JP5372481B2 - Powder magnetic core and manufacturing method thereof - Google Patents

Powder magnetic core and manufacturing method thereof Download PDF

Info

Publication number
JP5372481B2
JP5372481B2 JP2008316941A JP2008316941A JP5372481B2 JP 5372481 B2 JP5372481 B2 JP 5372481B2 JP 2008316941 A JP2008316941 A JP 2008316941A JP 2008316941 A JP2008316941 A JP 2008316941A JP 5372481 B2 JP5372481 B2 JP 5372481B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic alloy
amorphous soft
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008316941A
Other languages
Japanese (ja)
Other versions
JP2010141183A (en
Inventor
泰雄 大島
進 繁田
宏 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2008316941A priority Critical patent/JP5372481B2/en
Publication of JP2010141183A publication Critical patent/JP2010141183A/en
Application granted granted Critical
Publication of JP5372481B2 publication Critical patent/JP5372481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the dust core which exhibits excellent ring compression strength and magnetic characteristics even if low-pressure molding is carried out at room temperature. <P>SOLUTION: Powder of an amorphous soft magnetic alloy consists of 85 wt.% of first powder having mean particle diameter of 42 &mu;m, and the reminder of 15 wt.% of second powder of different granularity having mean particle diameter of 4-6 &mu;m. Powder of a plurality kinds of amorphous soft magnetic alloy is mixed with 5 wt.% of low melting point glass having mean particle diameter of 0.8-10.0 &mu;m for the powder of amorphous soft magnetic alloy, mixed with insulating resin binder, dried, and passed through a sieve having sieve mesh of 300 &mu;m for coating. The mixture containing powder of an amorphous soft magnetic alloy coated with the insulating resin binder is then mixed with lubricative resin and pressure molded with molding pressure of 1300 MPa at room temperature to form a molding. The molding thus formed is annealed at 480&deg;C for 30 minutes. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、平滑用チョークコイル等に使用される圧粉磁心とその製造方法に関する。   The present invention relates to a dust core used for a smoothing choke coil or the like and a method for manufacturing the same.

各種電子機器の高性能化及び多機能化に伴い大電流化が進み、それに使用されるチョークコイル等の磁心に用いられる軟磁性材料においては、大電流でも特性変化が小さい特性、すなわち、優れた直流重畳性と低損失が求められている。   With the increase in performance and functionality of various electronic devices, currents have increased, and soft magnetic materials used for magnetic cores such as choke coils used in such electronic devices have characteristics that have small characteristic changes even at large currents, that is, excellent DC superimposition and low loss are required.

高周波で用いられるチョークコイルとして、フェライト磁心や圧粉磁心が使用されている。これらの中で、フェライト磁心は飽和磁束密度が小さいという欠点を有している。これに対して、金属合金粉末を成形して作製される圧粉磁心は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重畳特性に優れている。   Ferrite cores and dust cores are used as choke coils used at high frequencies. Among these, the ferrite core has a defect that the saturation magnetic flux density is small. On the other hand, a dust core produced by molding metal alloy powder has a higher saturation magnetic flux density than soft magnetic ferrite, and thus has excellent DC superposition characteristics.

この金属合金粉末として、珪素とアルミと鉄の合金であるセンダスト、ニッケルと鉄の合金であるパーマロイ、珪素と鉄の合金である珪素鋼等が用いられている。また、より低損失な合金として、非晶質軟磁性合金であるアモルファス合金を使用することが検討されている。   As this metal alloy powder, Sendust, which is an alloy of silicon, aluminum, and iron, Permalloy, which is an alloy of nickel and iron, silicon steel, which is an alloy of silicon and iron, and the like are used. Further, the use of an amorphous alloy, which is an amorphous soft magnetic alloy, has been studied as a lower loss alloy.

この非晶質軟磁性合金粉を用いて圧粉磁心を作製するためには、非晶質軟磁性合金粉末を低融点ガラスと有機バインダーなどと混合して高圧で圧縮成形した後、熱処理を行う方法が知られている。   In order to produce a powder magnetic core using this amorphous soft magnetic alloy powder, the amorphous soft magnetic alloy powder is mixed with a low-melting glass and an organic binder and compression molded at a high pressure, followed by heat treatment. The method is known.

例えば、従来技術として、特許文献1のように、成形時に金型と粉末を高温にして高密度成形を行う方法や、特許文献2のように、金属合金粉末を低融点ガラスと有機バインダーなどと混合して、室温にて高圧で成形を行う方法がある。   For example, as a conventional technique, as in Patent Document 1, a method of performing high-density molding with a mold and powder at a high temperature during molding, or as disclosed in Patent Document 2, a metal alloy powder is made of a low-melting glass and an organic binder. There is a method of mixing and molding at high pressure at room temperature.

しかしながら、特許文献1や特許文献2の方法は、非晶質軟磁性合金粉末の表面に低融点ガラス粉末を固着させ、ガラスの軟化点より高くしかも非晶質軟磁性合金粉末の結晶化温度よりも低い温度で加圧成形を行うものである。しかし、これらの方法で作製される圧粉磁心は機械的強度が弱く、圧粉磁心に対して巻線を施す工程や実装する工程など圧粉磁心が破損する問題点があった。   However, in the methods of Patent Document 1 and Patent Document 2, a low-melting glass powder is fixed on the surface of the amorphous soft magnetic alloy powder, which is higher than the softening point of the glass and higher than the crystallization temperature of the amorphous soft magnetic alloy powder. Also, pressure molding is performed at a low temperature. However, the powder magnetic cores produced by these methods have weak mechanical strength, and there is a problem that the powder magnetic core is damaged such as a step of winding the powder magnetic core and a step of mounting.

そこで、特許文献3の実施例3,6,12のように、2種類の粒径の違う非晶質軟磁性合金粉末とガラス粉末と結着性樹脂を成形し、大気中において非晶質軟磁性合金粉末の結晶化温度よりも低い温度で焼成する方法が知られている。この方法は、小さな粒径の粉末が大きな粒径の粉末の隙間を埋めることにより、成形圧力が低くても成形密度を高め圧粉磁心の機械的強度と磁気特性を高める方法である。   Therefore, as in Examples 3, 6, and 12 of Patent Document 3, two types of amorphous soft magnetic alloy powders, glass powders, and binder resins having different particle sizes are formed, and amorphous soft magnetic particles are formed in the atmosphere. A method of firing at a temperature lower than the crystallization temperature of the magnetic alloy powder is known. This method is a method in which a powder having a small particle size fills a gap between powders having a large particle size, thereby increasing the molding density and increasing the mechanical strength and magnetic properties of the dust core even when the molding pressure is low.

特開平10−212503JP-A-10-212503 特開2001−73062JP 2001-73062 A 特開2006−176817JP 2006-176817 A

ところが、特許文献3の方法で得られる圧粉磁心の圧環強度は15MPa未満程度しか得られず、強度のある圧粉磁心とは言いがたい。また、この方法は、小さな粒径の非晶質軟磁性合金粉末を得るために、非晶質軟磁性合金に対して水素雰囲気中で脆化処理を行い、その後、脆化処理した非晶質軟磁性合金を粉砕する方法であるため、工程が複雑になってしまい量産には向いていない。さらに、粉砕することで、微粉末内部に歪みが発生してヒステリシス損失が増加などの問題点が存在していた。   However, the dust ring strength of the dust core obtained by the method of Patent Document 3 can be obtained only less than about 15 MPa, and it is difficult to say that it is a strong dust core. In addition, in this method, in order to obtain an amorphous soft magnetic alloy powder having a small particle size, the amorphous soft magnetic alloy is embrittled in a hydrogen atmosphere, and then the embrittled amorphous Since this method pulverizes a soft magnetic alloy, the process becomes complicated and is not suitable for mass production. Furthermore, there has been a problem that, by grinding, distortion occurs in the fine powder and hysteresis loss increases.

