JP4352559B2 - Method for producing metal powder compact - Google Patents
Method for producing metal powder compact Download PDFInfo
- Publication number
- JP4352559B2 JP4352559B2 JP2000046333A JP2000046333A JP4352559B2 JP 4352559 B2 JP4352559 B2 JP 4352559B2 JP 2000046333 A JP2000046333 A JP 2000046333A JP 2000046333 A JP2000046333 A JP 2000046333A JP 4352559 B2 JP4352559 B2 JP 4352559B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- temperature
- lubricant
- powder
- predetermined temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/0005—Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses
- B30B15/0011—Details of, or accessories for, presses; Auxiliary measures in connection with pressing for briquetting presses lubricating means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、粉末冶金に適用される技術であり、金属粉末、なかでも鉄粉をベースとした金属混合粉末である鉄基粉末の成形体の製造方法に係り、金型で成形する金属粉末加圧成形体の質量ばらつきを低減するものである。
【0002】
【従来の技術】
粉末冶金において、鉄粉に、銅、黒鉛等の粉末を合金粉末として添加し、さらにステアリン酸亜鉛、ステアリン酸鉛等の潤滑剤を混合した鉄基混合粉末がよく用いられる。鉄基混合粉末は、金型に充填の後、加圧成形され、成形体とされる。成形された鉄基混合粉末の密度は、6.6 〜7.1 Mg/m3 が一般的である。この鉄基粉末の成形体は、焼結処理が施されて焼結体とされ、さらに必要に応じてサイジングや切削加工が施されて粉末冶金製品となる。また、さらに高強度が必要な場合は、焼結後に浸炭熱処理や光輝熱処理を施すこともある。
【0003】
上述のような粉末冶金技術により、高寸法精度の複雑な形状の部品をニアネット形状に生産することが可能となり、従来の金属体を切削して製造する方法に比べ大幅にコストの低減が可能となった。そのため、鉄系の粉末冶金製品は、焼結部品として自動車の部品に採用され、日本では1998年時点で自動車1台あたり6kg強の鉄基混合粉末が使用されている。
【0004】
さらに、最近では、一層の高寸法精度化とコスト削減を行うことが求められるようになり、切削加工の一段の省略が強く求められるようになってきた。
【0005】
【発明が解決しようとする課題】
焼結部品のコスト低減のひとつの方策として、成形体の歩留まりを向上させることがあげられる。特に、成形を長時間中断した後の成形開始の直後は、成形体の質量ばらつきが大きく、その質量ばらつきの大きい成形体は廃棄処分されており、成形体の歩留まりを低下させる大きな要因のひとつとなっている。
【0006】
本発明は、上記の観点から、成形開始直後の成形体の質量ばらつきを低減することを可能とする鉄基粉末成形体の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記問題点を解決することを目的として鋭意調査研究を行い、成形開始直後における成形体の質量ばらつきの原因を明らかにした。そして、その質量ばらつきを解消すべく新たな鉄基粉末成形体の製造方法の検討を行い、本発明をするに到ったのである。
【0008】
すなわち、本発明は、金属粉末を金型に繰り返し充填し、加圧成形して成形体を製造する金属粉末成形体の製造方法であって、成形開始前に、前記金型の温度を、70〜90℃の所定温度を目標に予熱するとともに、前記金型の表面に、あらかじめ、前記所定温度よりも高い融点を有する潤滑剤と、前記所定温度以下の融解開始温度を有する潤滑剤との混合物粉末を、帯電付着させておき、かつ前記金属粉末を、前記金型に充填する前に前記所定温度に予熱し、その後、成形を繰り返しても、前記金型の温度が常に所定温度範囲内となるように制御することを特徴とする金属粉末成形体の製造方法によって上記課題を解決したものである。
【0010】
【発明の実施の形態】
本発明の金属粉末成形体の製造方法の好適な実施の形態について、図1に基づき説明する。
通常の室温状態で鉄基混合粉末を成形する場合、図1に示すように、従来の温度推移1では、成形開始前の金型温度は室温Tr である。そして、成形回数を重ねるにつれて金型温度が上昇し、操業条件によって定まる温度TC に収斂していく。つまり、成形を開始して、成形回数を重ねていくと、金属粉末と金型との摩擦熱によって金型の温度が温度TC にまで上昇するのである。この温度は、定常的に成形を繰り返す過程では、ある一定温度に収斂し安定する。本発明では、この一定値に収斂した温度値を所定温度と称する。
【0011】
成形の回数が少なく、金型の温度が所定温度に到達する前は、温度が安定しないため、金属粉末の見かけ密度も変動する。そのため、金型内に充填した金属粉末の質量も変動し、結果的に成形体の質量ばらつきが大きくなる。
そこで、本発明においては、成形開始前に、金型を常温から前記所定温度まで予熱する。また、成形開始直後であって、金型が摩擦熱で十分に加熱される前の状態で、金型温度が所定温度に到達するまでの段階では、金型が所定温度となるように温度制御を行い、図1中のΔT相当分の加熱を行うことで、金型温度を所定温度に保持するようにしたのである。このようにすることで、金型温度を常に一定温度である所定温度TC (図1に示す本発明での金型温度推移2)として成形を行うことができる。なお、温度制御としては、PID制御などの単純な制御の適用で充分であるが、特に制御方法を限定するものではない。
【0012】
