JP2008277775A - Dust core and its manufacturing method - Google Patents

Dust core and its manufacturing method Download PDF

Info

Publication number
JP2008277775A
JP2008277775A JP2008074103A JP2008074103A JP2008277775A JP 2008277775 A JP2008277775 A JP 2008277775A JP 2008074103 A JP2008074103 A JP 2008074103A JP 2008074103 A JP2008074103 A JP 2008074103A JP 2008277775 A JP2008277775 A JP 2008277775A
Authority
JP
Japan
Prior art keywords
dust core
powder
heat treatment
oxide film
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008074103A
Other languages
Japanese (ja)
Other versions
JP5263653B2 (en
Inventor
Naomi Kono
直美 光野
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008074103A priority Critical patent/JP5263653B2/en
Publication of JP2008277775A publication Critical patent/JP2008277775A/en
Application granted granted Critical
Publication of JP5263653B2 publication Critical patent/JP5263653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a soft-magnetic metal dust core that can be subjected to high-temperature heat treatment while having low hysteresis loss, high electric resistance, and high strength; and its manufacturing method. <P>SOLUTION: A dust core manufacturing method is configured as follows. An insulating oxide film is formed partially or wholly on the powder surface after immersing soft-magnetic powder mainly composed of Fe into an alkoxide solution. Then, an inorganic binder is mixed. After press-molding, it is subjected to heat treatment at ≥600°C. Preferably, a coating film thickness of the insulating oxide film is formed in the range between ≥10 nm and ≤1 μm while the heat treatment is executed at a temperature in the range between ≥900°C and ≤1,100°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、デジタル情報機器などに用いられるパワーチョークやトランス、リアクトル、回転機などの電気電子部品の磁性コアとして用いた際、高強度で良好な電気絶縁性を有しかつ低損失な、軟磁性金属圧粉磁心およびその製造方法に関する。   The present invention is a soft core having high strength, good electrical insulation and low loss when used as a magnetic core for electric and electronic parts such as power chokes, transformers, reactors, and rotating machines used in digital information equipment. The present invention relates to a magnetic metal dust core and a manufacturing method thereof.

近年、デジタル情報機器の高周波化、大電流化に伴い、軟磁性金属粉末を用いたインダクタやノイズ対策部品が注目されている。特に10−100kHz帯域で駆動電流が10−100Aで使用される部品の用途が拡大している。また回転機コアやトランスコアなどの電気部品分野においても高密度化および小型化が求められている。このため、これらの電気電子部品に使用される軟磁性金属圧粉磁心、特に中高周波領域において優れた磁気的特性を有する軟磁性圧粉磁心の開発が進められている。軟磁性金属粉末を用いて作製される圧粉磁心は、従来から使用されていたフェライト磁心よりも高い飽和磁束密度を有しているため電子部品の小型化および大電流化に対しては有利である。   In recent years, with the increase in frequency and current of digital information equipment, inductors using soft magnetic metal powder and noise countermeasure components are attracting attention. In particular, the use of parts used with a drive current of 10-100 A in the 10-100 kHz band is expanding. In the field of electrical components such as a rotating machine core and a transformer core, higher density and smaller size are also demanded. For this reason, the development of soft magnetic metal dust cores used in these electric and electronic parts, particularly soft magnetic powder magnetic cores having excellent magnetic properties in the mid-high frequency region, is underway. A dust core made of soft magnetic metal powder has a higher saturation magnetic flux density than a ferrite core that has been used so far, which is advantageous for downsizing electronic components and increasing current. is there.

しかし、軟磁性金属粉末による圧粉磁心はフェライトと比較して電気抵抗率が低いため渦電流損失が大きいという欠点もある。それ故に、金属系圧粉磁心をコアとして用いた場合フェライトコアと比較して、特に数十kHZ以上の中高周波域での損失が大きくなる。またコアの発熱による温度上昇の問題もあり、電子部品としての実用化が困難であった。従来この問題を解決する手段として、損失を低減するために、例えば特許文献1のようにリン酸塩等の絶縁物で被覆することで軟磁性金属粉末表面を高電気抵抗率化し、コア内の渦電流の発生を抑制するという試みが提案されている。また非特許文献1においては、金属粉末の表面をMgO等の酸化物で被覆することにより粉末表面を高抵抗化し渦電流損失を低減する方法が提案されている。これらは、いずれも、粉末表面の電気抵抗を向上させることで渦電流損失を低減し、コア損失を低減することを目的としている。   However, the powder magnetic core made of soft magnetic metal powder has a drawback that the eddy current loss is large because the electrical resistivity is lower than that of ferrite. Therefore, when a metal-based powder magnetic core is used as a core, the loss particularly in the middle and high frequency range of several tens of kilohertz or more is greater than that of a ferrite core. In addition, there was a problem of temperature rise due to heat generation of the core, and it was difficult to put it into practical use as an electronic component. Conventionally, as a means for solving this problem, in order to reduce the loss, the surface of the soft magnetic metal powder is made high in resistivity by coating with an insulator such as phosphate as in Patent Document 1, for example. Attempts have been made to suppress the generation of eddy currents. Non-Patent Document 1 proposes a method of increasing the resistance of the powder surface by coating the surface of the metal powder with an oxide such as MgO and reducing eddy current loss. All of these are intended to reduce eddy current loss and core loss by improving the electrical resistance of the powder surface.

ところで、コア全体の鉄損は一般にヒステリシス損失と渦電流損失の和で表される。一般的には、ヒステリシス損失は周波数の一乗、渦電流損失は周波数の二乗にそれぞれ比例して変化する。したがって、高周波域では渦電流損失の寄与がヒステリシス損失の寄与に比較し大きく渦電流損失を低減することがコア損失を低減するためには効果的な手段となる。一方モータコアやリアクトルコアなど比較的低中周波で用いられる機器については、渦電流損失だけでなくヒステリシス損失からの寄与も無視することが出来ない。したがって低中周波域では、渦電流損失だけでなくヒステリシス損失を低減することが、コア損失低減に有効である。   By the way, the iron loss of the entire core is generally represented by the sum of hysteresis loss and eddy current loss. In general, the hysteresis loss changes in proportion to the first power of the frequency, and the eddy current loss changes in proportion to the second power of the frequency. Therefore, reducing the eddy current loss largely in comparison with the contribution of the hysteresis loss in the high frequency region is an effective means for reducing the core loss. On the other hand, not only the eddy current loss but also the contribution from hysteresis loss cannot be ignored for devices used at relatively low and medium frequencies such as motor cores and reactor cores. Therefore, in the low and medium frequency range, reducing not only eddy current loss but also hysteresis loss is effective in reducing core loss.

磁性コアのヒステリシス損失は、コアに磁界をオンオフした際のヒステリシスの大きさにより決定される。ヒステリシス損失を低減するためには、磁性粉末の保磁力を出来るだけ小さくすることが必要である。軟磁性粉末の保磁力は、磁界を印加した際の磁壁移動の容易さを反映したものであり、粒界や不純物介在物、圧粉磁心の成形時に生じた塑性変形による歪み、転位などがこれを妨げる要因となる。このため低ヒステリシス損失のコアを得るためには、Fe系の磁性粉末においては本来低保磁力の粉末を低圧で成形し、700℃以上、好ましくは900℃以上の高温において歪取り焼鈍を行うことが望まれる。   The hysteresis loss of a magnetic core is determined by the magnitude of hysteresis when a magnetic field is turned on / off in the core. In order to reduce the hysteresis loss, it is necessary to make the coercive force of the magnetic powder as small as possible. The coercive force of soft magnetic powder reflects the ease of domain wall movement when a magnetic field is applied, and this includes distortion, dislocation, etc. due to plastic deformation generated during the formation of grain boundaries, impurity inclusions, and a dust core. It becomes a factor to prevent. For this reason, in order to obtain a core with low hysteresis loss, in a Fe-based magnetic powder, a low coercive force powder is originally formed at a low pressure and subjected to strain relief annealing at a high temperature of 700 ° C. or higher, preferably 900 ° C. or higher. Is desired.