以上のように、非晶質軟磁性合金粉末による圧粉磁心においては、その優れた磁気特性にもかかわらず成形性が他の金属と比較して悪く、機械的強度が弱いなどの問題がある。また、粉末自身が固いため、成形時圧力を高くしても十分な密度が得られず、優れた磁気特性を得ることができないでいた。   As described above, a powder magnetic core made of amorphous soft magnetic alloy powder has problems such as poor formability compared to other metals and weak mechanical strength despite its excellent magnetic properties. . In addition, since the powder itself is hard, a sufficient density cannot be obtained even if the pressure during molding is increased, and excellent magnetic properties cannot be obtained.

本発明の目的は、上記問題点を解決し、従来の金属合金と同様、室温で低圧成形を行っても、機械的強度が強く、軟磁気特性を有する圧粉磁心及び圧粉磁心の製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems and, like conventional metal alloys, even if low-pressure molding is performed at room temperature, the mechanical strength is strong, and the powder magnetic core has a soft magnetic property and a method for producing the powder magnetic core Is to provide.

上記目的をふまえ、本発明の圧粉磁心は、平均粒径が異なる2種類以上の非晶質軟磁性合金粉末を均一に分散させた複合磁性材料粉末と軟化点が非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末を混合し、得られた混合物に対し、メチルフェニル系シリコーン樹脂と潤滑性樹脂とを混合することで当該混合物中の2種類以上の前記非晶質軟磁性合金粉末と前記ガラス粉末を被膜し、さらに当該被膜された混合物と潤滑性樹脂とを混合し、得られた混合物を加圧成形して成形体を作製し、その成形体を前記非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理してなる圧粉磁心において、前記ガラス粉末は、ビスマス系ガラスまたはリン酸系ガラスであり、前記焼鈍処理を大気中で行うことにより作製されたことを特徴とする。 Based on the above object, the dust core of the present invention comprises a composite magnetic material powder in which two or more kinds of amorphous soft magnetic alloy powders having different average particle diameters are uniformly dispersed, and an amorphous soft magnetic alloy powder having a softening point. The glass powder having a temperature lower than the crystallization temperature of the mixture is mixed, and the resulting mixture is mixed with a methylphenyl silicone resin and a lubricating resin, whereby two or more kinds of the amorphous soft magnetic alloy powder in the mixture are mixed. And the glass powder are coated, and the coated mixture and a lubricating resin are mixed. The resulting mixture is pressure-molded to produce a molded body, and the molded body is formed into the amorphous soft magnetic alloy. In the powder magnetic core formed by annealing at a temperature lower than the crystallization temperature of the powder, the glass powder is bismuth-based glass or phosphate-based glass, and is produced by performing the annealing treatment in the air. Features.

本発明の他の態様では、前記ガラス粉末が平均粒径0.8〜10μmであることを特徴とする。   In another aspect of the present invention, the glass powder has an average particle size of 0.8 to 10 μm.

本発明の他の態様では、前記ガラス粉末の前記前記非晶質軟磁性合金粉末に対する添加量が、2〜5vol%であることを特徴とする。   In another aspect of the present invention, the addition amount of the glass powder to the amorphous soft magnetic alloy powder is 2 to 5 vol%.

本発明の他の態様では、前記潤滑性樹脂の前記前記非晶質軟磁性合金粉末に対する添加量が、0.1〜2.0wt%であることを特徴とする。   In another aspect of the present invention, the amount of the lubricating resin added to the amorphous soft magnetic alloy powder is 0.1 to 2.0 wt%.

本発明の他の態様では、前記潤滑性樹脂は、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドの中から選択された材料であることを特徴とする。   In another embodiment of the present invention, the lubricating resin is a material selected from stearic acid, stearate, stearic acid soap, and ethylene bisstearamide.

なお、前記の様な平均粒径が異なる2種類以上の非晶質軟磁性合金粉末と軟化点が非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末を混合した後、メチルフェニル系シリコーン樹脂で被膜し、加圧成形し、大気中で熱処理をすることで、機械的強度や磁気特性に優れた圧粉磁心を得る製造方法も、本発明の一態様である。 In addition, after mixing two or more kinds of amorphous soft magnetic alloy powders having different average particle sizes as described above and glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder, methylphenyl silicone is used. A manufacturing method for obtaining a dust core excellent in mechanical strength and magnetic properties by coating with a resin, press-molding, and heat-treating in the air is also an embodiment of the present invention.

以上のような本発明によれば、非晶質軟磁性合金粉末と低融点ガラスと混合し、結着性絶縁樹脂で被覆し、潤滑性樹脂を混合した後、加圧成形し、焼鈍処理を大気中で行うことで、非晶質である軟磁性合金の粉末の表面が酸化して、低融点ガラスと軟磁性合金粉末の結着強度が増加するので、常温で低圧成形を行っても機械的強度に優れた圧粉磁心と圧粉磁心の製造方法を提供することができる。   According to the present invention as described above, the amorphous soft magnetic alloy powder and the low-melting glass are mixed, covered with a binding insulating resin, mixed with a lubricating resin, and then subjected to pressure molding and annealing treatment. By performing in the air, the surface of the amorphous soft magnetic alloy powder is oxidized, and the binding strength between the low-melting glass and the soft magnetic alloy powder increases. It is possible to provide a dust core excellent in mechanical strength and a method for producing a dust core.

本実施形態の圧粉磁心の製造方法は、次のような各工程を有する。
(1)平均粒径が異なる2種類以上の非晶質軟磁性合金粉末と低融点ガラスを混合する第1混合工程。
(2)第1混合工程を経た混合物を結着性絶縁樹脂で被覆する被覆工程。
(3)結着性絶縁樹脂で被覆した複合軟磁性粉末と低融点ガラスに対して、潤滑性樹脂を混合する第2混合工程。
(4)第2混合工程を経た混合物を、加圧成形処理して成形体を作製する成形工程。
(5)成形工程を経た成形体を焼鈍処理する焼鈍工程。
以下、各工程を具体的に説明する。
The manufacturing method of the powder magnetic core of the present embodiment includes the following steps.
(1) A first mixing step in which two or more kinds of amorphous soft magnetic alloy powders having different average particle diameters are mixed with low-melting glass.
(2) A coating step of coating the mixture that has undergone the first mixing step with a binding insulating resin.
(3) A second mixing step of mixing the lubricating resin with the composite soft magnetic powder coated with the binding insulating resin and the low melting point glass.
(4) A molding step for producing a molded body by subjecting the mixture that has undergone the second mixing step to pressure molding.
(5) An annealing process for annealing the molded body that has undergone the molding process.
Hereafter, each process is demonstrated concretely.

(1)第1混合工程
本実施形態の第1混合工程では、非晶質である軟磁性合金の粉末のうち85wt%を平均粒径が42μmの第1の粉末とし、残りの15wt%を粒度が異なる平均粒径4〜6μmの第2の粉末とする。さらに、非晶質である軟磁性合金の粉末の体積に対して添加量2〜5vol%の低融点ガラスを混合機(V型混合機)を使用して2時間混合する。
(1) First mixing step In the first mixing step of the present embodiment, 85 wt% of the amorphous soft magnetic alloy powder is used as the first powder having an average particle size of 42 μm, and the remaining 15 wt% is used as the particle size. The second powder has different average particle diameters of 4 to 6 μm. Further, a low melting point glass having an addition amount of 2 to 5 vol% with respect to the volume of the amorphous soft magnetic alloy powder is mixed for 2 hours using a mixer (V-type mixer).