成形回数を重ねていくにしたがい、ΔT相当分の加熱量は、図1からわかる通り、次第に減らすことになる。なお、成形回数を重ねていき、最終的に収斂して安定する所定温度は、試料の形状に依存するが、70〜90℃である。経験的にわかるこの温度に、成形開始前に金型を予熱しておくのである。ここで、実際の操業ではある程度の温度変動を避けることはできないので、ある所定の温度範囲を許容し、金型温度が所定温度範囲内となるように加熱温度の制御を行う。この所定の温度の範囲としては、±10℃とすることが好ましい。
【0013】
以上のように、金型での成形の初回から金型を予熱しておき、金型を常に所定温度TC としておくことで、成形体の質量ばらつきを大きく低減することを可能とすることができた。
ここで、金型を加熱するだけではなく、金型に充填する金属粉末も予熱しておくことが好ましい。金属粉末も予熱しておくことで、金型内に充填された金属粉末の温度分布をあらかじめ均一にすることができ、質量ばらつきをさらに低減することができる。なお、金属粉末の予熱は、金属粉末を供給するホッパ、ホース、フィーダ等の部材を所定温度TC に加熱しておくことで容易に実現することが可能である。
【0014】
本発明では、成形に用いる金型を成形開始前に所定温度に予熱することを特徴とする。金属粉末の成形開始前に予熱する目標温度(すなわち所定温度)は、例えば、以下のように決定する。
まず、金型の予熱を行わない通常の場合の成形回数と金型温度の関係をあらかじめ調査し、最終的に金型温度が一定になる温度を求めておく。この温度は、成形体の形状、成形速度等に依存するが、略70〜90℃である。ここで、所定温度+10℃よりも高い場合には、質量ばらつきは減少するが、投入電力が大きくなりコストアップにつながる。又、−10℃より低い温度には、制御しようとしても、成型時の金型の摩擦発熱による温度上昇のため、実質的に制御できない。そのため、本発明においては、金型温度を目標とする所定温度±10℃以内とするように温度制御することを好適とする。
【0015】
成形回数が増えると、金型温度は金属粉末と金型壁面の摩擦で上昇するので、金型を所定温度に保持するため、金型表面付近の温度を測定しつつ、金型の加熱のために投入する熱量(具体的には、ヒータへの印加電圧、電流等)を調整することを好適とする。
さらに成形回数が進むと、金型温度が所定温度に収斂し、金属粉末と金型壁面の摩擦のみで金型温度を所定温度に保持することが可能となり、金型の加熱は不要となる。
【0016】
なお、金属粉末の金型での成形は、通常、392 〜686 MPa程度の圧力で行われる。
このようにして得られた成形体は、次に、焼結工程での処理が行われる。焼結は、通常のRX雰囲気、水素を含む窒素雰囲気中、真空雰囲気中などで行われる。さらに、必要に応じてガス浸炭焼入や光輝焼入れ、高周波焼入などの熱処理を行う場合もある。
【0017】
本発明に用いて好適な一例である鉄基混合粉末は、アトマイズ鉄粉または還元鉄粉等の純鉄粉、または部分拡散合金化鋼粉、完全合金化鋼粉、または、これらの混合粉末などがある。
本発明の金属粉末成形体の製造方法においては、金属粉末として鉄基混合粉末を用いた場合、鉄基混合粉末中の黒鉛粉や潤滑剤の含有量に特に制限を設ける必要はない。
【0018】
本発明に用いて好適な一例である鉄基混合粉末は、鉄基粉末にさらに潤滑剤(粉末成形用潤滑剤)や合金粉末を混合したものである。
鉄基混合粉末に含まれる粉末成形用潤滑剤としては、通常使用される潤滑剤が使用可能であり、例えば、ステアリン酸亜鉛、ステアリン酸リチウム、エチレンビスステアラマイド(EBS)などが使用可能である。また、特開平5-148505号公報、特開平1-165701号公報などに開示されているように、黒鉛粉末や合金粉末を偏析防止処理した粉末を使用することも可能である。
【0019】
鉄基粉末と成形用潤滑剤あるいは合金用粉末の混合方法は、とくに限定するものではなく、公知の混合方法をいずれも好適に利用することができる。
具体的には、鉄粉、合金粉、潤滑剤等を、VブレンダやWコーンブレンダ等で混合するいわゆる「単純混合」法を挙げることができる。
鉄基粉末に合金用粉末を混合する場合には、含有粉末の偏析を避けるため、鉄基粉末、合金用粉末に粉末成形用潤滑剤の1部を加えて1次混合したのち、さらに前記潤滑剤のうち少なくとも1種の潤滑剤の融点以上に加熱しつつ撹拌して、前記潤滑剤のうち少なくとも1種の潤滑剤を溶融し、溶融後の混合物を撹拌しながら冷却し、前記鉄基粉末表面に溶融した潤滑剤を固着させることによって前記合金用粉末を付着させた後、粉末成形用潤滑剤の残部を加えて2次混合する混合方法とすることが好ましい。
【0020】
また、本発明者らは、以下の方法に示される金型潤滑を組み合わせることで、理由は不明であるものの質量ばらつきを一層低減させられることを見出した。
さらに、副次的な効果として、金型潤滑を併用した場合は鉄基混合粉末に含まれる潤滑剤量を鉄基粉末と潤滑剤の混合粉末量に対する質量%で0.2 〜0.3 %程度にまで低減できるので、潤滑剤のコストや脱蝋中に発生する排出物質量を低減することができる。
【0021】
加熱した金型に、帯電した金型潤滑用潤滑剤をあらかじめ導入し、金型表面に帯電付着させる。金型潤滑用潤滑剤(固体粉末)は、金型潤滑装置(例えば、Gasbarre社製Die Wall Lubricant System 等)に装入し、潤滑剤(固体粉末)と装置内壁との接触帯電により帯電を行う。
帯電した金型潤滑用潤滑剤は、噴射により金型内に導入され、金型表面に帯電付着させる。金型表面への付着量は、0.5 〜10mg/cm2 とすることが好ましい。付着量が0.5mg /cm2 未満では潤滑効果が不足し、成形後、成形体を金型から抜き出すときの抜き出し力が高くなりすぎ、また、10mg/cm2 を超えると成形体表面に潤滑剤が残存し、成形体の外観不良となるからである。
【0022】
金型表面に帯電付着させて使用する金型潤滑用潤滑剤は、所定の加圧成形の温度、すなわち、所定温度より高い融点を有する潤滑剤を質量比で0.5 〜80%含有し、残部が前記所定温度以下の低い融解開始温度を有する潤滑剤からなる混合潤滑剤とすることが好ましい。
なお、この所定温度は、特に金型表面の温度として管理することが好ましい。
【0023】
所定温度より高い融点を有する潤滑剤は、成形時、金型内で未溶融であり金型内で「ころ」のような固体潤滑剤の働きをし、抜き出し力を低下させるとともに、さらに、溶融あるいは部分溶融した潤滑剤(所定温度より低い溶融開始温度を有する潤滑剤)の金型内での移動を防止し、成形体と金型表面との摩擦抵抗を低減して抜き出し力の増加を防止する役割を有している。
【0024】