しかしながら、特許文献1や非特許文献1等に記載の従来技術においては、800℃以上の高温で熱処理すると、渦電流の発生を抑制するために被覆した絶縁性物質が磁性粉末と反応したり、熱分解等を起こすことにより絶縁被膜が変質破壊し絶縁性が劣化するために、高温での熱処理を行うことができず、結晶粒径を大きくしたり、加工歪を完全に除去することが出来ないため、ヒステリシス損失を十分に低減させることができないという課題がある。   However, in the prior art described in Patent Document 1, Non-Patent Document 1, etc., when heat treatment is performed at a high temperature of 800 ° C. or higher, the insulating material coated to suppress the generation of eddy current reacts with the magnetic powder, Insulation film is altered and destroyed due to thermal decomposition, etc., resulting in deterioration of insulation, so heat treatment at high temperature cannot be performed, crystal grain size can be increased, and processing strain can be completely removed. Therefore, there is a problem that hysteresis loss cannot be sufficiently reduced.

また従来の圧粉磁心は、絶縁被覆した磁性粉末に結合剤としてシリコン樹脂やアクリル樹脂を数重量%混合添加した後、1−2GPaの圧力を印加しプレス成形した後、400−600℃で歪取り焼鈍し圧粉磁心とするのが一般的であるが、樹脂バインダは400℃以上の熱処理により分解するため熱処理後の結合力が著しく低下するという問題点もある。以上のように圧粉磁心のコア鉄損低減にはヒステリシス損失と渦電流損失双方の低減が必要であり、そのために低保磁力な磁性粉末と高温熱処理に耐える絶縁被覆技術が要求されている。
また、特許文献2では、Feを主成分とする粉末に、シリコーン樹脂と金属酸化物、ガラス等からなる顔料とを含有する皮膜を形成した鉄基粉末を形成し、有機物が分解する温度で焼結することにより得られる圧粉磁心が開示されている。この効果として、焼鈍後においても高い絶縁性と、高い強度を示す点が記載されている。
In addition, the conventional dust core is formed by adding a few weight percent of a silicon resin or an acrylic resin as a binder to an insulating coated magnetic powder, applying a pressure of 1-2 GPa, press-molding, and then straining at 400-600 ° C. In general, the powder magnetic core is prepared by annealing, but the resin binder is decomposed by heat treatment at 400 ° C. or higher, so that the bonding strength after heat treatment is remarkably lowered. As described above, in order to reduce the core iron loss of the dust core, it is necessary to reduce both hysteresis loss and eddy current loss. For this reason, low coercive magnetic powder and insulation coating technology that can withstand high-temperature heat treatment are required.
Further, in Patent Document 2, an iron-based powder in which a film containing a silicone resin, a metal oxide, and a pigment made of glass or the like is formed on a powder containing Fe as a main component, and sintered at a temperature at which organic matter is decomposed. A dust core obtained by tying is disclosed. As this effect, the point which shows high insulation and high intensity | strength after annealing is described.

特開2003―282316号JP 2003-282316 A 特開2003―303711号JP 2003-303711 A 魚住学司ほか, 粉体粉末冶金協会平成17年度秋季大会講演概要(2005), p136Gakuji Uozumi et al., Outline of the 2005 Fall Meeting of the Powder and Powder Metallurgy Association (2005), p136

しかしながら未だ必要十分な、低コア損失を実現する低ヒステリシス損失で高温熱処理に耐える高電気抵抗で高強度が得られる圧粉磁心は得られていないのが現状である。
本発明の目的は上記問題を解決するため、高温熱処理が可能で低ヒステリシス損失、かつ、高電気抵抗、高強度の軟磁性金属圧粉磁心およびその製造方法を提供することである。
However, the present situation is that a dust core capable of obtaining a high strength with a high electrical resistance capable of withstanding a high-temperature heat treatment with a low hysteresis loss that realizes a low core loss has not yet been obtained.
In order to solve the above problems, an object of the present invention is to provide a soft magnetic metal dust core capable of high-temperature heat treatment, low hysteresis loss, high electrical resistance and high strength, and a method for manufacturing the same.

本発明者らは、軟磁性金属粉末に絶縁性酸化膜を付着させ、かつ無機バインダを用いて高温で焼鈍することなどにより粉末表面に絶縁性被膜を形成することで上記目的が達成できることを見出し、本発明に至った。   The present inventors have found that the above object can be achieved by forming an insulating film on the powder surface by attaching an insulating oxide film to the soft magnetic metal powder and annealing at a high temperature using an inorganic binder. The present invention has been reached.

即ち、本発明の軟磁性金属圧粉磁心の製造方法は、Feを主成分とする軟磁性粉末をアルコキシド溶液中に浸漬して粉末表面に絶縁性酸化膜を形成した後、無機バインダを混合し、プレス成形した後、600℃以上で熱処理することを特徴とする。
絶縁性酸化膜の皮膜厚さを10nm以上1μm以下で形成し、かつ、熱処理を900℃以上1100℃以下で行うことが好ましい。酸化膜の厚さがこの範囲内で、かつ、1000℃近傍の温度で熱処理を行った時のみ、圧環強度の向上効果が得られる。好ましい絶縁性酸化膜の膜厚は、0.1μm以上0.9μm以下であり、さらに好ましくは0.3μm以上0.8μm以下である。また、好ましい熱処理温度は950℃以上1050℃以下である。また、成形圧力は0.6GPa以上で行うことが好ましい。
That is, in the method for producing a soft magnetic metal dust core of the present invention, a soft magnetic powder containing Fe as a main component is immersed in an alkoxide solution to form an insulating oxide film on the powder surface, and then an inorganic binder is mixed. After press molding, heat treatment is performed at 600 ° C. or higher.
It is preferable to form the insulating oxide film with a thickness of 10 nm to 1 μm and to perform the heat treatment at 900 ° C. to 1100 ° C. Only when the thickness of the oxide film is within this range and heat treatment is performed at a temperature in the vicinity of 1000 ° C., the effect of improving the crushing strength can be obtained. The thickness of the insulating oxide film is preferably 0.1 μm or more and 0.9 μm or less, more preferably 0.3 μm or more and 0.8 μm or less. Moreover, preferable heat processing temperature is 950 degreeC or more and 1050 degrees C or less. The molding pressure is preferably 0.6 GPa or more.

また、軟磁性粉末重量に対して、重量%で無機バインダを0.3重量%以上2.0重量%以下で混合することが好ましい。さらに好ましい無機バインダの添加量の範囲は、0.4〜1.8重量%である。
無機バインダは、コロイダルシリカ、アモルファスシリカ、溶融シリカ、水ガラス、シリコンエマルジョンの1種または2種以上から選択されるものが好ましい。また、軟磁性粉末重量に対して、有機樹脂バインダを2重量%以下(0を含まず)、潤滑剤を0.1重量%以上0.5重量%以下で混合することが好ましい。
アルコキシド溶液は、濃度が10mol/L以上、pHが6.0から12.0の範囲であるものが好ましい。
Moreover, it is preferable to mix the inorganic binder in an amount of 0.3% by weight to 2.0% by weight with respect to the weight of the soft magnetic powder. A more preferable range of the added amount of the inorganic binder is 0.4 to 1.8% by weight.
The inorganic binder is preferably selected from one or more of colloidal silica, amorphous silica, fused silica, water glass, and silicon emulsion. Further, it is preferable to mix the organic resin binder at 2 wt% or less (excluding 0) and the lubricant at 0.1 wt% or more and 0.5 wt% or less with respect to the weight of the soft magnetic powder.
The alkoxide solution preferably has a concentration of 10 mol / L or more and a pH in the range of 6.0 to 12.0.

この製造方法により、Feを主成分とする軟磁性粉末をプレス成形後熱処理を施した成形体において、圧環強度が30MPa以上で、電気抵抗率が10Ωm以上であるものが得られる。この軟磁性粉末表面の全体あるいは一部に絶縁性酸化膜が形成されている。絶縁性酸化膜の厚さは10nm以上1μm以下であるものが好ましい。Feを主成分とする軟磁性粉末として、例えば、Fe粉、Fe−Si系粉末、Fe−Si−Al系粉末、Fe−Ni系粉末、Fe−Si−B系粉末、Fe系ナノ結晶粉末などの金属粉末を用いることができる。
Fe−Si系粉末、Fe−Si−Al系粉末、Fe−Ni系粉末であれば、Fe量は85原子%以上が好ましく、90原子%以上がさらに好ましい。Fe−Si−B系粉末、Fe系ナノ結晶粉末であれば、Fe量は65原子%以上が好ましく、さらには70原子%以上、さらには75原子%以上が好ましい。
According to this manufacturing method, a compact having a crushing strength of 30 MPa or more and an electrical resistivity of 10 4 Ωm or more is obtained in a molded product obtained by subjecting soft magnetic powder containing Fe as a main component to heat treatment after press molding. An insulating oxide film is formed on the whole or part of the surface of the soft magnetic powder. The thickness of the insulating oxide film is preferably 10 nm or more and 1 μm or less. Examples of the soft magnetic powder containing Fe as a main component include Fe powder, Fe-Si powder, Fe-Si-Al powder, Fe-Ni powder, Fe-Si-B powder, and Fe nanocrystal powder. The metal powder can be used.
In the case of Fe-Si powder, Fe-Si-Al powder, and Fe-Ni powder, the amount of Fe is preferably 85 atomic percent or more, and more preferably 90 atomic percent or more. In the case of Fe—Si—B-based powder and Fe-based nanocrystal powder, the amount of Fe is preferably 65 atomic% or more, more preferably 70 atomic% or more, and further preferably 75 atomic% or more.

前記の製造方法により、Feを主成分とする軟磁性粉末をプレス成形後熱処理を施した成形体として、圧環強度が30MPa以上で、電気抵抗率が10Ωm以上である圧粉磁心を得ることができる。圧環強度はJIS Z 2507で定められた圧環強さ試験方法で測定した値である。 By the above-described manufacturing method, a powder magnetic core having a crushing strength of 30 MPa or more and an electric resistivity of 10 4 Ωm or more is obtained as a molded body obtained by subjecting soft magnetic powder mainly composed of Fe to heat treatment after press molding. Can do. The crushing strength is a value measured by a crushing strength test method defined in JIS Z 2507.

この圧粉磁心は表面の全体あるいは一部に絶縁性酸化被膜が形成されたものが好ましく、その被膜の厚さは10nm以上1μm以下であることが好ましい。また、圧粉磁心を周波数が50kHz以下の環境下で用いる場合、この絶縁性酸化被膜の膜圧とすることで、圧粉磁心の磁心損失を下げることができる。詳細は実施例で記載する。   The dust core preferably has an insulating oxide film formed on the entire surface or a part thereof, and the thickness of the film is preferably 10 nm or more and 1 μm or less. Further, when the dust core is used in an environment having a frequency of 50 kHz or less, the core loss of the dust core can be reduced by setting the film pressure of the insulating oxide film. Details are described in the Examples.

本発明により製造した軟磁性金属圧粉磁心を用いることにより、圧粉磁心(磁性コア)の熱処理後の圧環強度を30MPaとし、電気抵抗率を10Ωm以上にすることが可能である。また、渦電流損失とヒステリシス損失の双方を大幅に低減することが可能である。 By using the soft magnetic metal dust core produced according to the present invention, it is possible to set the crushing strength after heat treatment of the dust core (magnetic core) to 30 MPa and the electrical resistivity to 10 4 Ωm or more. Moreover, it is possible to significantly reduce both eddy current loss and hysteresis loss.

高温焼鈍を行うことによりコア成形時に軟磁性金属粉末に加わった歪みの除去が十分になされるとともに、結晶粒径が大きくなるために粉末内での磁壁移動が容易となりヒステリシス損失が大幅に低減される。また渦電流の発生を抑制する絶縁性被膜に耐熱性があるため高温焼鈍により変質破壊されて絶縁性が劣化することなく高い電気抵抗率を保ち、渦電流損失の増大を抑制する。   By performing high-temperature annealing, the distortion applied to the soft magnetic metal powder during core forming is sufficiently removed, and the crystal grain size increases, which facilitates domain wall movement within the powder and greatly reduces hysteresis loss. The In addition, since the insulating coating that suppresses the generation of eddy current has heat resistance, it maintains high electrical resistivity without deterioration due to alteration by high-temperature annealing and deterioration of insulation, and suppresses increase in eddy current loss.

また、1000℃以下で絶縁性酸化膜と結合する無機Si系バインダを添加することにより、絶縁性酸化膜とが高温焼鈍中に反応し粉末間の結合を強化し、熱処理後の圧粉磁心の圧環強度が増大する。   Also, by adding an inorganic Si-based binder that binds to the insulating oxide film at 1000 ° C. or lower, the insulating oxide film reacts during high-temperature annealing to strengthen the bond between the powders, and the dust core after the heat treatment The crushing strength increases.

以下に本発明の軟磁性圧粉磁心およびその製造方法を具体的に説明する。本発明は、磁性粉末の表面に絶縁性酸化膜を付着させ、無機バインダ等を混合し、成形したあと高温で熱処理をすることによって得られる高強度、高電気抵抗率の圧粉磁心とその製造方法である。
原料となる軟磁性粉末はFeを主成分とするもので、具体的にはFe、Fe−Si、Fe−Si−Al、Fe−Ni、Fe基ナノ結晶粉末である。その製造方法としてはガスアトマイズ法、水アトマイズ法、その他の方法などいずれの方法でも構わない。また、軟磁性粉末の形状にはよらず、球状、偏平状、異形状などいずれの形状においても有効である。軟磁性粉末の粒径に関わらず本発明の効果は得られるが、同組成であれば粒径が大きい方が一つの結晶粒を大きくして保磁力を減少させることができるためヒステリシス損失が小さくなり、全体としての圧粉磁心の損失をより小さくできる傾向がある。
The soft magnetic powder magnetic core of the present invention and the manufacturing method thereof will be specifically described below. The present invention relates to a powder magnetic core having high strength and high electrical resistivity obtained by attaching an insulating oxide film to the surface of magnetic powder, mixing an inorganic binder, etc., and then heat-treating it at a high temperature and manufacturing the same. Is the method.
The soft magnetic powder used as a raw material is mainly composed of Fe, and specifically, Fe, Fe—Si, Fe—Si—Al, Fe—Ni, and Fe-based nanocrystal powder. As a manufacturing method thereof, any method such as a gas atomizing method, a water atomizing method, and other methods may be used. Moreover, it is effective in any shape such as a spherical shape, a flat shape, and an irregular shape regardless of the shape of the soft magnetic powder. The effect of the present invention can be obtained regardless of the particle size of the soft magnetic powder, but with the same composition, the larger the particle size, the larger one crystal grain can be reduced to reduce the coercive force, so the hysteresis loss is small. Therefore, the loss of the powder magnetic core as a whole tends to be reduced.

本発明の製造方法におけるアルコキシド溶液とは、付着させたい酸化物の原料となる金属アルコキシドをIPA、エタノールなどのアルコールに溶解させたものである。金属アルコキシドとしては、Mを金属元素として、メトキシドM(OCH)n、エトキシドM(OC)n、プロポキシドM(O・n−、i−C)nのようなアルキル鎖長が短いものを用いる。金属元素MはMg、Al、Si、Ca、Ti、Sr、Ba、Li、Na、K、St、Ge、Bi、Cu、Y、Zr、Taから選ばれる少なくとも一種の元素である。金属アルコキシドは、1種を単独に用いてもよいし、2種以上を組み合わせて用いてもよい。安定した酸化物を形成する元素としては、Si、Ti、Zr、Alが特に好ましい。具体的にはSiのアルコキシド溶液であるテトラエトキシシランやテトラメトキシシラン、Tiのアルコキシド溶液であるチタンアルコキシドが好ましい。 The alkoxide solution in the production method of the present invention is a solution obtained by dissolving a metal alkoxide, which is a raw material of an oxide to be deposited, in an alcohol such as IPA or ethanol. Examples of the metal alkoxide include M as a metal element, alkyl such as methoxide M (OCH 3 ) n, ethoxide M (OC 2 H 5 ) n, propoxide M (O · n-, i-C 3 H 7 ) n. Use one with a short chain length. The metal element M is at least one element selected from Mg, Al, Si, Ca, Ti, Sr, Ba, Li, Na, K, St, Ge, Bi, Cu, Y, Zr, and Ta. A metal alkoxide may be used individually by 1 type, and may be used in combination of 2 or more type. As an element that forms a stable oxide, Si, Ti, Zr, and Al are particularly preferable. Specifically, tetraethoxysilane or tetramethoxysilane which is an alkoxide solution of Si, or titanium alkoxide which is an alkoxide solution of Ti is preferable.

金属アルコキシド溶液にアルミナ(Al2 3 )、シリカ(SiO2 )、マグネシア(MgO)等のセラミックス粒子が入っていても良いが、これらの含有量が多いと圧粉磁心の磁気特性が悪化するため、適宜選択して使用する必要がある。
また、金属アルコキシド溶液に絶縁性粘性物質を添加しても良い。この絶縁性粘性物質は、セラミックス粒子と共に添加することでその沈殿を防ぎ、金属アルコキシド溶液中に均一分散させる。その結果、軟磁性粉末の絶縁性が高まるという効果が得られる。絶縁性粘性物質には、合成粘性物質や、半合成粘性物質、天然粘性物質など、いずれも適宜用いることができる。合成粘性物質は、陽イオン系、陰イオン系、非イオン系などいずれも使用可能である。半合成粘性物質には、例えばセルロース誘電体系粘性物質であるメチルセルロースなどが使用できる。天然粘性物質には植物粘質物と動物粘質物のどちらでも使用可能であり、アラビアゴムやゼラチンなどが使用できる。
The metal alkoxide solution may contain ceramic particles such as alumina (Al 2 O 3 ), silica (SiO 2 ), and magnesia (MgO). However, if these contents are large, the magnetic properties of the powder magnetic core deteriorate. Therefore, it is necessary to select and use as appropriate.
Further, an insulating viscous substance may be added to the metal alkoxide solution. The insulating viscous substance is added together with the ceramic particles to prevent its precipitation and uniformly disperse in the metal alkoxide solution. As a result, an effect that the insulating property of the soft magnetic powder is improved can be obtained. As the insulating viscous substance, any of a synthetic viscous substance, a semi-synthetic viscous substance, a natural viscous substance, and the like can be used as appropriate. As the synthetic viscous material, any of a cation system, an anion system, and a nonionic system can be used. As the semisynthetic viscous material, for example, methylcellulose which is a cellulose dielectric system viscous material can be used. As the natural viscous substance, either plant mucilage or animal mucilage can be used, such as gum arabic or gelatin.

これらのアルコキシド溶液と前記原料軟磁性粉末を混合する。混合の際、アルコキシド溶液の濃度が極端に小さいと金属粉末表面に付着する絶縁性酸化膜が十分ではなくなるため本発明の効果が得られない。したがって、アルコキシド溶液の濃度は10mol/L以上必要である。濃度に上限はないが、あまり高いと原料軟磁性粉末に付着せずに廃棄される分が増えるため、製造コスト上問題がある。より均一で緻密な酸化物を付着させるには、現実的には5mol/L程度以下、さらに膜厚が増大し過ぎないためには2mol/L程度以下であることが望ましい。
また、前記アルコキシド溶液と原料軟磁性粉末とを混合する時間は、短すぎると反応がほとんど進まず絶縁性酸化膜を付着させることが出来ないため、30分以上が好ましい。処理時間に上限はないが、反応が平衡に達するとそれ以上の付着はあまり望めないため効果がない。したがって、現実的には30分から5時間の範囲が好ましい。
なお、上述するアルコキシド溶液はpHにより反応の形態と速度が変化する。本目的にはpH6からpH12、好ましくはpH8.3からpH11であることがより望ましい。pH6以下では、原料磁性粉末より溶液中にFeの溶出が起こるため好ましくない。またpHが11以上では、付着量が過剰になり膜厚が増大し過ぎて特性に悪影響を与えるため好ましくない。
These alkoxide solutions and the raw material soft magnetic powder are mixed. At the time of mixing, if the concentration of the alkoxide solution is extremely small, the insulating oxide film adhering to the surface of the metal powder is not sufficient, so that the effect of the present invention cannot be obtained. Therefore, the concentration of the alkoxide solution needs to be 10 mol / L or more. There is no upper limit to the concentration, but if the concentration is too high, the amount discarded without adhering to the raw soft magnetic powder increases, which causes a problem in manufacturing cost. In order to deposit a more uniform and dense oxide, in reality, it is desirably about 5 mol / L or less, and in order to prevent the film thickness from increasing excessively, it is desirably about 2 mol / L or less.
Further, the time for mixing the alkoxide solution and the raw soft magnetic powder is preferably 30 minutes or longer because if the time is too short, the reaction hardly proceeds and the insulating oxide film cannot be deposited. There is no upper limit on the treatment time, but when the reaction reaches equilibrium, no further adhesion can be expected, so there is no effect. Therefore, practically, a range of 30 minutes to 5 hours is preferable.
In addition, the form and speed | rate of reaction of the alkoxide solution mentioned above change with pH. For this purpose, it is more desirable that the pH is from pH 6 to pH 12, preferably from pH 8.3 to pH 11. A pH of 6 or less is not preferable because Fe elution occurs in the solution from the raw magnetic powder. On the other hand, if the pH is 11 or more, the adhesion amount becomes excessive and the film thickness increases excessively, which adversely affects the characteristics.

前記絶縁性酸化膜は必ずしも磁性粉末表面全体を覆っている必要はない。原料軟磁性粉末の形状、組成、表面状態やその製造の条件等により部分的に絶縁性酸化膜がなくとも絶縁、高強度の効果は十分に得られる。
また、絶縁性酸化膜の層が1μmを超える厚さになると、圧粉磁心のうちに金属粉末成分の占める割合が低くなり、高磁束密度が得られない。したがって、絶縁性酸化膜の厚みは1μm以下が好ましい。逆に薄すぎると電気伝導の抑制効果がなくなり、渦電流損失の増大を招いてしまうため、10nm以上の厚さが必要である。また、前記したように、特に0.1μm以上0.9μm以下の厚さで、かつ1000℃近傍の温度で熱処理することで、圧環強度が向上する。詳細は実施例にて述べる。
The insulating oxide film does not necessarily have to cover the entire surface of the magnetic powder. Even if there is no insulating oxide film in part due to the shape, composition, surface state, manufacturing conditions, etc. of the raw soft magnetic powder, sufficient effects of insulation and high strength can be obtained.
Further, when the thickness of the insulating oxide film exceeds 1 μm, the proportion of the metal powder component in the dust core becomes low, and a high magnetic flux density cannot be obtained. Therefore, the thickness of the insulating oxide film is preferably 1 μm or less. On the other hand, if the thickness is too thin, the effect of suppressing electrical conduction is lost and an increase in eddy current loss is caused, so a thickness of 10 nm or more is necessary. In addition, as described above, the crushing strength is improved by performing heat treatment particularly at a thickness of 0.1 μm or more and 0.9 μm or less and at a temperature in the vicinity of 1000 ° C. Details will be described in Examples.

軟磁性粉末をアルコキシド溶液から取り出した後、粉末を乾燥させる。成形後に熱処理をする際、金属粉末に残留した溶媒や水などの蒸発による密度低下等を防ぐ効果がある。乾燥工程は一般的なもので、大気中、真空中、不活性雰囲気中いずれでもよく、溶媒や水が蒸発する温度(50℃〜300℃)で30分から10時間乾燥させれば良い。   After removing the soft magnetic powder from the alkoxide solution, the powder is dried. When heat treatment is performed after molding, there is an effect of preventing a decrease in density due to evaporation of a solvent or water remaining in the metal powder. The drying process is general and may be performed in the atmosphere, in a vacuum, or in an inert atmosphere, and may be performed at a temperature at which the solvent or water evaporates (50 ° C. to 300 ° C.) for 30 minutes to 10 hours.

上記工程により作製した軟磁性粉末に、無機バインダ、有機樹脂バインダ、潤滑剤を混合する。これらはそれぞれ、熱処理後の圧粉磁心の強度、成形時の圧粉磁心の強度、成形性改善を目的として添加されるものである。
無機バインダの添加量は0.3〜2.0%の範囲が好ましい。隣接した磁性粉末表面の絶縁性酸化膜と無機バインダ共存下において高温熱処理をすることにより圧粉磁心の圧環強度が向上する。いずれも一方のみでは十分な効果が得られない。無機バインダを添加しない場合、磁性粉末表面の絶縁性酸化膜間の結合形成が不十分で、また、一方無機バインダのみでは粉末間絶縁を得ることが出来ない。絶縁処理として、カオリン等の絶縁フィラーを混合する方法もあるが、この場合絶縁フィラーは磁性粉末表面に付着しているに過ぎず結合を形成していないため、無機バインダを添加しても磁性粉末間の結合強化には繋がらない。したがって、本発明の製造方法として示したように、磁性粉末表面に結合した絶縁性酸化膜と無機バインダの両者が高強度の圧粉磁心を得るためには必要であると考えられる。なお、添加量が多すぎると圧粉磁心の密度が減少し高い飽和磁束密度が得られなくなってしまうと共に、圧環強度の向上効果も得られない。したがって添加量は2%を超えないのが望ましい。無機バインダとして、無機Si系バインダが好ましい。
An inorganic binder, an organic resin binder, and a lubricant are mixed in the soft magnetic powder produced by the above process. These are added for the purpose of improving the strength of the dust core after heat treatment, the strength of the dust core at the time of molding, and the moldability.
The addition amount of the inorganic binder is preferably in the range of 0.3 to 2.0%. By performing high-temperature heat treatment in the presence of an insulating oxide film and an inorganic binder on the surface of the adjacent magnetic powder, the crushing strength of the dust core is improved. In either case, sufficient effects cannot be obtained with only one of them. When an inorganic binder is not added, the bond formation between the insulating oxide films on the surface of the magnetic powder is insufficient. On the other hand, the insulation between powders cannot be obtained only with the inorganic binder. As an insulation treatment, there is a method of mixing an insulating filler such as kaolin. In this case, since the insulating filler is only attached to the surface of the magnetic powder and does not form a bond, the magnetic powder can be added even if an inorganic binder is added. It does not lead to strengthening the bond between them. Therefore, as shown in the manufacturing method of the present invention, it is considered that both the insulating oxide film and the inorganic binder bonded to the surface of the magnetic powder are necessary for obtaining a high-strength powder magnetic core. In addition, when there is too much addition amount, the density of a powder magnetic core will decrease and it will become impossible to obtain a high saturation magnetic flux density, and the improvement effect of a crushing strength will not be acquired. Therefore, it is desirable that the amount added does not exceed 2%. As the inorganic binder, an inorganic Si-based binder is preferable.

有機樹脂バインダとしては、アクリル系樹脂を水に分散させたアクリルエマルジョンが適している。成形時の圧粉磁心の強度を保つために必要である。熱処理時に昇華、熱分解により圧粉磁心より抜ける。添加量が多いとアモルファスシリカと同様に密度が低下し、また、熱処理時に圧粉磁心内にバインダが残り、圧環強度や磁気特性に悪影響を与えることがある。したがって添加量は2%以下が望ましい。
成形性を向上させるために加える潤滑剤は高級脂肪酸潤滑剤で、ステアリン酸ならびに、そのリチウム、ナトリウム、カリウム、カルシウム、マグネシウムおよび亜鉛の塩である。価格、特性の面からステアリン酸亜鉛が好ましい。添加量は0.1−0.5%で、0.1%より少ないと金型からの抜出が困難になり、0.5%を超えると成形時の強度が低くなり、また熱処理時に十分に抜けきらず、圧環強度や磁気特性に悪影響を与えることがある。
As the organic resin binder, an acrylic emulsion in which an acrylic resin is dispersed in water is suitable. Necessary for maintaining the strength of the dust core during molding. It escapes from the dust core by sublimation and thermal decomposition during heat treatment. If the added amount is large, the density is reduced as in the case of amorphous silica, and a binder remains in the dust core during heat treatment, which may adversely affect the crushing strength and magnetic characteristics. Therefore, the addition amount is desirably 2% or less.
The lubricant added to improve moldability is a higher fatty acid lubricant, stearic acid and its lithium, sodium, potassium, calcium, magnesium and zinc salts. Zinc stearate is preferred in terms of price and characteristics. Addition amount is 0.1-0.5%. If it is less than 0.1%, it is difficult to pull out from the mold. May cause adverse effects on the crushing strength and magnetic properties.

上記工程により製造した軟磁性粉末を成形後、600℃以上で熱処理を行う。これにより、本発明の軟磁性金属粉末製造のための熱処理工程とコアの歪取り焼鈍工程を同一にして、高温で歪取り焼鈍を行うことが可能である。圧粉磁心の強度を大きくするためには800℃以上、さらに、低ヒステリシス損失の圧粉磁心を得るためには900℃以上の高温熱処理がより好ましい。熱処理の時間は30分から2時間程度でよい。熱処理雰囲気は非酸化性雰囲気が好ましい。   After the soft magnetic powder produced by the above process is molded, heat treatment is performed at 600 ° C. or higher. This makes it possible to perform strain relief annealing at a high temperature by making the heat treatment step for producing the soft magnetic metal powder of the present invention the same as the strain relief annealing step for the core. In order to increase the strength of the dust core, high temperature heat treatment at 800 ° C. or higher is more preferable, and in order to obtain a dust core with low hysteresis loss, high temperature heat treatment at 900 ° C. or higher is more preferable. The heat treatment time may be about 30 minutes to 2 hours. The heat treatment atmosphere is preferably a non-oxidizing atmosphere.

(実施例1−9)
Fe−6.5%Siからなる組成で、平均粒径80μmの軟磁性原料粉末500gを、テトラアルコキシシラン(関東化学)/IPA溶液100mLと混合し、プロペラ攪拌機を用いて、3時間攪拌した。その後、軟磁性粉末とテトラアルコキシシラン/IPA溶液を分離し、100℃で1時間乾燥させた。得られた軟磁性粉末に、コロイダルシリカ(日産化学工業)0.5wt%、アクリルエマルジョン(昭和高分子)1.5wt%を混合し攪拌乾燥させ、さらにステアリン酸亜鉛0.3wt%を混合した。こうして得られた軟磁性粉末を室温下、1200MPaで圧縮成形し、外径14mm、内径8mm、高さ4.5mmのリング試料を作製し、これを窒素ガス中、800℃で2時間の熱処理を行った。
(比較例1−4)
実施例1と同じ原料粉末に、コロイダルシリカ1.2wt%、アクリルエマルジョン1.5wt%、ステアリン酸亜鉛0.3wt%を同様に混合し、成形、熱処理を行った。
(比較例5−8)
実施例1と同じ原料粉末に絶縁物としてカオリン0.5wt%を加え、コロイダルシリカ1.2wt%、アクリルエマルジョン1.5wt%、ステアリン酸亜鉛0.3wt%を同様に混合し、成形、熱処理を行った。
(比較例9−13)
実施例1と同じ原料粉末に実施例1と同様のアルコキシド溶液による処理を行った後、アクリルエマルジョン1.5wt%、ステアリン酸亜鉛0.3wt%を同様に混合し、成形、熱処理を行った。
上記のように得られた圧粉磁心の圧環強度と電気抵抗率を測定した。圧環強度は島津製作所製オートグラフ(AG−50kNG)により測定した圧縮力から算出した。電気抵抗率はリング試料のプレス面に銀ペーストを塗り、岩崎通信機社製デジタルマルチメータ(VOAC7521)を用いて2端子法にて測定した。各粉末とその圧環強度、電気抵抗率の値を表1に記す。
(Example 1-9)
500 g of a soft magnetic raw material powder having a composition of Fe-6.5% Si and an average particle size of 80 μm was mixed with 100 mL of tetraalkoxysilane (Kanto Chemical) / IPA solution, and stirred for 3 hours using a propeller stirrer. Thereafter, the soft magnetic powder and the tetraalkoxysilane / IPA solution were separated and dried at 100 ° C. for 1 hour. The obtained soft magnetic powder was mixed with 0.5 wt% colloidal silica (Nissan Chemical Industries) and 1.5 wt% acrylic emulsion (Showa High Polymer), stirred and dried, and further mixed with 0.3 wt% zinc stearate. The soft magnetic powder thus obtained was compression-molded at 1200 MPa at room temperature to prepare a ring sample having an outer diameter of 14 mm, an inner diameter of 8 mm, and a height of 4.5 mm, and this was heat-treated at 800 ° C. for 2 hours in nitrogen gas. went.
(Comparative Example 1-4)
The same raw material powder as in Example 1 was mixed with 1.2 wt% colloidal silica, 1.5 wt% acrylic emulsion, and 0.3 wt% zinc stearate in the same manner, followed by molding and heat treatment.
(Comparative Example 5-8)
Add 0.5 wt% of kaolin as an insulator to the same raw material powder as in Example 1, mix 1.2 wt% of colloidal silica, 1.5 wt% of acrylic emulsion, and 0.3 wt% of zinc stearate in the same manner, and perform molding and heat treatment. went.
(Comparative Example 9-13)
After the same raw material powder as in Example 1 was treated with the same alkoxide solution as in Example 1, 1.5 wt% of acrylic emulsion and 0.3 wt% of zinc stearate were mixed in the same manner, followed by molding and heat treatment.
The crushing strength and electrical resistivity of the dust core obtained as described above were measured. The crushing strength was calculated from the compression force measured by Shimadzu Autograph (AG-50kNG). The electrical resistivity was measured by a two-terminal method using a digital multimeter (VOAC7521) manufactured by Iwasaki Tsushinki Co., Ltd., by applying a silver paste on the pressed surface of the ring sample. Table 1 shows each powder and its crushing strength and electrical resistivity values.

Figure 2008277775
Figure 2008277775

実施例1、比較例1、比較例9に示されるように、圧環強度、電気抵抗率共に高い値を示すためには、アルコキシド溶液による被覆処理、無機シリカ系バインダがそれぞれ単独では不十分であり、その両方が必要であることがわかる。
また、比較例5に示したように、アルコキシド溶液による被覆処理を行う代わりに絶縁物としてカオリンを混合しても比較的高い電気抵抗率が得られるが、圧環強度が非常に低い値となる。アルコキシド溶液により生成したシリカは金属粉末表面に化学的に結合しているが、カオリンは混合しただけであるため金属粉末表面に付着しているに過ぎず、したがって圧環強度が低くなると考えられる。
As shown in Example 1, Comparative Example 1, and Comparative Example 9, in order to show high values for both the crushing strength and the electrical resistivity, the coating treatment with the alkoxide solution and the inorganic silica-based binder are each insufficient. , You can see that both are necessary.
Further, as shown in Comparative Example 5, a relatively high electrical resistivity can be obtained by mixing kaolin as an insulator instead of performing the coating treatment with the alkoxide solution, but the crushing strength becomes a very low value. Silica produced by the alkoxide solution is chemically bonded to the surface of the metal powder, but kaolin is only mixed and is only attached to the surface of the metal powder.

比較例9−13に示したように、無機系バインダの添加量は少なすぎても多すぎても共に圧環強度は低くなる。バインダ添加量が少ないと金属粉末間を結びつける結合箇所が不足し、添加量が多いと成形時の圧縮性が悪くなるためと考えられる。   As shown in Comparative Example 9-13, the crushing strength is low in both cases where the amount of the inorganic binder added is too small or too large. It is considered that when the added amount of the binder is small, there are insufficient bonding sites for connecting the metal powders, and when the added amount is large, the compressibility at the time of molding deteriorates.

表2に被膜の厚さと圧環強度、電気抵抗率の関係を示した。アルコキシド/IPA溶液のアルコキシド濃度を変えることにより、被膜の厚さを変えた。被膜がより厚い方が絶縁性を確保できるため電気抵抗率が大きくなり、渦電流損失を抑えることができるが、膜厚が1μmを超えると圧粉磁心の密度低下が著しくなるため高磁束密度が得られず、圧環強度も低下する。   Table 2 shows the relationship between the thickness of the coating, the crushing strength, and the electrical resistivity. The coating thickness was changed by changing the alkoxide concentration of the alkoxide / IPA solution. The thicker the film, the higher the electrical resistivity, and the eddy current loss can be suppressed because the insulation can be ensured. However, when the film thickness exceeds 1 μm, the density of the dust core becomes significantly reduced, so the high magnetic flux density is increased. It cannot be obtained, and the crushing strength also decreases.

Figure 2008277775
Figure 2008277775

絶縁性酸化膜の厚さと、成形後の熱処理温度による圧環強度への影響を調べた。絶縁性酸化膜の厚さを変えた以外は、実施例1と同様にして得られたリング試料を窒素ガス中、800℃、900℃、1000℃、1100℃、1200℃の条件で2時間の熱処理を行った。結果を図1に示す。
熱処理温度を1000℃としたものは、絶縁性酸化膜の厚さが0.1〜1μmの範囲内で圧環強度が向上している。熱処理温度が900℃、1100℃のものは若干ながら同様の傾向があるが、熱処理温度が800℃、1200℃のものでは絶縁性酸膜の膜厚が厚くなるにつれ圧環強度が低下している。
これは、アモルファス状態のシリカの溶融温度が800℃付近であるため、それより高温の1000℃近傍にすることでシリカ間の融着が起こり強度が大きくなるためと推察される。さらに高い1200℃近傍になるとシリカの結晶化が始まり微細クラックが入りやすくなるため強度が低下するものと察される。
また、圧粉体のコア強度は主に次の3つの強度で決まると考えられる。(1)金属粉末とシリカ被膜間の強度、(2)シリカ被膜の強度、(3)被覆された粉末間の強度。(3)の強度は基本的に熱処理で決まるので膜厚に対して影響を受けないが、膜厚が薄いと成形プレスにより上記(1)の強度が低下し、厚いと被膜自体にクラックが入りやすいため上記(2)の強度が低下するものと思われる。そのため、上記の特定の製造条件でのみ両者のバランスがとれ、圧環強度が向上することになったと推測される。
The influence of the thickness of the insulating oxide film and the pressure ring strength by the heat treatment temperature after forming was investigated. Except for changing the thickness of the insulating oxide film, the ring sample obtained in the same manner as in Example 1 was placed in nitrogen gas at 800 ° C., 900 ° C., 1000 ° C., 1100 ° C., and 1200 ° C. for 2 hours. Heat treatment was performed. The results are shown in FIG.
When the heat treatment temperature is 1000 ° C., the crushing strength is improved when the thickness of the insulating oxide film is in the range of 0.1 to 1 μm. The heat treatment temperatures of 900 ° C. and 1100 ° C. have a similar tendency, but when the heat treatment temperature is 800 ° C. and 1200 ° C., the crushing strength decreases as the thickness of the insulating acid film increases.
This is presumably because the melting temperature of the amorphous silica is around 800 ° C., so that the strength between the silica is increased and the strength is increased by setting the temperature around 1000 ° C., which is higher than that. When the temperature is further increased to about 1200 ° C., crystallization of silica starts and fine cracks are likely to occur, so that the strength is expected to decrease.
Further, it is considered that the core strength of the green compact is mainly determined by the following three strengths. (1) Strength between metal powder and silica coating, (2) Strength of silica coating, (3) Strength between coated powders. Since the strength of (3) is basically determined by heat treatment, it is not affected by the film thickness, but if the film thickness is thin, the strength of (1) is reduced by the molding press, and if it is thick, the coating itself cracks. Since it is easy, the strength of (2) is considered to be reduced. For this reason, it is presumed that the balance between the two is achieved only under the above specific manufacturing conditions, and the crushing strength is improved.

絶縁性酸化膜の厚さと適用する周波数が磁心損失に与える影響を調べた。表2に、磁場Bm=50mT、周波数f=50kHzの環境下で測定した圧粉磁心の磁心損失と、磁場Bm=30mT、周波数f=1MHzの環境下で測定した圧粉磁心の磁心損失を示す。圧粉磁心は、絶縁性酸化膜の厚さを0.03μm〜1.2μmの範囲で変え、それ以外は実施例1と同様にして製造したものである。   The effect of insulating oxide thickness and applied frequency on the core loss was investigated. Table 2 shows the magnetic core loss of the dust core measured under the environment of magnetic field Bm = 50 mT and frequency f = 50 kHz, and the core loss of the dust core measured under environment of magnetic field Bm = 30 mT and frequency f = 1 MHz. . The dust core was manufactured in the same manner as in Example 1 except that the thickness of the insulating oxide film was changed in the range of 0.03 μm to 1.2 μm.

Figure 2008277775
Figure 2008277775

圧粉磁心を低い周波数の環境下で使用した場合、絶縁性酸化膜の膜圧が0.03μmのものは絶縁性が損なわれて磁心損失が増大している。また、膜圧が1.2μmのものは磁心内の磁性体体積比率が下がってヒステリシス損失が損なわれ、同様に磁心損失が増大している。対して、周波数1MHzの環境下で使用した場合には、膜圧が薄くなるほど磁心損失が増大する傾向がある。
50kHz以下の低周波環境下でこの圧粉磁心を用いる場合には、前記のように絶縁性酸化膜の膜圧を制御したことによって、機械的強度が向上する効果以外に、磁心損失を低減させる効果も得られる。
When the dust core is used in a low frequency environment, the insulation loss is impaired and the core loss is increased when the insulating oxide film has a film pressure of 0.03 μm. Further, when the film pressure is 1.2 μm, the magnetic material volume ratio in the magnetic core is lowered, the hysteresis loss is impaired, and the magnetic core loss is similarly increased. On the other hand, when used in an environment with a frequency of 1 MHz, the core loss tends to increase as the film pressure decreases.
When this dust core is used under a low frequency environment of 50 kHz or less, by controlling the film pressure of the insulating oxide film as described above, the magnetic core loss is reduced in addition to the effect of improving the mechanical strength. An effect is also obtained.

熱処理温度、絶縁性酸化膜の厚さと圧環強度との関係を示す図である。It is a figure which shows the relationship between the heat processing temperature, the thickness of an insulating oxide film, and the crushing strength.

Claims (9)

Feを主成分とする軟磁性粉末をアルコキシド溶液中に浸漬して粉末表面の全体あるいは一部に絶縁性酸化膜を形成した後、無機バインダを混合し、プレス成形した後、600℃以上で熱処理することを特徴とする圧粉磁心の製造方法。 A soft magnetic powder containing Fe as a main component is immersed in an alkoxide solution to form an insulating oxide film on the whole or part of the powder surface, and then mixed with an inorganic binder, press-molded, and then heat treated at 600 ° C. or higher. A method for producing a dust core, comprising: 前記絶縁性酸化膜の皮膜厚さを10nm以上1μm以下で形成し、かつ、前記熱処理を900℃以上1100℃以下で行うことを特徴とする請求項1に記載の圧粉磁心の製造方法。 2. The method of manufacturing a dust core according to claim 1, wherein the insulating oxide film is formed with a thickness of 10 nm to 1 μm, and the heat treatment is performed at 900 ° C. to 1100 ° C. 前記軟磁性粉末の重量に対して、重量%で無機バインダを0.3重量%以上2.0重量%以下で混合することを特徴とする請求項1又は2に記載の圧粉磁心の製造方法。 3. The method for producing a dust core according to claim 1, wherein an inorganic binder is mixed in an amount of 0.3% by weight to 2.0% by weight with respect to the weight of the soft magnetic powder. . 前記無機バインダが、コロイダルシリカ、アモルファスシリカ、溶融シリカ、水ガラス、シリコンエマルジョンの1種または2種以上から選択されるものであることを特徴とする請求項1乃至3に記載の圧粉磁心の製造方法。 The dust core according to any one of claims 1 to 3, wherein the inorganic binder is selected from one or more of colloidal silica, amorphous silica, fused silica, water glass, and silicon emulsion. Production method. 前記の軟磁性粉末重量に対して、有機樹脂バインダを2重量%以下(0を含まず)、潤滑剤を0.1重量%以上0.5重量%以下で混合することを特徴とする請求項1乃至4に記載の圧粉磁心の製造方法。 The organic resin binder is mixed in an amount of 2 wt% or less (excluding 0) and the lubricant is mixed in an amount of 0.1 wt% or more and 0.5 wt% or less based on the weight of the soft magnetic powder. The manufacturing method of the powder magnetic core of 1-4. Feを主成分とする軟磁性粉末をプレス成形後熱処理を施した成形体において、圧環強度が30MPa以上で、電気抵抗率が10Ωm以上であることを特徴とする圧粉磁心。 A compact core obtained by subjecting a soft magnetic powder containing Fe as a main component to a heat treatment after press molding and having a crushing strength of 30 MPa or more and an electric resistivity of 10 4 Ωm or more. 前記圧粉磁心において、磁性粉末表面の全体あるいは一部に絶縁性酸化被膜が形成されていることを特徴とする請求項6に記載の圧粉磁心。 The dust core according to claim 6, wherein an insulating oxide film is formed on all or part of the surface of the magnetic powder in the dust core. 前記絶縁性酸化膜の厚さが、10nm以上で1μm以下であることを特徴とする請求項6又は請求項7に記載の圧粉磁心。 The dust core according to claim 6 or 7, wherein a thickness of the insulating oxide film is 10 nm or more and 1 µm or less. 前記圧粉磁心は、周波数が50kHz以下の環境下で用いられるものであることを特徴とする請求項6乃至請求項8に記載の圧粉磁心。
9. The dust core according to claim 6, wherein the dust core is used in an environment having a frequency of 50 kHz or less.
JP2008074103A 2007-04-04 2008-03-21 Powder magnetic core and manufacturing method thereof Active JP5263653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074103A JP5263653B2 (en) 2007-04-04 2008-03-21 Powder magnetic core and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007098035 2007-04-04
JP2007098035 2007-04-04
JP2008074103A JP5263653B2 (en) 2007-04-04 2008-03-21 Powder magnetic core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008277775A true JP2008277775A (en) 2008-11-13
JP5263653B2 JP5263653B2 (en) 2013-08-14

Family

ID=40055317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074103A Active JP5263653B2 (en) 2007-04-04 2008-03-21 Powder magnetic core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5263653B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251473A (en) * 2009-04-14 2010-11-04 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010251474A (en) * 2009-04-14 2010-11-04 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010258309A (en) * 2009-04-27 2010-11-11 Tamura Seisakusho Co Ltd Dust core and manufacturing method thereof
JP2012151179A (en) * 2011-01-17 2012-08-09 Tdk Corp Dust core
US20120229245A1 (en) * 2010-05-28 2012-09-13 Sumitomo Electric Industries, Ltd Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
JP5218567B2 (en) * 2009-01-23 2013-06-26 トヨタ自動車株式会社 Manufacturing method of dust core
WO2014171065A1 (en) * 2013-04-19 2014-10-23 Jfeスチール株式会社 Iron powder for dust core
JP2015095533A (en) * 2013-11-12 2015-05-18 株式会社デンソー Method for manufacturing soft magnetic member and soft magnetic member
JP2017050390A (en) * 2015-09-01 2017-03-09 株式会社村田製作所 Magnetic core and method for manufacturing the same
JP2021163913A (en) * 2020-04-02 2021-10-11 セイコーエプソン株式会社 Manufacturing method of dust core and dust core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724469B2 (en) 2010-12-29 2020-07-28 Ford Global Technologies, Llc Cylinder block assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180924A (en) * 1995-12-27 1997-07-11 Kobe Steel Ltd Dust core and manufacture thereof
JP2004143554A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Coated iron based powder
JP2005294428A (en) * 2004-03-31 2005-10-20 Fine Sinter Sanshin Kk Powder for dust core, dust core using it, and manufacturing method of dust core
JP2006128521A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Dust core and soft magnetic metal powder therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180924A (en) * 1995-12-27 1997-07-11 Kobe Steel Ltd Dust core and manufacture thereof
JP2004143554A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Coated iron based powder
JP2005294428A (en) * 2004-03-31 2005-10-20 Fine Sinter Sanshin Kk Powder for dust core, dust core using it, and manufacturing method of dust core
JP2006128521A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Dust core and soft magnetic metal powder therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218567B2 (en) * 2009-01-23 2013-06-26 トヨタ自動車株式会社 Manufacturing method of dust core
JP2010251473A (en) * 2009-04-14 2010-11-04 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010251474A (en) * 2009-04-14 2010-11-04 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010258309A (en) * 2009-04-27 2010-11-11 Tamura Seisakusho Co Ltd Dust core and manufacturing method thereof
US20120229245A1 (en) * 2010-05-28 2012-09-13 Sumitomo Electric Industries, Ltd Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
US8797137B2 (en) * 2010-05-28 2014-08-05 Sumitomo Electric Industries, Ltd. Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for producing dust core
JP2012151179A (en) * 2011-01-17 2012-08-09 Tdk Corp Dust core
JP2014210966A (en) * 2013-04-19 2014-11-13 Jfeスチール株式会社 Iron powder for dust core
WO2014171065A1 (en) * 2013-04-19 2014-10-23 Jfeスチール株式会社 Iron powder for dust core
CN105142823A (en) * 2013-04-19 2015-12-09 杰富意钢铁株式会社 Iron powder for dust core
CN105142823B (en) * 2013-04-19 2017-07-28 杰富意钢铁株式会社 Iron powder for dust core
KR101783255B1 (en) * 2013-04-19 2017-10-23 제이에프이 스틸 가부시키가이샤 Iron powder for dust core
US10410780B2 (en) 2013-04-19 2019-09-10 Jfe Steel Corporation Iron powder for dust core
JP2015095533A (en) * 2013-11-12 2015-05-18 株式会社デンソー Method for manufacturing soft magnetic member and soft magnetic member
US10272491B2 (en) 2013-11-12 2019-04-30 Denso Corporation Soft magnetic member and manufacturing method of soft magnetic member
JP2017050390A (en) * 2015-09-01 2017-03-09 株式会社村田製作所 Magnetic core and method for manufacturing the same
US10128041B2 (en) 2015-09-01 2018-11-13 Murata Manufacturing Co., Ltd. Magnetic core and method for producing the same
JP2021163913A (en) * 2020-04-02 2021-10-11 セイコーエプソン株式会社 Manufacturing method of dust core and dust core
JP7447640B2 (en) 2020-04-02 2024-03-12 セイコーエプソン株式会社 Manufacturing method of powder magnetic core and powder magnetic core

Also Published As

Publication number Publication date
JP5263653B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5263653B2 (en) Powder magnetic core and manufacturing method thereof
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
TWI585787B (en) Powder core
WO2014112483A1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
WO2011077694A1 (en) Reactor and method for producing same
JP6471260B2 (en) Soft magnetic materials, dust cores using soft magnetic materials, reactors using dust cores
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2015126047A (en) Dust core, coil component using the same, and method for producing dust core
JP2009231481A (en) Silica coating forming method of soft magnetic powder for dust core, and manufacturing method of dust core
JP2009259974A (en) High-strength powder magnetic core, method of manufacturing high-strength powder magnetic core, choke coil, and method of manufacturing the same
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2009158802A (en) Manufacturing method of dust core
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP2019201155A (en) Powder magnetic core and inductor element
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2010185126A (en) Composite soft magnetic material and method for producing the same
KR20180007344A (en) Soft magnetic metal powder and dust core
JP6458853B1 (en) Powder magnetic core and inductor element
JPH10208923A (en) Composite magnetic material and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5263653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350