(2)被覆工程
前記混合工程を経た混合物を結着性絶縁樹脂で被覆する被覆工程は、混合工程を経た混合物に結着性絶縁樹脂を混合して乾燥する。その後300μmの目開きの篩に通す。被覆工程においても、潤滑性樹脂を混合しても良い。その場合の添加量は、混合工程で非晶質である軟磁性合金の粉末と混合した潤滑性樹脂と合計で非晶質である軟磁性合金の粉末に対して2.0wt%を超えないようにする。
(2) Coating process The coating process which coat | covers the mixture which passed through the said mixing process with binder insulating resin mixes a binder insulating resin with the mixture which passed through the mixing process, and dries. Then, it is passed through a sieve having an opening of 300 μm. In the coating step, a lubricating resin may be mixed. In this case, the addition amount should not exceed 2.0 wt% with respect to the soft magnetic alloy powder that is amorphous in total with the lubricating resin mixed with the soft magnetic alloy powder that is amorphous in the mixing step. To.

被覆工程で使用する結着性絶縁樹脂として、アクリル酸共重合樹脂(EAA)エマルジョンを使用する。混合するアクリル酸共重合樹脂(EAA)エマルジョンの添加量は非晶質である軟磁性合金の粉末に対して2.0wt%であり、その場合の乾燥温度と乾燥時間は、80℃で2時間である。   An acrylic acid copolymer resin (EAA) emulsion is used as the binding insulating resin used in the coating process. The addition amount of the acrylic acid copolymer resin (EAA) emulsion to be mixed is 2.0 wt% with respect to the amorphous soft magnetic alloy powder. In this case, the drying temperature and drying time are 2 hours at 80 ° C. It is.

このアクリル酸共重合樹脂(EAA)エマルジョンは、種々の架橋剤・諸物性付与剤を配合したソープフリーコロイド状のエマルジョンである。アクリル酸共重合樹脂(EAA)エマルジョンは、加熱乾燥により水分を蒸発させると、水に再溶解せず、殆ど吸湿性がない架橋構造を持った被膜を形成する。この被膜は粘着性があり、成形時のバインダーとして最適に作用する。また、アクリル酸共重合樹脂(EAA)エマルジョンの添加量は、0.5〜2.0wt%が適量である。これよりも少なければ、成形体の強度が不足して、割れが発生する。また、2.0wt%よりも多いと、密度低下による最大密度低下の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。   This acrylic acid copolymer resin (EAA) emulsion is a soap-free colloidal emulsion in which various crosslinking agents and physical property-imparting agents are blended. An acrylic acid copolymer resin (EAA) emulsion forms a film having a cross-linked structure that is not redissolved in water and hardly absorbs moisture when water is evaporated by heat drying. This film is tacky and works optimally as a binder during molding. The addition amount of acrylic acid copolymer resin (EAA) emulsion is an appropriate amount of 0.5 to 2.0 wt%. If it is less than this, the strength of the molded body will be insufficient and cracks will occur. On the other hand, if the amount is more than 2.0 wt%, there arises a problem that the maximum density reduction due to density reduction and the magnetic characteristics due to an increase in hysteresis loss are reduced.

また、アクリル酸共重合樹脂(EAA)エマルジョンの代りに、メチルフェニル系シリコーン樹脂もしくはPVA(ポリビニルアルコール)水溶液(12%水溶液)を使用しても良い。メチルフェニル系シリコーン樹脂の添加量は、0.5〜2.0wt%が適量である。また、PVA(ポリビニルアルコール)水溶液(12%水溶液)の添加量は0.5〜3.0wt%が適量である。   Further, instead of the acrylic acid copolymer resin (EAA) emulsion, a methylphenyl silicone resin or a PVA (polyvinyl alcohol) aqueous solution (12% aqueous solution) may be used. The addition amount of methylphenyl silicone resin is an appropriate amount of 0.5 to 2.0 wt%. The addition amount of PVA (polyvinyl alcohol) aqueous solution (12% aqueous solution) is an appropriate amount of 0.5 to 3.0 wt%.

メチルフェニル系シリコーン樹脂もしくはPVA(ポリビニルアルコール)水溶液(12%水溶液)を使用した場合、それぞれの適量よりも少なければ、成形体の強度が不足して、割れが発生する。また、それぞれの適量より多いと、密度低下による最大磁束密度の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。また、粉末の平均粒径は、第2の粉末軟磁性合金粉末の平均粒径以下が良い。これより大きいと、密度低下の要因となる。   When a methylphenyl silicone resin or a PVA (polyvinyl alcohol) aqueous solution (12% aqueous solution) is used, if the amount is less than the appropriate amount, the strength of the molded body is insufficient and cracking occurs. On the other hand, when the amount is more than the appropriate amount, there arises a problem that the maximum magnetic flux density is lowered due to the density reduction and the magnetic characteristics are lowered due to the increase in hysteresis loss. The average particle size of the powder is preferably equal to or less than the average particle size of the second powder soft magnetic alloy powder. If it is larger than this, the density will be reduced.

(3)第2混合工程
前記被覆工程を経た混合物に潤滑性樹脂を混合する第2混合工程では、潤滑性樹脂を混合した第1混合物に結着性絶縁樹脂を混合する。結着性絶縁樹脂で被覆した複合軟磁性粉末と低融点ガラスの合計量に対して0.5wt%の量の潤滑性樹脂を混合機(V型混合機)を使用して2時間混合する。
(3) Second Mixing Step In the second mixing step of mixing the lubricating resin with the mixture that has undergone the coating step, the binder insulating resin is mixed with the first mixture in which the lubricating resin is mixed. Lubricating resin in an amount of 0.5 wt% based on the total amount of the composite soft magnetic powder coated with the binding insulating resin and the low melting point glass is mixed for 2 hours using a mixer (V-type mixer).

第2混合工程で使用する潤滑性樹脂としては、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドなどのワックスなどを使用する。具体的には、エチレンビスステアラマイド、ステアリン酸リチウム、ステアリン酸アルミなどである。この場合の潤滑性樹脂の添加量は、前記非晶質軟磁性合金粉末に対して0.1〜2.0wt%である。これよりも少なければ、十分な効果を得ることができず、これより多いと、密度低下による最大磁束密度の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。   As the lubricating resin used in the second mixing step, a wax such as stearic acid, stearate, stearic acid soap, ethylene bisstearamide, or the like is used. Specific examples include ethylene bisstearamide, lithium stearate, and aluminum stearate. In this case, the addition amount of the lubricating resin is 0.1 to 2.0 wt% with respect to the amorphous soft magnetic alloy powder. If it is less than this, a sufficient effect cannot be obtained, and if it is more than this, there arises a problem that the maximum magnetic flux density is reduced due to density reduction and the magnetic characteristics are lowered due to increase in hysteresis loss.

(4)成形工程
成形工程では、前記のようにして結着剤により被覆した軟磁性合金を、室温にて成形圧力1300MPaで加圧成形することにより、成形体を形成する。この時、加圧乾燥された結着性絶縁樹脂は、成形時のバインダーとして作用する。
(4) Molding step In the molding step, the soft magnetic alloy coated with the binder as described above is press-molded at a molding pressure of 1300 MPa at room temperature to form a molded body. At this time, the pressure-dried binding insulating resin acts as a binder during molding.

(5)焼鈍工程
焼鈍工程では、前記成形体に対して、480℃で30分の間、焼鈍処理を行うことで圧粉磁心が作製される。ここで、480℃で熱処理を行うのは、非晶質である軟磁性合金の粉末の結晶化温度以下で、ある程度の圧環強度を維持するためである。一方、焼鈍温度を上げ過ぎると絶縁性能の劣化から磁気特性が劣化するため、特に渦電流損失が大きく増加してしまうことにより、鉄損が増加するのを抑制するためである。
(5) Annealing process In an annealing process, a powder magnetic core is produced by performing an annealing process with respect to the said molded object at 480 degreeC for 30 minutes. Here, the heat treatment is performed at 480 ° C. in order to maintain a certain degree of crushing strength below the crystallization temperature of the amorphous soft magnetic alloy powder. On the other hand, if the annealing temperature is raised too much, the magnetic properties are deteriorated due to the deterioration of the insulation performance, and in particular, the eddy current loss is greatly increased, thereby suppressing the iron loss from increasing.

また、このとき結着性絶縁樹脂は、焼鈍処理中に一定温度に達すると熱分解する。圧粉磁心の熱処理が大気中で行われることで、結着性絶縁樹脂は非晶質である軟磁性合金の粉末の周りを覆う膜となる。そのため高温で熱処理を行っても絶縁性が劣化せず、酸化などによるヒステリシス損失が増加しない。また、機械的強度を改善する役目も果たす。   At this time, the binding insulating resin is thermally decomposed when it reaches a certain temperature during the annealing process. By performing the heat treatment of the dust core in the atmosphere, the binding insulating resin becomes a film covering the powder of the soft magnetic alloy that is amorphous. Therefore, even if heat treatment is performed at a high temperature, the insulation does not deteriorate and hysteresis loss due to oxidation does not increase. It also serves to improve mechanical strength.

低融点ガラスは、軟化点よりも高い温度まで加熱すると、軟化して流動性を呈する。流動性を呈した低融点ガラスが、非晶質軟磁性合金粉末の粒子間の隙間を埋めるように侵入することにより、圧粉磁心の成形密度を高くする。また、成形した圧粉磁心においては、強固なバインダーとして機能し、圧粉磁心に機械的強度を与える。さらに、非晶質軟磁性合金粉末間の絶縁剤としても機能することにより、渦電流の発生を防止し、抑制する。   When the low melting point glass is heated to a temperature higher than the softening point, it softens and exhibits fluidity. The low melting point glass exhibiting fluidity penetrates so as to fill the gaps between the particles of the amorphous soft magnetic alloy powder, thereby increasing the molding density of the dust core. Further, the molded dust core functions as a strong binder and gives mechanical strength to the dust core. Furthermore, it also functions as an insulating agent between the amorphous soft magnetic alloy powders, thereby preventing and suppressing the generation of eddy currents.

次に、本発明の実施例1〜14を、図1〜4及び表1〜6を参照して、以下に説明する。
[1.測定項目]
測定項目として、透磁率と最大磁束密度と直流重畳性を次のような手法により測定する。透磁率は、作製された圧粉磁心に1次巻線(20ターン)を施し、インピーダンスアナライザーを使用することで、100kHz、0.5Vにおけるインダクタンスから算出した。
Next, Examples 1 to 14 of the present invention will be described below with reference to FIGS. 1 to 4 and Tables 1 to 6.
[1. Measurement item]
As measurement items, permeability, maximum magnetic flux density, and direct current superimposition are measured by the following method. The magnetic permeability was calculated from the inductance at 100 kHz and 0.5 V by applying a primary winding (20 turns) to the produced powder magnetic core and using an impedance analyzer.

最大磁束密度は、圧粉磁心に1次巻線(170ターン)及び2次巻線(20ターン)を施し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8232)を用いて、印加磁界H=20000A/mでの磁束密度を測定した。また、直流重畳性は、各圧粉磁心に1次巻線(170ターン)を施し、インダクタンス、キャパシタンス、抵抗の測定が可能なLCRメータを(HP:4284A)使用することで、100kHz、0.5Vでの各直流バイアスにおけるインダクタンスを測定し、透磁率を計算により求めた。   The maximum magnetic flux density is obtained by applying a primary winding (170 turns) and a secondary winding (20 turns) to a dust core, and using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232) as a magnetic measurement instrument. The magnetic flux density at an applied magnetic field H = 20000 A / m was measured. In addition, direct current superimposition is performed by applying a primary winding (170 turns) to each dust core and using an LCR meter (HP: 4284A) capable of measuring inductance, capacitance, and resistance. The inductance at each DC bias at 5 V was measured, and the magnetic permeability was determined by calculation.

[2.第1の特性比較(低融点ガラスの添加量の比較)]
第1の特性比較では、非晶質である軟磁性合金の粉末に添加する低融点ガラスの添加量の比較を行った。第1の特性比較で使用する試料は、下記のように作製した。表1は、本実施形態において、比較例及び実施例として非晶質である軟磁性合金の粉末に添加した低融点ガラスの種類と成分を示した表である。各低融点ガラスの平均粒径は0.9〜11.0μmである。

Figure 0005372481
[2. First characteristic comparison (comparison of addition amount of low melting point glass)]
In the first characteristic comparison, the amount of low melting point glass added to the amorphous soft magnetic alloy powder was compared. The sample used for the first characteristic comparison was prepared as follows. Table 1 is a table showing the types and components of the low-melting glass added to the soft magnetic alloy powder that is amorphous as a comparative example and an example in the present embodiment. Each low melting point glass has an average particle size of 0.9 to 11.0 μm.
Figure 0005372481

まず、非晶質である軟磁性合金の粉末のうち85wt%を平均粒径が42μmの第1の粉末とし、残りの15wt%を粒度が異なる平均粒径4μmの第2の粉末とする。さらに、非晶質である軟磁性合金の粉末の5wt%分の低融点ガラスを混合機(V型混合機)を使用して2時間混合する。   First, 85 wt% of the amorphous soft magnetic alloy powder is used as a first powder having an average particle size of 42 μm, and the remaining 15 wt% is used as a second powder having an average particle size of 4 μm having different particle sizes. Further, 5 wt% of low melting point glass of amorphous soft magnetic alloy powder is mixed for 2 hours using a mixer (V-type mixer).

次に、結着性絶縁樹脂として、アクリル酸共重合樹脂(EAA)エマルジョンを混合する。アクリル酸共重合樹脂(EAA)エマルジョンの添加量は非晶質である軟磁性合金の粉末に対して2.0wt%であり、その後、80℃で2時間の乾燥を行う。その後300μmの目開きの篩に通す。これを室温にて1300MPaの圧力で加圧成形し、圧粉磁心を作製した。そして、これらの圧粉磁心に対し、480℃で30分の間、焼鈍処理を行った。   Next, an acrylic acid copolymer resin (EAA) emulsion is mixed as a binding insulating resin. The addition amount of the acrylic acid copolymer resin (EAA) emulsion is 2.0 wt% with respect to the amorphous soft magnetic alloy powder, and then drying is performed at 80 ° C. for 2 hours. Then, it is passed through a sieve having an opening of 300 μm. This was press-molded at a pressure of 1300 MPa at room temperature to produce a dust core. And these powder magnetic cores were annealed at 480 ° C. for 30 minutes.

第1の特性比較における低融点ガラスの添加量の関係は次のとおりである。比較例1〜11は、平均粒径が0.9μm〜2.9μmの低融点ガラスを非晶質である軟磁性合金の粉末に添加する添加量を変化させ、窒素雰囲気中で焼純処理を行った比較例である。比較例1〜3は、表1に記載のビスマス系1の平均粒径が1.1μmのビスマス系ガラスであるBi−ZnO−Bを、比較例4〜7は、表1に記載のビスマス系2の平均粒径が0.9μmのビスマス系ガラスであるBi−Bを、比較例8〜11は、表1に記載のリン酸系1の平均粒径が2.9μmのリン酸系ガラスであるSnO−Pを、それぞれ低融点ガラスとして添加した。 The relationship of the amount of low melting point glass added in the first characteristic comparison is as follows. In Comparative Examples 1 to 11, the amount of addition of low melting point glass having an average particle size of 0.9 μm to 2.9 μm to the amorphous soft magnetic alloy powder is changed, and the sinter treatment is performed in a nitrogen atmosphere. This is a comparative example. Comparative Examples 1 to 3 are Bi 2 O 3 —ZnO—B 2 O 3 , which is a bismuth glass having an average particle diameter of 1.1 μm as described in Table 1, and Comparative Examples 4 to 7 are tables. Bi 2 O 3 —B 2 O 3 , which is a bismuth-based glass having an average particle size of bismuth-based 2 described in 1 of 0.9 μm, Comparative Examples 8 to 11 are the average of phosphoric acid-based 1 described in Table 1. SnO—P 2 O 5 , which is a phosphate glass having a particle size of 2.9 μm, was added as a low melting point glass.

実施例1〜11は、平均粒径が0.9μm〜2.9μmの低融点ガラスを非晶質である軟磁性合金の粉末に添加する添加量を変化させ、大気中で焼純処理を行った実施例である。実施例1〜3は表1に記載のビスマス系1を、実施例4〜7は表1に記載のビスマス系2を、表1に記載のリン酸系1を、それぞれ低融点ガラスとして添加した。   In Examples 1 to 11, the amount of addition of low melting point glass having an average particle size of 0.9 μm to 2.9 μm to the powder of amorphous soft magnetic alloy is changed, and squeezing treatment is performed in the air. This is an example. In Examples 1 to 3, bismuth system 1 described in Table 1 was added, in Examples 4 to 7 bismuth system 2 described in Table 1 and phosphoric acid system 1 described in Table 1 were added as low melting glass, respectively. .

表2〜4は、実施例1〜11と比較例1〜11について、低融点ガラスの粒径及び含有量、圧粉磁心の相対密度及び圧環強度との関係について示した表である。また、図1〜3は、低融点ガラスの添加量と圧環強度との関係を示したグラフである。

Figure 0005372481
Tables 2 to 4 are tables showing the relationship between the particle size and content of the low-melting glass, the relative density of the dust core, and the crushing strength for Examples 1 to 11 and Comparative Examples 1 to 11. 1 to 3 are graphs showing the relationship between the amount of low melting point glass added and the crushing strength.
Figure 0005372481

表2から判るとおり、低融点ガラスとして平均粒径が1.1μmのビスマス系ガラスであるBi−Bを使用した場合、焼鈍工程を大気中で行った実施例1〜3の方が、焼鈍工程を窒素雰囲気中で行った比較例1〜3よりも、低融点ガラスの含有量が0.9〜4.7vol%において、圧粉磁心の圧環強度が高くなることが判る。また、図2より、焼鈍工程を大気中で行い、低融点ガラスの添加量を増やしていくことにより、圧粉磁心の圧環強度が高くなることが判る。圧粉磁心の圧環強度は、低融点ガラスを添加することで圧粉磁心の圧環強度が上昇し、添加量が0.9vol以上で圧粉磁心の圧環強度が10MPa以上の圧環強度を得ることができ、特に添加量が2vol%以上で20MPa以上の圧環強度を得ることができる。しかし、添加量が5vol以上になると相対密度が低下して圧粉磁心の磁気特性が低下する。

Figure 0005372481
As can be seen from Table 2, when Bi 2 O 3 —B 2 O 3 , which is a bismuth glass having an average particle size of 1.1 μm, is used as the low-melting glass, Examples 1 to 3 in which the annealing process was performed in the air It can be seen that the crushing strength of the dust core is higher when the content of the low-melting glass is 0.9 to 4.7 vol% than in Comparative Examples 1 to 3 in which the annealing process is performed in a nitrogen atmosphere. . In addition, it can be seen from FIG. 2 that the crushing strength of the dust core is increased by performing the annealing process in the air and increasing the amount of low-melting glass added. The crushing strength of the dust core can be increased by adding low melting point glass, and the crushing strength of the dust core can be increased to 10 MPa or more when the addition amount is 0.9 vol or more. In particular, a crushing strength of 20 MPa or more can be obtained with an addition amount of 2 vol% or more. However, when the addition amount is 5 vol or more, the relative density is lowered and the magnetic properties of the dust core are lowered.
Figure 0005372481

表3から判るとおり、低融点ガラスとして平均粒径が0.9μmのビスマス系ガラスであるBi−ZnO−Bを使用した場合、焼鈍工程を大気中で行った実施例4〜7の方が、焼鈍工程を窒素雰囲気中で行った比較例4〜7よりも、低融点ガラスの含有量が1.1〜4.4vol%において、圧粉磁心の圧環強度が高くなることが判る。また、図2より、焼鈍工程を大気中で行い、低融点ガラスの添加量を増やしていくことにより、圧粉磁心の圧環強度が高くなることが判る。圧粉磁心の圧環強度は、低融点ガラスを添加することで圧粉磁心の圧環強度が上昇し、特に添加量が2vol%以上で20MPa以上の圧環強度を得ることができる。しかし、添加量が5vol以上になると相対密度が低下して圧粉磁心の磁気特性が低下する。

Figure 0005372481
As can be seen from Table 3, when Bi 2 O 3 —ZnO—B 2 O 3 , which is a bismuth glass having an average particle size of 0.9 μm, is used as the low-melting glass, Example 4 in which the annealing process was performed in the air. In the case of ~ 7, the crushing strength of the powder magnetic core is higher when the content of the low-melting glass is 1.1 to 4.4 vol% than in Comparative Examples 4 to 7 in which the annealing process is performed in a nitrogen atmosphere. I understand. In addition, it can be seen from FIG. 2 that the crushing strength of the dust core is increased by performing the annealing process in the air and increasing the amount of low-melting glass added. The crushing strength of the dust core can be increased by adding low-melting glass, and a crushing strength of 20 MPa or more can be obtained particularly when the addition amount is 2 vol% or more. However, when the addition amount is 5 vol or more, the relative density is lowered and the magnetic properties of the dust core are lowered.
Figure 0005372481

表4から判るとおり、低融点ガラスとして平均粒径が2.9μmのリン酸系ガラスであるSnO−Pを使用した場合、焼鈍工程を大気中で行った実施例8〜11の方が、焼鈍工程を窒素雰囲気中で行った比較例8〜11よりも、低融点ガラスの含有量が1.3〜3.8vol%において、圧粉磁心の圧環強度が高くなることが判る。また、図3より、焼鈍工程を大気中で行い、低融点ガラスの添加量を増やしていくことにより、圧粉磁心の圧環強度が高くなることが判る。圧粉磁心の圧環強度は、低融点ガラスを添加することで圧粉磁心の圧環強度が上昇し、特に添加量が2vol%以上で20MPa以上の圧環強度を得ることができる。しかし、添加量が5vol以上になると相対密度が低下して圧粉磁心の磁気特性が低下する。 As can be seen from Table 4, when SnO—P 2 O 5 , which is a phosphate glass having an average particle diameter of 2.9 μm, is used as the low melting point glass, Examples 8 to 11 in which the annealing process was performed in the air. However, it turns out that the crushing intensity | strength of a powder magnetic core becomes high in content of low melting glass 1.3-3.8 vol% rather than Comparative Examples 8-11 which performed the annealing process in nitrogen atmosphere. Moreover, it can be seen from FIG. 3 that the crushing strength of the dust core is increased by performing the annealing process in the air and increasing the amount of low-melting glass added. The crushing strength of the dust core can be increased by adding low-melting glass, and a crushing strength of 20 MPa or more can be obtained particularly when the addition amount is 2 vol% or more. However, when the addition amount is 5 vol or more, the relative density is lowered and the magnetic properties of the dust core are lowered.

以上より、非晶質である軟磁性合金の粉末に低融点ガラスを加え、焼鈍工程を大気中で行うことにより、非晶質である軟磁性合金の粉末の表面が酸化して、低融点ガラスと軟磁性合金粉末の結着強度が増加するので、常温で低圧成形を行っても圧環強度の高い圧粉磁心を作製することができる。   As described above, the low melting point glass is added to the amorphous soft magnetic alloy powder, and the annealing process is performed in the atmosphere, so that the surface of the amorphous soft magnetic alloy powder is oxidized and the low melting point glass is oxidized. Since the binding strength between the soft magnetic alloy powder and the soft magnetic alloy powder increases, it is possible to produce a dust core having a high crushing strength even if low pressure molding is performed at room temperature.

[3.第2の特性比較(低融点ガラスの粒度の比較)]
第2の特性比較では、非晶質である軟磁性合金の粉末に添加する低融点ガラスの粒度の比較を行った。第2の特性比較で使用する試料は、下記のように作製した。まず、非晶質である軟磁性合金の粉末のうち85wt%を平均粒径が42μmの第1の粉末とし、残りの15wt%を粒度が異なる平均粒径4μmの第2の粉末とする。さらに非晶質である軟磁性合金の粉末の5wt%分の平均粒径が0.8〜11μmの低融点ガラスであるBi−ZnO−Bを混合機(V型混合機)を使用して2時間混合する。
[3. Second characteristic comparison (comparison of particle size of low melting point glass)]
In the second characteristic comparison, the particle size of the low-melting glass added to the amorphous soft magnetic alloy powder was compared. The sample used for the second characteristic comparison was prepared as follows. First, 85 wt% of the amorphous soft magnetic alloy powder is used as a first powder having an average particle size of 42 μm, and the remaining 15 wt% is used as a second powder having an average particle size of 4 μm having different particle sizes. Furthermore, Bi 2 O 3 —ZnO—B 2 O 3 , which is a low-melting glass having an average particle size of 0.8 to 11 μm of 5 wt% of amorphous soft magnetic alloy powder, was mixed (V-type mixer). ) For 2 hours.

次に、結着性絶縁樹脂として、アクリル酸共重合樹脂(EAA)エマルジョンを混合する。アクリル酸共重合樹脂(EAA)エマルジョンの添加量は非晶質である軟磁性合金の粉末に対して2.0wt%であり、その後、80℃で2時間の乾燥を行う。その後300μmの目開きの篩に通す。これを室温にて1300MPaの圧力で加圧成形し、圧粉磁心を作製した。そして、これらの圧粉磁心に対し、480℃で30分の間、焼鈍処理を行った。   Next, an acrylic acid copolymer resin (EAA) emulsion is mixed as a binding insulating resin. The addition amount of the acrylic acid copolymer resin (EAA) emulsion is 2.0 wt% with respect to the amorphous soft magnetic alloy powder, and then drying is performed at 80 ° C. for 2 hours. Then, it is passed through a sieve having an opening of 300 μm. This was press-molded at a pressure of 1300 MPa at room temperature to produce a dust core. And these powder magnetic cores were annealed at 480 ° C. for 30 minutes.

第2の特性比較における低融点ガラスの添加量の関係は次のとおりである。比較例12〜15は、平均粒径が0.8μm〜11.0μmの低融点ガラスを非晶質である軟磁性合金の粉末の3.3vol%添加し、窒素雰囲気中で焼純処理を行った比較例である。実施例12〜15は、平均粒径が0.8μm〜11.0μmの低融点ガラスを非晶質である軟磁性合金の粉末の3.3vol%添加し、大気中で焼鈍処理を行った実施例である。

Figure 0005372481
The relationship of the addition amount of the low melting point glass in the second characteristic comparison is as follows. In Comparative Examples 12 to 15, low melting point glass having an average particle size of 0.8 μm to 11.0 μm was added in an amount of 3.3 vol% of amorphous soft magnetic alloy powder and subjected to a tempering treatment in a nitrogen atmosphere. It is a comparative example. In Examples 12 to 15, low melting point glass having an average particle size of 0.8 μm to 11.0 μm was added in an amount of 3.3 vol% of amorphous soft magnetic alloy powder, and annealing treatment was performed in the air. It is an example.
Figure 0005372481

表5から判るとおり、低融点ガラスとして平均粒径が0.8〜11.0μmをビスマス系ガラスであるBi−ZnO−Bを使用した場合、焼鈍工程を大気中で行った実施例12〜15の方が、焼鈍工程を窒素雰囲気中で行った比較例12〜15よりも、圧粉磁心の圧環強度が高くなることが判る。また、図4より、低融点ガラスり粒度を0.8μmより大きくしていくことにより、圧粉磁心の圧環強度の強度が低下していくことが判る。特に、低融点ガラスの粒度が10μmより大きい実施例15と比較例15の比較では、実施例15の圧粉磁心の圧環強度が10MPa以下になり、圧粉磁心の圧環強度において比較例15との差異が小さくなる。また、低融点ガラスの粒度を0.8μm以下に加工することは、乾式粉砕法では行うことができない。湿式粉砕法では可能であるが、溶媒が低融点ガラスに残るなどの問題点がある。 As can be seen from Table 5, when Bi 2 O 3 —ZnO—B 2 O 3 , which is a bismuth-based glass having an average particle diameter of 0.8 to 11.0 μm, is used as the low-melting glass, the annealing step is performed in the air. It can be seen that Examples 12 to 15 have higher crushing strength of the dust core than Comparative Examples 12 to 15 in which the annealing process was performed in a nitrogen atmosphere. Moreover, it turns out that the intensity | strength of the crushing intensity | strength of a powder magnetic core falls by making a low melting point glass particle size larger than 0.8 micrometer from FIG. In particular, in comparison between Example 15 and Comparative Example 15 in which the particle size of the low-melting glass is larger than 10 μm, the crushing strength of the dust core of Example 15 is 10 MPa or less, and the crushing strength of the dust core is the same as that of Comparative Example 15. The difference becomes smaller. Further, processing the particle size of the low melting point glass to 0.8 μm or less cannot be performed by the dry pulverization method. Although it is possible with the wet pulverization method, there is a problem that the solvent remains in the low melting point glass.

以上より、非晶質である軟磁性合金の粉末に低融点ガラスを加え、焼鈍工程を大気中で行うことにより、非晶質である軟磁性合金の粉末の表面が酸化して、非磁性層が増加するので、常温で低圧成形を行っても圧環強度の高い圧粉磁心を作製することができる。その場合の低融点ガラスの粒度としては、0.8〜10.0μmの間とすることが好ましいことが判る。   As described above, by adding a low-melting glass to the amorphous soft magnetic alloy powder and performing the annealing process in the atmosphere, the surface of the amorphous soft magnetic alloy powder is oxidized, and the nonmagnetic layer Therefore, even if low pressure molding is performed at room temperature, a dust core having high crushing strength can be produced. It can be seen that the particle size of the low melting point glass in that case is preferably between 0.8 and 10.0 μm.

[4.第3の特性比較(圧粉磁心の磁気特性の比較)]
第3の特性比較では、非晶質である軟磁性合金の粉末に低融点ガラスを加え、大気中または窒素雰囲気中で焼鈍工程を行う場合の圧粉磁心の磁気特性の比較を行った。第3の特性比較で使用する試料は、前記特性比較で使用した低融点ガラスとして平均粒径が1.1μmのビスマス系ガラスであるBi−Bを非晶質である軟磁性合金の粉末に対して4.7vol%添加し、焼鈍工程を大気中または窒素雰囲気中で行った比較例3と実施例3の圧粉磁心を使用する。

Figure 0005372481
[4. Third characteristic comparison (comparison of magnetic characteristics of dust cores)]
In the third characteristic comparison, low melting point glass was added to the amorphous soft magnetic alloy powder, and the magnetic characteristics of the dust cores were compared when the annealing process was performed in air or nitrogen. The sample used in the third property comparison is a low melting glass used in the property comparison, Bi 2 O 3 -B 2 O 3 , which is a bismuth-based glass having an average particle size of 1.1 μm, and is soft. The powder magnetic cores of Comparative Example 3 and Example 3 in which 4.7 vol% is added to the magnetic alloy powder and the annealing process is performed in the air or in a nitrogen atmosphere are used.
Figure 0005372481

表6から判るとおり、低融点ガラスとして平均粒径が1.1μmのビスマス系ガラスであるBi−Bを使用した場合、焼鈍工程を大気中で行った実施例3のほうが、100kHzにおける透磁率が低く、コアロスには殆ど差が無いことが判る。 As can be seen from Table 6, when Bi 2 O 3 —B 2 O 3 , which is a bismuth-based glass having an average particle diameter of 1.1 μm, is used as the low melting point glass, Example 3 in which the annealing process was performed in the air was better. It can be seen that the permeability at 100 kHz is low and there is almost no difference in core loss.

以上より、非晶質である軟磁性合金の粉末に低融点ガラスを加え、焼鈍工程を大気中で行うことにより、非晶質である軟磁性合金の粉末の表面が酸化し非磁性層が増加することにより、強度に強い圧粉磁心を作製することができる。   From the above, by adding low melting point glass to amorphous soft magnetic alloy powder and performing the annealing process in the air, the surface of amorphous soft magnetic alloy powder is oxidized and nonmagnetic layer increases. By doing so, a strong magnetic powder core can be produced.

[他の実施形態]
本発明は、前記の実施形態に限定されるものではない。以下のような他の実施形態も包含する。
[Other Embodiments]
The present invention is not limited to the embodiment described above. Other embodiments such as the following are also included.

(a)前記実施形態において使用した第1の粉末は、平均粒経45μmに限定するものではなく、平均粒径が30〜100μmの範囲のもので構わないが、この範囲より平均粒径が大きいと渦電流損失が増大し、一方、この範囲より平均粒径が小さいと、密度低下によるヒステリシス損失が増加する。 (A) The first powder used in the embodiment is not limited to an average particle size of 45 μm, and may have an average particle size in the range of 30 to 100 μm, but the average particle size is larger than this range. On the other hand, if the average particle size is smaller than this range, the hysteresis loss due to density reduction increases.

(b)非晶質である軟磁性合金の粉末のうち第2の粉末として水アトマイズ法で作製した非晶質軟磁性合金粉末を使用することもできる。水アトマイズ法は、金属粉末の製造方法の一種であり、表面が平坦で比較的球に近い軟磁性粉末を得ることができるので、焼純温度の向上を図った低損失なで安価な圧粉磁心を作製することが可能である。 (B) Amorphous soft magnetic alloy powder produced by the water atomization method may be used as the second powder among the amorphous soft magnetic alloy powder. The water atomization method is a kind of metal powder manufacturing method, and can obtain a soft magnetic powder that has a flat surface and is relatively close to a sphere. It is possible to produce a magnetic core.

(c)本実施形態において使用した潤滑性樹脂は、エチレンビスステアラマイト、ステアリン酸リチウム、ステアリン酸アルミまたはステアリン酸亜鉛などのワックスとすることができる。潤滑性樹脂を添加することにより、非晶質軟磁性粉末同士の滑りを良く出来るので、混合時の密度を向上することができ成形密度を高くすることができる。すなわち、潤滑性樹脂の作用により、室温で低圧成形を行なっても優れた直流重畳特性、磁気特性を有する圧粉磁心を提供できる。 (C) The lubricating resin used in the present embodiment may be a wax such as ethylene bisstearite, lithium stearate, aluminum stearate or zinc stearate. By adding the lubricating resin, the slip between the amorphous soft magnetic powders can be improved, so that the density during mixing can be improved and the molding density can be increased. That is, the action of the lubricating resin can provide a dust core having excellent DC superposition characteristics and magnetic characteristics even when low pressure molding is performed at room temperature.

(d)本発明は、上記のような実施例において作製された圧粉磁心に限定されるものではなく、この圧粉磁心にコイルを巻回することによりチョークコイルを作製する実施形態も包含する。これにより、上述したような第1〜11の実施例において得られた効果を当該チョークコイルにおいても同様に奏することが可能となる。 (D) The present invention is not limited to the dust core produced in the embodiment as described above, and includes an embodiment in which a choke coil is produced by winding a coil around the dust core. . As a result, the effects obtained in the first to eleventh embodiments as described above can be similarly achieved in the choke coil.

本発明の実施例の第1の特性比較における低融点ガラス(ビスマス系1)の添加量を変化させた場合の圧粉磁心の圧環強度の変化を示したグラフ。The graph which showed the change of the crushing intensity | strength of the powder magnetic core at the time of changing the addition amount of the low melting glass (bismuth type | system | group 1) in the 1st characteristic comparison of the Example of this invention. 本発明の実施例の第1の特性比較における低融点ガラス(ビスマス系2)の添加量を変化させた場合の圧粉磁心の圧環強度の変化を示したグラフ。The graph which showed the change of the crushing intensity | strength of the powder magnetic core at the time of changing the addition amount of the low melting glass (bismuth type | system | group 2) in the 1st characteristic comparison of the Example of this invention. 本発明の実施例の第1の特性比較における低融点ガラス(リン酸系1)の添加量を変化させた場合の圧粉磁心の圧環強度の変化を示したグラフ。The graph which showed the change of the crushing intensity | strength of the powder magnetic core at the time of changing the addition amount of the low melting glass (phosphoric acid type 1) in the 1st characteristic comparison of the Example of this invention. 本発明の実施例の第2の特性比較における低融点ガラス(ビスマス系3)の粒度を変化させた場合の圧粉磁心の圧環強度の変化を示したグラフ。The graph which showed the change of the crushing intensity | strength of the powder magnetic core at the time of changing the particle size of the low melting glass (bismuth type | system | group 3) in the 2nd characteristic comparison of the Example of this invention.

Claims (10)

平均粒径が異なる2種類以上の非晶質軟磁性合金粉末を均一に分散させた複合磁性材料粉末と軟化点が非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末を混合し、
得られた混合物に対し、メチルフェニル系シリコーン樹脂と潤滑性樹脂とを混合することで当該混合物中の2種類以上の前記非晶質軟磁性合金粉末と前記ガラス粉末を被膜し、さらに当該被膜された混合物と潤滑性樹脂とを混合し、得られた混合物を加圧成形して成形体を作製し、その成形体を前記非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理してなる圧粉磁心において、
前記ガラス粉末は、ビスマス系ガラスまたはリン酸系ガラスであり、
前記焼鈍処理を大気中で行うことにより作製されたことを特徴とする圧粉磁心。
A composite magnetic material powder in which two or more kinds of amorphous soft magnetic alloy powders having different average particle diameters are uniformly dispersed and a glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder are mixed,
The obtained mixture is mixed with a methylphenyl silicone resin and a lubricating resin to coat two or more kinds of the amorphous soft magnetic alloy powder and the glass powder in the mixture, and the coating is further performed. The obtained mixture is mixed with a lubricating resin, and the resulting mixture is pressure-molded to produce a molded body, and the molded body is annealed at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder. In the dust core
The glass powder is bismuth glass or phosphate glass,
A dust core produced by performing the annealing treatment in the air.
前記ガラス粉末が平均粒径0.8〜10μmであることを特徴とする請求項1に記載の圧粉磁心。   The dust core according to claim 1, wherein the glass powder has an average particle size of 0.8 to 10 μm. 前記ガラス粉末の前記非晶質軟磁性合金粉末に対する添加量が、2〜5vol%であることを特徴とする請求項1または請求項2に記載の圧粉磁心。   3. The dust core according to claim 1, wherein an addition amount of the glass powder to the amorphous soft magnetic alloy powder is 2 to 5 vol%. 前記潤滑性樹脂の前記非晶質軟磁性合金粉末に対する添加量が、0.1〜2.0wt%であることを特徴とする請求項1〜3のいずれか1項に記載の圧粉磁心。   The dust core according to any one of claims 1 to 3, wherein an amount of the lubricating resin added to the amorphous soft magnetic alloy powder is 0.1 to 2.0 wt%. 前記潤滑性樹脂は、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドの中から選択された材料であることを特徴とする請求項1〜4のいずれか1項に記載の圧粉磁心。   The pressure according to any one of claims 1 to 4, wherein the lubricating resin is a material selected from stearic acid, stearate, stearic acid soap, and ethylene bisstearamide. Powder magnetic core. 非晶質軟磁性合金粉末と、軟化点が非晶質軟磁性合金粉末の結晶化温度より低いガラス粉末を混合する混合工程と、
混合工程で得られた混合物をメチルフェニル系シリコーン樹脂と潤滑性樹脂とで混合して当該混合物中の2種類以上の前記非晶質軟磁性合金粉末と前記ガラス粉末を被覆する被覆工程と、
被覆工程で得られた混合物に潤滑性樹脂を混合し得られた混合物を、加圧成形処理して成形体を作製する成形工程と、
成形工程を経た成形体を、前記非晶質軟磁性合金粉末の結晶化温度より低い温度で焼鈍処理する焼鈍工程とを有する圧粉磁心の製造方法において、
前記ガラス粉末は、ビスマス系ガラスまたはリン酸系ガラスであり、
前記焼鈍工程を大気中で行うことを特徴とする圧粉磁心の製造方法。
A mixing step of mixing the amorphous soft magnetic alloy powder and a glass powder having a softening point lower than the crystallization temperature of the amorphous soft magnetic alloy powder;
A coating step in which the mixture obtained in the mixing step is mixed with a methylphenyl silicone resin and a lubricating resin to coat two or more kinds of the amorphous soft magnetic alloy powder and the glass powder in the mixture ;
A molding step in which a mixture obtained by mixing a lubricating resin with the mixture obtained in the coating step is subjected to pressure molding treatment to produce a molded body; and
In the method for producing a powder magnetic core having an annealing step of annealing the molded body that has undergone the molding step at a temperature lower than the crystallization temperature of the amorphous soft magnetic alloy powder,
The glass powder is bismuth glass or phosphate glass,
A method of manufacturing a dust core, wherein the annealing step is performed in the atmosphere.
前記ガラス粉末が平均粒径0.8〜10μmであることを特徴とする請求項6に記載の圧粉磁心の製造方法。   The method for producing a dust core according to claim 6, wherein the glass powder has an average particle size of 0.8 to 10 μm. 前記ガラス粉末の前記非晶質軟磁性合金粉末に対する添加量が、2〜5vol%であることを特徴とする請求項6または請求項7に記載の圧粉磁心の製造方法。   The method for manufacturing a dust core according to claim 6 or 7, wherein an addition amount of the glass powder to the amorphous soft magnetic alloy powder is 2 to 5 vol%. 前記潤滑性樹脂の前記非晶質軟磁性合金粉末に対する添加量が、0.1〜2.0wt%であることを特徴とする請求項6〜8のいずれか1項に記載の圧粉磁心の製造方法。   The amount of the lubricating resin added to the amorphous soft magnetic alloy powder is 0.1 to 2.0 wt%, and the dust core according to any one of claims 6 to 8, Production method. 前記潤滑性樹脂は、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイドの中から選択された材料であることを特徴とする請求項6〜9のいずれか1項に記載の圧粉磁心の製造方法。   The pressure according to any one of claims 6 to 9, wherein the lubricating resin is a material selected from stearic acid, stearate, stearic acid soap, and ethylene bisstearamide. Manufacturing method of a powder magnetic core.
JP2008316941A 2008-12-12 2008-12-12 Powder magnetic core and manufacturing method thereof Active JP5372481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316941A JP5372481B2 (en) 2008-12-12 2008-12-12 Powder magnetic core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316941A JP5372481B2 (en) 2008-12-12 2008-12-12 Powder magnetic core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010141183A JP2010141183A (en) 2010-06-24
JP5372481B2 true JP5372481B2 (en) 2013-12-18

Family

ID=42351044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316941A Active JP5372481B2 (en) 2008-12-12 2008-12-12 Powder magnetic core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5372481B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996160B2 (en) * 2010-12-16 2016-09-21 Necトーキン株式会社 Powder magnetic core and inductor using powder magnetic core
JP6034553B2 (en) * 2011-08-25 2016-11-30 太陽誘電株式会社 Electrode electrode forming method
US9318244B2 (en) 2012-02-17 2016-04-19 Tdk Corporation Soft magnetic powder core
JP6403940B2 (en) * 2013-05-24 2018-10-10 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
JP6339776B2 (en) * 2013-08-02 2018-06-06 株式会社タムラ製作所 Soft magnetic powder, core and manufacturing method thereof
JP6427862B2 (en) * 2013-10-25 2018-11-28 日立金属株式会社 Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
JP6443269B2 (en) * 2015-09-01 2018-12-26 株式会社村田製作所 Magnetic core and manufacturing method thereof
JP6560091B2 (en) * 2015-10-06 2019-08-14 Ntn株式会社 Dust core material, dust core, and manufacturing method thereof
CN106128681B (en) * 2016-06-08 2018-04-13 青岛云路先进材料技术有限公司 A kind of Fe-based amorphous powder core and preparation method thereof
JP6250125B2 (en) * 2016-10-27 2017-12-20 太陽誘電株式会社 Electronic components

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328805A (en) * 1991-04-30 1992-11-17 Tokin Corp Anisotropic configuration soft magnet alloy powder and manufacture thereof
JPH11156502A (en) * 1997-12-01 1999-06-15 Kawasaki Steel Corp Equipment and method for controlling molten steel flow in mold, in continuous casting
JP2001073062A (en) * 1999-09-09 2001-03-21 Kubota Corp Production of amorphous soft magnetic alloy powder molded body
JP2001196216A (en) * 2000-01-17 2001-07-19 Hitachi Ferrite Electronics Ltd Dust core
JP4352559B2 (en) * 2000-02-23 2009-10-28 Jfeスチール株式会社 Method for producing metal powder compact
JP4684461B2 (en) * 2000-04-28 2011-05-18 パナソニック株式会社 Method for manufacturing magnetic element
JP2002105502A (en) * 2000-09-26 2002-04-10 Kubota Corp Soft magnetic metal powder, powder agglomerate, and compact
JP2004221453A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd Method of manufacturing dust core and dust core
JP2004349585A (en) * 2003-05-23 2004-12-09 Hitachi Metals Ltd Method of manufacturing dust core and nanocrystalline magnetic powder
JP4452240B2 (en) * 2003-08-06 2010-04-21 日本科学冶金株式会社 Soft magnetic composite powder and method for producing the same, and method for producing soft magnetic compact
JP2006179621A (en) * 2004-12-21 2006-07-06 Seiko Epson Corp Molding body and manufacturing method thereof
JP2006339525A (en) * 2005-06-03 2006-12-14 Alps Electric Co Ltd Coil inclusion dust core

Also Published As

Publication number Publication date
JP2010141183A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP5208881B2 (en) Powder magnetic core and manufacturing method thereof
KR101152042B1 (en) Powder magnetic core and production method thereof
JP7283031B2 (en) dust core
JP5715614B2 (en) Powder magnetic core and manufacturing method thereof
KR101385756B1 (en) Manufacturing methods of fe-based amorphous metallic powders and soft magnetic cores
TWI616541B (en) Powder core, method for manufacturing the powder core, inductor with the powder core, and electronic and electrical machine with the inductor
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP5053195B2 (en) Powder magnetic core and manufacturing method thereof
JP2008277775A (en) Dust core and its manufacturing method
WO2012173239A1 (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
JP2009185312A (en) Composite soft magnetic material, dust core using the same, and their production method
JP2009259974A (en) High-strength powder magnetic core, method of manufacturing high-strength powder magnetic core, choke coil, and method of manufacturing the same
JP5107993B2 (en) Powder magnetic core and manufacturing method thereof
JP4847553B2 (en) Powder magnetic core and manufacturing method thereof
JP2011038133A (en) Powder magnetic core and method for producing the same
JP2014175580A (en) Dust core, coil component using the same and method of producing dust core
TWI478184B (en) Powder mixture for dust cores, dust cores and manufacturing method for dust cores
JP2010027871A (en) Dust core and manufacturing method thereof
JP2009032880A (en) Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP6403940B2 (en) Powder magnetic core and manufacturing method thereof
CN108570214B (en) Dust core
JP2018022869A (en) High-magnetic permeability magnetic sheet
JP2008063649A (en) Powder for dust core, its production method and method for producing dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130313

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150