所定温度より高い融点を有する潤滑剤の含有量が、全潤滑剤量に対し質量比で0.5 %未満では、加圧成形の温度より低い融点の潤滑剤が多くなり、潤滑剤が溶融する量が多くなり、潤滑剤が移動し金型表面で均一な分布とならず、成形体と金型表面との摩擦抵抗が増大して抜き出し力の低減効果が少ない。一方、質量比で80%を超えると、金型内で溶融しない潤滑剤の量が多くなりすぎ、金型表面の潤滑剤の分布が不均一となり、金型潤滑が不十分で抜き出し力が増加する。このため、温間金型潤滑用潤滑剤における所定温度より高い融点を有する潤滑剤の配合量は、質量比で0.5 〜80%の範囲に限定することが好ましいのである。
【0025】
金型潤滑用潤滑剤における残部は、所定温度以下の低い溶融開始温度を有する潤滑剤である。所定温度以下の低い溶融開始温度を有する潤滑剤は、加圧成形の温度で、溶融あるいは部分溶融し、金型表面でグリースのような状態になり、抜き出し力を下げる効果を有している。
金型潤滑用潤滑剤における所定温度より高い融点を有する潤滑剤は、金属石鹸、熱可塑性樹脂、熱可塑性エラストマー、層状の結晶構造を有する無機潤滑剤または有機潤滑剤のうちから選ばれた1種または2種以上とするのが好ましい。所定温度に応じ、下記の潤滑剤から適宜選択できる。
【0026】
金属石鹸としては、ステアリン酸リチウム、ヒドロキシステアリン酸リチウム、ステアリン酸亜鉛等が好ましい。また、熱可塑性樹脂としては、ポリスチレン、ポリアミド、フッ素樹脂等が好適である。熱可塑性エラストマーとしては、ポリスチレン系エラストマー、ポリアミド系エラストマー等が好適である。また、層状の結晶構造を有する無機潤滑剤としては、黒鉛、MoS2 、フッ化炭素のいずれでも良く、粒度は細かいほど、抜き出し力の低減に有効である。層状の結晶構造を有する有機潤滑剤としては、メラミン−シアヌル酸付加物(MCA)、N−アルキルアスパラギン酸−β−アルキルエステル、エチレンビスステアラマイド(EBS)などのアミド系潤滑剤のいずれも使用することができる。
【0027】
一方、金型潤滑用潤滑剤における所定温度以下の低い溶融開始温度を有する潤滑剤は、所定温度で金型表面において溶融あるいは部分溶融する低融点で帯電しやすい潤滑剤とするのが望ましい。またこれら潤滑剤は金型表面で完全に溶融する必要はなく、一部が溶融していればよい。一般に潤滑剤は分子量にある分布幅を有しており、融点より低い温度で融解がはじまることが多い。
【0028】
ここでは、融点−30℃を融解開始温度と称するものとし、融解開始温度が所定温度より低い潤滑剤の採用がポイントである。このような潤滑剤としては、アミド系ワックス、脂肪酸、高級アルコール、ポリエチレンおよびこれらのうちの2種以上の共溶融物のうちから選ばれた1種または2種以上とするのが好ましい。所定温度に応じ、下記した潤滑剤から選択できる。アミド系ワックスとしてはステアリン酸モノアミド等が、脂肪酸としてはステアリン酸、ヒドロキシステアリン酸、べへン酸が、高級アルコールとしては、ステアリルアルコール、べへニルアルコールなどCx H2x+1OHで示され、x=15〜60のアルコールが好ましい。共溶融物としては、ステアリン酸アミドとステアリン酸の共溶融物が好適である。
【0029】
ついで、金型潤滑用潤滑剤を帯電付着した金型に、加熱した鉄基粉末混合物を装入して加圧成形し、成形体とするのである。
【0030】
【実施例】
(実施例1)
アトマイズ純鉄粉(川崎製鉄製KIP301A )に質量比で2%の電解銅粉、0.8 %の黒鉛粉と0.8 %の表1に示す潤滑剤をV型ミキサーで15分混合し、1ton の鉄基混合粉末を作成した。この鉄基混合粉末300kg を充填したホッパを、金型を加圧するプレス機上方に設置し、下部に設けたホースを、プレス機のダイプレート上のフィーダ(粉箱)に連結した。フィーダを、キャビティ(金型の空隙部)上を 100mm/sの速度で1往復させて、キャビティに鉄基混合粉末を充填させた。この後、フローティング方式の金型を用いて、外径38φ×内径25φ×10tのリングを連続して1000個成形した。
【0031】
そして、得られた成形体の質量をすべて測定した。なお、成形開始前のキャビティ表面の温度(すなわち、室温)は21℃であり、1000個成形した後は70℃であった。以上の従来の成形法を成形法Aとする。
ここで、一連の成形完了後、プレス機は3時間完全に休止した後で、再稼動させている。
【0032】
次に、金型のダイスに埋め込んだアルミナヒータにより金型表面の温度を70℃にPID制御しながら、他の条件は、成形法Aと同じ条件として成形を行った。この本発明の成形法を成形法Bとする。
さらに、鉄基混合粉末そのものを加熱するため、ホッパ、ホース、粉箱を70℃に加熱しておき、他の条件は、成形法Bと同様の方法で成形を行った。この本発明の別の実施形態の成形法を成形法Cとする。
【0033】
成形体の質量ばらつきは、測定した成形体の質量の標準偏差で評価した。表1には、使用した潤滑剤、成形法、金型温度、質量ばらつきをまとめて示している。なお、質量ばらつきは、成形法Aでステアリン酸亜鉛を使用したときの値を1として相対的に示している。
【0034】
【表1】
【0035】
本発明の実施例(No. 3〜6)では、従来の成形法による比較例(No. 1、2)に比べ、質量ばらつきが大きく改善されている。一方、金型の加熱温度が適切ではない比較例(No. 7)では、制御ができなかった。また、比較例(No. 8)では、質量ばらつきは低減するが、成形に必要な電力が余分にかかった。
(実施例2)
鉄基混合粉末として、還元純鉄粉(川崎製鉄製KIP255M )に質量比で2%の電解銅粉、0.8 %の黒鉛粉と0.8 %の潤滑剤を含む偏析防止処理を施した鉄基混合粉末を1ton 作成した。
【0036】
ここで、偏析防止処理は以下の方法で行った。
鉄基粉末に表2に示す潤滑剤を加えて1次混合したのち、さらに前記潤滑剤のうち少なくとも1種の潤滑剤の融点+10℃で加熱しつつ撹拌して、前記潤滑剤のうち少なくとも1種の潤滑剤を溶融させ、溶融後の混合物を撹拌しながら冷却し、前記鉄基粉末表面に溶融した潤滑剤を固着させることによって合金用粉末を付着させた後、表2に示す粉末成形用潤滑剤の残部を加えて2次混合する処理を行った。これらの粉末の成形方法および成形体の質量ばらつきの評価方法は実施例1に示す方法と同様である。
【0037】
【表2】
【0038】
本発明の実施例(No. 9〜14)によれば、従来の成形法A(表1のNo. 1、2)に比べ、質量ばらつきが大きく改善されている。一方、金型予熱温度が適切ではない比較例(No. 15)では、制御ができなかった。また、比較例(No. 16)では、質量ばらつきは低減するが、成形に必要な電力が余分にかかった。
(実施例3)
鉄基粉末として.Fe‐4Ni−0.5 Mo−1.5 Cuの組成の部分合金化鋼粉に、質量比で0.5 %の黒鉛粉と、表2に示した各種潤滑剤を実施例2と同様の方法で混合した鉄基混合粉混合物を1ton 作成した。
【0039】
表3には使用した潤滑剤の組み合わせを示している。
【0040】
【表3】
【0041】
鉄基混合粉末の成形法としては、実施例1の方法に加え、以下に示す金型潤滑による方法を併用した。
ここで、成形開始前に加圧成形用の金型を表3に示す温度に予熱した。また、金型潤滑装置(Gasbarre社製Die Wall Lubricant System )を用いて帯電させた金型潤滑用潤滑剤を、成形ごとに金型内に噴霧導入し、金型表面に帯電付着させている。
【0042】
なお、金型潤滑用潤滑剤は、表2に示す各種潤滑剤から選択し、所定温度以下の融解開始温度をもつ潤滑剤と、所定温度よりも高い融点を有する潤滑剤とを表1に示すように混合したものを使用した。
本発明の実施例(No.17 〜22)によれば、従来の成形法A(表1のNo. 1、2)に比べ、質量ばらつきが大きく改善されていることがわかる。さらに、実施例1、2に示す本発明の実施例と比較しても質量ばらつきが大きく改善されている。
【0043】
一方、金型加熱温度の適切ではない比較例(No. 23)では、制御ができなかった。また、比較例(No. 24)では、質量ばらつきは低減するが、成形に必要な電力が余分にかかった。
【0044】
【発明の効果】
本発明の鉄基混合粉末の成形方法を採用することで、工業的規模で、成形体の質量ばらつきを大きく低減することが可能となった。
【図面の簡単な説明】
【図1】鉄基混合粉末の成形回数と金型温度の関係を模式的に示すグラフである。
【符号の説明】
1 従来の金型温度推移
2 本発明での金型温度推移
TC 所定温度
ΔTC (所定の)温度範囲
Tr 室温[0001]
BACKGROUND OF THE INVENTION
The present invention is a technique applied to powder metallurgy, and relates to a method for producing a metal powder, in particular, an iron-based powder compact that is a metal mixed powder based on iron powder. It is intended to reduce the mass variation of the compacted body.
[0002]
[Prior art]
In powder metallurgy, iron-based mixed powders are often used in which powders such as copper and graphite are added to iron powders as alloy powders and a lubricant such as zinc stearate and lead stearate is mixed. The iron-based mixed powder is press-molded after filling into a mold to form a molded body. The density of the formed iron-based mixed powder is generally 6.6 to 7.1 Mg / m 3 . The iron-based powder compact is subjected to a sintering process to form a sintered body, and further subjected to sizing and cutting as necessary to form a powder metallurgy product. If higher strength is required, carburizing heat treatment or bright heat treatment may be performed after sintering.
[0003]
Powder metallurgy technology as described above makes it possible to produce parts with complex dimensions with high dimensional accuracy in a near-net shape, which can greatly reduce costs compared to conventional methods of cutting and manufacturing metal bodies. It became. For this reason, iron-based powder metallurgy products are used as sintered parts in automobile parts. In Japan, iron-based mixed powder of over 6 kg is used per automobile as of 1998.
[0004]
Furthermore, recently, there has been a demand for further higher dimensional accuracy and cost reduction, and there has been a strong demand for further omission of cutting.
[0005]
[Problems to be solved by the invention]
One measure for reducing the cost of sintered parts is to improve the yield of the molded body. In particular, immediately after the molding is interrupted for a long time, immediately after the start of molding, the molded product has a large mass variation, and the molded product with a large mass variation is discarded, which is one of the major factors that reduce the yield of the molded product. It has become.
[0006]
This invention provides the manufacturing method of the iron-based powder molded object which makes it possible to reduce the mass dispersion | variation of the molded object immediately after a shaping | molding start from said viewpoint.
[0007]
[Means for Solving the Problems]
The inventors of the present invention conducted intensive research and research for the purpose of solving the above-mentioned problems, and clarified the cause of mass variation of the molded body immediately after the start of molding. And in order to eliminate the mass dispersion | variation, the examination of the manufacturing method of a new iron base powder molded object was performed, and it came to make this invention.
[0008]
That is, the present invention provides a metal powder repeatedly filled in a mold, a method for producing a metal powder compact for producing a molded body by pressure molding, before starting the molding, the temperature of the mold, 70 with preheating the predetermined temperature of ~ 90 ° C. to a target on the surface of the mold, in advance, the lubricant having a melting point higher than the predetermined temperature, a mixture of a lubricant having a predetermined temperature below the melting onset temperature Even if the powder is charged and adhered, and the metal powder is preheated to the predetermined temperature before filling the mold, and the molding is repeated, the temperature of the mold is always within the predetermined temperature range. The above-described problems are solved by a method for producing a metal powder molded body characterized in that the control is performed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the method for producing a metal powder molded body of the present invention will be described with reference to FIG.
When the iron-based mixed powder is molded in a normal room temperature state, as shown in FIG. 1, in the conventional temperature transition 1, the mold temperature before the start of molding is room temperature Tr . As the number of moldings is increased, the mold temperature rises and converges to a temperature T C determined by the operating conditions. That is, when molding is started and molding is repeated, the temperature of the mold rises to the temperature T C due to frictional heat between the metal powder and the mold. This temperature converges to a certain temperature and becomes stable in the process of repeated molding. In the present invention, the temperature value converged to this constant value is referred to as a predetermined temperature.
[0011]
Since the number of times of forming is small and the temperature of the mold does not stabilize before reaching the predetermined temperature, the apparent density of the metal powder also varies. Therefore, the mass of the metal powder filled in the mold also varies, and as a result, the mass variation of the molded body increases.
Therefore, in the present invention, the mold is preheated from room temperature to the predetermined temperature before the start of molding. In addition, immediately after the start of molding and before the mold is sufficiently heated with frictional heat, temperature control is performed so that the mold reaches the predetermined temperature until the mold temperature reaches the predetermined temperature. Then, the mold temperature is maintained at a predetermined temperature by performing heating corresponding to ΔT in FIG. 1. By doing so, it is possible to perform the molding mold temperature as always the predetermined temperature T C is a constant temperature (die
[0012]
As the number of moldings is increased, the heating amount corresponding to ΔT gradually decreases as shown in FIG. The predetermined temperature at which the number of moldings is repeated and finally converges and stabilizes is 70 to 90 ° C., depending on the shape of the sample. The mold is preheated to this temperature, which is empirically known, before the start of molding. Here, since a certain amount of temperature fluctuation cannot be avoided in actual operation, the heating temperature is controlled such that a certain predetermined temperature range is allowed and the mold temperature is within the predetermined temperature range. The predetermined temperature range is preferably ± 10 ° C.
[0013]
As described above, in advance to preheat the mold from initial molding at a mold, the mold always to keep a predetermined temperature T C, that makes it possible to greatly reduce the weight variation of a molded body did it.
Here, it is preferable not only to heat the mold, but also to preheat the metal powder filled in the mold. By preheating the metal powder, the temperature distribution of the metal powder filled in the mold can be made uniform in advance, and mass variation can be further reduced. Incidentally, the preheating of the metal powder can be easily realized by previously heating hopper for supplying the metal powder, a hose, a member of the feeder or the like to a predetermined temperature T C.
[0014]
The present invention is characterized in that a mold used for molding is preheated to a predetermined temperature before molding is started. The target temperature (that is, the predetermined temperature) to be preheated before the start of forming the metal powder is determined as follows, for example.
First, the relationship between the number of moldings in the normal case where the mold is not preheated and the mold temperature is examined in advance, and the temperature at which the mold temperature finally becomes constant is obtained. This temperature is approximately 70 to 90 ° C., although it depends on the shape of the molded body, the molding speed, and the like. Here, when the temperature is higher than the predetermined temperature + 10 ° C., the variation in mass decreases, but the input power increases and the cost increases. Further, even if it is attempted to control the temperature lower than −10 ° C., the temperature cannot be substantially controlled due to a temperature rise due to frictional heat generation of the mold during molding. Therefore, in the present invention, it is preferable to control the temperature so that the mold temperature is within a predetermined temperature ± 10 ° C. as a target.
[0015]
As the number of moldings increases, the mold temperature rises due to the friction between the metal powder and the mold wall. Therefore, to maintain the mold at a predetermined temperature, measure the temperature near the mold surface and heat the mold. It is preferable to adjust the amount of heat (specifically, voltage applied to the heater, current, etc.) input to the heater.
As the number of moldings further increases, the mold temperature converges to a predetermined temperature, and the mold temperature can be maintained at the predetermined temperature only by friction between the metal powder and the mold wall surface, and heating of the mold becomes unnecessary.
[0016]
In addition, the metal powder mold is usually performed at a pressure of about 392 to 686 MPa.
The molded body thus obtained is then processed in the sintering step. Sintering is performed in a normal RX atmosphere, a nitrogen atmosphere containing hydrogen, or a vacuum atmosphere. Furthermore, heat treatment such as gas carburizing quenching, bright quenching, and induction quenching may be performed as necessary.
[0017]
An iron-based mixed powder that is a suitable example for use in the present invention is pure iron powder such as atomized iron powder or reduced iron powder, partially diffusion alloyed steel powder, fully alloyed steel powder, or a mixed powder thereof. There is.
In the method for producing a metal powder molded body of the present invention, when an iron-based mixed powder is used as the metal powder, there is no need to particularly limit the content of graphite powder or lubricant in the iron-based mixed powder.
[0018]
The iron-based mixed powder, which is a preferred example used in the present invention, is obtained by further mixing a lubricant (powder forming lubricant) or an alloy powder with the iron-based powder.
As the lubricant for powder molding contained in the iron-based mixed powder, a commonly used lubricant can be used. For example, zinc stearate, lithium stearate, ethylene bisstearamide (EBS), etc. can be used. is there. Further, as disclosed in JP-A-5-148505, JP-A-1-65701, and the like, it is also possible to use a powder obtained by subjecting graphite powder or alloy powder to segregation prevention treatment.
[0019]
The mixing method of the iron-based powder and the forming lubricant or the alloy powder is not particularly limited, and any known mixing method can be suitably used.
Specific examples include a so-called “simple mixing” method in which iron powder, alloy powder, lubricant, and the like are mixed with a V blender, a W cone blender, or the like.
When mixing alloy powder with iron-based powder, in order to avoid segregation of the contained powder, after adding 1 part of powder-forming lubricant to iron-based powder and alloy powder and first mixing, further lubrication Stirring while heating to at least the melting point of at least one lubricant among the agents, melting at least one lubricant among the lubricants, and cooling the molten mixture while stirring, the iron-based powder It is preferable to use a mixing method in which the alloy powder is adhered by adhering a molten lubricant to the surface, and then the remainder of the powder forming lubricant is added and secondarily mixed.
[0020]
Further, the present inventors have found that by combining the mold lubrication shown in the following method, the mass variation can be further reduced although the reason is unknown.
Furthermore, as a secondary effect, when die lubrication is used together, the amount of lubricant contained in the iron-based mixed powder is reduced to about 0.2 to 0.3% by mass% with respect to the amount of mixed powder of iron-based powder and lubricant. As a result, the cost of the lubricant and the amount of emissions generated during dewaxing can be reduced.
[0021]
A charged mold lubricant is introduced in advance into the heated mold and charged and adhered to the mold surface. The lubricant for mold lubrication (solid powder) is charged into a mold lubrication device (for example, Die Wall Lubricant System manufactured by Gasbarre) and charged by contact charging between the lubricant (solid powder) and the inner wall of the device. .
The charged mold-lubricating lubricant is introduced into the mold by spraying and is charged and adhered to the mold surface. The amount of adhesion to the mold surface is preferably 0.5 to 10 mg / cm 2 . Adhering amount is insufficient lubricating effect is less than 0.5 mg / cm 2, after molding, the molded body becomes too high extraction force when withdrawing from the mold, also lubricant to the surface of the molded product exceeds 10 mg / cm 2 This remains because the appearance of the molded product becomes poor.
[0022]
The lubricant for mold lubrication used by charging and adhering to the mold surface contains 0.5-80% by mass of a lubricant having a predetermined pressure molding temperature, that is, a melting point higher than the predetermined temperature, and the balance It is preferable to use a mixed lubricant composed of a lubricant having a low melting start temperature equal to or lower than the predetermined temperature.
The predetermined temperature is particularly preferably managed as the temperature of the mold surface.
[0023]
A lubricant having a melting point higher than a predetermined temperature is not melted in the mold at the time of molding and acts as a solid lubricant like a `` roller '' in the mold, reducing the extraction force and further melting. Alternatively, the partially melted lubricant (lubricant having a melting start temperature lower than a predetermined temperature) is prevented from moving in the mold, and the frictional resistance between the molded body and the mold surface is reduced to prevent the extraction force from increasing. Have a role to play.
[0024]
When the content of the lubricant having a melting point higher than the predetermined temperature is less than 0.5% by mass with respect to the total amount of the lubricant, the amount of the lubricant having a melting point lower than the pressure molding temperature increases, and the amount of the lubricant to melt is small. As a result, the lubricant moves and does not have a uniform distribution on the mold surface, and the frictional resistance between the molded body and the mold surface increases, and the effect of reducing the extraction force is small. On the other hand, if the mass ratio exceeds 80%, the amount of lubricant that does not melt in the mold becomes too large, the distribution of the lubricant on the mold surface becomes uneven, the mold lubrication is insufficient, and the extraction force increases. To do. For this reason, it is preferable to limit the blending amount of the lubricant having a melting point higher than a predetermined temperature in the warm mold lubricant lubricant to a range of 0.5 to 80% by mass ratio.
[0025]
The balance in the lubricant for mold lubrication is a lubricant having a low melting start temperature equal to or lower than a predetermined temperature. A lubricant having a low melting start temperature below a predetermined temperature is melted or partially melted at the pressure forming temperature, becomes a grease-like state on the mold surface, and has an effect of lowering the extraction force.
The lubricant having a melting point higher than a predetermined temperature in the lubricant for mold lubrication is one selected from a metal soap, a thermoplastic resin, a thermoplastic elastomer, an inorganic lubricant having a layered crystal structure, or an organic lubricant. Or it is preferable to use 2 or more types. Depending on the predetermined temperature, it can be appropriately selected from the following lubricants.
[0026]
As the metal soap, lithium stearate, hydroxy hydroxystearate, zinc stearate and the like are preferable. Further, as the thermoplastic resin, polystyrene, polyamide, fluororesin and the like are suitable. As the thermoplastic elastomer, polystyrene elastomer, polyamide elastomer and the like are suitable. The inorganic lubricant having a layered crystal structure may be any of graphite, MoS 2 , and fluorocarbon, and the finer the particle size, the more effective the reduction of the extraction force. As the organic lubricant having a layered crystal structure, any of amide-based lubricants such as melamine-cyanuric acid adduct (MCA), N-alkylaspartic acid-β-alkyl ester, ethylene bisstearamide (EBS), etc. Can be used.
[0027]
On the other hand, it is desirable that the lubricant having a low melting start temperature equal to or lower than a predetermined temperature in the lubricant for mold lubrication be a lubricant that is easily melted with a low melting point that melts or partially melts on the mold surface at the predetermined temperature. Further, these lubricants do not need to be completely melted on the mold surface, and only part of them need only be melted. In general, the lubricant has a distribution range in the molecular weight, and melting often starts at a temperature lower than the melting point.
[0028]
Here, the melting point −30 ° C. is referred to as a melting start temperature, and the point is to employ a lubricant having a melting start temperature lower than a predetermined temperature. Such a lubricant is preferably one or two or more selected from amide wax, fatty acid, higher alcohol, polyethylene and two or more co-melts thereof. Depending on the predetermined temperature, it can be selected from the following lubricants. As the amide wax, stearic acid monoamide and the like are represented by stearic acid, hydroxystearic acid and behenic acid as fatty acids, and stearic alcohol, behenyl alcohol and the like as C x H 2x + 1 OH as higher alcohols. , X = 15-60 alcohols are preferred. As the co-melt, a co-melt of stearamide and stearic acid is suitable.
[0029]
Next, a heated iron-based powder mixture is charged into a mold charged with a mold lubricant and charged and pressure-molded to obtain a molded body.
[0030]
【Example】
(Example 1)
Atomized pure iron powder (KIP301A made by Kawasaki Steel) 2% by weight of electrolytic copper powder, 0.8% graphite powder and 0.8% of the lubricant shown in Table 1 are mixed for 15 minutes with a V-type mixer, and 1 ton of iron base A mixed powder was prepared. A hopper filled with 300 kg of this iron-based mixed powder was placed above the press that pressurizes the mold, and the hose provided at the bottom was connected to a feeder (powder box) on the die plate of the press. The feeder was reciprocated once at a speed of 100 mm / s on the cavity (cavity of the mold), and the cavity was filled with the iron-based mixed powder. Thereafter, 1000 rings having an outer diameter of 38φ × inner diameter of 25φ × 10t were continuously formed using a floating mold.
[0031]
And all the mass of the obtained molded object was measured. The temperature of the cavity surface before starting molding (that is, room temperature) was 21 ° C., and after 1000 pieces were molded, it was 70 ° C. The above conventional molding method is referred to as molding method A.
Here, after a series of forming is completed, the press machine is completely stopped for 3 hours and then restarted.
[0032]
Next, molding was performed under the same conditions as molding method A, while PID control of the mold surface temperature to 70 ° C. with an alumina heater embedded in the die of the mold. This molding method of the present invention is referred to as molding method B.
Further, in order to heat the iron-based mixed powder itself, the hopper, hose, and powder box were heated to 70 ° C., and the other conditions were molded in the same manner as the molding method B. The molding method according to another embodiment of the present invention is referred to as molding method C.
[0033]
The mass variation of the molded body was evaluated by the standard deviation of the measured mass of the molded body. Table 1 summarizes the lubricants used, molding method, mold temperature, and mass variation. The mass variation is relatively shown with a value of 1 when zinc stearate is used in molding method A.
[0034]
[Table 1]
[0035]
In the examples (Nos. 3 to 6) of the present invention, the mass variation is greatly improved as compared with the comparative examples (Nos. 1 and 2) by the conventional molding method. On the other hand, in the comparative example (No. 7) in which the heating temperature of the mold was not appropriate, control could not be performed. Further, in the comparative example (No. 8), the variation in mass was reduced, but extra power required for molding was applied.
(Example 2)
As iron-based mixed powder, reduced pure iron powder (KIP255M manufactured by Kawasaki Steel Corporation) is subjected to segregation prevention treatment containing 2% electrolytic copper powder, 0.8% graphite powder, and 0.8% lubricant. 1ton was made.
[0036]
Here, the segregation prevention treatment was performed by the following method.
After adding the lubricant shown in Table 2 to the iron-based powder and performing primary mixing, the mixture is further stirred at the melting point of + 10 ° C of at least one lubricant among the lubricants, and at least one of the lubricants is stirred. After melting the seed lubricant, cooling the melted mixture with stirring and adhering the melted lubricant to the surface of the iron-based powder to adhere the alloy powder, the powder molding shown in Table 2 The remainder of the lubricant was added to perform secondary mixing. The method for molding these powders and the method for evaluating the mass variation of the molded body are the same as the method shown in Example 1.
[0037]
[Table 2]
[0038]
According to the examples (Nos. 9 to 14) of the present invention, the mass variation is greatly improved as compared with the conventional molding method A (Nos. 1 and 2 in Table 1). On the other hand, in the comparative example (No. 15) in which the mold preheating temperature was not appropriate, control could not be performed. Further, in the comparative example (No. 16), the variation in mass was reduced, but extra power required for molding was applied.
(Example 3)
As iron-based powder. An iron base in which a partially alloyed steel powder having a composition of Fe-4Ni-0.5Mo-1.5Cu was mixed with 0.5% by mass graphite powder and various lubricants shown in Table 2 in the same manner as in Example 2. 1 ton of mixed powder mixture was made.
[0039]
Table 3 shows the combinations of lubricants used.
[0040]
[Table 3]
[0041]
As a method for forming the iron-based mixed powder, in addition to the method of Example 1, the following method by die lubrication was used in combination.
Here, the mold for pressure molding was preheated to the temperature shown in Table 3 before the start of molding. In addition, a lubricant for mold lubrication charged by using a mold lubrication device (Die Wall Lubricant System manufactured by Gasbarre) is sprayed and introduced into the mold for each molding, and charged on the mold surface.
[0042]
The lubricant for mold lubrication is selected from various lubricants shown in Table 2, and a lubricant having a melting start temperature lower than a predetermined temperature and a lubricant having a melting point higher than the predetermined temperature are shown in Table 1. The mixture was used.
According to Examples (Nos. 17 to 22) of the present invention, it can be seen that mass variation is greatly improved as compared with the conventional molding method A (Nos. 1 and 2 in Table 1). Further, even when compared with the examples of the present invention shown in Examples 1 and 2, the mass variation is greatly improved.
[0043]
On the other hand, in the comparative example (No. 23) where the mold heating temperature was not appropriate, control could not be performed. Further, in the comparative example (No. 24), the variation in mass was reduced, but extra power required for molding was applied.
[0044]
【The invention's effect】
By adopting the iron-based mixed powder molding method of the present invention, it is possible to greatly reduce the mass variation of the molded body on an industrial scale.
[Brief description of the drawings]
FIG. 1 is a graph schematically showing the relationship between the number of moldings of iron-based mixed powder and the mold temperature.
[Explanation of symbols]
1 Conventional
Claims (1)
成形開始前に、前記金型の温度を、70〜90℃の所定温度を目標に予熱するとともに、前記金型の表面に、あらかじめ、前記所定温度よりも高い融点を有する潤滑剤と、前記所定温度以下の融解開始温度を有する潤滑剤との混合物粉末を、帯電付着させておき、
かつ前記金属粉末を、前記金型に充填する前に前記所定温度に予熱し、
その後、成形を繰り返しても、前記金型の温度が常に所定温度範囲内となるように制御することを特徴とする金属粉末成形体の製造方法。
ここで、融解開始温度とは、融点より30℃低い温度とする。It is a method for producing a metal powder molded body in which a metal powder is repeatedly filled in a mold, and pressure molded to produce a molded body,
Prior to the start of molding, the mold temperature is preheated to a predetermined temperature of 70 to 90 ° C., and a lubricant having a melting point higher than the predetermined temperature is previously formed on the mold surface, and the predetermined temperature A mixture powder with a lubricant having a melting start temperature equal to or lower than the temperature is charged and adhered,
And preheating the metal powder to the predetermined temperature before filling the mold,
Then, even if it shape | molds repeatedly, the temperature of the said metal mold | die is controlled so that it may always exist in a predetermined temperature range, The manufacturing method of the metal powder molded object characterized by the above-mentioned.
Here, the melting start temperature is a temperature 30 ° C. lower than the melting point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000046333A JP4352559B2 (en) | 2000-02-23 | 2000-02-23 | Method for producing metal powder compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000046333A JP4352559B2 (en) | 2000-02-23 | 2000-02-23 | Method for producing metal powder compact |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001234205A JP2001234205A (en) | 2001-08-28 |
JP4352559B2 true JP4352559B2 (en) | 2009-10-28 |
Family
ID=18568766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000046333A Expired - Fee Related JP4352559B2 (en) | 2000-02-23 | 2000-02-23 | Method for producing metal powder compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4352559B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1792677A4 (en) * | 2004-09-03 | 2009-07-01 | Sumitomo Electric Industries | Method for forming powder in powder metallurgy and method for producing sintered parts |
KR100743357B1 (en) | 2006-02-14 | 2007-07-26 | 박재성 | Hopper for press to regulate temperature and pressure |
JP2008155258A (en) * | 2006-12-25 | 2008-07-10 | Honda Motor Co Ltd | Heating method in warm powder compacting, and apparatus therefor |
JP5023041B2 (en) * | 2008-11-05 | 2012-09-12 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method thereof |
JP5372481B2 (en) * | 2008-12-12 | 2013-12-18 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method thereof |
KR101434601B1 (en) | 2012-12-28 | 2014-08-26 | (주) 우정테크 | Method and apparatus for molding powder cosmetics |
CA2859414C (en) | 2014-04-04 | 2017-03-14 | Matsuura Machinery Corporation | Metal powder processing equipment |
JP7118416B2 (en) * | 2018-08-30 | 2022-08-16 | 株式会社菊水製作所 | Powder compression molding system and its control method |
-
2000
- 2000-02-23 JP JP2000046333A patent/JP4352559B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001234205A (en) | 2001-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4228547B2 (en) | Lubricant for mold lubrication and method for producing high-density iron-based powder compact | |
US20150061188A1 (en) | High-density molding device and high-density molding method for mixed powder | |
US20130336830A1 (en) | Method for producing high-strength sintered compact and high-strength sintered compact production system | |
US20130300021A1 (en) | Mixed powder high-density molding method and mixed powder high-density molding system | |
EP1145788B1 (en) | Lubricating agent for mold at elevated temperature and method for producing high density iron-based sintered compact | |
EP2842666A1 (en) | Device for high-density molding and method for high-density molding of mixed powder | |
JP4352559B2 (en) | Method for producing metal powder compact | |
JP2012167302A (en) | Powdery mixture for powder metallurgy and method for producing the same | |
US20150076729A1 (en) | High-density molding device and high-density molding method for mixed powder | |
US8795586B2 (en) | Method of producing powder sintered product | |
US20150118096A1 (en) | High-density molding device and high-density molding method for mixed powder | |
JP5012645B2 (en) | Method for producing high-density iron-based powder compact | |
JP2001181701A (en) | Method for producing high strength/high density ferrous sintered body | |
US20150078952A1 (en) | High-density molding device and high-density molding method for mixed powder | |
JP4507348B2 (en) | High-density iron-based powder molded body and method for producing high-density iron-based sintered body | |
JP4770667B2 (en) | Iron-based powder mixture for warm mold lubrication molding | |
JP2009263697A (en) | Method for manufacturing sintered steel | |
JP2010156059A (en) | Iron-based powdery mixture for warm die lubrication molding | |
JP2000199002A (en) | Compacting method of powder for powder metallurgical processing | |
JP3931503B2 (en) | Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body | |
EP1792677A1 (en) | Method for forming powder in powder metallurgy and method for producing sintered parts | |
JP3822372B2 (en) | Powder metallurgy powder compression molding method | |
JPWO2019230259A1 (en) | Powder mixture for powder metallurgy and method for producing the same | |
JP2002155303A (en) | Method for producing iron-based sintered compact | |
JP2000144206A (en) | Compression molding method of powder for powder metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090720 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |