に、Ni、Moが拡散付着した、Fe-2Ni-1Mo組成の部分合金化鋼粉b、(3)Cr、Mo、Vを予合金した、Fe-3Cr-0.3Mo-0.3V組成のプレアロイ鋼粉c、(4)Cr、Mo、Vを予合金した、Fe-1Cr-0.3Mo-0.3V組成のプレアロイ鋼粉d、(5)アトマイズ鉄粉e、(6)還元鉄粉fを用いた。なお、アトマイズ鉄粉とは、溶鋼を高圧水で噴霧して得られた鉄基粉末であり、還元鉄粉とは、酸化鉄を還元して得られた鉄基粉末である。
According to the present invention, there is an effect that it is possible to form a high-density molded body having both good appearance properties and cross-sectional properties with low extraction force.
(Example 2)
As iron-based powders, (1) partially alloyed steel powder a of Fe-4Ni-0.5Mo-1.5Cu composition in which Ni, Mo and Cu are diffused and attached to atomized pure iron powder, (2) atomized pure iron powder Fe-2Ni-1Mo composition partially alloyed steel powder b in which Fe, Ni and Mo are diffused and adhered, (3) Pre-alloy steel powder of Fe-3Cr-0.3Mo-0.3V composition pre-alloyed with Cr, Mo, V c, (4) Pre-alloyed steel powder d having a composition of Fe-1Cr-0.3Mo-0.3V pre-alloyed with Cr, Mo, V, (5) atomized iron powder e, and (6) reduced iron powder f were used. Atomized iron powder is an iron-based powder obtained by spraying molten steel with high-pressure water, and reduced iron powder is an iron-based powder obtained by reducing iron oxide.

これら部分合金化鋼粉a、部分合金化鋼粉b、プレアロイ鋼粉c、プレアロイ鋼粉d、アトマイズ鉄粉e、還元鉄粉fそれぞれに、表3に示す含有量の黒鉛と、表3に示す各種潤滑剤とを高速ミキサーによる加熱混合法で混合し、鉄基粉末混合物とした。なおアトマイズ鉄粉eおよび還元鉄粉fの場合には0.8 質量%の黒鉛に加えて、2.0 質量%のCu粉を混合した。黒鉛の含有量は、鉄基粉末と黒鉛あるいはさらに合金粉末との合計量に対する質量比である。   Each of these partially alloyed steel powder a, partially alloyed steel powder b, pre-alloyed steel powder c, pre-alloyed steel powder d, atomized iron powder e, reduced iron powder f, The various lubricants shown were mixed by a heat mixing method using a high-speed mixer to obtain an iron-based powder mixture. In the case of atomized iron powder e and reduced iron powder f, 2.0% by mass of Cu powder was mixed in addition to 0.8% by mass of graphite. The content of graphite is a mass ratio with respect to the total amount of iron-based powder and graphite or further alloy powder.

まず、加圧成形用の金型を表3に示す温度に予熱し、金型潤滑装置(Gasbarre 社製)を用いて帯電させた温間金型潤滑用潤滑剤を金型内に噴霧導入し、金型表面に帯電付着させた。なお、温間金型潤滑用潤滑剤は、表2に示す各種潤滑剤から選択し、加圧成形温度以下の低い融点をもつ潤滑剤と、加圧成形温度より高い融点をもつ潤滑剤とを表3に示すように混合したものを使用した。なお、金型表面の温度を測定し、加圧成形の温度とした。   First, the mold for pressure molding is preheated to the temperature shown in Table 3, and a warm mold lubricant lubricant charged by using a mold lubricator (manufactured by Gasbarre) is sprayed into the mold. And charged on the mold surface. The warm mold lubricant is selected from the various lubricants shown in Table 2, and includes a lubricant having a melting point lower than the pressure molding temperature and a lubricant having a melting point higher than the pressure molding temperature. A mixture as shown in Table 3 was used. The temperature of the mold surface was measured and used as the pressure molding temperature.

ついで、このように処理された金型に、加熱した鉄基粉末混合物を充填したのち、加圧成形し、10×10×55mmの直方体の成形体とした。なお、加圧力は、7t/cm2(686 MPa )とした。加圧成形条件を表3に示す。また、鉄基粉末混合物に含まれる粉末成形用潤滑剤は、表2に示す各種潤滑剤から選択し、加圧成形温度以下の低い融点をもつ潤滑剤と、加圧成形温度より高い融点をもつ潤滑剤とを表3に示すように混合したものである。 Next, the mold thus treated was filled with a heated iron-based powder mixture, and then subjected to pressure molding to obtain a 10 × 10 × 55 mm rectangular compact. The applied pressure was 7 t / cm 2 (686 MPa). Table 3 shows the pressure molding conditions. The powder molding lubricant contained in the iron-based powder mixture is selected from the various lubricants shown in Table 2, and has a low melting point below the pressure molding temperature and a melting point higher than the pressure molding temperature. A lubricant is mixed as shown in Table 3.

これら鉄基粉末成形体について、実施例1と同様にアルキメデス法で密度を測定した。
ついで、これら鉄基粉末成形体に、N2 −10%H2 雰囲気中で、1130℃×20min の焼結処理を施し、鉄基焼結体とした。得られた鉄基焼結体について、まず、アルキメデス法で密度を測定した。また、これらの鉄基焼結体から、機械加工により平行部径5mm×長さ15mmの小型丸棒試験片を採取し、引張試験を実施し、引張強さを測定した。
The density of these iron-based powder compacts was measured by the Archimedes method in the same manner as in Example 1.
Next, these iron-based powder compacts were subjected to sintering treatment at 1130 ° C. for 20 minutes in an N 2 -10% H 2 atmosphere to obtain iron-based sintered bodies. About the obtained iron-based sintered body, first, the density was measured by the Archimedes method. Further, from these iron-based sintered bodies, small round bar test pieces having a parallel part diameter of 5 mm and a length of 15 mm were sampled by machining, a tensile test was performed, and a tensile strength was measured.

なお、金型潤滑用潤滑剤を塗布しない金型に、加熱した鉄基粉末混合物を充填し、加圧成形し、同様の直方体の成形体とし、さらに焼結処理を施し鉄基焼結体とした例を従来例とした。
それらの結果を表3に示す。
In addition, a mold not coated with a lubricant for mold lubrication is filled with a heated iron-based powder mixture, pressure-molded, and formed into a similar rectangular parallelepiped molded body, and further subjected to a sintering treatment to obtain an iron-based sintered body and This example is a conventional example.
The results are shown in Table 3.

Figure 2007031841
Figure 2007031841

本発明例は、金型潤滑を行わない従来例(焼結体No. 2-12)と比べ、高い密度が得られ、しかも高引張強さを有している。   Compared to the conventional example (sintered body No. 2-12) in which the mold lubrication is not performed, the example of the present invention has a high density and has a high tensile strength.

Claims (1)

鉄基粉末と、粉末成形用潤滑剤とを含む鉄基粉末混合物であって、前記粉末成形用潤滑剤が、粉末成形用潤滑剤全量に対して10〜75質量%の、加圧成形の温度以下の低い融点を有する潤滑剤を含み、残部が、加圧成形の温度より高い融点を有する潤滑剤であり、前記粉末成形用潤滑剤の含有量が、0.05〜0.40質量%であることを特徴とする温間金型潤滑成形用鉄基粉末混合物。   An iron-based powder mixture containing an iron-based powder and a powder molding lubricant, wherein the powder molding lubricant has a pressure molding temperature of 10 to 75% by mass with respect to the total amount of the powder molding lubricant. It includes a lubricant having the following low melting point, the balance is a lubricant having a melting point higher than the pressure molding temperature, and the content of the powder molding lubricant is 0.05 to 0.40% by mass An iron-based powder mixture for warm mold lubrication molding.
JP2006256560A 1999-02-05 2006-09-22 Iron-based powder mixture for warm mold lubrication molding Expired - Fee Related JP4770667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006256560A JP4770667B2 (en) 1999-02-05 2006-09-22 Iron-based powder mixture for warm mold lubrication molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1999029405 1999-02-05
JP2940599 1999-02-05
JP2006256560A JP4770667B2 (en) 1999-02-05 2006-09-22 Iron-based powder mixture for warm mold lubrication molding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30859099A Division JP3931503B2 (en) 1999-02-05 1999-10-29 Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body

Publications (2)

Publication Number Publication Date
JP2007031841A true JP2007031841A (en) 2007-02-08
JP4770667B2 JP4770667B2 (en) 2011-09-14

Family

ID=37791434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006256560A Expired - Fee Related JP4770667B2 (en) 1999-02-05 2006-09-22 Iron-based powder mixture for warm mold lubrication molding

Country Status (1)

Country Link
JP (1) JP4770667B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158373A1 (en) * 2015-03-27 2016-10-06 Ntn株式会社 Sintered bearing and method of manufacturing same
JP2016211690A (en) * 2015-05-12 2016-12-15 Ntn株式会社 Sintered bearing and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196554A (en) 2013-03-08 2014-10-16 Ntn株式会社 Powder for magnetic core, dust magnetic core and method of producing the powder for magnetic core and the dust magnetic core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317001A (en) * 1997-03-19 1998-12-02 Kawasaki Steel Corp Iron-base powder mixture for powder metallurgy, excellent in flowability and compactibility, its production, and production of green compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317001A (en) * 1997-03-19 1998-12-02 Kawasaki Steel Corp Iron-base powder mixture for powder metallurgy, excellent in flowability and compactibility, its production, and production of green compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158373A1 (en) * 2015-03-27 2016-10-06 Ntn株式会社 Sintered bearing and method of manufacturing same
US12129891B2 (en) 2015-03-27 2024-10-29 Ntn Corporation Sintered bearing and method of manufacturing same
JP2016211690A (en) * 2015-05-12 2016-12-15 Ntn株式会社 Sintered bearing and method for manufacturing the same

Also Published As

Publication number Publication date
JP4770667B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4228547B2 (en) Lubricant for mold lubrication and method for producing high-density iron-based powder compact
WO2001032337A1 (en) Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
JP5169605B2 (en) Powder mixture for powder metallurgy and method for producing molded body
EP1758700B1 (en) Lubricants for insulated soft magnetic iron-based powder compositions
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP5012645B2 (en) Method for producing high-density iron-based powder compact
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP4483595B2 (en) Iron-based powder mixture for high-strength sintered parts
JP2010156059A (en) Iron-based powdery mixture for warm die lubrication molding
JP2001181701A (en) Method for producing high strength/high density ferrous sintered body
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP4352559B2 (en) Method for producing metal powder compact
US9815114B2 (en) Powder for molding, lubricant-concentrated powder and method for producing metal member
US10583487B2 (en) Method of producing alloyed metallic products
JP6760504B2 (en) Powder mixture for powder metallurgy and its manufacturing method
JP6044492B2 (en) Method for producing Mo-containing sponge iron and Mo-containing reduced iron powder
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
JP3822372B2 (en) Powder metallurgy powder compression molding method
JP4808375B2 (en) Iron-based powder mixture for powder metallurgy
JP2007031757A (en) Alloy steel powder for powder metallurgy
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
JP6648779B2 (en) Powder mixture for powder metallurgy and method for producing the same
JP6450213B2 (en) Warm forming method
JP2002155303A (en) Method for producing iron-based sintered compact
JP2003096533A (en) Iron-base powder mixture for warm compaction, iron-base powder mixture for warm die lubrication compaction, and method for manufacturing iron-base sintered compact using them

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees